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ABSTRACT
Caching content at the edge of mobile networks is considered as a

promising way to deal with the data tsunami. In addition to caching

at �xed base stations or user devices, it has been recently proposed

that an architecture with public or private transportation acting as

mobile relays and caches might be a promising middle ground. In

previous work, we have assumed users are streaming video �les

and have analyzed how many replicas of each video �le to cache

in such a vehicular �eet working towards minimizing the amount

of bits per �le downloaded from (expensive) infrastructure links.

However, this work has been assuming that a vehicle will store

the entire content, or none of it. In practice, later chunks have an

inherent “delay tolerance” as there is more time to �nd them before

they must be played out. What is more, numerous studies as well as

everyday experience suggest that most �les (e.g., YouTube) are not

entirely watched. �is makes the previous policies suboptimal, as

fewer (or no) replicas could be allocated to late chunks of a �le and

more to the most popular chunks. In this work, we formulate an

optimization problem to compute the optimal allocation per-chunk,
to minimize the load on the cellular infrastructure, and we show

that signi�cant performance gains can be achieved compared to

per-content allocation policies.

1 INTRODUCTION
�e recent di�usion of handheld devices is driving an exponential

increase of the mobile tra�c demand which is already overloading

the cellular infrastructure [2]. Mobile network operators are trying

to keep up by deploying small cells in urban environments and by

edge caching (at femtocells, Wi-Fi access points or even user equip-

ments) [6, 13]. Recently, both industry [1] and academia [17] have

proposed to use vehicles acting as mobile relays to store replicas

of popular content. �anks to their intrinsic mobility, vehicles can

increase the “e�ective” storage capacity a user has access to (since a

user can meet a larger number of vehicles, compared to �xed small

cells, in the same time interval [17]) and also have favorable char-

acteristics in terms of CAPEX/OPEX compared to �xed outdoors

small cells.

In our previous studies, we have considered the problem of

downloading whole content [17] or streaming videos [18] from

vehicles acting as mobile caches (vehicular cloud). Intuitively, the
rough tradeo� is the following: the higher the number of vehicles

caching a content, the higher the chance that this content (or chunk)

will be downloaded from such a vehicle “on time” (rather than from

expensive macro-cell links); however, the marginal bene�t of each

extra replica is decreasing, creating a non-trivial tradeo� between

content popularity and caching policy. In our la�er work [18], we

have further assumed that content is streamed chunk-by-chunk, and

if a chunk (e.g., corresponding to the 30th minute of a video) can be

downloaded from an encountered vehicle before it must be played

(i.e., up to 30 minutes a�er the user starts watching the content)

this is data tra�c that is o�oaded from the main infrastructure

without any visible impact on the user.
However, in that work we have made the simplifying assumption

that either all chunks or no chunks of a content must be cached in

a vehicle. Said otherwise, every chunk of a content must have the

same number of replicas. Yet, as evident by the above example, early

chunks have a smaller chance to be downloaded from a vehicle

than later chunks, due to the larger inherent delay tolerance of

the la�er. At the same time, common experience as well as recent

measurements suggest that a lot of video content (e.g., YouTube

�les) are only partially watched as users o�en abandon the playout

of a video before it ends. �ese two opposing “forces” call for a per-

chunk optimization policy: (i) the former suggests that it is perhaps

wasteful to cache too many of the early chunks and give instead

more space to later ones that have a higher chance to be o�oaded;

(ii) the la�er suggests that early chunks have di�erent popularity

than later chunks and thus perhaps deservemore storage space. Our

goal in this paper is to address this tradeo� and propose per-chunk

cache allocation policies that outperform existing ones. To our best

knowledge, this is the �rst work to consider per-chunk caching in

such a vehicular context. We make the following contributions:

• Modelling. We model the video streaming of content
1
when

chunks can be opportunistically downloaded from nearby ve-

hicles. In Section 2 we state the main assumptions, and we

formulate an optimization problem to compute an allocation

(per-chunk) maximizing the expected amount of o�oaded tra�c

as a function of network characteristics (e.g., vehicle density,

chunk popularity).

• Optimization. In Section 3, based on this model, we propose

two appropriate approximations according to the download rate

from vehicles. We show that these problems are NP-hard, and

we solve a related continuous relaxation.

• Performance analysis. In Section 4 we validate our theoretical re-

sults using real traces for content popularity and vehicle mobility,

1
Note that this scenario does not include live content streaming which is not usually

amenable to caching, and is o�en optimized using multicast techniques.



and show that our system can o�oad up to 45% of streamed data

in realistic scenarios even with modest technology penetration,

which is more than 10% larger than traditional content caching

techniques.

