
HAL Id: hal-01555465
https://hal.archives-ouvertes.fr/hal-01555465

Submitted on 4 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On improving matchings in trees, via bounded-length
augmentations

Julien Bensmail, Valentin Garnero, Nicolas Nisse

To cite this version:
Julien Bensmail, Valentin Garnero, Nicolas Nisse. On improving matchings in trees, via bounded-
length augmentations. [Research Report] Université Côte d’Azur. 2017. �hal-01555465�

https://hal.archives-ouvertes.fr/hal-01555465
https://hal.archives-ouvertes.fr

On improving matchings in trees, via bounded-length augmentations1

Julien Bensmaila, Valentin Garneroa, Nicolas Nissea

aUniversité Côte d’Azur, CNRS, Inria, I3S, France

Abstract

Due to a classical result of Berge, it is known that a matching of any graph can be turned into a
maximum matching by repeatedly augmenting alternating paths whose ends are not covered. In a
recent work, Nisse, Salch and Weber considered the influence, on this process, of augmenting paths
with length at most k only. Given a graph G, an initial matching M ⊆ E(G) and an odd integer
k, the problem is to find a longest sequence of augmenting paths of length at most k that can be
augmented sequentially from M . They proved that, when only paths of length at most k = 3 can
be augmented, computing such a longest sequence can be done in polynomial time for any graph,
while the same problem for any k ≥ 5 is NP-hard. Although the latter result remains true for
bipartite graphs, the status of the complexity of the same problem for trees is not known.

This work is dedicated to the complexity of this problem for trees. On the positive side, we first
show that it can be solved in polynomial time for more classes of trees, namely bounded-degree
trees (via a dynamic programming approach), caterpillars and trees where the nodes with degree
at least 3 are sufficiently far apart. On the negative side, we show that, when only paths of length
exactly k can be augmented, the problem becomes NP-hard already for k = 3, in the class of planar
bipartite graphs with maximum degree 3 and arbitrary large girth. We also show that the latter
problem is NP-hard in trees when k is part of the input.

Keywords: maximum matchings, bounded-length augmentations, trees.

1. Introduction

1.1. Matchings and augmentations
A matching M of a (simple undirected) graph G is a set of edges that are pairwise disjoint,

i.e., no two edges of M share an end. Matchings are rather understood objects of graph theory.
A common task, for a given graph G, is to find a matching of G that is maximum (with respect
to the number of edges it includes). The maximum cardinality of a matching of G is denoted
by µ(G). From a well-known result of Berge [Ber57], we know that a maximum matching of G can
be obtained by augmenting paths arbitrarily, while it is possible.

The definition of an augmenting path is as follows. By any matching M of a graph G, every
vertex is either covered (i.e., incident to an edge in M) or exposed (i.e., not incident to any edge
in M). A path P = (u1, · · · , up) of G is said M -alternating if no two consecutive edges of P are
either both in M , or both not in M . Now, P is said M -augmenting if it is M -alternating and both
u1 and up are exposed (note that this implies that an augmenting path must have an odd number
of edges). In the sequel, we will only call such a path augmenting, i.e., omitting M when it is clear
from the context. In case P is augmenting, by augmenting it we mean removing from M every
of its edges being in M , and adding to M all its other edges. Note that this operation, called an
augmentation, results in another matching M ′ = M∆E(P) (where ∆ is the symmetric difference
and E(P) is the set of edges of P) such that |M ′| = |M |+ 1.

Precisely, Berge’s Theorem states that a matching M in a graph G is maximum if and only if
there are no M -augmenting paths [Ber57]. Building on Berge’s result, Edmonds, via its Blossom
Algorithm [Edm65], later proved that augmenting paths in any graph G can be found in polyno-
mial time, thus that µ(G) can be computed in polynomial time. One key idea behind Berge and

1The results of this paper consist of a part of an extended abstract that have been accepted to LAGOS 2017.

Preprint submitted to ... July 4, 2017

Edmonds’ results is that, when converging towards a maximum matching via performing augmen-
tations, the choice of those performed augmentations is not crucial, as they will necessarily lead
to a maximum matching. This does not remain true when one is allowed to augment paths with
bounded length only, as pointed out in [NSW15].

1.2. Bounded-length augmentations
Throughout this paper, a (≤ k)-augmentation is an augmentation where the augmented path

has (odd) length at most k. For a given graph G and a matchingM of G, we denote by µ≤k(G,M)
the maximum size of a matching that can be reached from M by performing (≤ k)-augmentations.
These notions lead to the main problem this paper is interested in:

(≤ k)-Matching Problem (MP≤k)
Input: A graph G, and a matching M of G.
Question: What is the value of µ≤k(G,M)?

The problem can be equivalently formulated as follows. Given a graph G and a matching
M = M0 of G, the goal is to compute the maximum length r of a sequence S = (P1, · · · , Pr) of
paths, each of length at most k, such that: for every 1 ≤ i ≤ r, Pi is an Mi−1-augmenting path
and Mi = Mi−1∆E(Pi) (i.e., Mi is obtained from Mi−1 by augmenting Pi). We say that S starts
from M and results in Mr. Note that |Mi| = |M0|+ i and so µ≤k(G,M) = |M |+ r.

Although µ(G) can be determined in polynomial time for any graph G, intriguingly determining
µ≤k(G,M) is an NP-hard problem in general [NSW15]. More precisely, a dichotomy result is
provided concerning MP≤k, where the dichotomy is with respect to k. Namely, it is proved that
MP≤3 can be solved in polynomial time, while MP≤k is NP-hard for every k ≥ 5 [NSW15].

For the cases where k ≥ 5, one may naturally wonder whetherMP≤k becomes polynomial-time
solvable for particular classes of graphs. [NSW15] also made a first step towards that direction
by showing that the NP-hardness result above holds even when the input graph is assumed to be
planar, bipartite and of maximum degree 3. One open question, though, is whether this result also
extends to trees, or whether MP≤k (with k ≥ 5) can be solved in polynomial time for trees. This
is precisely the central topic considered in this paper. Note that it is only known that MP≤k can
be solved in polynomial time in the class of paths [NSW15].

Related work. The problem of finding maximum matching in bipartite graphs has been exten-
sively studied (in particular, because it is a special case of a network flow problem). It is well
known that it can be solved in polynomial-time (e.g., using the Hungarian method [Kuh55]). The
first algorithm for solving the maximum matching problem in polynomial-time in general graphs
is due to Edmonds [Edm65]. Then, many work has been dedicated to design more efficient algo-
rithms [HK73, MV80, DP14]. In particular, the algorithms in [HK73, MV80] are based on augment-
ing paths in the non-decreasing order of their lengths. Such a method gives a good approximation
since augmenting only the paths of length at most 2k − 3 provides a (1 − 1/k)-approximation of
the maximum matching [HK73].

The problem of matching with bounded-length paths has also been studied in the context of
wireless networks. in particular, it provides simple distributed algorithms to compute the schedul-
ing of transmissions with interference [WS05, BSS09].

1.3. Results in this paper
In this paper, we provide both positive and negative results about the complexity of MP≤k in

trees. On the positive side, we show, in Section 2, that MP≤k can be solved, for any odd k ≥ 5, in
polynomial time in several classes of trees. Via a dynamic programming approach, we first prove
that MP≤k is linear-time solvable in the class of trees with maximum degree ∆. That is, MP≤k

is FPT for these graphs when parameterized by k + ∆. Generalizing the arguments for the path
case, we then provide polynomial-time algorithms for k-sparse trees, i.e., trees where the nodes
with degree at least 3 are at distance more than k, and caterpillars

Our negative results are related to the following thoughts. While trying to prove some hardness
result concerning the tree instances of MP≤k (for k ≥ 5), we ran into the issue that allowing
augmentations of length up to k is a very permissive thing, which, at least in the case of trees, makes
the design of a consistent NP-hardness proof not obvious. In Section 3, we thus study the behaviour

2

of all those considerations in the context where only augmentations of length exactly k are allowed.
In other words, we consider the following problem (where the notations and terminology are derived
from others above, in the obvious way):

(= k)-Matching Problem (MP=k)
Input: A graph G, and a matching M of G.
Question: What is the value of µ=k(G,M)?

While MP≤k is NP-hard for every odd k ≥ 5, we prove that MP=k is NP-hard for every odd
k ≥ 3, even when restricted to planar bipartite graphs with maximum degree 3 and arbitrarily
large girth. We then focus on trees, and show that MP=k is NP-hard in trees when k is part of the
input. All our positive results also apply to MP=k; see the concluding section for more details.

2. Augmenting matchings via (≤ k)-augmentations

In this section, we prove that, for any odd k ≥ 5, MP≤k can be solved in polynomial time for
trees with bounded degree, k-sparse trees, and caterpillars. We will (sometimes implicitly) make
use of the following three general statements:

Claim 2.1. When executing a sequence of augmentations, a covered vertex cannot become exposed.

Claim 2.2. After augmenting a path P , all vertices of V (P) are covered.

Claim 2.3. Let G be a graph, M be a matching of G, and S = (P1, · · · , Pr) be a sequence of
(≤ k)-augmentations starting from M . Assume Pi and Pi+1 are disjoint for some i < r. Then,
(P1, · · · , Pi−1, Pi+1, Pi, Pi+2, · · · , Pr) is a sequence of (≤ k)-augmentations resulting in the same
matching as S.

2.1. Bounded-degree trees
Using dynamic programming, we prove, in the following result, that MP≤k can be solved in

linear time for trees with maximum degree ∆, assuming both k and ∆ are fixed. In other words,
we show that MP≤k is FPT when parametrized by k + ∆.

Theorem 2.4. Let k be a fixed odd integer. Let T be a tree with maximum degree ∆ and M be a
matching of T . Then, µ≤k(T,M) can be computed in time O(f(k+ ∆) · |V (T)|) for some decidable
function f .

Proof. Let T be any n-node tree with maximum degree ∆. Let k be an odd integer and let M
be a matching of T . We present an algorithm that computes µ≤k(T,M) and the corresponding
sequence of paths to be augmented in time f(∆, k) ·n for some computable function f , i.e., in linear
time when both k and ∆ are fixed parameters. The algorithm proceeds by dynamic programming
from the leaves to an arbitrary root r ∈ V (T). For any node v ∈ V (T), let Tv be the subtree of T
rooted in v, let Xv be the subtree of T induced by all nodes at distance at most k from v and let
Pv be the set of all paths of length at most k with nodes in Xv. Note that Xv has bounded size in
∆ and k and so |Pv| is O(1) when ∆ and k are fixed parameters.

Precisely, for every node v ∈ V (T) and for every sequence S of distinct paths in Pv, the
algorithm computes a matching with maximum size in Tv that can be computed from the initial
matching M by a sequence of augmenting paths of length at most k in T using the ones in S
(respecting the order of S). In other words, the algorithm computes a matching Mv,S of Tv that
is obtained from M by a sequence of augmenting paths S ′ (in T) such that S is a subsequence of
S ′ (i.e., all paths in S appear in S ′ in the same order, not necessarily consecutively ; Note also
that some paths of S may be subpaths of paths in S ′) and that Mv,S has maximum size for these
properties. By definition, the maximum solutionMr,S obtained for the root r (where the maximum
is taken over all possible sequences in Pr) corresponds to an optimal solution for MP≤k.

Note that, for a given node v ∈ V (T), the number of such partial solutions Mv,S that must
be computed for v is O(1) when k and ∆ are fixed parameters. It only remains to prove that, for
any node v and any sequence S, the desired solution can be computed in constant time from the
solutions (the tables of the dynamic program) of the children of v.

