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Abstract. Interval arithmetic is a tool of choice for numerical software
verification, as every result computed using this arithmetic is self-verified:
every result is an interval that is guaranteed to contain the exact numer-
ical values, regardless of uncertainty or roundoff errors.
From 2008 to 2015, interval arithmetic underwent a standardization ef-
fort, resulting in the IEEE 1788-2015 standard. The main features of this
standard are developed: the structure into levels, from the mathematic
model to the implementation on computers; the possibility to accommo-
date different mathematical models, called flavors; the decoration system
that keeps track of relevant events during the course of a calculation; the
exact dot product for point (as opposed to interval) vectors.
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1 Introduction

Interval arithmetic is a valuable tool to perform self-validated numerical compu-
tations. Indeed, every calculation is performed using intervals as inputs, which
are assumed to enclose the exact value of the considered inputs, and it returns
intervals as outputs, which are guaranteed to enclose the exact value of the
corresponding outputs. This is the most precious feature of interval arithmetic
and it is called the Fundamental Theorem of Interval Arithmetic, abbreviated
in FTIA in the following. It sometimes bears different names, depending on the
authors. Let us quote here some big names in interval arithmetic, at least some
who published their work in English: Hansen and Walster [3], Kulisch [9], Moore
[11, 12], Moore again, with Kearfott and Cloud [13], Neumaier [15], Rump [18],
Tucker [20] to cite only a few, in alphabetical order.

Other precious features are best exemplified on Newton’s method for the
determination of the zeros of a function f on a given interval. First, the use of
interval arithmetic permits an effective application of Brouwer theorem: when
the new iterate, by Newton’s method, is included in the previous one, then



this iterate contains a zero for f . Second, the use of an ad-hoc definition of
the division makes it possible to separate zeros: in such a case, one iteration of
Newton’s method produces two disjoint intervals and it is guaranteed that no
zero for f lies in the gap between these two intervals. Quite often, each of these
two disjoint new iterates contains a (strict) subset of the zeros.

The community of users of interval arithmetic was willing to preserve these
precious features. However, libraries implementing interval arithmetic and inter-
val methods usually laid on different variations on interval arithmetic, on differ-
ent definitions. Examples are on the one hand the filib++ library [10], rather
close to the set-based flavor, and on the other hand the MPFI library [17], closer
to the IEEE 754-2008 standard for floating-point arithmetic [6]. It was thus not
possible to build a common basis of programs, test cases and benchmarks. It
was then collectively decided upon standardizing interval arithmetic, in order to
share the possibilities offered by interval arithmetic. The standardization effort
was led under the auspices of IEEE, from October 2008 to July 2015. The bulk of
the work was done via e-mail. The standardization effort proceeded via so-called
”Motions”, or proposals that constituted steps forward. Each motion underwent
3 weeks of discussion and possible amendments, followed by 3 weeks of vote.
John Pryce, technical editor, created what is now the text of the standard, using
the results of the votes as raw material. The content of the standard is developed
now.

2 The Big Picture: Structuration into Levels

It was decided to start from the mathematical level, to have a clear and clean
basis, and then to investigate and specify how the mathematical notions translate
to the implementation levels. The structuration into levels is borrowed from the
IEEE 754-2008 Standard for Floating-Point Arithmetic [6].

The first level is the mathematical level : it specifies what an interval on real
numbers is, what operations on intervals do and so on.

Level 2 deals with the discretization of Level 1 intervals, so that they can be
implemented on a computer: it defines

– interval datums, that are the representations of entities of Level 1;
– interval types, that are finite sets of interval datums.

The issues handled at that level are related to the fact that a continuous world
is implemented using a discrete and finite environment.

“Level 3 is about representation of interval datums – usually but not nec-
essarily in terms of floating-point values” [7]. The concern here is about the
representation of an interval datum, e.g., by its endpoints, and the type of the
numeric values used for this representation.

Level 4 is about the encoding of these representations. It is really the equiva-
lent of Level 4 for floating-point arithmetic. However, as numerical values are not
the subject of this standard, very few in IEEE 1788-2015 is said about Level 4.