Finally, we conclude our paper in Section 5 with a summary and

future work.

2 SYSTEM MODEL
We introduce here the system model and related assumptions.

2.1 Video Streaming Model
We consider a network with three types of nodes:

• Infrastructure nodes (I). Base stations or macro-cells. �ey pro-

vide full coverage and can serve any content request.

• Helper nodes (H ). Vehicles such as cars, buses, taxis, trucks, etc.,

where |H | = h. �ese are used to store popular content and to

serve user requests at low cost through a direct vehicle to mobile

node link.

• End user nodes (U ). Mobile devices such as smartphones, tablets

or netbooks. �ese nodes request (non-live) video content for

streaming toH and I nodes.

Each video consists of a number of small chunks that are down-

loaded into aU node’s playout bu�er in order and consumed for

playout as follows:

• Helper download. When a U node is in range of an H node

that stores the requested chunks, the next chunks not yet in

the playout bu�er are downloaded at low cost. �e number of

chunks that can be downloaded during a contact depends on the

download rate, the contact duration, etc.

• Infrastructure download. When a U node is not in range of

an H node that stores the requested content and its playout

bu�er is (almost) empty, new chunks are downloaded from the

infrastructure at a mean rate rI until another H node storing

the content is encountered. �e communication betweenU and

I nodes has a high cost in terms of energy consumption and

bandwidth of the backhaul links [4].

• Playout. Chunks in the playout bu�er are consumed at a mean

viewing playout rate rP . For simplicity, we assume that each

chunk corresponds to a �xed video duration of τ seconds, and

has the same size in terms of bytes
2
.

2.2 Main Assumptions
A.1 - Catalogue. Let K be the set of all possible contents that

users might request (also de�ned as “catalogue”) where |K | = k . A
content i ∈ K is divided into s chunks of equal size. Each chunk is

characterized by a popularity value ϕi j measured as the expected

number of requests within a seeding time window from all users

and all cells. Similar to a number of works on edge caching [5, 13],

we assume this time window to be a system parameter chosen

2
�is is in general not the case as the actual size depends on the compression factor,

type of frame, etc. However, we are interested �rst in an average case analysis and

such di�erences cancel themselves out when considering enough chunks.

Table 1: Notation used in the paper.

CONTROL VARIABLES

xi Number of replicas stored for content i

CONTENT

k Number of content in the catalogue

ϕi j Request rate for chunk j of content i

si Number of chunks of content i

c Bu�er size per vehicle

MOBILITY

λ Mean inter-meeting rate between U and H nodes

h Number of vehicles

CHUNK DOWNLOAD

rH Mean download rate from H nodes

rI Mean download rate from I nodes (equal to rP )

by the cellular operator. Every time window, the cellular opera-

tor refreshes its caches installed in vehicles according to the new

estimated popularity
3
.

A.2 - Mobility model. We assume that the inter-meeting times

Ti j between a user requesting chunk j of content i ∈ K and any
vehicle storing such a chunk are independent and identically dis-

tributed random variables characterized by an exponential distribu-

tion
4
with mean rate λ. Exponential inter-meeting times have been

largely used in literature and considered as a good approximation,

especially in the tail of the distribution [3, 8].

A.3 - Cache model. Let x
(w )
i j ∈ {0, 1}, i ∈ K , j ∈ {0, . . . , s},

w ∈ H be an indicator variable denoting if helper nodew stores

chunk j of content i . Let further xi denote the number ofH nodes

storing content i:

xi j =
∑
w ∈H

x
(w )
i j .

�e matrix x will be the control variable for our optimal cache

allocation problem.

A.4 - Content download rate. We assume rI = rP + ϵ (ϵ > 0

small) in order to limit the access to the cellular infrastructure to

the minimum required to ensure smooth playout (for simplicity,

we assume ϵ equal to 0). We also assume that the download from

the helper nodes is faster than rI , i.e., rH ≥ rI > rP . �ese are rea-

sonable assumptions due to the reduced communication distance:

scenarios where rI (and/or rH ) are lower than the playout rate

require initial bu�ering which is known to signi�cantly degrade

QoE [7], and are orthogonal issues to the problem addressed in this

paper.

A.5 - Data o�loading. A request for content i will download a

number of chunks fromH nodes. �is number is a random variable

that depends on xi j as well as random mobility variables (inter-

contact times and contact durations).

�e notation used in the paper is summarized in Table 1.

3
Several studies have con�rmed that simple statistical models (e.g., ARMA models)

along with content type characteristics can help to have good estimation of the request

rate, at least in the immediate future [9, 16].