3

If v is such that Tv is a star (all children of v are leaves) then, for every sequence S of paths
as defined above, it is sufficient to check that the paths in S are compatible in Tv with the initial
matchingM and are pairwise compatible in Tv (note that we a priori do not assume that the paths
in S are augmenting paths but we have to check that it is the case at the moment when they have
to be augmented). This clearly can be done in constant time since the number of these paths is
O(1). If the paths in S are compatible, then Mv,S is the matching obtained by augmenting the
paths in S. Otherwise, the returned solution is ∅ which represents the fact that augmenting the
paths in S is not a feasible solution.

More generally, for v ∈ V (T) and every sequence S of paths as defined above, the algorithm
proceeds as follows. For every non-leaf child vi of v, and for every partial solution Mvi,Si obtained
from a sequence Si in the table of vi, we check the compatibility of the Si’s with S in Tv. The
algorithm then returns a best solution Mv,S obtained from the combinations of the children’s
solutions. Since, they are O(1)∆ such combinations, this still can be done in constant time.

2.2. Sparse trees
In this section, we provide a polynomial-time algorithm for solving MP≤k in the cases where

the graph is a k-sparse tree. Let us introduce a few terminology beforehand. The nodes with
degree at least 3 are called b-nodes. A path is called a b-path if it contains at least one b-node,
while it is called an a-path otherwise.

As we need numerous preliminary results in order to present the algorithm, let us give a first
intuition of how to get a matching of size µ≤k(T,M) in a k-sparse tree T starting from a matching
M . Since the b-nodes of T are far apart (i.e., a (≤ k)-augmenting path cannot go through two
b-nodes), T can be seen as a concatenation of several subdivided stars T1, · · · , Tq glued along some
of their branches. Hence, a sequence of (≤ k)-augmentations in T is made up of subsequences
of (≤ k)-augmentations in the Si’s, that eventually have to get combined somehow. One of the
main goals throughout this section is thus to comprehend how to get, via (≤ k)-augmentations, a
matching of size µ≤k(S,M) for any subdivided star S and initial matching M .

A subdivided star, generally speaking, can be seen as a combination of paths attached at
one node. Solving MP≤k in a path can be done easily, as first shown by Nisse, Salch and We-
ber [NSW15], as it suffices to go from left to right and augment paths of close exposed nodes
as they are encountered. In this section, we prove that, in a subdivided star S, a matching of
size µ≤k(S,M) can be attained, roughly speaking, by performing at most one (≤ k)-augmentation
through the b-node, and several (≤ k)-augmentations along the branches (i.e., apply the path
algorithm onto a forest of paths). In particular, the augmentation through the b-node is proved to
be necessary in a very particular context only.

We now start off by proving several lemmas. In what follows, given two paths Q and P , we
note Q ∩ P for V (P) ∩ V (Q), i.e., we consider vertex-intersections.

Lemma 2.5. Let T be a k-sparse tree, M be a matching, and S = (P1, · · · , Pr) be a sequence of
(≤ k)-augmentations starting from M . Then, two b-paths in S intersect only if they contain the
same b-node.

Proof. Let 1 ≤ i < j ≤ r, and let Pi and Pj be two b-paths containing the b-nodes u and v,
respectively. Because T is k-sparse, no path in S can contain more than one b-node. For purpose
of contradiction, let us assume that u 6= v and Pi ∩ Pj 6= ∅. Since Pi ∩ Pj 6= ∅, there cannot
be any b-node on the path from u and v since, otherwise, u and v would be at distance at least
2k + 2 from each other and Pi and Pj (of length at most k each) could not intersect. Hence, Pi

and Pj must intersect on the path Q between u and v, that consists only of nodes of degree 2. In
particular, there must be an end x of Pj that is in Q ∩ Pi. On the one end, x must be exposed
since Pj is an augmenting path. On the other hand, after Pi has been augmented, x is covered. A
contradiction.

The following lemmas are devoted to prove that, in sparse trees, augmentation sequences can
be restricted to have some specific structure. First, we show that any sequence of augmentations
can be transformed into an equivalent sequence that first augments b-paths, and then a-paths.

4

Lemma 2.6. Let T be a k-sparse tree, M be a matching, and S = (P1, · · · , Pr) be a sequence of
(≤ k)-augmentations starting from M . Let 1 ≤ i < r be such that Pi is an a-path and Pi+1 is a
b-path. Then, there exist two a-paths A and B such that A ∩ B = ∅, at most one of them, say
A, is a b-path and S ′ = (P1, · · · , Pi−1, A,B, Pi+2, · · · , Pr) is a sequence of (≤ k)-augmentations
resulting in the same matching as S.

Proof. By Claim 2.3, the lemma holds if Pi ∩ Pi+1 = ∅. Let us assume that Pi ∩ Pi+1 6= ∅. If Pi

is included in Pi+1, then we can augment the two paths of Pi∆Pi+1 (where ∆ is the symmetric
difference) instead of Pi and Pi+1. Clearly at most one of these paths is a b-path and it can be
augmented first. Otherwise (if Pi not included in Pi+1) then let x be the end of Pi+1 belonging to
V (Pi) (this x must exist since Pi is an a-path not included in Pi+1). Then x must be covered after
the augmentation of Pi, contradicting the fact that Pi+1 is augmenting.

Note that repeating the argument of previous lemma, we can ensure that there exists an optimal
sequence of augmentations that augments the b-paths first. We now show that any sequence of
augmentations can be transformed into an equivalent sequence where all a-paths are vertex-disjoint.

Lemma 2.7. Let T be a tree, M be a matching, and S = (P1, · · · , Pr) be a sequence of (≤ k)-
augmentations starting from M . Let 1 ≤ i < r be such that Pi and Pi+1 are a-paths. Then, there
exist two a-paths A and B such that A ∩ B = ∅ and S ′ = (P1, · · · , Pi−1, A,B, Pi+2, · · · , Pr) is a
sequence of (≤ k)-augmentations resulting in the same matching as S.

Proof. If Pi ∩ Pi+1 = ∅, then A = Pi and B = Pi+1 satisfy the lemma. Hence, let us assume that
Pi∩Pi+1 6= ∅. Let Pi = (va, · · · , vb) and Pi+1 = (v1, · · · , vc). After augmenting Pi, the nodes va and
vb are covered, and before augmenting Pi+1, the nodes v1 and vc were exposed. Now, since Pi and
Pi+1 are a-paths, it implies that V (Pi) ⊂ V (Pi+1) and, thus, Pi+1 = (v1, · · · , va, · · · , vb, · · · , vc).
Then, setting A = (v1, · · · , va) and B = (vb, · · · , vc) proves the lemma.

From previous lemmas and claims, we get:

Corollary 2.8. Let T be a k-sparse tree with b-nodes {v1, · · · , vo}, M be a matching, and S =
(P1, · · · , Pr) be a sequence of (≤ k)-augmentations starting from M . Then, there is a sequence S ′
of (≤ k)-augmentations starting from M , resulting in the same matching as S, that consists of, in
order:

• a sequence of b-paths each containing one of the vi’s, such that two b-paths containing different
vi’s do not intersect, and moreover the b-paths containing a same vi are consecutive, and

• a sequence of a-paths that are pairwise vertex-disjoint and vertex-disjoint from the previous
augmented b-paths.

A sequence satisfying the properties of Corollary 2.8 is called partially-well structured. Next,
we characterize the “structure” of the b-paths augmented in a sparse tree. First, let us consider
the case when a b-node is not initially covered by the matching.

Lemma 2.9. Let T be a k-sparse tree, M be a matching, and S = (P1, · · · , Pr) be a sequence of
(≤ k)-augmentations starting from M . Let v be any b-node of T . If v is exposed by M , then there
exists a partially-well structured sequence S ′ of (≤ k)-augmentations starting from M , resulting in
the same matching as S, and such that at most one path of S ′ contains v. Moreover, this sequence
can be obtained by modifying only the b-paths of S that contain v.

Proof. By Corollary 2.8, we may assume that S is partially-well structured. If at most one path of
S contains v, then we are done. Otherwise, let P and Q be the first two paths of S that contain v.
Since S is partially-well structured, P andQ are consecutive in S, let P = Pi andQ = Pi+1 for some
i < r. Since v is exposed by M , necessarily P must be a path that ends in v and, because T is k-
sparse and P has length at most k, all nodes of P (but v) have degree at most 2 in T . Let us set P =
(v1, · · · , vj = v). After having augmented P , the edge vj−1vj belongs to the matching and all nodes
of P are covered. Therefore, the only way for Q to be an augmenting path containing v is to fully
contain P . So Q = (w1, · · · , ws, v1, · · · , vj = v, u1, · · · , uh) where all nodes of Q but v have degree
at most 2. Hence, the sequence S ′ = (P1, · · · , Pi−1, (w1, · · · , ws, v1), (v, u1, · · · , uh), Pi+2, · · · , Pr)

5

is a sequence of (≤ k)-augmenting paths resulting in the same matching as S and containing strictly
less paths containing v. Reordering S ′ using Lemma 2.6, we obtain a partially-well structured
sequence containing the same paths as in S ′. Repeating this process until at most one path
contains v allows us to obtain a sequence satisfying the lemma.

Now, we characterize the “structure” of the b-paths containing a b-node that is covered by the
initial matching. Let T be a k-sparse tree with an initial matching M and let v be a b-node that
is covered by M . Let S = (P1, · · · , Pr) be a sequence of (≤ k)-augmentations all of which pass
through v. The path P1 must go from Ti1 , the component of T − {v} that contains the node
matched with v by M , to some other component Ti2 of T − {v}. After having augmented P1, the
node matched with v must be in Ti2 . Then, P2 must go from Ti2 to another component Ti3 of
T − {v}, i.e., i3 6= i2 but i3 may be equal to i1. Going on that way, S is fully characterized by
the sequence (Ti1 , · · · , Tir+1) of components of T − {v} such that, for every 1 ≤ j ≤ r, we have
ij 6= ij+1. Precisely, for any j ≤ r, after having augmented P1, · · · , Pj , the path Pi goes from the
exposed node of Tij that is the closest to v, to the exposed node of Tj+1 that is the closest to v.
We say that such a sequence starts in Ti1 and finishes in Tir+1

. Let us call the sequence S to be
unlooping if the indices in {i1, · · · , ir+1} are pairwise distinct. Note that, in particular, the length
of such a sequence is bounded by the degree of v minus 1.

Lemma 2.10. Let T be a k-sparse tree, M be a matching, and S = (P1, · · · , Pr) be a sequence of
(≤ k)-augmentations starting from M . Let v be any b-node of T . If v is covered by M , then there
exists a partially-well structured sequence S ′ of (≤ k)-augmentations starting from M , resulting
in the same matching as S, and such that the subsequence of b-paths containing v is unlooping.
Moreover, this sequence can be obtained by modifying only the b-paths of S that contain v.

