
HAL Id: hal-01559687
https://hal.archives-ouvertes.fr/hal-01559687

Submitted on 10 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AMH: a new Framework to Design Adaptive
Metaheuristics

Aymeric Blot, Marie-Éléonore Kessaci-Marmion, Laetitia Jourdan

To cite this version:
Aymeric Blot, Marie-Éléonore Kessaci-Marmion, Laetitia Jourdan. AMH: a new Framework to Design
Adaptive Metaheuristics. 12th Metaheuristics International Conference, Jul 2017, Barcelona, Spain.
�hal-01559687�

https://hal.archives-ouvertes.fr/hal-01559687
https://hal.archives-ouvertes.fr


MIC/MAEB 2017 65–1

AMH: a new Framework
to Design Adaptive Metaheuristics

Aymeric Blot, Marie-Éléonore Kessaci-Marmion, Laetitia Jourdan

Université de Lille, Inria, CNRS, UMR 9189 – CRIStAL, France
aymeric.blot@inria.fr

{laetitia.jourdan,me.kessaci}@univ-lille1.fr

Abstract

Metaheuristics should be configured to perform well on a given problem. Their configuration is
either made off-line by automatic algorithm configuration tools or on-line with control mechanisms
to adapt their behaviour. The former requires a flexible structure that may be modified during the
execution. Therefore, the implementation of such a structure is not straightforward to enable modifi-
cations of optimisation strategies and not of parameter values only. In this work, we present AMH,
a framework dedicated to the design of configurable metaheuristics. This framework is based on
controlling the execution flow of metaheuristics to enable the implementation of flexible structures.

1 Introduction

Metaheuristics often expose multiple parameters that strongly impact their performance. Indeed, to
achieve good performance, the value of their parameters needs to be specifically set. Off-line configu-
ration can be efficiently done with automatic algorithm configuration tools. On the other hand, on-line
configuration is generally done through adaptive metaheuristics where intern control mechanisms modify
the algorithms during the execution.

The implementation of such adaptive algorithms is not straightforward and become more and more
difficult when the control is applied on optimisation strategies. Therefore, we propose a framework,
called AMH, dedicated to the design and configuration of metaheuristics.

First, Section 2 explains the motivations that have led us to propose a new framework. Then, Sec-
tion 3 presents our framework. Finally, Section 4 concludes this paper and draws perspectives.

2 Motivation to Propose a New Framework

The performance of a metaheuristic depends on its parameters being numerical values (e.g., thresholds,
counters, probabilities) or categorical values. The latter represent components such as the different re-
combination operators of EAs or the neighbourhood operator in SLS, or the different strategies of a
metaheuristic such as the restart or the kick-move in the perturbation of an iterated local search.

Metaheuristics have recently benefited from automatic algorithm configuration with tools such as
irace 1, ParamILS 2, or SMAC 3. It corresponds to off-line configuration where the parameters are settled
before the final execution. When parameters are numerical values, these tools may be directly and
easily plugged with the executable program, the single requirement being to be configurable from the
command line. When parameters are optimization strategies, it is not straightforward, but possible using
automatic code generation to test different configurations. However, each generated executable program
embeds one configuration of the metaheuristic only. We call these algorithms static metaheuristics,
opposite to adaptive metaheuristics. They integrate control mechanisms enabled to modify the values
of the parameters set initially as well as the optimisation strategies in order to adapt more deeply to the
problem instance being solved [1, 3]. On-line configuration is based on these control mechanisms that
apply minor modifications (parameter values) or major modifications (use of strategy). Therefore, an

1http://iridia.ulb.ac.be/irace/
2www.cs.ubc.ca/labs/beta/Projects/ParamILS/
3http://www.cs.ubc.ca/labs/beta/Projects/SMAC/

Barcelona, July 4-7, 2017



65–2 MIC/MAEB 2017

adaptive metaheuristic requires a flexible structure, as every parameter, every strategy or the algorithm
itself may be modified/adapted during the execution. Moreover, the control mechanisms are based on
feedback measures to evaluate the relevance of a used mechanism and an update mechanism to setup the
algorithm for the next iteration. The implementation of such a structure with the necessary feedback and
update tools is not straightforward.

ParadisEO 4 (C++) and jMetal 5 (java) are well-known frameworks of the literature dedicated to
the design of metaheuristics, which can be used with automatic algorithm configuration tools [4] to
obtain optimised algorithms for given problems. While it is possible for both of them to handle on-
line configuration when only the value of numerical parameters are adapted during the execution of the
algorithm, their design do not take into account the possibility to fully modify an algorithm during its
execution. With the same intention to propose a useful framework to design metaheuristics, we propose
a new framework that enable both on-line and off-line configuration of metaheuristics.

3 AMH Framework

AMH is a framework designed to implement both static and adaptive metaheuristics. The main goal of
AMH is to enable the on-line design of algorithm whose structure can be modified during the execution.

3.1 Philosophy of AMH

A metaheuristic can be seen as a succession of individual statements, instructions or function calls.
Hence, a metaheuristic can be associated to a specific flow of execution. For example, the execution
flow of a GA is composed of 3 successive strategy components (selection, crossover and then mutation)
followed with a termination component that loop the process until the termination criterion is met. Every
component of the algorithm can be seen as a function taking as input and output a population of solution.
Obviously, considering any other metaheuristic, the input might be a unique solution or a Pareto archive
in multi-objective optimisation. Any coherent part of the GA (and thus, the whole algorithm itself) can
be seen as such a function: the crossover and the mutation could be aggregated in a single component
returning new solutions, that could itself be aggregated with the selection component. In fact, the entire
contents of the loop can be considered as a simple function updating the population of solution.