4
In case of heterogeneous mobility, λ could be seen as the average among the various

λi j , which works well as a �rst order approximation [15].
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2.3 Problem formulation
Given the above assumptions, we can propose a policy where: (i)

the user’s video is never interrupted provided the infrastructure

can guarantee at least the playout rate (if that is not the case, then

this is an issue of the infrastructure); (ii) while the user is watching

the video, future parts of it are actually downloaded from locally

encountered caches (in principle pre-fetched) thus o�oading some

tra�c from the infrastructure. As long as the playout bu�er re-

mains non-empty, I nodes never need to be accessed. And when

they do, we ensure that the minimum necessary amount of bytes is

downloaded from the infrastructure (rI = rP + ϵ). �e goal of the

paper is to �nd the allocation that minimizes the number chunks

downloaded from the cellular infrastructure needed to ensure unin-

terrupted streaming. �us, we formulate the following optimization

problem according to the previous assumptions:

Problem 1. �e solution to the following optimization problem
maximizes the expected number of chunks o�oaded through the
vehicular cloud:

maximize
x∈X k×s

k∑
i=1

s∑
j=1

ϕi j ·

∫ (j−1) ·τ

0

P[Ai j | x, t] dt , (1)

subject to
k∑
i=1

s∑
j=1

x
(w )
i j ≤ c, ∀w ∈ H , (2)

where Ai j is the event that chunk j of content i is o�oaded through
the vehicular cloud, P[Ai j | x, t] is the probability of downloading
chunk j of video i at time t , given caching allocation x, and X , {a ∈
N | 0 ≤ a ≤ h} is the feasible region for the control variable x.

�e objective function counts the number of chunks downloaded

from the cellular infrastructure in a seeding time window for the

entire catalogue. For each content, this is equivalent to the content

popularity times the probability to download a chunk before it must

be played out. Since each chunk has a duration of τ seconds this

time is equal to (j−1) ·τ (for the j-th chunk of a content). �e number

of replicas is bounded by the number of vehicles participating in the

vehicular cloud. What is more, each vehicle has a storage constraint

and cannot store more than c bytes (see Eq. (2)).

3 ANALYTICAL MODEL
Problem (1) is hard to solve for a number of reasons: it is basically

a discrete optimization problem, and the probability to download a

given chunk depends on the probability to download past chunks

and is hard to derive analytically, in general. Instead, we propose

two approximate ways to solve the problem, namely for in�nite

(Section 3.1) and limited contact bandwidth (Section 3.2) (between

users and vehicles).

3.1 In�nite bandwidth
We introduce the following de�nition:

De�nition 3.1 (In�nite bandwidth). Assume that a user is stream-

ing content i . If a vehicle storing a subset of chunks for content i
comes in range to the user, in the in�nite bandwidth scenario we

assume the user is able to download all these chunks.

Note, we do not require that this is true in a real setup. We simply

say that our policy will assume so, for simplicity (and thus might not

always be optimal). �is assumption becomes more accurate if for

example there are many vehicles and many contents to ensure each

one stores only few chunks per content
5
, and of course depends

also on the content size and download rate betweenH and I nodes.

According to De�nition 3.1, Problem (1) can be rewri�en as follows:

Problem 2. Consider the in�nite bandwidth scenario. �e solution
to the following optimization problemmaximizes the expected number
of bytes o�oaded through the vehicular cloud:

maximize
x∈X k×s

k∑
i=1

s∑
j=1

ϕi j · (1 − e
−λ ·(j−1) ·τ ·xi j ),

subject to
k∑
i=1

s∑
j=1

x
(w )
i j ≤ c, ∀w ∈ H . (3)

Proof. When there is in�nite bandwidth per contact

P[Ai j | x, t] = P[Ai j | x].

Assuming further exponential inter-contact times, the probability

to �nd a vehicle storing chunk ij before its playout time is∫ (j−1) ·τ

0

P[Ai j | x] = P[Ti j < (j − 1) · τ ]

= 1 − e−λ ·(j−1) ·τ ·xi j ,

where the second equivalence is true because Ti j follows an ex-

ponential distribution with rate λ times xi j replicas for the given
chunk. �e constraints simply ensure the capacity of each vehicle

is not violated. �

Problem (2) is an NP-hard combinatorial problem, when the

allocation variables xi j are integer, as it is a bounded knapsack

problem (BKP) with a nonlinear objective function [11]. A standard

approach in such cases is to consider a continuous relaxation of the

problem. �is not only converts the problem to a convex one (as

we will see), that can be solved e�ciently, but also can be solved

analytically, giving valuable insights into the optimal allocation.