Proof. By Corollary 2.8, we may assume that S is partially-well structured. Let S ′ = (P ′1, · · · , P ′s)
be the subsequence of (consecutive) b-paths of S that contain v. If S ′ is unlooping, then we are
done. Otherwise, let (Ti1 , · · · , Tis+1

) be the sequence of components of T − {v} that characterizes
S ′ (as in the paragraph above). Let y < x ≤ s be such that the indices in {iy, · · · , ix} are pairwise
distinct and iy = ix+1. We show that, in S ′ (and so in S), we can replace the paths Py, · · · , Px

by as many a-paths (i.e., not passing through v). For every y ≤ j ≤ x, let dj be the end of Pj

in the component Tij and let fj be its end in the component Tij+1
. For every y ≤ j < x, let Qj

be the path between fj and dj+1, and let Qx be the path between dy and fx. Then, the sequence
S ′′ = (P ′1, · · · , P ′y−1, Qy, · · · , Qx, P

′
x+1, · · · , P ′s) results in the same matching as S ′. Moreover, the

paths Qy, · · · , Qx are a-paths, and according to Lemma 2.6, they can be re-ordered to obtain a
partially-well structured sequence. In this latter sequence, the number of times that the b-paths
containing v are “looping around v” has been reduced by 1. Hence, repeating this process leads to
the desired sequence of (≤ k)-augmentations.

In what follows, we deal with sequences of augmentations having a particular shape. Let T be
a k-sparse tree and M be a matching. Denote by K = {c1, · · · , cp} and U = {u1, · · · , uq} the sets
of b-nodes respectively covered and exposed by M . A sequence S of (≤ k)-augmentations starting
from M is said well structured if it consists of, in order:

• a sequence of b-paths containing the ui’s, where each ui is contained in at most one b-path,

• for every i ≤ p, there is one unlooping (possibly empty) sequence of b-paths containing ci (in
particular, the b-paths containing ci are consecutive), and

• a sequence of a-paths.

Moreover, every two paths of the whole sequence intersect if and only if they contain the same
b-node. Clearly, a well structured sequence is also partially-well structured.

All results proved so far allow to easily derive the following theorem.

Theorem 2.11. Let T be a k-sparse tree, M be a matching, and S be a sequence of (≤ k)-
augmentations starting fromM . Then, there exists a well-structured sequence of (≤ k)-augmentations
starting from M and resulting in the same matching as S.

6

Lemma 2.12. Let T be a k-sparse tree, M be a matching, and S be a sequence of (≤ k)-
augmentations starting fromM and resulting in a matchingM ′. Let v be any node that is contained
in a path of S. Then, there exists a sequence of (≤ k)-augmentations starting from M such that
none of its paths contains v, and resulting in a matching M ′′ of size at least |M ′| − 1. Moreover,
if v is a b-node, then M and M ′′ only differ in some edges of the paths of S containing v.

Proof. By Theorem 2.11, we may assume that S is well-structured.

• Let us first assume that v is a b-node. If at most one path of S contains v, then removing
it (if it exists) leads to the desired result. Hence, we may assume that there is a unique
subsequence S ′ = (P1, · · · , Pr) of b-paths of S containing v. Moreover, this subsequence is
unlooping. Let (T1, · · · , Tr+1) be the sequence of components of T − {v} that characterizes
S ′. For every 1 ≤ i ≤ r, let di be the end of Pi in the component Ti and let fi be its end in
the component Ti+1. For every 1 ≤ i < r, let Qi denote the path between fi and di+1. Then,
replacing the sequence S ′ by (Q1, · · · , Qr−1) in S results in a matching of size |M ′| − 1 and
that differs from M only on the path between d1 and fr. Moreover, no paths of the resulting
sequence contain v.

• If v is not a b-node, then we consider two cases. If v is contained in an a-path of S, then it is
sufficient to remove this path from S (because it is disjoint from any other path, since S is well-
structured). Otherwise, v belongs to one path of an unlooping sequence S ′ = (P1, · · · , Pr).
For every 1 ≤ i ≤ r, let di be the starting node of Pi and let fi be its end. Let j ≤ r be the first
index such that v ∈ V (Pj). Then, it is sufficient to replace S ′ by (P1, · · · , Pj−1, P

′
j+1, · · · , P ′r)

where, for every j < i ≤ r, we denote by P ′i the path between di and fi−1.

Lemma 2.13. Let T be a k-sparse tree, M be a matching, and v be a b-node covered by M .
Let B = {T1, · · · , Tr} be any subset of at least two components of T − {v}. It can be decided
in polynomial time (in V (T)) whether it exists an unlooping sequence of (≤ k)-augmentations
intersecting v, starting in T1, finishing in Tr and only passing through components of B.

Proof. A trivial necessary condition is that v is matched by M with a node in T1 (otherwise no
sequence of augmenting paths containing v can start in T1). Hence, we may assume that it is the
case.

Consider the following auxiliary digraph with vertex-set {v1, · · · , vr}. For every 2 ≤ j ≤ r, add
an arc from v1 to vj if the first exposed node of T1 (the one that is closest to v) is at distance
at most k from the first exposed node of Tj (in which case, the path between these two nodes is
augmenting and has length at most k). Then, for every 2 ≤ i < j ≤ r, add an arc from vi to vj
if the second exposed node of Ti is at distance at most k from the first exposed node of Tj . It is
easy to show that a desired sequence exists if and only if there is a directed (simple) path from v1

to vr in that digraph, which can be checked by a BFS algorithm.

Before going on, we present the following lemma that leads to a much simpler proof than that
in [NSW15] of the linear-time algorithm to compute µ≤k in paths. Let P be a path graph and
M be a matching. Let v1, · · · , vr be the exposed nodes in order, say, from “left to right”. First,
as in [NSW15], if two consecutive exposed nodes (i.e., vi and vi+1 for some i < r) are at distance
strictly more than k, then all edges between them can be removed. When this process ends, we are
left with a set of disjoint paths (subpaths of P), whose every two consecutive exposed nodes are
at distance at most k. The following lemma expresses a simple algorithm to deal with this kind of
instances.

Lemma 2.14. Let P be a path, and M be matching such that two consecutive exposed nodes are
at distance at most k. Let v1, · · · , vr denote the exposed nodes in order, say, from “left to right”.
Then, the sequence of paths (Pi)1≤i≤br/2c, where Pi denotes the path going from v2i−1 to v2i, is a
sequence of (≤ k)-augmentations starting from M and resulting in a matching of size µ≤k(P,M).

Proof. We only need to show that the sequence is optimal. Each time a path is augmented in P ,
two exposed nodes become covered. Therefore, any sequence of augmentations contains at most
br/2c paths. Since the size of the final matching is |M | plus the number of augmented paths, the
proposed sequence is optimal.

7

In the context of sparse trees, the previous proof motivates us to consider the parity of the
number of exposed nodes in the “branches”. Let T be a tree rooted in some node r. A b-node of T
is called a lowest b-node if it has no other b-nodes as descendant. Any component of T − {v} that
consists of descendants of v is called a child-branch at v. The component of T − {v} that contains
the parent of v is called the parent-branch at v. For a matching M of T , a child-branch B at v is
called even (resp., odd) if the number of exposed nodes in B is even (resp., odd). Finally, the pair
(T,M) is said clean if there are no two exposed nodes at distance strictly more than k such that
all nodes on the path between them are covered and have degree 2.

Lemma 2.15. Let T be a k-sparse tree, M be a matching such that (T,M) is clean, and S be a
well-structured sequence of (≤ k)-augmentations starting from M and resulting in a matching M ′.
Let v be any lowest b-node. Let S ′ be the subsequence of paths of S containing v. If S ′ starts or
ends in an even child-branch at v, then there exists a sequence of (≤ k)-augmentations starting
from M such that none of its paths contains v, and resulting in a matching M ′′ of size at least
|M ′|.

Proof. Let S be a well-structured optimal sequence for (T,M) having the properties described in
Theorem 2.11. If no path of S contains both v and a node in some even child-branch, then the
result clearly holds.

Now assume that at least one path intersects v. Since S is well-structured, there is a subsequence
S ′ = (P1, · · · , Pr) of b-paths of S containing v (possibly r = 1). Moreover, this subsequence is
unlooping. Let (T1, · · · , Tr+1) be the sequence of components of T − {v} that characterizes S ′.
Moreover, either T1 or Tr+1 is an even child-branch. Let us assume it is T1, the other case being
symmetric, and let v1, · · · , v2h be the exposed nodes (by M) on T1, with v1 being the closest to
v. For every 1 ≤ i ≤ r, let di be the end of Pi in the component Ti and let fi be its end in the
component Ti+1. For every 1 ≤ i < r, let Qi denote the path (of Ti+1) between fi and di+1.
Replacing, in S, the paths (P1, · · · , Pr) and all paths of S strictly included in T1, by the paths
(Q1, · · · , Qr−1) and by the paths from v2i−1 to v2i, for every 1 ≤ i ≤ h, we obtain a sequence of
(≤ k)-augmentations none of which contains v, and resulting in a matching of same size as M .
Hence, we are back to the first case.

Lemma 2.16. Let T be a rooted k-sparse tree, M be a matching such that (T,M) is clean, and
S be an optimal well-structured sequence of (≤ k)-augmentations starting from M . Let v be any
lowest b-node with child-branches B1, · · · , Bh. For any child-branch Bi at v, let xi be its number
of exposed nodes and let δi = 1 if Bi is an even branch and δi = 0 otherwise. Assume that S
contains an unlooping sequence (P1, · · · , Ps) of paths containing v, characterized by a sequence B
of components of T −{v}. Let Z be the number of paths augmented by S that intersect the subtree
Tv of T rooted at v. Then:

1. If B contains only child-branches at v, w.l.o.g., B = (B1, · · · , Bs+1), then, Z = 1 − δ1 −
δs+1 +

∑
1≤i≤hb(xi)/2c.

2. If B contains (but neither starts nor ends by) the parent-branch at v, w.l.o.g., B = (B1, · · · , Bs+1)
and the parent-branch is Bq (1 < q < s+ 1), then Z = 2− δ1 − δs+1 +

∑
1≤i≤h,i6=qb(xi)/2c.

3. If B starts or finishes by the parent-branch at v, w.l.o.g., B = (B1, · · · , Bs+1) and the parent-
branch is B1, then Z = 1− δs+1 +

∑
1<i≤hb(xi)/2c.

In particular, Z depends only on the parity of the first and final child-branches. Furthermore,
if no paths of S contain v, then Z =

∑
1≤i≤hb(xi)/2c.

Proof. We prove the result for the first item, the second and third items being similar. The number
of paths augmented in Tv by S is

s+ b(x1 − 1)/2c+ b(xs+1 − 1)/2c+
∑

1<i<s+1 b(xi − 2)/2c+
∑

s+2≤i≤h bxh/2c.

Indeed, augmenting the s paths P1, · · · , Ps “consumes” one exposed node in both B1 and Bs+1 and
two exposed nodes in every branch B2, · · · , Bs. Furthermore, since S is an optimal well-structured
sequence, and according to Lemma 2.14, the number of augmented paths in each branch is the
number of remaining exposed nodes divided by 2 (floor). Reorganizing the sum gives the result.

The last sentence of the statement is trivial, and follows e.g., from Lemma 2.14.