The figure summarizes the structuration in levels, the content of each level
and the relation betwen levels. Each topic is detailed below.
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3 Flavors

As it has already been noted, the starting point of this work was a sound defini-
tion of interval arithmetic at the mathematical level. Everybody agrees on the
meaning of [1, 2] + [3, 5] but unfortunately no more on the meaning of [1,+∞),
[4, 6]/[0, 1] or [2, 1]. Each of these intervals or expressions has a meaning in a
specific mathematical model: set theory, Kaucher arithmetic, cset theory, modal
arithmetic. . . but not in all of them, or not the same.

A first choice in the standard is thus to separate what has a common defini-
tion in every model, without controversy, from the rest. The standard is designed
to accommodate smoothly different models, called flavors in the standard, as
long as they coincide on common definitions. The standard can thus be seen as
a common part and as providing “hooks” where different mathematical models
can find a place.

3.1 Common intervals and operations

The common definitions and requirements are given in Clause 9 of the standard,
entitled “Operations and related items defined in all flavors”. But first, let us
give the definition of a common interval: “The common intervals are defined
to be the set IR of nonempty closed bounded real intervals.” [7, Clause 7.2].
Common arithmetic operations include, if x and y denote common intervals:
−x, x+y, x−y, xy, x/y if y does not contain 0, x2,

√
x if x ≥ 0, exponential,

logarithmic and trigonometric functions on their domain, and a few more.
Two other common operations (even if they sound less than common to you)

are cancellative addition and subtraction, that are the reciprocal of addition and
subtraction respectively. If x = [x, x̄] and y = [y, ȳ] are two common intervals
such that x̄− x ≥ ȳ − y, then cancelMinus(x,y) returns the unique interval z
such that y+z = x, with formula z = [x− y, x̄− ȳ]. The operation cancelPlus

is equivalent to cancelMinus(x,−y).
The set operations of intersection and convex hull of the union of two intervals

are also common operations, as well as some operations specific to intervals, such
as the left endpoint or the width of an interval.



3.2 Set-based flavor and other ones

Regarding flavors, it happens that, after many discussions regarding several
mathematical models, the only fully developed flavor, and thus the only fla-
vor included in the current version of the standard, is the flavor based on set
theory; it is called the set-based flavor.

The set-based flavor is described in details in the second part of the standard,
Clauses 10 to 14. For brevity, let us simply say that, on top of common intervals,
the empty set and unbounded intervals, such as [1,+∞) are allowed, but not
[2, 1]. Operations and functions on intervals are defined, in the set-based flavor,
as follows: if f is a function and x1, . . .xn are intervals, f(x1, . . .xn) is defined
as

f(x1, . . .xn) = Hull{f(x1, . . . xn) : xi ∈ xi for 1 ≤ i ≤ n and f(x1, . . . xn) is defined}

where Hull defines the convex hull of the given set, so as to return an interval.
This means that for instance

√
[−1, 4] = [0, 2] and

√
[−2,−1] = ∅. The first

example is not a common one as the input interval is not included in the domain
of the square root: the result has been computed by intersecting the input interval
with the domain of the square root, prior to computing the square root. The
second example is not a common one as the result is not a common interval.

In the same way as cancelMinus is the reverse operation of the subtrac-
tion, several reverse functions act on the usual functions; these reverse functions
are listed in the standard as mandatory functions. They are highly useful for
constraint solving methods. Furthermore, as it permits the use of unbounded
intervals, the set-based flavor defines the reverse of the multiplication. This
mulRevToPair operation is the key element, mentioned in the introduction, to
separate zeros in Newton’s method.

Other flavors could be added to the IEEE 1788-2015 standard. Flavors that
have been considered during the discussions of the working group are Kaucher
arithmetic [5], modal arithmetic [1, 2] or Rump’s proposal to handle the dis-
cretization of real intervals [19]. However, the effort has not been pursued until
the adoption of the corresponding flavor for the current version of the standard.
Anyone willing to propose a new flavor should submit it as a revision of the
standard.

4 Decorations

The main requirements for any flavor are, on the one hand, its compatibility with
the common part and, on the other hand, the presence of a version of the FTIA.
This ensures that the most precious feature of interval arithmetic is preserved.

The last precious feature mentioned in the introduction was that Brouwer
theorem is made effective in interval computations. However, an example in the
set-based flavor illustrates that a naive use can be misleading. Let us consider
the function

f : x 7→
√
x− 1.



