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An Optical Tracking System based on Hybrid Stereo/Single-View
Registration and Controlled Cameras

Guillaume Cortes1, Eric Marchand2, Jérôme Ardouin and Anatole Lécuyer3

Abstract— Optical tracking is widely used in robotics ap-
plications such as unmanned aerial vehicle (UAV) localization.
Unfortunately, such systems require many cameras and are,
consequently, expensive. In this paper, we propose an approach
to considerably increase the optical tracking volume without
adding cameras. First, when the target becomes no longer
visible by at least two cameras we propose a single-view
tracking mode which requires only one camera. Furthermore,
we propose to rely on controlled cameras able to track the
UAV all around the volume to provide 6DoF tracking data
through multi-view registration. This is achieved by using a
visual servoing scheme. The two methods can be combined in
order to maximize the tracking volume. We propose a proof-
of-concept of such an optical tracking system based on two
consumer-grade cameras and a pan-tilt actuator and we used
this approach on UAV localization.

I. INTRODUCTION

In recent years, research interest in robot localization has
grown rapidly. Tracking systems are required to provide
information to plan a trajectory or to assist human operations.
This is for example the case, among many others, for medical
robotics or unmanned aerial vehicles (UAV) localization.
Such tracking systems could be based on ultrasound, mag-
netic, inertial or optical sensors. Nowadays it is usual to rely
on optical tracking (such as Optotrak, Vicon, Optitrack, etc)
for surgery [1], virtual reality [2] or UAV localization [3]. In
this paper we propose a method that intends to extend the
tracking volume of optical tracking systems using cameras
mounted on robot heads. As a proof-of-concept, we will
consider an UAV localization application.

Among these devices, outdoor UAV localization is com-
monly performed with on-board inertial and/or GPS local-
ization that can be coupled with vision-based techniques
[4] [5] [6]. They provide monocular-based techniques for
motion estimation such as SLAM technique or optical-flow
estimation. Those visual estimations are then merged with
GPS or IMU data with a Kalman filter. These techniques are
mainly used for outdoor UAV flying. A few low-cost tracking
systems are available for indoor UAV localization where
GPS data may not be available. For indoor localization [7]
proposed an ultrasound technique that merges the data with
IMU measurement in structured environment. Nevertheless
ultrasound localization can introduce delay and the echos
can disrupt the signal. To provide a more faithful signal [8]
proposed a laser-based localization but due to the limited
laser range and field of view the UAV could sometimes be
lost. To overcome data loss from the previous approaches
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and from monocular vision, [3] introduced a stereo vision
localization. However this technique restricts the tracking
volume to the overlapping area of both camera views. Many
industrial actors like Vicon use additional optical sensors
to cover a larger multi-view volume (volume covered by
at least two cameras). Indeed Vicon or Optitrack tracking
systems are built with numerous sensors to provide a motion
capture environment for UAV localization at an expensive
price. Pan-tilt cameras were introduced by [9] in a motion
capture system to increase the volume covered by multi-
view localization while limiting the number of sensors. The
system performs 3D reconstruction and feature-based pose
estimation. However this study does not describe any camera
control algorithms. Furthermore, the number of considered
cameras may prevent the use of such approach for low-cost
tracking systems.

In this paper, which extends our previous work [10], we
present an approach which intends to maximize the tracking
volume of optical tracking systems. It could also overcome
some occlusion problems by relaxing the current constraints
on camera positioning and multi-view requirements. As such,
since adding cameras can be expensive and is not always
possible (due to the lack of space) we propose not to use
additional ones.

Fig. 1: The optical tracking prototype based on our approach.

To achieve this goal, the contributions of this paper are:
• When the tracked target is no longer visible by at least

two cameras, we occasionally enable switching to a
single-view tracking mode using 2D-3D registration al-
gorithms (Figure 2b). The localization accuracy remains
precise enough although more noisy.

• The proposition of a control scheme which allows the
camera to remain centered on the target (Figure 2c). It
allows to track the target through a larger volume. Thus,
the multi-view registration can be achieved as much as
possible. This is carried out by a visual servoing process
with cameras mounted on a pan-tilt head.



Our approach is then based on two complementary methods
(Figure 2d) which allow an efficient tracking process with a
minimal number of cameras.