8

SparseTreeAlgorithm(k, T , M)
Require: A k-sparse tree T and a matching M
1: // Case 1
2: if T is a path then
3: Return PathAlgorithm(k, T , M)
4: // Case 2
5: if there exists a leaf edge uv ∈M then
6: Return SparseTreeAlgorithm(k, T − {u, v}, M)
7: // Case 3
8: if there are two exposed nodes at distance strictly more than k such that all nodes on the path
P between them are covered and have degree 2 then

9: Let T1, T2 denote the trees obtained when removing the internal nodes of P from T
10: Return SparseTreeAlgorithm(k, T1, M) and SparseTreeAlgorithm(k, T2, M)
11: Let v be a lowest b-node of T
12: // Case 4
13: if all child-branches at v are even then
14: if v is exposed then
15: Let T1, · · · , Tx denote the trees obtained when removing the edges between v and its

children
16: if v is covered by {v, w} ∈M then
17: Let T1, · · · , Tx denote the trees obtained when removing v and w
18: Return SparseTreeAlgorithm(k, Ti, M) for every i = 1, · · · , x
19: // Case 5
20: if v is exposed then
21: Let w be the exposed node closest to v on some odd child-branch at v
22: Augment the path P from v to w
23: Let T1, T2 denote the trees of T − V (P)
24: Return SparseTreeAlgorithm(k, T1, M) and SparseTreeAlgorithm(k, T2, M)
25: // Case 6
26: if there exists an unlooping sequence S = (P1, · · · , Ps) of (≤ k)-augmentations intersecting v,

starting from an odd child-branch at v, finishing in an odd child-branch at v, without passing
through the parent-branch at v then

27: // this can be checked in polynomial time by Lemma 2.13
28: Augment the paths in S
29: Let T1, · · · , Tx denote the trees of T − (

⋃
i≤s V (Pi))

30: Return SparseTreeAlgorithm(k, Ti, M) for every i = 1, · · · , x
31: // Case 7
32: if there exists an unlooping sequence S = (P1, · · · , Ps) of (≤ k)-augmentations intersecting v,

starting from an odd child-branch at v, finishing in an odd child-branch at v (passing through
the parent-branch at v) then

33: // this can be checked in polynomial time by Lemma 2.13
34: Augment the paths in S
35: Let T1, · · · , Tx denote the trees of T − (

⋃
i≤s V (Pi))

36: Return SparseTreeAlgorithm(k, Ti, M) for every i = 1, · · · , x
37: // Case 8
38: if there exists an unlooping sequence S = (P1, · · · , Ps) of (≤ k)-augmentations intersecting v,

starting from an odd child-branch at v, finishing in the parent-branch at v, OR starting from
the parent-branch at v and finishing in an odd child-branch at v then

39: // this can be checked in polynomial time by Lemma 2.13
40: Augment the paths in S
41: Let T1, · · · , Tx denote the trees of T − (

⋃
i≤s V (Pi))

42: Return SparseTreeAlgorithm(k, Ti, M) for every i = 1, · · · , x
43: // Case 9
44: Let T1, · · · , Tx denote the trees obtained when removing the edges between v and its children
45: Return SparseTreeAlgorithm(k, Ti, M) for every i = 1, · · · , x

9

We are now ready to introduce a polynomial-time algorithm for solving MP≤k in the case of
k-sparse trees. For purpose of simplification, the algorithm we introduce only computes a matching
of size µ≤k(G,M). However, it can be modified easily, by memorizing the paths that have been
augmented, so that it also provides a corresponding sequence of (≤ k)-augmentations.

Theorem 2.17. For any k-sparse tree T and matching M , SparseTreeAlgorithm(k, T , M)
computes in polynomial time (in |V (T)|) a matching of size µ≤k(T,M) by performing (≤ k)-
augmentations starting from M .

Proof. The algorithm PathAlgorithm mentioned in Case 1 is the linear-time algorithm for solv-
ing MP≤k in the case of paths mentioned in Lemma 2.14. SparseTreeAlgorithm is a recursive
algorithm. The fact that it runs under polynomial time is obvious since all tests can indeed be
performed in polynomial time (in Cases 6, 7 and 8, this is true by Lemma 2.13), and, in any of the
cases, the algorithm is recursively applied on vertex-disjoint (strictly smaller) subtrees of T .

Let us prove the correctness of SparseTreeAlgorithm, i.e., the fact that we eventually
obtain a matching of size µ≤k(T,M) from M , by induction on the size of T . The result clearly
holds in Cases 1, 2, 3. In all remaining cases, the proof follows the same scheme: we start from a
well-structured sequence S of (≤ k)-augmentations starting from M and resulting in a matching of
size µ≤k(T,M) (it exists by Theorem 2.11), and we show that the algorithm achieves a matching
of (at least) the same size.

Case 4. In that case, v has only even child-branches. We prove the correctness when v is ex-
posed, the case when v is covered being similar. We prove that there is a sequence of (≤ k)-
augmentations starting fromM and resulting in a matching of size µ≤k(T,M) that can be ob-
tained by considering independently the child-branches B1, · · · , Bs at v and T−(

⋃
i≤s V (Bi)).

Since it is what is done by SparseTreeAlgorithm, the result holds by induction.

If S does not contain any path containing v and some node of a child-branch, then the result
clearly holds. Otherwise, since all child-branches at v are even, by Lemma 2.15 there exists
an optimal sequence not intersecting v.

Case 5. In that case, v is exposed and has at least one odd child-branch. Since S is well-structured,
there is at most one path P of it that contains (and ends in) v. Let B be any odd child-branch
at v, and let v1, · · · , v2h+1 be the exposed nodes (by M) on B, with v1 being the closest to
v. Because S is well-structured, by Lemma 2.14 there are, in S, at most h augmenting paths
strictly included in B. Set v = v0. We simply replace P and these paths in B by the paths
Pi from v2i to v2i+1 for every 0 ≤ i ≤ h. The obtained sequence can clearly be obtained by
first augmenting P0 and then considering all components of T − P0 independently. This is
what SparseTreeAlgorithm does. Hence, the result holds by induction.

Case 6. In that case, there is an unlooping sequence S ′ = (P1, · · · , Ps) of paths containing v,
characterized by a sequence (T1, · · · , Ts+1) of components of T −{v}. Moreover, T1 and Ts+1

are odd child-branches at v, and T2, · · · , Ts are even child-branches at v.

In that case, SparseTreeAlgorithm first augments the paths in S ′ and then in the com-
ponents of T −

⋃
i≤s V (Pi) independently. Let B1, · · · , Bh be the child-branches at v and, for

every i ≤ h, let xi be the number of exposed nodes of Bi. Let Q be the parent-branch at v.
Said differently, SparseTreeAlgorithm computes an optimal solution for Q (by induction)
and, by Lemma 2.16, augments 1 +

∑
i≤hbxi/2c paths in Tv. Let us compare this number of

augmentations with the one obtained by the optimal sequence S. There are several cases to
consider.

• No path of S contains v and some node of a child-branch at v. Then S deals with
Q∪{v} and Tv−{v} independently. By Lemma 2.16, at most

∑
i≤hbxi/2c paths may be

augmented in Tv. Moreover, by Lemma 2.12, inQ∪{v}, the number of paths that may be
augmented is at most the maximum number of paths that may be augmented inQ plus 1.
Overall, S augments at most the same number of paths as SparseTreeAlgorithm.

• No path of S contains v and some node of the parent-branch at v. Then S deals with
Q and Tv independently (as SparseTreeAlgorithm). By Lemma 2.16, at most 1 +

10

∑
i≤hbxi/2c paths may be augmented. So S does the same as SparseTreeAlgorithm

(possibly augmenting a different unlooping sequence around v).

• S contains an unlooping sequence around v that starts or finishes in the parent-branch at
v. Then, by Lemma 2.16, S augments at most 1+

∑
1<i≤hb(xi)/2c paths intersecting Tv

and then computes an optimal solution in a subtree of Q (precisely an optimal solution
of Q minus the nodes of the paths of the unlooping sequence). Therefore, the solution
computed by SparseTreeAlgorithm has at least the same size.

• S contains an unlooping sequence around v that starts and finishes in some child-
branches at v, and passes through the parent-branch Q at v. Let (P1, · · · , Ps) be the
unlooping sequence, let i < s such that Pi and Pi+1 intersect Q, and let x (resp., y) be
the end of Pi (resp., Pi+1) in Q. Finally, let Q′ be the component of T − {y} that does
not contain v and let Y = T −Q.
By Lemma 2.16, S augments at most 2 +

∑
1≤i≤hb(xi)/2c paths in Y and then com-

putes independently an optimal solution of Q′ augmenting z paths. Since combining an
optimal solution of Q′ with the augmentation of the path between x and y provides a
solution for Q, SparseTreeAlgorithm augments at least z + 1 paths in Q. Overall,
SparseTreeAlgorithm augments at least 2+z+

∑
1≤i≤hb(xi)/2c paths in T . Hence,

the solution computed by the algorithm has at least the same size as the one of S.

Case 7. In that case, there is an unlooping sequence S ′ = (P1, · · · , Ps) of paths containing v,
characterized by a sequence (T1, · · · , Ts+1) of components of T −{v}. Moreover, T1 and Ts+1

are odd child-branches at v, there exists j ≤ s such that Tj is the parent-branch at v, and Ti
is an even child-branch at v for every 1 < i ≤ s, i 6= j. Let x be end of Pj−1 on Tj and y be
the end of Pj in Tj .

Also, there exists no unlooping sequence starting and finishing in some odd child-branches
and avoiding the parent-branch. In the present case, SparseTreeAlgorithm first augments
the paths in S ′ and then the components of T −

⋃
i≤s V (Pi) independently. Let B1, · · · , Bh

be the child-branches at v and, for every i ≤ h, let xi be the number of exposed nodes of
Bi. Let Q be the parent-branch at v. Said differently, SparseTreeAlgorithm computes
an optimal solution for Q\Pj (by induction) and, by Lemma 2.16, augments 2+

∑
i≤hbxi/2c

paths intersecting Tv. Let us compare this number of augmentations with the one obtained
by the optimal sequence S. There are several cases to be considered.

• No path of S contains v and some node of a child-branch at v. Note that, since S ′
exists, v was initially matched byM with a node in one of its child-branches. Therefore,
S cannot contain either a path that contains v and some node of the parent-branch
at v. Hence, S deals with Q and Tv − {v} independently. By Lemma 2.16, at most∑

i≤hbxi/2c paths may be augmented. Moreover, by Lemma 2.12 (applied twice: once
for x and once for y), in Q, the number of paths that may be augmented is at most
the maximum number of paths that may be augmented in Q \ Pj plus 2. Overall, S
augments at most the same number of paths as SparseTreeAlgorithm.
So, because no unlooping sequence avoiding the parent-branch exists, if S contains paths
intersecting v, it must be via unlooping sequences intersecting the parent-branch.

• S contains an unlooping sequence around v that starts or finishes in the parent-branch
at v (in particular, it starts or finishes in x). Then, by Lemma 2.16, S augments at most
1+
∑

1<i≤hb(xi)/2c paths intersecting Tv and then computes an optimal solution in the
subtree Q′ of Q (precisely the component of Q \ {x} containing y). By Lemma 2.12
(applied to y), an optimal solution of Q′ is at most 1 plus an optimal solution for Q\Pj .
Therefore, the solution computed by SparseTreeAlgorithm has at least the same
size.

• Finally, let us assume that S contains an unlooping sequence around v that starts and
finishes in some child-branches at v, and passes through the parent-branch Q at v.
By Lemma 2.16, S augments at most 2 +

∑
1≤i≤hb(xi)/2c paths and, independently,

11

computes an optimal solution in Q \ Pj . So S does the same as SparseTreeAlgo-
rithm (possibly augmenting a different unlooping sequence around v). Hence, Sparse-
TreeAlgorithm obtains a solution of same size.

Case 8. In that case, there is an unlooping sequence S ′ = (P1, · · · , Ps) of paths containing v,
characterized by a sequence (T1, · · · , Ts+1) of components of T −{v}. Moreover, T1 is an odd
child-branch at v, T2, · · · , Ts are even child-branches at v, and Ts+1 is the parent-branch a v
(the case when S ′ starts by the parent-branch is similar). Let x be an end of Ps in Ts+1.