In R, f has no fixed-point. The evaluation of f over the interval x = [−1, 4] in
the set-based flavor yields

f(x) = f([−1, 4]) =
√

[−1, 4]− 1 = [0, 2]− 1 = [−1, 1].

This new interval f(x) is enclosed in x. However Brouwer theorem does not
apply in this case, as f is not continuous on x and not even everywhere defined.

The dilemma faced by the working group was thus to choose between two
possibilities. The first one consists in returning an invalid value for f(x), similar
to computations with NaN values in the IEEE 754-2008 standard for floating-
point arithmetic, at the risk of getting this invalid value so often that inter-
val arithmetic would be impracticable. The second one consists in returning
f(x) = [−1, 1] in this example and in providing the user with a means to check
whether the computation encountered ”out-of-domain” values during its course.
The choice made in the IEEE 1788-2015 standard is the second one: each result
comes with a piece of information about the circumstances of its computation.

Furthermore, it has been decided to avoid any kind of global information and
to attach this piece of information to the result itself. In the IEEE 1788-2015
standard, this piece of information is called a decoration and an interval with a
decoration attached to it is a decorated interval.

This choice is the result of long and hot discussions within the working
group: issues about memory usage (a decoration uses extra memory, perturbs
padding. . . ), computation time (each operation must compute its result, but also
compute and propagate its decoration) as well as development time (operations
get more delicate to implement) were raised.

For common intervals, the only decoration is common, abbreviated as com.
For the set-based flavor, the set of decorations is the set {com, dac, def, trv,
ill}. Here is the meaning of each decoration (what follows is an excerpt of the
standard).

Value Short description Property Definition
com common pcom(f,x) x is a bounded, nonempty subset

of Dom(f); f is continuous at each
point of x; and the computed inter-
val f(x) is bounded;

dac defined & contin-
uous

pdac(f, x) x is a nonempty subset of Dom(f),
and the restriction of f to x is con-
tinuous;

def defined pdef(f,x) x is a nonempty subset of Dom(f);
trv trivial ptrv(f,x) always true (so gives no informa-

tion);
ill ill-formed pill(f,x) Not an Interval; formally Dom(f) =

∅.

These are listed according to the propagation order, which may also be thought
of as a quality-order of (f,x) pairs—decorations above trv are “good” and those
below are “bad”.



5 Level 2: Discretization Issues

It has been mentioned that the starting point for every decision in the standard
was the mathematical level, or Level 1. Going from Level 1 to Level 2 implies
to consider issues related to the use of a finite set of intervals, called an interval
type.

Let us assume that the result of some computation, at Level 1, is an interval
z. At Level 2, a result must be returned, that belongs to the given interval type
and that satisfies the FTIA, i.e., the result must be a representable interval that
encloses z. This result can be much larger than z, in case of an overflow: in
this case, a bounded interval (at Level 1) can be represented as an unbounded
interval at Level 2.

However, the standard prevents an implementation to be too lazy and to
return too large intervals. Indeed, it requires that the interval computed at Level
2 is of good quality, by specifying the accuracy of the results: for most operations,
the result at Level 2 must be the tightest possible, that is, it is the smallest, for
inclusion, interval of the given interval type that encloses z.

Another issue when going from Level 1 to Level 2 is that, at Level 2, every
operation must return a result. However, at Level 1, for some operations and
some particular inputs, there might be no valid result. When the Level 1 result
does not exist, the operation at Level 2 returns either a special value indicating
this event (e.g., NaN for most of the numeric functions) or a value considered
reasonable in practice. For instance, the mid() function at Level 2 in the set-
based flavor, returns the midpoint of ∅ as NaN, and of R as 0; this illustrates
flavor-defined values. Both values are undefined at Level 1. It was considered that
no numeric value of mid(∅) makes sense, but that some algorithms are simplified
by returning a default value 0 for mid(R).

The relation between a Level 1 operation and a version of it at Level 2, is
summarized as follows in the standard. The latter evaluates the Level 1 operation
on the Level 1 values denoted by its inputs. If (at those inputs) the operation has
no value, an exception is signaled, or some default value returned, or both, in a
flavor-defined way. Otherwise the returned value is converted to a Level 2 result
of an appropriate Level 2 datatype. If the result is of interval type, overflow may
occur in some flavors, causing an exception to be signaled.

