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Abstract. Brain functional connectivity, obtained from functional Mag-
netic Resonance Imaging at rest (r-fMRI), reflects inter-subject varia-
tions in behavior and characterizes neuropathologies. It is captured by
the covariance matrix between time series of remote brain regions. With
noisy and short time series as in r-fMRI, covariance estimation calls for
penalization, and shrinkage approaches are popular. Here we introduce
a new covariance estimator based on a non-isotropic shrinkage that inte-
grates prior knowledge of the covariance distribution over a large popula-
tion. The estimator performs shrinkage tailored to the Riemannian geom-
etry of symmetric positive definite matrices, coupled with a probabilistic
modeling of the subject and population covariance distributions. Exper-
iments on a large-scale dataset show that such estimators resolve better
intra- and inter-subject functional connectivities compared existing co-
variance estimates. We also demonstrate that the estimator improves the
relationship across subjects between their functional-connectivity mea-
sures and their behavioral assessments.

1 Introduction

Functional connectivity captures markers of brain activity that can be linked
to neurological or psychiatric phenotypes of subjects. It is commonly used in
neuro-imaging population analyses to study between-group differences [1] or to
extract biomarkers of a specific pathology [2]. Typically, functional connectivity
is measured with an empirical covariance or Pearson correlation (i.e. normalized
covariance) between time-series of different brain regions. However, r-fMRI suf-
fers from low signal to noise ratio and small sample sizes. In such regime, the
empirical covariance matrix is not a good estimate of covariance, in particular
when the number of regions of interest (ROIs) is large. Penalized estimators
are used to overcome such limitations by injecting prior [3, 4]. Beyond sparsity,
which leads to costly optimization, high-dimensional covariance shrinkage has
appealing theoretical properties [5, 6]. Such approaches use a convex combina-
tion between the empirical covariance and a target matrix –usually the identity–
resulting in well-conditioned estimators with little computational cost. They are
vastly used for connectivity estimation on r-fMRI [7], in genomics [8], or in signal
processing [6]. However, existing covariance shrinkage methods use as prior a sin-
gle shrinkage target, which seems modest compared to the information provided
by the large cohorts of modern population neuro-imaging.



To inform better the estimation of a subject’s functional connectivity, we
propose a covariance shrinkage that integrates a probabilistic distribution of the
covariances calculated from a prior population. The resulting estimator shrinks
toward the population mean, but additionally accounting for the population dis-
persion, hence with a non-isotropic shrinkage, [9] proposed a similar approach
with a prior based regularization of the empirical covariance. Such approach
relies on the population mean only and discards the population dispersion. A
challenge is that covariance matrices must be positive definite and are distributed
on a Riemannian manifold [10, 11]. To derive efficient shrinkage rules that re-
spect this intrinsic geometry we leverage a tangent-space representation of the
manifold in our shrinkage model. Local Euclidean approximation of the Rieman-
nian geometry enables mean-square-error estimation that can be controlled well.
Such approach has been successfully applied for functional-connectivity estima-
tion [2] and classification [12]. The resulting model is validated on r-fMRI scans
of 498 healthy subjects from the Human Connectome Project (HCP) dataset
[13]. Experimental results show that the proposed estimator gives functional-
connectivity matrices that generalize better and capture better subject pheno-
types.

2 Covariance shrinkage towards a prior distribution

We propose a covariance estimator that takes into account a prior representing
the population distribution. Fig.1-(a) depicts an overview of the method. In-
put data are time-series extracted from r-fMRI scans on ROIs defined from a
brain atlas. The proposed method relies on three key elements: i) estimating a
prior distribution for covariances over a reference dataset; ii) building a tangent
embedding of the manifold of covariance matrices that enables the use of the
minimum mean squared error (MMSE) framework; iii) shrinking subject covari-
ance according to the prior in the tangent space. We introduce in the following
subsections the mathematical basis of the method.
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Fig. 1. (a) Shrunk embedding estimation workflow: the empirical covariance is esti-
mated from r-fMRI time-series; it is projected onto a tangent space built from a prior

population; the embedding is then shrunk towards the prior (
−→
dΣ0,

−→−→
Λ0). (b) Principle

of tangent embedding shrinkage towards population distribution.