There exists no unlooping sequence starting or finishing in some odd child-branch and that
does not finishes or starts in the parent-branch. SparseTreeAlgorithm first augments the
paths in S ′ and then the components of T −

⋃
i≤s V (Pi) independently. Let B1, · · · , Bh be

the child-branches at v and, for every i ≤ h, let xi be the number of exposed nodes of Bi.
Let Q be the parent-branch at v. Said differently, SparseTreeAlgorithm computes an
optimal solution for Q \ Ps (by induction) and, by Lemma 2.16, augments 1 +

∑
i≤hbxi/2c

paths intersecting Tv. Let us compare this number of augmentations with the one obtained
by the optimal sequence S. There are several cases to be considered.

• No path of S contains v and some node of a child-branch at v. Note that, since S ′ exists,
v was initially matched by M with a node in one of its child-branches. Therefore, S
cannot contain a path that contains v and some node of the parent-branch at v. Hence,
S deals with Q and Tv−{v} independently. By Lemma 2.16, at most

∑
i≤hbxi/2c paths

may be augmented. Moreover, by Lemma 2.12 (applied once for x), in Q, the number
of paths that may be augmented is at most the maximum number of paths that may be
augmented in Q \ Pj plus 1. Overall, S augments at most the same number of paths as
SparseTreeAlgorithm.

• Now, because of the hypothesis, if S contains paths intersecting v, then we may assume
that S contains an unlooping sequence around v that starts or finishes in the parent-
branch at v (in particular, it starts or finishes in x). Then, by Lemma 2.16, S augments
at most 1+

∑
1<i≤hb(xi)/2c paths intersecting Tv and then computes an optimal solution

in the subtree Q \ Ps. Thus, SparseTreeAlgorithm obtains a solution of same size.

Case 9. In the last case, no unlooping sequence starting or finishing by an odd child-branch at v
exists. In that case, SparseTreeAlgorithm deals independently with Tv − {v}, in which
case, by Lemma 2.16, it augments

∑
i≤hbxi/2c paths, and then computes an optimal (by

induction) solution for (T − Tv) ∪ {v}. As previously, it can be checked that no optimal
sequence can augment strictly more paths.

2.3. Caterpillars
Recall that a caterpillar is a tree consisting of one main path (which we call spine throughout),

such that every node either belongs to that path, or is adjacent to a node of that path. Prior to
exhibiting a polynomial-time algorithm to solve MP≤k for caterpillars, we first need to show that
a maximum matching can be attained by performing specific augmentations.

We start by pointing out that, in our context, we may consider caterpillars with maximum
degree at most 3. This follows from the following more general statement, which actually concerns
all trees.

Lemma 2.18. Let T be a tree, M be a matching, and v be a node of T adjacent to d ≥ 2 leaves
u1, · · · , ud. Then, for any sequence of (≤ k)-augmentations starting from M , at most one of the
ui’s can be an end of an augmented path.

Proof. This follows from the fact that once a leaf gets covered by a matching, it cannot loose this
property, recall Claim 2.1. Furthermore, once a leaf is covered, there is no more augmenting path
containing v.

Let C be a caterpillar, and M be a matching of C. We denote by C̃ a caterpillar obtained from
C by removing some leaves, as follows. For every non-leaf node v of the spine of C:

12

• if v is adjacent to a covered leaf u, then we remove all leaves adjacent to v, but u;

• otherwise, we remove all leaves adjacent to v, but one.

From Lemma 2.18, we deduce the following.

Corollary 2.19. Let C be a caterpillar, and M be a matching. Let M ′ be the restriction of M to
C̃. Then µ≤k(C,M) = µ≤k(C̃,M ′).

As a consequence of Corollary 2.19, we may narrow down our attention on caterpillars with
maximum degree 3, i.e., we may assume that every node of the spine is adjacent to at most one
leaf. Therefore, we may denote the nodes of any considered caterpillar C in the following way. Let
(u1, · · · , u`) be the spine of C (where u1 and u` are leaves of T). For any i ∈ {2, · · · , ` − 1} we
denote by u′i the leaf (not belonging to the spine) adjacent to ui, if it exists. Note that u′2 and u′`−1

do not exist. Note that this labelling of the nodes is not consistent for the subcaterpillars of C.
That is, when removing a node ui of C, the node u′i+1 might belong to the spine of one connected
component of C − {ui}. Hence, in what follows, for every caterpillar we consider, we implicitly
assume that the labelling of its nodes respect the convention above.

We start by pointing out that, in a caterpillar C with maximum degree 3, starting from a
matching M , a matching with size µ≤k(C,M) can be obtained by performing non-intersecting
(≤ k)-augmentations.

Lemma 2.20. Let C be a caterpillar with maximum degree 3, M be a matching, and S =
(P1, · · · , Pr) be a sequence of (≤ k)-augmentations starting fromM . Assume Pi and Pi+1 intersect,
for some i < r. Then, there exist two disjoint paths A,B such that (P1, · · · , Pi−1, A,B, Pi+2, · · · , Pr)
is a sequence of (≤ k)-augmentations resulting in the same matching as S.

Proof. This follows from arguments that are similar to that we used to prove Lemma 2.7 (with the
exception that, here, it might be that none of Pi and Pi+1 strictly includes the other). Consider, as
A and B, the exactly two paths of (Pi ∪Pi+1)−E(Pi ∩Pi+1). Note that if Pi and Pi+1 are vertex-
disjoint, then {A,B} = {Pi, Pi+1}. It can be checked that A and B are disjoint, and, because C
is a caterpillar, that they have length at most k (because Pi and Pi+1 do). More precisely, each of
these paths A and B is either:

• a subpath of Pi+1, or

• obtained from Pi or Pi+1 by replacing a subpath of Pi (hence of length at least 1) and a leaf
edge (in C) of Pi+1.

Furthermore, executing (P1, · · · , Pi−1, A,B, Pi+2, · · · , Pr) from M results in the same matching as
S.

Let C be a caterpillar with maximum degree 3 and M be a matching. If u1 is covered by M
then no augmenting path will never contain u1 nor u2 (which is also obviously covered). Hence,
removing u1 and u2 (recall that u′2 does not exist) from C and removing u1u2 from M results
in a new instance (C ′,M ′) such that solving the problem in (C ′,M ′) is equivalent to solving the
problem in (C,M). Therefore, we may assume that u1, which is a leaf, is exposed. When referring
to the closest exposed node of u1 in C, we mean the exposed node (different from u1) that is at
shortest distance from u1. Note that there may be two candidates u′i and ui+1 (for some i > 1)
as such closest exposed nodes. In that case, we consider u′i as the closest exposed node from
u1. By definition, the path from u1 to its closest exposed node is augmenting. Furthermore,
we may suppose that u1 and its closest exposed node are at distance at most k. Otherwise, no
augmenting path of length at most k can never contain vertices in {u1, · · · , ui, u′i}. In such case
(if u′i is at distance more than k from u1), C and M could be simplified by removing all vertices
in {u1, · · · , ui, u′i}, and applying the algorithm on the remaining caterpillar. Now, by the left-most
augmentation in C, we refer to the augmentation joining u1 and its closest exposed node.

From Lemma 2.20, we now prove that, for a caterpillar C and a matching M , we can ob-
tain, via (≤ k)-augmentations, a matching of size µ≤k(C,M) by repeatedly performing left-most
augmentations.

13

Lemma 2.21. Let C be a caterpillar with maximum degree 3 and M be a matching. Then, a
matching of size µ≤k(C,M) can be obtained by repeatedly performing left-most (≤ k)-augmentations
starting from M .

Proof. According to Lemma 2.20 and Claim 2.3, a matching of size µ≤k(C,M) can be obtained,
starting from M , by a sequence S = (P1, · · · , Pr) of pairwise disjoint (≤ k)-augmentations. Fur-
thermore, by Claim 2.3, we may assume that P1 < · · · < Pr, i.e., that the right-most end of Pi

is located on the left of the left-most end of Pi+1, for every two consecutive Pi, Pi+1. To prove
the lemma, it suffices to show that a matching of size µ≤k(C,M) can be obtained via a sequence
(P ′1, P2, . . . , Pr) of (≤ k)-augmentations, where P ′1 < P2 < · · · < Pr and P ′1 is the left-most aug-
mentation. If P1 is already the left-most augmentation, then we set P ′1 = P1. Otherwise, let P ′1
be the left-most (≤ k)-augmentation in the subcaterpillar containing all nodes located on the left
of the right-most end of P1. Then we just repeat, by induction, the same arguments with the
subcaterpillar containing all nodes located on the right of the right-most end of P ′1, and with the
sequence (P2, · · · , Pr) of (≤ k)-augmentations.

Corollary 2.19 and Lemma 2.21 directly yield a linear-time algorithm for solving MP≤k in a
caterpillar C. First, we may suppose that C = C̃ as otherwise the instance could be simplified.
Then, a matching of size µ≤k(C,M) can be obtained by repeatedly applying the left-most (≤ k)-
augmentation, for the notion of left and right we have used throughout this section.

Theorem 2.22. Let C be a caterpillar, and M be a matching. Then, µ≤k(C,M) can be computed
in linear time (in |V (C)|).

3. Augmenting matchings via (= k)-augmentations

We now investigate the consequences, on MP≤k, of restricting ourselves to augmentations of
paths with length exactly k. In Section 3.1, we start by showing that MP=k is, in general, NP-
hard for every k ≥ 3. The case of trees is considered in Section 3.2, wherein we prove that, in this
context, the problem is NP-hard when k is part of the instance.

3.1. Complexity of MP=k in general graphs (for fixed k)
First, we would like to point out that, in the reduction of [NSW15] for showing that MP≤k

is NP-hard for every k ≥ 5, only (= k)-augmentations can actually be performed in the reduced
graphs, which can be checked by considering the pairs of exposed vertices. Therefore, from this
reduction we directly get the following.

Theorem 3.1. [NSW15] MP=k is NP-hard for every k ≥ 5, even when restricted to instances
where G is a planar bipartite graph with maximum degree 3.

SinceMP≤3 was shown to be polynomial-time solvable [NSW15], we do not get the NP-hardness
of MP=3 right away, in a similar way, and instead have to provide a proof.

Theorem 3.2. MP=3 is NP-hard, even when restricted to instances where G is a planar bipartite
graph with maximum degree 3 and arbitrarily large girth.

Before going to the proof of Theorem 3.2, we first describe the gadgets to be used, as well as
some of their behaviours. We start off with choice gadgets (see Figure 1 for an illustration). For
any ` ≥ 2, the `-choice gadget is obtained from a path (u`, u`−1, · · · , u1, v, w1, · · · , w`−1, w`) on
2` + 1 vertices by 1) joining a new pendant vertex u′i to ui, for every i = 1, · · · , `, 2) joining a
new pendant vertex w′i to wi, for every i = 1, · · · , `, then 3) joining a new pendant vertex v′ to v,
and 4) joining a new pendant vertex v′′ to v′. We call vv′ the middle-edge of the choice gadget.
Throughout this section, assuming it is clear which choice gadget we are dealing with, we refer to
its vertices and edges using the terminology we have just introduced.