II. HYBRID STEREO/SINGLE-VIEW TRACKING

Our goal is to propose an approach that intends to maxi-
mize the optical tracking volume using a minimal number of
cameras. This approach is composed of two methods that can
be combined. In the following we consider a state-of-the-art
stereo optical system composed of two cameras. Nevertheless
everything can be transposed to multi-view systems [11]
composed of N sensors. In this section we consider stationary
cameras and we introduce our first method based on single-
view tracking to increase the global tracking volume.

In this method the tracking can be performed with two
techniques depending on if the stereo tracking is available.
If stereo is available then the localization is performed with
a registration between 3D points and a 3D model (3D-3D
registration) otherwise it is performed with a registration
between 2D points and a 3D model (2D-3D registration). As
in many optical tracking devices, the system requires an off-
line calibration process to determine the internal parameters
of the cameras and their relative positions. Then, the on-line
real-time tracking is performed.

Single-view tracking is generally constrained to use an
external motion capture system to define the marker structure
and the reference frame [12]. By using a stereo mode we are
relieved of using external systems. The stereo mode enables
reconstructing the targets’ points and defining their structure.
Moreover the reference frame Fw is set with a specific target
that defines its y and x-axis.

A. Off-line system calibration
The calibration of the system is performed in two steps:
First, each camera is calibrated to determine its intrinsic

parameters (focal length, principal point and distortion coef-
ficients). Intrinsic calibration of the cameras is achieved by
using a calibration chessboard and estimating the parameters
with an algorithm based on [13].

The second step of the calibration process determines the
essential matrices, c′Ec, relating each pair of cameras (c,c′).
The essential matrices can be decomposed to recover the
pose of camera c in camera c’ frame, c′Mc as follows:

c′Ec =
c′Rc[

c′ tc]× with c′Mc =

(
c′Rc

c′ tc
01×3 1

)
(1)

where [c
′ tc]× is the skew-symmetric matrix of vector c′ tc and

c′Rc is a rotation matrix. Then by determining a reference
frame Fw, the pose wMc of each camera in the reference
frame is computed. The essential matrix estimation is based
on the normalized 8-points algorithm with RANSAC [11].

B. On-line real-time stereo tracking
The on-line real-time stereo tracking performs the local-

ization of a target in the reference frame whenever the target
is visible by both cameras. It first requires a 2D feature
extraction to determine the position of the markers in the
different images. Then the 2D features are correlated and
triangulated to perform a 3D-3D registration.

1) 2D Feature extraction: The feature extraction deter-
mines the position of the bright markers of the target on
the different camera images. A recursive algorithm is used
to find the different sets of connected bright pixels before
computing the barycenter of each set that defines the blob’s
positions. Once the blobs’ positions are retrieved, they are
corrected by taking into account the radial and tangential
lens distortions.

2) 2D Feature correlation: The points from one image
are associated with their corresponding points in the other
images. This is possible by using the epipolar constraint that
states that two corresponding image points xc and xc′ related
by cEc′ should fulfill x>c cEc′xc′ = 0 where cEc′ is the essential
matrix computed through extrinsic calibration. This equation
constraints the point xc′ to lie on the line directed by the
vector Lc = x>c cEc′ . Thus Lc is the epipolar line of xc on the
second image.

3) Triangulation: The triangulation process allows to
recover a 3D point from its projections into several image
planes. The computation of the 3D point depends on the rel-
ative position between the cameras that may vary when using
controlled cameras. In practice, triangulation algorithms such
as the mid-point or DLT [14] are adapted to determine the
optimal 3D point.

4) Registration: The final step of real-time stereo tracking
recovers the pose (position and orientation) of the target
in the reference frame (e.g. [15]). If the target is visible
from several views then the registration matches a 3D point
cloud to a 3D model. First the pose cMo of the target in the
camera frame is estimated. This is achieved by minimizing
the error between the 3D reconstructed points cXi (in the
camera frame) and their corresponding 3D points oXi (in the
object frame) transferred in the camera frame through cMo.
By denoting q= (cto,θu)> a minimal representation of cMo,
the problem is reformulated:

q̂ = argminq

N

∑
i=1

(cXi−c Mo
oXi)

2. (2)

The problem is solved by initializing the pose, cMo, with a
linear solution, based on [16], and refining it with a non-
linear Gauss-Newton estimation. The algorithm presented
above assumes that the matching between the cXi and the
oXi is known as in [9].

5) Transformation to reference frame: Once cMo is es-
timated, the pose wMo of the target in the reference frame
can be recovered with wMo = wMc

cMo. wMc defines the
pose of the camera in the reference frame and will vary with
the controlled cameras. An additional calibration process will
then be required and will be explained in section III together
with camera control algorithms.