Notations n and p denote the number of time-points and ROIs, respectively. We
use boldface uppercase letters for matrices. We write −→ for vectors and −→−→ for
matrices in tangent space.

2.1 Tangent space embedding of the geometry of covariances

We model a subject’s r-fMRI time series as drawn from a Gaussian distribution:
X ∼ N (µ,Σ). For centered data the mean µ is 0. The covariance Σ captures
functional connectivity. It lives on the positive definite cone. As pictured in
Fig.1-(b), this cone can be seen as a Riemannian manifold endowed with an
affine-invariant metric well suited to invariances of the Gaussian model [2, 14].
The manifold can be projected onto a vector space where Euclidean distances
locally approximate Riemannian distances in the manifold. We use as a reference
point the population average covariance across subjects, Σ0, and project Σ onto
the corresponding tangent space Rp×p. The tangent-space vector dΣ ∈ Rp×p is
then:

dΣ = logm(Σ
− 1

2
0 Σ Σ

− 1
2

0 ), (1)

where 1
2 denotes the matrix square-root and logm is the matrix logarithm. We

adopt a convenient parametrization
−→
dΣ ∈ Rd with d= p(p + 1)/2 where

−→
dΣ =

{
√

2 dσi,j , j < i, dσi,i, i = 1...p}. As the population average covariance Σ0, we
simply use the Euclidean mean, since it yields more stable estimations compared
to the Fréchet mean, as mentioned in [12]. An interesting property is that the `2
distance in the tangent space approximates the Kullback-Leibler (KL) divergence
between two connectivity distribution. Hence it is possible to use second-order
statistics to minimize the KL-divergence loss. This property will be used later
for the shrinkage estimation.

2.2 Building the prior from the population distribution

We build a prior from a population-level model of the distribution of subjects
functional-connectivity matrices. For this, we consider a set of covariances Si

from an r-fMRI dataset. First we compute a tangent-space embedding of this
dataset by setting the reference Σ0 as the population empirical mean. We then
model the vectors in the resulting tangent embedding as drawn from a normal

distribution
−→
dΣ∼ N (

−→
dΣ0=

−→
0 ,
−→−→
Λ0), characterized by the mean and the covari-

ance of the population. This distribution will be used as a prior for optimal

shrinkage. Its covariance
−→−→
Λ0 measures the element-wise dispersion of connec-

tivity matrices in the tangent space. Assuming a normal distribution on the
manifold –highest entropy assumption– this dispersion is given by the mean
outer product of the tangent embedding over the train set, as mentioned in [14]:

−→−→
Λ0 =

1

Ntrain − 1

Ntrain∑
i=1

−→
dSi ⊗

−→
dSi, (2)



where
−→−→
Λ0 ∈ Rd×d with d=p(p+ 1)/2. In practice,

−→−→
Λ0 is very high dimensional

and is learned from a finite population of subjects. We use instead a low-rank

approximation as a regularization with a PCA decomposition:
−→−→
Λ∗ = αI+DDT ,

where α is set such that the explained variance ratio is above 70%.

2.3 Estimating the shrunk covariance as a posterior mean

We describe here how we use the prior distribution (
−→
dΣ0,

−→−→
Λ0) for optimal shrink-

age of
−→
dΣ in tangent space. To derive the shrinkage from the prior distribution

on
−→
dΣ, we rely on a Bayesian formulation: p(

−→
dΣ|
−→
DS) ∝ p(

−→
DS|
−→
dΣ)p(

−→
dΣ), where

−→
DS is the embedded empirical covariance, and p(

−→
dΣ) the prior from the popu-

lation. For p(
−→
DS|
−→
dΣ), the natural loss on covariances would be the KL diver-

gence between Gaussian models. However, as mentioned earlier, we can use the
quadratic loss that approximates it in the tangent space. The posterior mean
–conditional on the data– then gives the minimum mean squared error (MMSE)

estimator for
−→
dΣ [15, Corollary 4.1.2.]:

−̂→
dΣ = E

[−→
dΣ|
−→
DS
]

= argmin
−→
dΣ

MSE(
−→
dΣ,
−→
DS). (3)

To compute this expectancy we use:

- The prior established before: p(
−→
dΣ) =N (

−→
dΣ0,

−→−→
Λ0) where (

−→
dΣ0,

−→−→
Λ0) are the

estimated prior population distribution mean and covariance, respectively.