One property of interest of choice gadgets is the following:

Observation 3.3. Let H be an `-choice gadget, and M = {vv′} be a matching of H. Then, for
any matching M ′ of size µ=3(H,M) obtained by performing (= 3)-augmentations starting from M ,
we have either:

14

u3 u2 u1 v w1 w2 w3

u′3 u′2 u′1 v′ w′1 w′2 w′3

v′′

u3 u2 u1 v w1 w2 w3

u′3 u′2 u′1 v′ w′1 w′2 w′3

v′′

u3 u2 u1 v w1 w2 w3

u′3 u′2 u′1 v′ w′1 w′2 w′3

v′′

u3 u2 u1 v w1 w2 w3

u′3 u′2 u′1 v′ w′1 w′2 w′3

v′′

u3 u2 u1 v w1 w2 w3

u′3 u′2 u′1 v′ w′1 w′2 w′3

v′′

Figure 1: The 3-choice gadget H, and the way the initial matching M = {vv′} is being (= 3)-augmented until a
matching of size µ=3(H,M) is attained (from top to bottom, and left to right). Star vertices are exposed vertices.
Wiggly edges are edges of the matching.

1. M ′ = {v′v′′} ∪ {vw1} ∪
⋃`

i=1{uiu′i}, or

2. M ′ = {v′v′′} ∪ {vu1} ∪
⋃`

i=1{wiw
′
i}.

In particular, we have µ=3(H,M) = `+ 2.

Proof. Consider a maximum sequence S = (P1, · · · , Pq) of (= 3)-augmentations that can be per-
formed starting from M , and denote by M ′ the resulting matching. Throughout this proof, for
every 1 ≤ i ≤ q, we denote by S(M, i) the matching obtained from M by augmenting sequentially
the paths P1, · · · , Pi. Note that S(M, q) = M ′.

Recall that a (= 3)-augmentation can only be performed on a path of length 3 in which only the
middle-edge belongs to the matching. For this reason, sinceM = {vv′}, we have P1 = (v′′, v′, v, u1)
or P1 = (v′′v′vw1). Assume P1 = (v′′, v′, v, u1) without loss of generality (the other case is
symmetric). Because v′′v′ ∈ S(M, 1) and v′′ has degree 1, no augmenting path can contain any of
v′′ and v′. So P2 necessarily contains w1v and vu1. More precisely, P2 may be either (w1, v, u1, u2)
or (w1, v, u1, u

′
1). At this point, it can be noted that, since vw1 and vu1 belong to one of P1 and

P2, they cannot belong to any Pi with i ≥ 3. Indeed, whatever be the choice of P2, after its
augmentation, all the neighbours of v get covered, and, thus, no edge incident to v may belong
to an augmenting path of length 3 from this point. This implies that none of w2 and w′1 belongs
to one of the Pi’s, thus that the matching cannot be spread further towards the wi’s. We also
note that if P2 = (w1, v, u1, u

′
1), then, in H and S(M, 2), there is no further (= 3)-augmentation,

which means that the matching cannot propagate further towards the ui’s. So we necessarily have
P2 = (w1, v, u1, u2).

We thus have S(M, 2) = {v′v′′, vw1, u1u2}, and the only augmenting (= 3)-paths are (u′1, u1, u2, u
′
2)

and (u′1, u1, u2, u3) (if ` ≥ 3). If ` = 2, then necessarily P3 = (u′1, u1, u2, u
′
2), and we are done. If

` > 3, we note that P3 cannot be (u′1, u1, u2, u
′
2) as otherwise S(M, 3) would have no augment-

ing (= 3)-paths in H. So, in that case, P3 = (u′1, u1, u2, u3). These arguments generalize as
follows by induction on i (see Figure 1 for an illustration). For every i = 2, · · · , ` + 1, the only
(= 3)-augmenting paths in H, assuming the current matching is S(M, i−1), are (u′i−1, ui−1, ui, u

′
i)

and (u′i−1, ui−1, ui, ui+1). In case i = ` + 1, actually only the first of these two paths exists, so
Pi = (u′i−1, ui−1, ui, u

′
i). Otherwise, i.e., i = 2, · · · , `, we note that having Pi = (u′i−1, ui−1, ui, u

′
i)

15

v(H3)

w′
1(H3);u′

1(H0) u′
1(H3);w′

1(H2)

v′′(H0)v′(H0)

v(H0)

w1(H0)

u1(H0)

w2(H0)

u2(H0)

w3(H0)

u3(H0)

w′
2(H0)

u′
2(H0)

w′
3(H0)

u′
3(H0)

v(H1)

u′
1(H2);w′

1(H1)u′
1(H1);w′

1(H0)

v(H2)

Figure 2: The 4-variable gadget. Star vertices are exposed vertices. Wiggly edges are edges of the matching.

would make S(M, i) have no augmenting (= 3)-paths in H. So we have Pi = (u′i−1, ui−1, ui, ui+1)
for every i = 2, · · · , `, so that the matching can be spread further.

Under the assumption that P1 = (v′′, v′, v, u1), we eventually get, assuming that S is maximum,
that M ′ = {v′v′′} ∪ {vw1} ∪

⋃`
i=1{uiu′i}. By symmetry, we note that having P1 = (v′′, v′, v, w1)

results in M ′ = {v′v′′} ∪ {vu1} ∪
⋃`

i=1{wiw
′
i}. In both cases, we have µ=3(H,M) = ` + 2, as

claimed.

In order to introduce the next type of gadgets, we need some additional terminology to deal
with choice gadgets. Let H be a choice gadget. The vertices u′i of H are called the spike vertices
of H, while the edges uiu′i incident to the spike vertices are called the spike edges. Each spike
vertex or edge is numbered accordingly to the index i of the vertex u′i (or w′i) it intersects. The
vertices u1, u

′
1, u2, u

′
2, · · · form the positive branch of H, while the vertices w1, w

′
1, w2, w

′
2, · · · form

the negative branch. Rephrased differently, Observation 3.3 says that, in a choice gadget, the
“optimal” way to propagate the original matching is towards the spike edges of the positive branch
only, or towards the spike edges of the negative branch only. In the first case, we say that the
original matching has been propagated positively, while we say it has been propagated negatively
otherwise.

We now introduce variable gadgets, that are combinations of choice gadgets connected in a cyclic
fashion (see Figure 2 for an illustration). For any m ≥ 1, the m-variable gadget is constructed as
follows. The 1-variable gadget is the `-choice gadget (the length ` of the choice gadget will be fixed
later). Then, for any m ≥ 2, the m-variable gadget is constructed by taking m `-choice gadgets
H0, · · · , H`−1 and, for every i = 0, · · · , ` − 1, by identifying the first negative spike vertex of Hi

and the first positive spike vertex of Hi+1, where the indexes are understood modulo m. Precisely,
for any j < m and any i ≤ `, let, here and further, ui(Hj) denote the vertex ui of the jth copy
Hj of the choice gadget (v(Hj), v

′(Hj), v
′′(Hj), u

′
i(Hj), wi(Hj), w

′
i(Hj) are defined analogously).

Hence, the variable gadget is obtained by identifying w′1(Hj) with u′1(Hj+1) (modulo m) for every
j = 0, · · · ,m− 1.

The original matching of any variable gadget is the union of the original matchings of the
choice gadgets constituting it (i.e., their middle-edges). By the positive branches (resp. negative

16

branches) of H, we mean the m positive (resp. negative) branches of its underlying choice gadgets.
Analogously, by referring to the spike vertices and spike edges of a variable gadget, we mean the
spike vertices and edges of its underlying choice gadgets.

Note that we have not explicited the lengths of the 2m branches composing an m-variable
gadget, i.e., ` still must be defined. However, we must now ensure that the behaviour described in
Observation 3.3 remains valid after having combined the choice gadgets to form a variable gadget.
Assuming these branches are “long enough”, we prove it is the case.

Observation 3.4. Let H be an m-variable gadget, and M be the original matching of H as
described above. If ` (the length of the choice gadgets composing H) is at least 2, then, for any
matching M ′ of size µ=3(H,M) obtained by performing (= 3)-augmentations starting from M , we
have either:

1. all positive spike edges in M ′ and no negative spike edges in M ′, or

2. all negative spike edges in M ′ and no positive spike edges in M ′.

Proof. Let H0, · · · , Hm−1 be them `-choice gadgets composing H. We first prove that, because ` ≥
2, any maximum sequence of (= 3)-augmentations has no interest to perform (= 3)-augmentations
that intersect different choice gadgets. That is, a matching of size µ=3(H,M) cannot be obtained
by augmenting a (= 3)-path having edges in two consecutive Hi’s.

For purpose of contradiction, let us assume that there is an augmenting (= 3)-path Q that
intersects two choice gadgets, w.l.o.g., say H0 and H1 and that Q has two edges in H0. Let us
assume thatQ is the first (to be augmented) such path intersecting distinct choice gadgets. WhenQ
is about to be augmented, w1(H0)w′1(H0) must be in the current matching, a neighbour of w1(H0)
must be exposed, and u1(H1) must be exposed. The only way to have reached such a situation is
when, in H0, the paths (v′′(H0), v′(H0), v(H0), w1(H0)) and (u1(H0), v(H0), w1(H0), w′1(H0)) have
been augmented, and only them. Moreover, only the path (v′′(H1), v′(H1), v(H1), w1(H1)) can
have been augmented in H1.

Therefore, Q must be (w2(H0), w1(H0), w′1(H0), u1(H1)). After having augmented Q, we note
that, because all of v′′(H0), v′(H0), v(H0), u1(H0), w1(H0)w2(H0), w′1(H0) are covered, there is, in
H, no further (= 3)-augmentation including an edge of H0. In H1, we note that, since u′1(H1)
and u1(H1) are covered, the only (= 3)-augmentation that can potentially be performed (if not
already) in H1 is (v′′(H1), v′(H1), v(H1), w1(H1)). According to these arguments, augmenting a
(= 3)-path intersecting H0 and H1 leads to a final matching with at most three edges in H0 and
three edges in H1, while by Observation 3.3 we could have achieved a matching with ` + 2 ≥ 4
edges in each of H0 and H1 by propagating the matching positively or negatively.

Following these observations, since ` ≥ 2, a matching of size µ=3(H,M) can only be obtained,
from M , by propagating the original matching of each Hi positively or negatively. The claim now
follows from the fact that if, say, Hi has propagated its matching negatively, then Hi+1 cannot
propagate its matching positively, since the first negative spike edge of Hi and the first positive
spike edge of Hi+1 are adjacent.

According to Observation 3.4, we can thus derive the notion of positive and negative prop-
agations to variable gadgets with long branches: by propagating its matching positively (resp.
negatively), we mean propagating the matching positively (resp. negatively) in all of its underlying
choice gadgets.

We now have all ingredients in hand for proving Theorem 3.2.

Proof of Theorem 3.2. The proof is by reduction from 3-SAT. Namely, from a 3CNF formula Φ, we
construct, in polynomial time, a graph G with an initial matching M such that, from a satisfiable
truth assignment of the variables of Φ, we can deduce a matching of size µ=3(G,M) to which M
can be (= 3)-augmented, and vice versa.