6) Filtering: An optional low-pass filtering process can
be performed at the end of the registration. Filtering will
help reduce noise and prevent drop outs but may add a little
latency. As an example we have implemented a predictive
Kalman filter [17] with constant acceleration state and posi-
tion measurements.
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Fig. 2: Comparison between (a) stereo optical tracking systems, (b) our single-view tracking method, (c) our controlled
camera method (illustrated here with one mobile camera) and (d) both methods.

C. Single-view tracking mode
The single-view tracking mode is used to localize the

target when it is visible by only one camera. Thus, the
tracking is still carried out when the target is out of the
field of view of almost all the cameras. Since the target is
visible by only one camera, steps II-B.2 and II-B.3 can not be
processed. Thus the localization is directly performed from
the 2D extracted features (section II-B.1).

The transformation cMo between the 2D projected points
xi (in the image frame) and their corresponding 3D target
points oXi (in the target frame) is estimated:

q̂ = argminq

N

∑
i=1

(xi−ΠΠΠ
cMo

oXi)
2 (3)

where ΠΠΠ is the projection matrix and q is a minimal
representation of cMo. The problem is solved by initializing
the pose, cMo, with a linear solution and refining with a
non-linear Gauss-Newton estimation [15].

Equation (3) provides several solutions when three 3D
points are considered. Thus we have embedded at least four
non-coplanar markers on the considered target (Figure 1)
so that the 2D-3D registration gives one solution. The 2D-
3D registration algorithm presented above assumes that the
matching between the xi and the oXi is known. In our
implementation of the approach, the matching is carried out
using brute force. Once cMo is estimated, steps II-B.5 and
II-B.6 can be performed as for stereo tracking.

III. INCREASING OPTICAL TRACKING VOLUME WITH
CONTROLLED CAMERAS

Our second method enables to control the cameras to keep
the target (constellation) in the cameras field of view (Figure
2c). Even if only one camera can move, the stereo volume
increases and the single-view tracking volume becomes even
larger (Figure 2d).

A visual servoing process controls the camera so that the
target projection is close to the image center. The motion of
the cameras is automated by mounting them on robots. Using
a camera mounted on a robot requires an off-line calibration
process to determine the position of the camera frame, Fc,
in the robot’s end-effector frame, Fe, which is required to
recover the position of the camera in the reference frame,
Fw, and perform pose estimation.

A. Off-line controlled camera calibration
The controlled camera calibration process recovers the

pose eMc of the camera in the end-effector frame of the

robot [18] which is constant. Indeed, in practice, when fixing
a camera to a robot one has to know eMc which is needed
to compute, wMc(t), the pose of the camera in the reference
frame at each instant t. wMc is required to compute the pose
of the constellation in the reference frame and to determine
the essential matrix for stereo reconstruction. Indeed for a
pair of cameras c and c’, the essential matrix, c′Ec(t), can
be deduced from the transformation c′Mc(t) (equation (1))
which is computed as:

c′Mc(t) =
c′Mw

wMc(0)
c(0)Me(0)

e(0)Me(t)
e(t)Mc(t). (4)

Matrix c′Mw is known by the previously made extrinsic
calibration. Same goes for wMc(0) since the extrinsic cali-
bration is made at t = 0. Matrix e(0)Me(t) which represents
the transformation of the end-effector frame at instant t in
the end-effector frame at instant 0 varies but is known by
odometry measurements. Thus the only unknown in equation
(4) is eMc =

c(0)Me(0) =
e(t)Mc(t) (see Figure 3).

Fig. 3: Cameras configuration with two cameras and one
pan-tilt head.

To obtain eMc we used a stationary 4 points target (or a
calibration chessboard) and estimated its single-view pose
for different positions of the robot’s end-effector frame.
Figure 4 illustrate the calibration setup for two positions of
the the robot’s end-effector frame e1 and e2 that lead to two
positions of the camera c1 and c2. Since the target frame,
Fo, and the robot reference frame, F f , are fixed f Mo is
constant and given by:

f Mo =
f Me1

eMc
c1Mo =

f Me2
eMc

c2Mo (5)

where for each position i the transformation f Mei is given by
the robot configuration and the transformation ciMo can be
estimated through single-view registration (PnP algorithm).



Fig. 4: Frame configuration for controlled camera calibration
with 2 camera positions.

From equation (5) one can separate the rotation and
translation parts of the transformations [18] to obtain two
solvable equations:

1. AR
eRc =

eRcBR and 2. At
etc =

eRcbt (6)

where AR, BR, At and bt are computed from the measure-
ments and are respectively two rotation matrices, a matrix
and a column vector.