- The quadratic loss for the likelihood of the observed data
−→
DS given

−→
dΣ: a

Gaussian distribution centered on
−→
dS, the tangent-space projection of the

empirical covariance, with covariance
−→−→
Λ : p(

−→
DS|
−→
dΣ) =N (

−→
dS,
−→−→
Λ).
−→−→
Λ cannot

be fully estimated from limited data, hence we take
−→−→
Λ =λI, where λ acts as

a shrinkage control parameter.

Using Bayes rule for multivariate Gaussian distributions [16], the posterior is

p(
−→
dΣ|
−→
DS) = N (

−̂→
dΣ,
−→−→
C), where the posterior covariance is

−→−→
C−1 =

−→−→
Λ−1 +

−→−→
Λ−10 ,

and the posterior mean
−̂→
dΣ is:

−̂→
dΣ =

(−→−→
Λ−1 +

−→−→
Λ−10

)−1(−→−→
Λ−1
−→
dS +

−→−→
Λ−10

−→
dΣ0

)
. (4)

Since the mean of the prior
−−→
dΣ0 is null and approximating the prior covariance−→−→

Λ0 results in
−→−→
Λ∗, we have:

Shrunk embedding:
−̂→
dΣ = (

−→−→
Λ−1 +

−→−→
Λ−1∗ )−1

−→−→
Λ−1
−→
dS. (5)



We observe that Eq.(5) is a generalization of classic shrinkage estimators [5,
8] that relies on a convex combination of a prior with the empirical covariance
matrix. Here, the shrinkage is in the tangent space and the amount of shrinkage
is controlled by the likelihood covariance parameter λ. In our experiments, we

set λ with a cross-validation on a subset of the train dataset. Using
−→−→
Λ0 ∝ Id

recovers standard covariance shrinkage rules.

3 Experimental validation: shrunk embedding on HCP

The proposed covariance estimator is evaluated through systematic comparisons
with state-of-the-art approaches. We assess in our experiments: i) the fidelity of
the estimates across two sessions of the same subject; ii) the estimator capacity
to characterize functional connectivity similarities between twins, siblings, and
random subjects; iii) the relationship of the estimates to behavioral scores vari-
ations across the HCP population using canonical correlation analysis (CCA).

The HCP dataset. We use r-fMRI scans from the 500-subjects release of the
HCP dataset: 498 healthy subjects including twins, siblings, and non-siblings.
Each subject has two 15 min-long r-fMRI sessions comprising 1 200 time-points.
In addition to the imaging modalities, each subject has a rich phenotype de-
scription and behavioral assessments. The HCP r-fMRI data are already spa-
tially preprocessed and normalized to the MNI space. For a given brain atlas,
we extract r-fMRI timeseries, detrended them, regressed out motion parameters,
and band filter (0.01-0.1Hz) using the Nilearn library.

The prior embedding distribution (
−→
dΣ0,

−→−→
Λ0) is built on half of the HCP subjects

(n=249) randomly selected, and by keeping twins and siblings in the same group,
as advocated in [17]. The remaining set –249 subjects as well– is used to test
the covariance estimators: their fidelity to subject data, how well they separate
subjects, and how well they relate to behavior.

i) Intra-subject shrunk embedding fidelity. To illustrate the benefits of
estimating the connectivity with the shrunk embedding method, we assess the
estimator fidelity by the log-likelihood of the data from a r-fMRI session –rest2–
in a model estimated on a different session –rest1– from the same subject. For a
model Σ estimated on rest1, the log-likelihood of data from rest2, characterized
by its empirical covariance matrix S, is: 1/2(−tr(SΣ−1)+det(Σ−1)−p log(2π)).
To compute this log-likelihood, we back-project the estimates from the tangent
space to the actual covariance matrices. We compare five covariance models for
each subject, either by shrinking the covariance towards the identity or the prior.
The amount of the shrinkage is set through a cross-validation between rest1 and
rest2. As there is no consensus on which set of ROIs should be used, we run
experiments on three different brain atlases: MSDL atlas (p= 39), BASC atlas
(p=64), and Harvard-Oxford atlas (p=96).