Setting parameter values of a metaheuristic does not interfere with the execution. On the other hand,
the setting of the optimisation strategies determines the execution flow. For a static metaheurictics, this
setting is done before the run and so does not modify the execution flow during the execution of the
algorithm whereas the execution flow of an adaptive metaheurictics may be fully modified. For example,
considering an adaptive GA, we can imagine that a control mechanism chooses to delete the mutation
component, or replace it with a local search component, from a certain moment of the execution that is
to say that the execution flow is clearly modified during the execution.

AMH has been designed to control the execution flow before and during the execution of the meta-
heuristic. The graph of the execution flow is created at the start of the algorithm, hence facilitating
algorithm configuration for parameters modifying its structure. This graph being managed and traversed
by AMH and not compiled, it becomes possible to modify it during its own execution, allowing a natural
control over its components, and more generally speaking, allowing on-line configuration.

3.2 Design and Implementation of AMH

The AMH framework6 is implemented in C++. It handles the execution flow of a given algorithm
by encapsulating algorithmic operations in a meta-component that describes the temporal interactions
between components. All algorithms implemented in AMH inherit from a base function class – a single

4http://paradiseo.gforge.inria.fr/
5https://jmetal.github.io/jMetal/
6http://github.com/amh-framework

Barcelona, July 4-7, 2017



MIC/MAEB 2017 65–3

class representing a function – i.e., a delimited part of the execution having defined input and output
types, which are specified at compile-time using templates. Moreover, AMH provides a large range of
execution flow primitives such as conditions and loops, in order to connect all parts of an implemented
algorithm.

The core design of AMH is to focus only on the flow of execution, and not on the solving methods.
Indeed, the algorithm designer has to provide the solution representations, solving mechanisms, and
algorithm structure, or to use existing ones. The solution representations are used in template at compile-
time, and solving mechanisms need to be encapsulated, either as static classes inheriting from the base
AMH function class, or dynamically as native C++ functions. In particular, it means that existing C++
algorithm implementations (e.g., metaheurictics implemented under ParadisEO) can benefit from AMH
just by defining atomic components (e.g., selection and variation strategies of a GA) and encapsulating
them. Hybridisation of algorithms using the same solution representation is immediate, and the execution
flow of AMH provides easy algorithm designs enabled off-line and on-line configuration.

The base class of AMH is amh::algo<IN,OUT> representing a function taking an argument of
class IN and outputing an argument of class OUT, generally identical and encoding the current state of the
metaheuristic. All AMH classes use similar templates, enforcing the validity of the resulting algorithm.
AMH also provides multiple useful subclasses, such as amh::gen to implement generators such as ran-
dom solution generators or neighbourhoods, amh::func to encapsulate native C++ functions directly
without having to create ad hoc classes, or likewise amh::check for Boolean formula. Moreover,
AMH provides useful classes, as for example if-then-else, while, do-while, until...

AMH has been successfully used to off-line configure multi-objective local search (MOLS) algo-
rithms [2] where 2790 configurations were considered. Control mechanisms such as multi-armed bandit
or adaptive pursuit have been integrated to AMH. Experiments have also shown the interest of using
AMH to on-line configure efficient MOLS.

4 Conclusion

Both off-line and on-line configuration is used to adapt an algorithm to a given problem. While off-line
configuration can be done by plug-and-play with automatic algorithm configuration tools, on-line config-
uration requires algorithm-specific components and a flexible structure. In this paper, we have presented
our framework AMH designed and implemented to facilitate on-line configuration of metaheuristics, i.e.,
the design of adaptive metaheuristics. Hence, we showed that it is easy to integrate control mechanisms
into metaheuristics that modify parameter values or algorithm strategies. These are made possible with
AMH as it dynamically creates and handles the execution flow of the algorithm whose instantiation can
be adapted during its execution.

Following this work, we aim at instantiating many strategies of metaheuristics from bio-inspired
algorithms as well as neighbourhood-based algorithms into AMH to design new adaptive metaheuristics.
Works on adaptive metaheuristics remain few in number but AMH gives some implementation hints that
will be investigated to design control mechanisms for the whole execution flow.

References

[1] R. Battiti, M. Brunato, and F. Mascia. Reactive Search and Intelligent Optimization, volume 45 of
Operations Research/Computer Science Interfaces Series. Springer, 2009.

[2] A. Blot, A. Pernet, L. Jourdan, M-E. Kessaci-Marmion, and H. H. Hoos. Automatically configuring
multi-objective local search using multi-objective optimisation. In EMO 2017, 2017.

[3] L. Da Costa, Á. Fialho, M. Schoenauer, and M. Sebag. Adaptive operator selection with dynamic
multi-armed bandits. In GECCO 2008, pages 913–920. ACM Press, 2008.

[4] M-E. Marmion, F. Mascia, M. López-Ibáñez, and T. Stützle. Automatic design of hybrid stochastic
local search algorithms. In HM 2013, pages 144–158, LNCS, 2013.

Barcelona, July 4-7, 2017