Equation (6.2) can be solved for etc with a least square
linear method once the solution eRc of equation (6.1) is
found [19]. The solution involves converting the system to a
linear least square system by using a different representation
of the rotations. For a rotation R of angle θ and unit axis
u, the vector pR = 2sin(θ/2)u is defined and equation (6.1)
can be rewritten as:

Skew(pA +pB)x = pB−pA. (7)

However Skew(pA+pB) has rank 2 so at least 3 positions of
the camera are required to solve the system. Finally the angle
θ and the unit axis u can be extracted from x to recover eRc
[18].

B. Controlling camera displacements: visual servoing
To achieve the control of the camera, we consider a

visual servoing scheme [20]. The goal of visual servoing
is to control the dynamic of a system by using visual
information provided by one camera. The goal is to regulate
an error defined in the image space to zero. This error, to
be minimized, is based on visual features that correspond to
geometric features. Here we consider the projection of the
center of gravity of the constellation x= (x,y)> that we want
to see in the center of the image x∗ = (0,0)> (coordinates
are expressed in normalized coordinates taking account of
the camera calibration parameters).

Considering the actual pose of the camera r the problem
can therefore be written as an optimization process:

r̂ = argmin
r
((x(r)−x∗)>(x(r)−x∗)) (8)

where r̂ is the pose reached after the optimization process
(servoing process). This visual servoing task is achieved by
iteratively applying a velocity to the camera. This requires
the knowledge of the interaction matrix Lx of x(r) that links
the variation of ẋ to the camera velocity and which is defined
as:

ẋ(r) = Lxv with Lx =

(
xy −(1+ x2)

1+ y2 −xy

)
(9)

where v is the camera velocity (expressed in the camera
frame). Lx is given is given for the specific case of a pan-tilt
camera that will be considered in the paper.

This equation leads to the expression of the velocity that
needs to be applied to the robot. The control law is classically
given by:

v =−λL+
s (x(r)−x∗) (10)

where λ is a positive scalar and L+
x is the pseudo-inverse of

the interaction matrix. To compute, as usual, the velocity in
the joint space of the robot, the control law is given by [20],
[21]:

q̇ =−λJ+x (x(r)−x∗) with Jx = Lx
cVe

eJ(q) (11)

where q̇ is the robot joint velocity and eJ(q) is the classical
robot Jacobian expressed in the end effector frame (this
Jacobian depends of the considered system). cVe is the
spatial motion transform matrix [20] from the camera frame
to the end-effector frame.

C. Registration

When using controlled cameras, the registration is carried
out either with stereo or single-view registration algorithms
after updating the pose wMc(t) of the camera in the reference
frame at instant t through equation (4). At instant t = 0 the
system was calibrated so every parameter of the system is
known at position c(0) of the camera. If stereo tracking is
available, once wMc(t) is obtained the essential matrix is
computed with equations (4) and (1) and the pose registration
is performed as in Section II-B. Otherwise the registration is
performed as in Section II-C.

IV. RESULTS AND PERFORMANCE

We designed a proof-of-concept of our method. Some tests
and comparisons were performed on the designed system. In
the following we present our prototype and the different tests
that were carried out.

A. Proof-of-concept

As presented in our previous work [10], we have tested
our approach on a wall-sized virtual reality display. In this
paper we propose a proof-of-concept of our approach for
UAV localization in indoor environments (see accompanying
video).

The tracking system (Figure 1) is composed of two Sony
PSEye cameras providing 320x240 images at a 150Hz re-
fresh rate. The cameras were modified with short focal length
lenses (2.1mm) providing a final field-of-view of 87◦ by 70◦.
An infrared band-pass filter was added to each lens. One
camera is mounted on a TracLabs Biclops pan-tilt robot. A
Parrot AR.Drone 2.0 was tracked. Four non-coplanar active
infrared LEDs were rigidly attached to the UAV (Figure 1).
As active markers were used, the cameras did not have to be
equipped with infrared LED rings. A diffuser was added to
each LED to provide isotropic light diffusion.



(a) State-of-the-art (b) Single-view tracking (c) Controlled camera (d) Combination

Fig. 5: Tracking volume of our methods compared to state of the art stereo optical tracking (our system with two stationary
cameras). Green points were computed with stereo tracking and red one with single-view tracking. The pyramids illustrate
the fields of view of the two cameras used by the system (red: a stationary camera, blue: a controlled camera).