The construction of G (and M) is mainly achieved by connecting several variable gadgets
together. For every variable xi of Φ, we add an mi-variable gadget Gi to G, where

mi = max {# of distinct clauses that contain xi,# of distinct clauses that contain xi} ,

17

G1

+

−

u`(H1
m)

w`(H1
m)

u′′(H1
m)

u′
`(H1

m)

G2

+

−

u`(H2
m′)

w`(H2
m′)

u′′(H2
m′)

u′
`(H2

m′)

G3

+

−

u`(H3
m′′)

w`(H3
m′′)

w′′(H3
m′′)

w′
`(H3

m′′)

cj

Figure 3: Illustration of the reduction in the proof of Theorem 3.2, for a formula Φ having a clause C = (x1∨x2∨x3),
and C is the mth (resp. m′th,m′′th) clause containing x1 (resp. x2, x3).

and the choice gadgets underling Gi have length ` at least 2 (so that Observation 3.4 can apply).
Let Hi

0, · · · , Hi
mi−1 be the choice gadgets composing Gi. For every last (i.e., the farthest from

the middle-edge) positive (resp. negative) spike edge u`(Hi
j)u
′
`(H

i
j) (resp. w`(H

i
j)w
′
`(H

i
j)) of every

choice gadget Hi
j underlying Gi, we add a pendant vertex u′′(Hi

j) (resp. w′′(Hi
j)) that we join to

u`(H
i
j) (resp. w`(H

i
j)).

For every clause Cj of Φ, we add a clause vertex cj to G. Finally, we connect the variable
gadgets and clause vertices in the following way (see Figure 3): for every variable xi (resp. negated
variable xi) and mth distinct clause Cj containing xi (resp. xi), we join cj and the spike vertex
u′`(H

i
m) (resp. w′`(H

i
m)) from the mth choice gadget Hi

m of Gi. Note that the order in which the
clauses containing xi are taken is not relevant.

We eventually define the original matching M of G as the union of the original matchings of
the choice gadgets composing the variable gadgets. Clearly, the construction of G is achieved in
polynomial time.

A matching M ′ of size µ=3(G,M) of G that can be obtained starting from M via (= 3)-
augmentations, is obtained as follows. Recall that the choice gadgets constituting the variable
gadgets are assumed long, so that Observation 3.4 applies. First, for every variable gadget Gi, we
have to propagate the original matching of Gi either positively or negatively. Thus, at this point,
the maximum number of such (= 3)-augmentations that can be performed does not depend on
the connexion with the clause vertices, but only on the lengths of the choice gadgets we used. So,
from now on, we denote by αM this number of (= 3)-augmentations. That is, by Observations 3.3
and 3.4, we have

αM =

n∑
i=1

mi · (`+ 2)

where n is the number of variables in Φ. Now, for every clause Cj of Φ, we can potentially
augment one of the at most three (= 3)-paths of the form (cj , u

′
`(H

i
m), u`(H

i
m), u′′(Hi

m)) or
(cj , w

′
`(H

i
m), w`(H

i
m), w′′(Hi

m)) joined to cj in G (where m is the index of the choice gadget of
Gi that is associated to clause Cj), but this is only possible if one of the three variable gad-
gets incident to cj propagated its matching positively (first case), or negatively (second case). The
matching then cannot be propagated further through cj : if, say, u′′(Hi

m)cj belongs to the matching
at some point, then it means that the (= 3)-path (cj , u

′
`(H

i
m), u`(H

i
m), u′′(Hi

m)) was augmented,
hence that u′`(H

i
m) is covered while u′′(Hi

m)′ has degree 2 (so no (= 3)-augmenting path including

18

u′′(Hi
m)cj exists). So we have

αM ≤ µ=3(G,M) ≤ αM + γ,

where γ denotes the number of clauses appearing in Φ. In particular, the upper bound is attained
whenever, for every variable gadget Gi of G, we can propagate its original matching appropriately,
so that, for every clause vertex of G, an augmentation of an incident (= 3)-path can be performed.

We claim that µ=3(G,M) = αM + γ if and only if Φ admits a satisfying truth assignment.
To see this holds, consider that, in G, propagating the original matching of any Gi positively
(resp. negatively) simulates the fact that variable xi of Φ is set to true (resp. false) by some
truth assignment. So that one of the final γ augmentations including the clause vertices of G can
be performed, it needs one of its at most three incident variable gadgets to have propagated its
matching the good way. By this, we mean positively (= true) if the clause contains the positive
version of that variable, of negatively (= false) otherwise. Hence, the equivalence holds.

We conclude the proof by pointing out some possible modifications of the reduction above,
which maintain the equivalence with 3-SAT. Let us first point out that G has maximum degree 3.
Furthermore, since 3-SAT remains NP-hard for planar formulas Φ, we may assume that Φ is planar,
in which case the reduced graph G is clearly planar as well, since the variable gadgets are planar
(as illustrated in Figure 2).

We can also modify the reduction above so that G fulfils additional properties:

• It can be checked that all cycles of the reduced graph G go through variable gadgets, i.e., at
some point, they enter a variable gadget via a spike edge, and exit it using another spike edge
(possibly from the other branch). Since two variable gadgets Gi and Gi+1 are connected by
spike edges or by clause vertices (hence by paths of length 2), and the positive and negative
first (or last) spike edges of any Gi are at even distance in Gi, the only way for a cycle of G
to be of odd length is when, in the construction, we use a choice gadget with odd length (so
that, in its branches, its first and last spike edges are at odd distance). So, by using choice
gadgets of even length only, we can make sure that G is bipartite.

• Now, by increasing 1) the number of choice gadgets used to construct the Gi’s, and 2) the
length of these choice gadgets, we also increase the lengths of the cycles in G. So we can also
make sure that G has arbitrarily large girth.

3.2. Complexity of MP=k in trees (for non-fixed k)
In this section, we show that MP=k is hard for trees when k is part of the input. That is, we

show that

(=)-Matching Problem (MP=)
Input: A graph G, a matching M of G, and an odd integer k ≥ 1.
Question: What is the value of µ=k(G,M)?

is NP-hard, even for instances where G is a tree.

Theorem 3.5. MP= is NP-hard, even when restricted to instances where G is a tree.

Proof. The proof is by reduction from 3-SAT. From a 3CNF formula Φ, we construct a tree T with
a matching M , such that Φ is satisfiable if and only if µ=k(T,M) is equal to a specific value, where
k depends on the number of variables and clauses of Φ. For the sake of understanding, we here
describe the proof for k = 100 · (n+m) + 1, where n is the number of distinct variables appearing
in Φ and m is the number of distinct clauses of Φ, but the reduction could also be performed for
much smaller values of k (but still dependent on n+m). Note in particular that b 1

10kc is even.

The tree T , and its original matching M , are obtained by combining several gadgets together.
These gadgets will each be equipped with an initial matching, so that M will be the union of these
matchings.

The first type of gadgets we use are departure gadgets of odd length ` ≥!. The departure gadget
is depicted in Figure 4 (left), where the wiggly edges are the edges of its original matching. The
gadget consists of an augmenting path (uforth, x, w1, · · · , w`+1) plus one node uback adjacent to w1.

19

w1

uforth

uback

w2

w`

w`+1 v`+1 v` v2 v1

uout uin

w

uout

uin

w1

w2

w`

w`+1

Figure 4: The departure gadget with length ` and root w`+1 (left), the gate gadget with length `, first-root w, and
second-root v`+1 (middle), and the arrival gadget with length ` and root w`+1 (right). Star nodes will be exposed
in the reduced graph. White nodes (i.e., root nodes) will be used to attach the gadgets at some nodes. Wiggly edges
are edges of the matching.

Its node w`+1 is called the root of the gadget, as it will be used to attach the gadget to other
gadgets. We call the two exposed nodes uforth and uback the forth-node and the back-node of the
gadget, respectively, where the forth-node is the farther from w`+1. The path from w1 to w`+1

might be of arbitrary even length `.
The second type of gadgets we need are gate gadgets of even length ` ≥ 2. This gadget is

depicted in Figure 4 (middle). Its nodes w and v`+1 are the first-root and second-root, respectively,
of the gadget. We call the exposed nodes uin and uout the in-node and the out-node, respectively.
The path with even length ` from v1 to v`+1 is meant to be alternating. The initial matching of a
gate gadget is the one depicted in Figure 4, namely the path from v1 to v`+1 has to be alternating
with the second-root being covered, and the neighbours of the in- and out-nodes must be covered
(while the in- and out-nodes must be exposed).

The last type of gadgets we need are arrival gadgets of even length ` ≥ 2, as depicted in Figure 4
(right). It is a path of even length `+ 2. The root of the gadget is w`+1. The two exposed nodes
uin and uout are called the in-node and out-node, respectively, of the gadget. The path from w1 to
w`+1 is alternating so that w1 is covered and w`+1 is exposed.

We are now ready to describe how to combine these gadgets to form T (and M); see Figure 5
for an illustration of the structure of T . We start from an edge uv, which we call the switch edge
of T , and which belongs to M . We then add two special nodes hv and hc to T . We connect hv and
u (an end of the switch edge) via an alternating path with even length `v = b 9

10kc, in such a way
that hv is covered by an edge of that path. Now, for every variable xi of Φ, we identify hv and the
root of a departure gadget G(xi) with odd length `xi = 2i+ 1. Note that, for every variable xi, we
have `xi < b 1

10kc by our choice of k. We do a similar construction for the clauses of Φ. Namely,
we connect hc and u via an alternating path with even length `c = b 2

10kc, so that hc is covered by
an edge of that path (and u is not, since it is already covered by uv). Then, for every clause Cj of
Φ, we identify hc and the root of a departure gadget G(Cj) with odd length `Cj

= 2j + 1. Here as
well, note that `Cj

< b 1
10kc for every clause Cj .

We now consider every variable xi of Φ in turn. For every such xi, we add, to T , a gate gadget
S(xi) with even length `′xi

= b 6
10kc. Similarly, we add to T a gate gadget S(xi) with even length

`′xi
= b 6

10kc. We then identify the first roots of S(xi) and S(xi). The resulting subgraph we have
obtained for the couple {xi, xi} is denoted by G(xi, xi), and the node which served for connecting
S(xi) and S(xi) is called the root of G(xi, xi). We now connect the root of G(xi, xi) and v, the

20

G(x1)

forth back

G(x2)

forth back

hv hc

G(C1)

forth back

G(C2)

forth back

u

v

switch edge

G(x1, x1)
in

out

in

out

A(x1, C1)
inout

A(x1, C1)

A(x1, C2)

in out

in out

G(x2, x2)
in

out

in

out

A(x2, C2)

inout

A(x2, C1)

in out

Figure 5: Illustration of the structure of T , as constructed in the proof of Theorem 3.5, for a formula Φ having two
variables x1 and x2, and two clauses C1 and C2 such that x1, x1, x2 ∈ C1 and x1, x2 ∈ C2. Star nodes are exposed
nodes. Wiggly edges are edges of the matching. The exposed nodes from an area with a given colour are only joined,
via an augmenting (= k)-path, to another exposed node of the distinct area with the same colour.

end of the switch edge we have not used yet, via an alternating path with even length

`xi,xi
= k − (2 + `xi

+ `v + 1 + 3) = k −
(

6 + `xi
+

⌊
9

10
k

⌋)
.

The initial matching on this path is made in such a way that the root of G(xi, xi) is covered by an
edge of that path (and v is not, since it is already covered by uv). Note that `xi,xi

< b 1
10kc by our

choice of k.
Now, for every clause Cj of Φ containing xi, we identify the second-root of S(xi) and the root

of a new arrival gadget A(xi, Cj) with odd length

`xi,Cj
= k − (2 + `Cj

+ `c + 1 + `xi,xi
+ 2 + `′xi

) = k −
(

5 + `Cj
+

⌊
8

10
k

⌋
+ `xi,xi

)
.