Furthermore, we can replace the individual capacity constraint of

Eq. (2) with a global capacity constraint, i.e.,

k∑
i=1

s∑
j=1

xi j ≤ c · h. (4)

It is easy to see that, if x is fractional, any allocation that �ts the

global capacity is also a feasible allocation, given the assumption

of IID mobility
6
. We can prove the following result:

Theorem 3.2. �e solution of Problem (2) when x is real is given
by

xi j =




0, if ϕi j < L,
1

λ ·(j−1) ·τ · ln
(
λ ·(j−1) ·τ ·ϕi j

ρ

)
, if L ≤ ϕi j ≤ U ,

h, if ϕi > U ,

5
�e speci�c allocation of chunks per vehicle is a di�erent problem that is le� as a

future work.

6
We de�ne feasible an allocation that satis�es the individual capacity constraint of

Eq. (2).
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where ρ is an appropriate Lagrange multiplier, L , ρ
λ ·(j−1) ·τ , U ,

ρ ·eh ·λ ·(j−1)·τ

λ ·(j−1) ·τ .

Proof. Problem (2) is a convex optimization problem since its

objective function is convex (because it is the sum of convex func-

tions), the constraint is linear and the set of feasible solutions is

convex. We solve it by Karush-Kuhn-Tucker (KKT) conditions. For

such a convex problem, this method provides necessary and su�-

cient conditions for the stationary points to be optimal solutions.

�e KKT conditions for Problem (2) are




li j · xi j = 0

mi j · (h − xi j ) = 0

ρ ·
(
c · h −

∑k
i=1

∑s
j=1 xi j

)
= 0

where li j andmi j are appropriate Lagrange multipliers related to

the bounds of x. �e related Lagrangian function L (x) is

L (x) =
k∑
i=1

s∑
j=1

[
ϕi j · (1 − e

−λ ·(j−1) ·τ ·xi j ) + li j · xi j
]
+

+

k∑
i=1

s∑
j=1

mi j · (h − xi j ) + ρ ·
*.
,
c · h −

k∑
i=1

s∑
j=1

xi j
+/
-
.

We compute the stationary points by computing the derivative of

the Lagrangian function for each content i . Since the problem is

convex, these points are also global solutions.

dL (x)
dxi j

= λ · (j − 1) · τ · ϕi j · e
−λ ·(j−1) ·τ ·xi j + li j −mi j − ρ = 0.

Making explicit x, we obtain:

xi j =
1

λ · (j − 1) · τ
· ln

(
λ · (j − 1) · τ · ϕi j

ρ − li j +mi j

)
.

�en, the system constraints create three regimes depending on

the content popularity:

• Low popularity. �e optimal allocation xmust be greater or equal

to 0. According to the KKT conditions, we have two cases that

satisfy the constraint: (i) xi j > 0, li j = 0; (ii) xi j = 0, li j > 0. �e

threshold between case (i) and (ii) depends on the content popu-

larity: speci�cally, a content will get more than 0 copies when its

popularity is higher than L which can be easily computed when

xi j > 0:

1

λ · (j − 1) · τ
· ln

(
λ · (j − 1) · τ · ϕi j

ρ

)
> 0

ϕi j >
ρ

λ · (j − 1) · τ
, L.

• High popularity. �e content allocation is upper bounded by the

number vehicles h participating in the cloud. Similarly to the

previous scenario, due to the KKT conditions, the constraint is

satis�ed when: (i) xi < h, mi = 0; (ii) xi = h, mi > 0:

ϕi j <
ρ · eh ·λ ·(j−1) ·τ

λ · (j − 1) · τ
, U .

• Medium popularity. In all the other cases (i.e., whenU ≤ ϕi j ≤ L),
the optimal allocation is proportional to the logarithm of the

content popularity.

�

As a �nal step, we use randomized rounding [14] to go back to

an integer allocation, which is a widely used approach for design-

ing and analyzing such approximation algorithms. Furthermore,

when cache sizes are large enough, such methods are expected to

introduce very small approximation errors.

3.2 Limited bandwidth
�e in�nite bandwidth model provides some initial insights on

a per-chunk allocation for content streaming. In reality, contact

duration (or equivalently the available bandwidth betweenU and

H ) is limited and only a few chunks can be downloaded per con-

tact. In this subsection, we describe a model that exploits such a

limited bandwidth to improve the previous problem formulation.

We introduce the following de�nition:

De�nition 3.3 (Limited bandwidth). Assume that a given user

requests content i . Assume further that the playout of such a

content has started at time 0, and a vehicle is met at time t . In
the limited bandwidth scenario, the user is able to download a

chunk j of content i with probability pi j (z) during a contact, where

z , j ·τ −t is the residual playout time, and pi j (z) is non-decreasing
in z.