B. Volume gain

The optical tracking volume of our approach was com-
pared with a state-of-the-art stereo tracking (our system with
two stationary cameras and without single-view tracking).
To visualize the tracking volume of the different solutions
tracking data was computed through the entire volume. First
it was computed for state-of-the-art stereo tracking with two
cameras (Figure 5a) then using single-view tracking. Thus
the single-view tracking was active when the stereo was
not available. Several poses were computed with single-view
tracking at both sides of the stereo space. In our case (Figure
5b) there were almost as many stereo registrations as single-
view registrations so we estimated a volume gain of around
100%. A third test was to activate the controlled camera
mounted on the pan-tilt head (blue cone in Figure 5) and
compute stereo tracking data as depicted in Figure 5c. Finally
the two methods were merged and, by using the controlled
camera and the single-view tracking, a far larger tracking
volume was obtained (Figure 5d).

C. Comparison with Vicon’s optical tracking

Our tracking system was installed in a room also equipped
with a Vicon optical tracking system composed of 8 Bonita
10 (1024×1024 at 250Hz) and 4 Vero v1.3 (1280×1024
at 250Hz) cameras. With such installation we were able to
compare the performances of our approach with the Vicon’s
performances. Nevertheless we did not try to overtake Vicon.
Our goal was to provide a larger tracking volume at low cost.
In the following a qualitative comparison between the two
systems is introduced.

1) Pose estimation: The pose of a flying UAV was
estimated, at each instant, with our system and with the
Vicon tracker. Figure 6a illustrates the variations for the three
components of vector wto while Figure 6b illustrates the three
components of the Rodrigues representation of wRo. The
grey zones define the moments when our tracking was per-
formed using single-view localization. At these instants the
UAV was visible by only one of the cameras in our system.
Since the calibration was made separately and the systems
were not synchronized the error between both measurements

is not of interest and a qualitative comparison of the pose is
proposed.

2) Jitter: Jitter was measured by leaving the UAV at
a stationary position and recording its pose during 7000
measurements without filtering process. The UAV was placed
at around 2.5m of the cameras. Figure 7 illustrates the
spatial distribution of the reconstructed positions. With Vicon
measurements the 95% confidence radius of the distribution
lies at 0.18mm. For our stereo tracking it lies at 0.86mm. The
measurements with the single-view tracking are more noisy
since the 95% confidence radius lies at 10.2mm. Nevertheless
this noise is reduced when getting closer to the image frame
of the camera. Some tests were carried out at 60cm of the
camera and the 95% confidence radius lied at 1.4mm. These
uncertainties are mainly oriented along the depth axis of the
camera frame and are affected by the spatial resolution in
the image.

D. Discussion

Our approach is based on two complementary methods
which were implemented, tested and compared. Using con-
trolled cameras together with single-view registration en-
abled to considerably increase the tracking volume up to
100% and more. Considering the Vicon as ground truth,
our system shows good performances for such a low-cost
device. Nevertheless the calibration of both systems was
made independently and they were not synchronized. Thus
a quantitative comparison was unfortunately not possible.
Since the Vicon tracker was composed of 12 high-resolution
cameras (1MP) to cover all of the required volume it could be
interesting to compare our performances with the ones of a
Vicon tracker composed of at most 3 cameras. Regarding our
proof-of-concept, several improvements could be obtained
on the hardware components. We used wide-angle lenses
to maximize the visibility but such lenses induce a loss
in resolution that can degrade the feature extraction and
increase jitter. It could be interesting to test our approach
with standard lenses. Higher quality sensors (e.g. high-
resolution cameras) and/or hardware synchronization could
also be used to reduce jitter and increase tracking stability
and accuracy, but at a higher cost.



(a) Position (b) Orientation

Fig. 6: Components of the estimated pose of the tracked UAV at each instant with Vicon and with our system.

(a) Vicon (b) Our stereo tracking (c) Our single-view tracking (d) Close-range single-view

Fig. 7: Positional jitter comparison between our system and the Vicon’s.

V. CONCLUSION

We proposed two complementary methods to maximize
the optical tracking volume with a limited number of cameras
and applied it to indoor UAV localization. First we proposed
to rely on a single-view registration when the multi-view
registration is not available. The second method allows to
control the cameras to track the target through the entire
volume. Controlling the cameras brings more liberty to
position them and both methods help providing a larger
tracking volume (up to 100%) without adding expensive
sensors.
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