Note that `xi,Cj
< b 2

10kc. We repeat the exact same operation with xi and the clauses containing
xi, resulting in gadgets S(xi) with length `′xi

= b 6
10kc and A(xi, Cj) with odd length

`xi,Cj
= k − (2 + `Cj

+ `c + 1 + `xi,xi
+ 2 + `′xi

) = k −
(

5 + `Cj
+

⌊
8

10
k

⌋
+ `xi,xi

)
,

smaller than b 2
10kc. Note that the construction of T and M is achieved in polynomial time.

Prior to explain why the reduction is correct, let us point out a few facts. The exposed nodes
of T are the following:

• the forth- and back-nodes of all departure gadgets G(xi);

• the forth- and back-nodes of all departure gadgets G(Cj);

• the in- and out-nodes of all gate gadgets S(xi) and S(xi);

• the in- and out-nodes of all arrival gadgets A(xi, Cj) and A(xi, Cj).

Among all pairs of exposed nodes, due to our choice of some the gadgets’ and paths’ lengths,
note that only the following ones are at distance exactly k in T (see Figure 6 for an illustration):

1. For every variable xi of Φ, the forth-node of G(xi) and the in-nodes of S(xi) and S(xi).

21

u

v

hv hc

switch edge

G(x1)

back

forth

G(x2)

back

forth

G(C1)

back

forth

G(C2)

back

forth

G(x1, x1)

A(x1, C1) A(x1, C2)

in

out

in

out

in

out

in

out

G(x2, x2)

A(x2, C1) A(x2, C2)

in

out

in

out

in

out

in

out

`x1
<

⌊
1
10k

⌋
`x2

<
⌊

1
10k

⌋
`C1

<
⌊

1
10k

⌋
`C2

<
⌊

1
10k

⌋

`v =
⌊

9
10k

⌋
`c =

⌊
2
10k

⌋

`x1,x1
<

⌊
1
10k

⌋
`x2,x2

<
⌊

1
10k

⌋

`′x1
=

⌊
6
10k

⌋
`′x1

=
⌊

6
10k

⌋

`x1,C1
<

⌊
2
10k

⌋
`x1,C2

<
⌊

2
10k

⌋

`′x2
=

⌊
6
10k

⌋
`′x2

=
⌊

6
10k

⌋

`x2,C2
<

⌊
2
10k

⌋
`x2,C1

<
⌊

2
10k

⌋

Figure 6: Illustration of the reduction described in the proof of Theorem 3.5, for a formula Φ having two variables
x1 and x2 and two clauses C1 and C2 such that x1, x2 ∈ C1 and x1, x2 ∈ C2. Star nodes are exposed nodes. Wiggly
edges are edges of the matching.

2. For every variable xi of Φ, the back-node of G(xi) and the out-nodes of S(xi) and S(xi).

3. For every clause Cj and variable xi ∈ Cj (or negated variable xi ∈ Cj) in Φ, the forth-node
of G(Cj) and the in-node of A(xi, Cj) (resp. A(xi, Cj)).

4. for every clause Cj and variable xi ∈ Cj (or negated variable xi ∈ Cj) in Φ, the back-node
of G(Cj) and the out-node of A(xi, Cj) (resp. A(xi, Cj)).

We now explain how M should be (= k)-augmented to a matching of size µ=k(T,M). First

22

of all, it should be noted that, at any point, if a (= k)-augmentation is performed from the
forth-node of a departure gadget G1 to the in-node of a gate or arrival gadget G2, then only the
(= k)-augmentation from the back-node of G1 to the out-node of T can be performed. This is
because the node u (the end of the switch edge that is the closest to the departure gadgets) is now
covered by an incident edge on the path between u and G1. So, in a sense, (= k)-augmentations
have to be performed in pairs. Assuming the two (= k)-augmentations from G(xi) to S(xi) (resp.,
to S(xi)) have been performed, we say that the gate gadget S(xi) (resp. S(xi)) is open.

As exposed above, the possible (= k)-augmentations go from a departure gadget G(xi) or G(Cj)
towards either a gate gadget (case where the departure gadget is a G(xi)), or an arrival gadget
(otherwise). Assuming the clause Cj of Φ contains the variable xi (resp. negated variable xi), we
note that augmenting a (= k)-path from G(Cj) to A(xi, Cj) (resp. A(xi, Cj) cannot be done until
S(xi) (resp. S(xi)) is open. Furthermore, we note that once a gate, say S(xi), is open, assuming
xi is contained is distinct clauses Cj1 , · · · , Cjni

of Φ, all pairs of (= k)-augmentations from the
departure gadgets G(Cj1), · · · , G(Cjni

) to the arrival gadgets A(xi, Cj1), · · · , A(xi, Cjni
) can be

performed in turns.
To sum up, a matching of size µ=k(T,M) can be obtained, via (= k)-augmentations starting

from M , as follows:

1. Consider all of the variables x1, · · · , xn of Φ in turn, and, for every considered variable xi,
either perform the two augmentations from G(xi) to S(xi) (i.e., open S(xi)), or perform the
two augmentations from G(xi) to S(xi) (i.e., open S(xi)),

2. Then consider all of the clauses C1, · · · , Cm of Φ in turn, and, for every considered clause
Cj , if Cj contains one variable xi (resp. negated variable xi) such that S(xi) (resp. S(xi)) is
open, then perform the two augmentations from G(Cj) to A(xi, Cj) (resp. A(xi, Cj)).

So 2n+ |M | ≤ µ=k(T,M) ≤ 2n+ 2m+ |M |, and the upper bound is attained when, for every
variable xi, we can open either S(xi) or S(xi) so that, for every clause gadget Cj , there is an open
gate gadget creating a way from the departure gadget G(Cj) towards an arrival gadget A(xi, Cj) or
A(xi, Cj). By considering that opening S(xi) (resp. S(xi)) simulates the affectation of value true
(resp. false) to xi, and that performing a pair of (= k)-augmentations from G(Cj) to A(xi, Cj)
(or A(xi, Cj)) simulates the fact that xi (resp. xi) brings value true to Cj , the equivalence with
satisfying Φ follows.

4. Conclusion

Following the work of Nisse, Salch and Weber [NSW15], we have, in this paper, studied the
algorithmic complexity of MP≤k, the problem of augmenting an initial matching as much as
possible via (≤ k)-augmentations. As this case is far from being well understood, we gave a special
focus to the case of trees. On the positive side, we have provided polynomial-time algorithms
for solving the problem in bounded-degree trees (assuming k is also fixed), k-sparse trees, and
caterpillars.

Seeking for the complexity of MP≤k in trees, we have introduced a more restricted version of
the problem,MP=k. On the negative side, we have proved that this problem is indeed NP-complete
in trees, when k is part of the input.

One important point to raise, is that the polynomial-time algorithms we have proposed for
MP≤k also apply for MP=k. To see this is true, one should keep in mind that our algorithms
heavily rely on the point that, when given a sequence of augmentations, we can disentangle the
augmented paths (i.e., make them disjoint) and get an equivalent sequence. When considering
the MP=k problem, such a property is not needed, as it can easily be checked that, for any two
augmenting paths with the same length, in a caterpillar or a k-sparse tree one of the two paths
cannot completely include the other.

In the rest of this section, we summarize a number of directions for further work on this topic.

23

Complexity of MP≤k

Our perspectives for future work are mainly about the complexity of MP≤k in more classes of
trees, towards a full understanding of the problem in that class of graphs. In the current paper, so
that the arguments in our proofs work, we needed strong assumptions on the tree’s structure, such
as long distances between the b-nodes (k-sparse trees), or short branches attached to the b-nodes
(caterpillars). The next step would hence be to consider classes of trees without those properties.

Our main interest for focusing on caterpillars in this paper, is that their structure is close to that
of paths, for which it exists a polynomial-time solving algorithm for MP≤k. We have the feeling
that, from an algorithm solving MP≤k for a tree T , one could deduce one for any subdivision of T ,
as the subdivision operation introduces new degree-2 nodes only. Hence, we believe the following
could be considered:

Question 4.1. What is the complexity of MP≤k when restricted to subdivided caterpillars?

Remind that, in the case of caterpillars, a key fact is that the maximum degree can be assumed
to be at most 3 (due to Corollary 2.19). Obviously, this does not remain true in subdivided
caterpillars. Towards Question 4.1, a simpler generalization of our result for caterpillars could
hence be to consider combs, i.e., subdivided caterpillars with maximum degree 3. In particular, a
quick investigation shows that, already in that class of trees, performing augmentations from left
to right might not be an optimal strategy.

Question 4.2. What is the complexity of MP≤k when restricted to combs?

Our result on k-sparse trees stands as a generalization of arguments for solving MP≤k in
subdivided stars. In that light, perhaps another class of trees that could be interesting considering
is the one of subdivided bistars (i.e., trees with exactly two b-nodes). Note that, in a subdivided
bistar S, if the two b-nodes are at distance more than k, then S is a k-sparse tree, in which case
we know how to solve MP≤k. Hence, in order to understand how (≤ k)-augmentations should be
performed through b-nodes, the following case could be considered:

Question 4.3. What is the complexity of MP≤k when restricted to bistars?

Complexity of MP=k

We believe directions concerning MP=k are also worth considering. In particular, although we
proved that MP= is NP-complete in trees, we have no clue about whether this is true for MP=k,
for some fixed k.

Question 4.4. Is there an odd k ≥ 3 such that MP=k is NP-complete when restricted to trees?

In particular, the case k = 3 sounds intriguing:

Question 4.5. What is the complexity of MP=3 when restricted to trees?

Other classes of graphs
Although MP≤k and MP=k remain NP-complete when restricted to rather restricted classes

of graphs (with maximum degree 3, degeneracy 2, arbitrarily large girth, planarity, bounded
treewidth), the polynomial-time solvable cases should concern particular classes of graphs with
convenient properties. As such classes, one could consider Θ-graphs (graphs with two vertices
joined by arbitrarily many disjoint paths with arbitrary lengths), cacti (graphs made up of cycles
connected in a tree-like fashion), or interval graphs. The latter class sounds rather interesting, as
perhaps, in that case, augmentations should be performed from left to right, just as in the path
and caterpillar cases.

24

References

[Ber57] C. Berge. Two theorems in graph theory. Proceedings of the National Academy of
Sciences of the United States of America, 43(9):842–844, September 1957.

[BSS09] L. Bui, S. Sanghavi, and R. Srikant. Distributed link scheduling with constant overhead.
IEEE/ACM Trans. Netw., 17(5):1467–1480, 2009.

[DP14] R. Duan and S. Pettie. Linear-time approximation for maximum weight matching. J.
ACM, 61(1), 2014.

[Edm65] J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467,
1965.

[HK73] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM J. Comput., 2(4):225–231, 1973.

[Kuh55] H. W. Kuhn. The hungarian method for the assignment problem. Naval Research
Logistics Quarterly, 2:83–97, 1955.

[MV80] S. Micali and V. V. Vazirani. An O(
√
|V ||E|) algorithm for finding maximum matching

in general graphs. In 21st Symp. on Foundations of Comp. Sc. (FOCS), pages 17–27.
IEEE, 1980.

[NSW15] N. Nisse, A. Salch, and V. Weber. Recovery of disrupted airline operations, 2015. INRIA-
RR-8679, http://hal.inria.fr/Something.

[WS05] X. Wu and R. Srikant. Regulated maximal matching: A distributed scheduling algorithm
for multi-hop wireless networks with nodeexclusive spectrum sharing. In IEEE Conf. on
Decision and Control, 2005.

25