Figure 2 shows the log-likelihoods of each estimator, relative to the mean.
The results demonstrate that shrinking the tangent embedding of the covariance
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Fig. 2. Fidelity to subject data – Relative log-likelihoods of estimates across intra-
subject sessions (rest1, rest2). Shrinking the covariance embedding towards the prior
outperforms other estimators. Results are consistent across different brain atlases.

towards the prior produces the highest likelihood values. It suggests that inte-
grating the population distribution efficiently regularizes connectivity compo-
nents that are sensitive to inter-session variability, whereas shrinkage to identity
is less optimal. There is a systematic gain when estimating the connectivity with
shrunk embedding compared to only using the mean covariance as target of the
shrinkage model, as in [9]. We also observe that shrinkage estimates generalize
better than the empirical covariance estimator, and the optimal shrinkage is bet-
ter estimated with cross-validation than with the Ledoit-Wolf method. Finally,
the results are consistent across all brain atlases.

ii) Shrunk embedding highlights twins similarities. We assess the shrunk
embedding estimator capacity to map inter-subject differences. For this, we com-
pare distances of 20 twin-to-twin, with 20 twin-to-sibling, and with 20 twin-

to-non-sibling. We use Mahalanobis distance:

√
(
−̂→
dΣi −

−̂→
dΣj)

−→−→
Λ−10 (

−̂→
dΣi −

−̂→
dΣj),

where
−̂→
dΣi and

−̂→
dΣj are the shrunk embedding estimates of two subjects i and

j respectively, using BASC atlas.
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connectivity distances between
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Figure 3 shows the distribution of the distances for the three groups with
the shrunk embedding and the empirical covariance. The shrunk embedding-
based distances of twins are smaller than siblings and non-siblings, whereas the
empirical covariance-based distance has more spread distances and less between-
group differences. Even though the sample size is relatively small and calls for
further validation, these results highlight the potential of using the population
dispersion as a prior to characterize phenotypical and behavioral differences.

iii) Shrunk embedding association to behavioral scores. We investigate
the relationship between HCP population behavioral assessments and their re-
spective functional connectivity profiles. Following [1], we apply CCA with 100
components on 158 selected behavioral scores to relate them to 2 080 shrunk em-
bedding features estimated on BASC atlas. The significance of the CCA modes
is assessed through a permutations test with 10 000 iterations.

Results show two statistically significant CCA modes as depicted in Fig. 4
(p < 10−4). While only one CCA mode is revealed by using the empirical covari-
ance –as in[1]– the shrunk embedding yields two CCA modes with significant co-
variations between the functional connectivity and the behavioral assessments.
The representation of the fluid intelligence value of each subject helps to visualize
its correlation with the connectivity measures.

4 Conclusion

We introduced a covariance model that integrates population distribution knowl-
edge for optimal shrinkage of the covariance. It combines the tangent space em-
bedding representation of covariance matrices with a Bayesian estimate for the
shrinkage. Compared to existing covariance shrinkage estimator, our contribution
leverages additional prior information –the dispersion of a reference population
of covariances– for non isotropic shrinkage. It gives rise to simple closed-form
equations, and is thus suitably fast for large cohorts.

For brain functional connectivity, the proposed shrunk embedding model pro-
duces better estimation of connectivity matrices on the HCP dataset. It reduces
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havioral scores and connectivity estimates. Shrunk embedding gives two significantly
correlated modes while empirical covariance only one (∗ :p<10−4, permutation test).



intra-subject variability and highlights more accurately co-variations between
connectivity profiles and subjects behavioral assessments.

Further analysis of statistical properties could determine a minimax choice of
the shrinkage amount that minimize the worst-case error for our estimator. Fu-
ture work in brain imaging calls for more study of the generality of the population
prior, for instance across distinct datasets. Our group-level analysis results show
that the shrunk embedding captures better connectivity-phenotype covariation.
It should next be used to build connectivity-based predictive models, predicting
neurological or psychiatric disorders and health outcomes from clinical r-fMRI
data.
Acknowledgements. This work is funded by the NiConnect project (ANR-11-
BINF-0004 NiConnect).
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