Furthermore, implementors of IEEE-1788 compliant libraries raised the fol-
lowing issue: one of the most difficult part in the development of the libraries
happened to be the implementation of tight conversions, for instance when the
endpoints of an interval have different types. The standard accounts for this dif-
ficulty in the following way. An implementation may support an extended form
of literals, e.g., using number literals in the syntax of the host language of the
implementation. It may restrict the support of literals at Level 2, by relaxing con-
version accuracy of hard cases: rational number literals, long strings, etc. What
extensions and restrictions of this kind are permitted is flavor-defined.



6 Exact Dot Product

Another topic, related to Level 2 exclusively, is the recommendation that the
dot product of vectors with scalar, floating-point endpoints, is evaluated as if
in exact arithmetic – hence the name of Exact Dot Product – up to the final
rounding. In particular, no intermediate underflow or overflow is possible. This
recommendation is based on the argument that interval arithmetic offers the
possibility to get high-quality numerical results. Including the exact dot product
in the standard augments the numerical quality of computed results.

7 Libraries Implementing the Standard

Up to the author’s knowledge, only two libraries are compliant with the IEEE
1788-2015 standard. One of them, libieee1788 [14], has been developed by
Marco Nehmeier. It is a C++ library that offers every possibility described in
the standard. In particular, intervals can be given to constructors with almost
any type for each of the endpoints. The other, a bit earlier, library is Octave
Interval [4], developed by Oliver Heimlich. As its name suggests, it is called
through Gnu Octave, which makes it very easy to use and thus allows to test
and check ideas and algorithms very rapidly. To keep the development simple,
the only numerical type allowed for the endpoints in particular is the binary64

(double-precision) format for floating-point numbers defined in [6].
Unfortunately, neither author is still in academy and it is not clear how these

libraries will be maintained over time.

8 Conclusion

This succinct summary of the IEEE 1788-2015 standard aims at giving a glimpse
of the discussions that led to the development of this standard. The focus was
on the less-than-obvious choices that have been made. As implementations, and
even more crucially applications, are still in their infancy, no definitive conclusion
can be drawn regarding the validity of these choices. The author hopes that this
standard will reveal useful for a large audience, through the already available
libraries, and wishes that these libraries will find a sustainable support.

Acknowledgments

The author would like to thank Alessandro Abate and Sylvie Boldo for their kind
invitation. The author would also like to thank all participants to the working
group that developed the IEEE 1788-2015 standard for providing the material
for this standard, for their differing points of view that questioned every proposal
and that eventually contributed to create a solid standard, and for their never-
fading enthusiasm. Last but not least, special thanks go to R. B. Kearfott [8]
and J. Pryce [16] for the collective work and for their inspiring papers.



References

1. A. Goldsztejn. Modal Intervals Revisited, Part 1: A Generalized Interval Natural
Extension. Reliable Computing, 16:130–183, 2012.

2. A. Goldsztejn. Modal Intervals Revisited, Part 2: A Generalized Interval Mean
Value Extension. Reliable Computing, 16:184–209, 2012.

3. E.R. Hansen and G.W. Walster. Global optimization using interval analysis (2nd
ed.). Marcel Dekker, 2003.

4. O. Heimlich. Interval arithmetic in GNU Octave. In SWIM 2016: Summer Workshop
on Interval Methods, 2016.

5. E. Kaucher. Interval Analysis in the Extended Interval Space IR. In Fundamentals
of Numerical Computation (Computer-Oriented Numerical Analysis), pages 33–49.
Springer, 1980.

6. IEEE: Institute of Electrical and Electronic Engineers. 754-2008 - IEEE Standard
for Floating-Point Arithmetic. IEEE Computer Society, 2008.

7. IEEE: Institute of Electrical and Electronic Engineers. 1788-2015 - IEEE Standard
for Interval Arithmetic. IEEE Computer Society, New York, June 2015.

8. R. B. Kearfott. An overview of the upcoming IEEE P-1788 working group document:
Standard for interval arithmetic. In IFSA/NAFIPS, pages 460–465, 2013.

9. U.W. Kulisch. Computer Arithmetic and Validity: Theory, Implementation, and
Applications. de Gruyter, Berlin, 2008.

10. M. Lerch, G. Tischler, J. Wolff von Gudenberg, W. Hofschuster, and W. Krämer.
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