As an example, assume that a content i is split in 10 chunks

which are stored in all vehicles. Assume that, at time 0 (i.e. when

the user starts watching), a user is in the communication range of a

vehicle storing chunks 1 to 5. Since chunks are downloaded in order

(this is the optimal policy to avoid missing deadlines), it is easy

to see that the probability to download chunk 1 (pi1 (0)) is higher
than the probability to download chunk 5, as the contact with

that vehicle might end before all chunks before 5 are downloaded.

However, if the user is currently watching chunk 3 and encounters

the same vehicle, only chunks 4 and 5 need to be downloaded, hence

increasing the chances of ge�ing 5 before the contact is over.

Probability pi j (z) is very hard to model analytically, because it

depends on vehicle mobility, allocation of earlier chunks to vehicles

and residual playout time z. To simplify things, we can assume as a

�rst step that this probability is independent of the allocation, but

is a given (non-decreasing) function of time (this function could

be estimated, for example, as the mean over a number of contact

sample paths, for a given allocation). In that case, we can write the

following optimization problem:

Problem 3. Consider the limited bandwidth scenario. �e solution
to the following optimization problemmaximizes the expected number
of bytes o�oaded through the vehicular cloud:

maximize
x∈X k×s

k∑
i=1

s∑
j=1

ϕi j · (1 − e
−Qi j ·λ ·(j−1) ·τ ·xi j ),

subject to
k∑
i=1

s∑
j=1

x
(w )
i j ≤ c, ∀w ∈ H , (5)

where Qi j , 1

(j−1) ·τ ·
∫ (j−1) ·τ
0

pi j (z) dz.

Proof. In the limited bandwidth model, a chunk can be down-

loaded with probability pi j (z) ≤ 1 during a meeting. If the contacts

4



with vehicles storing the requested content follow a Poisson process

having mean rate λ · xi j , as we have assumed, pi j (z) introduces
a thinning of the original Poisson process and leads to a Poisson

process with rate pi j (t ) · λ · xi j . �e la�er is the rate of successful
contacts (i.e., contacts with vehicles storing chunk ij , and which are
long enough to download chunk ij. We can further make a mean
value approximation and replace this time-dependent probability

with its mean over the entire playout interval:

Qi j ,
1

(j − 1) · τ
·

∫ (j−1) ·τ

0

pi j (z) dz

�is basically introduces one “thinning” parameter for each content

chunk, Qi j . �e rest of the proof then continues as in the case of

Problem (2). �

�e following result then holds, in terms of the optimal allo-

cation for this limited bandwidth case. �e proof follows that of

�eorem 3.2 replacing λ with Qi jλ, and is omi�ed.

Theorem 3.4. �e solution of Problem (2) when x is real is given
by

xi j =




0, if ϕi j < L,
1

Qi j ·λ ·(j−1) ·τ
· ln

(
Qi j ·λ ·(j−1) ·τ ·ϕi j

ρ

)
, if L ≤ ϕi j ≤ U ,

h, if ϕi > U ,

where L , ρ
Qi j ·λ ·(j−1) ·τ

andU , ρ ·eh ·Qij ·λ ·(j−1)·τ

Qi j ·λ ·(j−1) ·τ
.

As is evident by the above equations, the optimal allocation is

now dependent on another chunk-dependent parameter, Qi j .

4 SIMULATIONS
4.1 Simulation setup
To validate our results, we perform simulations based on real traces

for (i) mobility and (ii) content popularity:

• Mobility: We use the Cabspo�ing trace [12] to simulate the

vehicle behaviour; this trace records the GPS coordinates for 531

taxis in San Francisco for more than 3 weeks with granularity of

1 minute. In order to improve the accuracy of our simulations,

we increase the granularity to 10 seconds by linear interpolation.

We extrapolate the mobility statistics (e.g., λ) from the analysis

of the Cabspo�ing trace to compute the optimal allocation.

• Content popularity: We infer the number of requests per day

from a database with statistics for 100.000 YouTube videos [19].

�e database includes static (e.g., title, description, author, dura-

tion) and dynamic information (e.g., daily and cumulative views,

shares, comments). Data is worldwide, and we scale it linearly

according to the estimated population of the centre of San Fran-

cisco. We assume that each content is split into 10 chunks of

equal size, and that the internal chunk popularity follows a Zipf-

like distribution [10].

We build a MATLAB simulator as follows: �rst, we generate a set

of requests, andwe associate a random location (in GPS coordinates)

to each one. �e number of requests per content per day is given

by the YouTube trace. �en, we store chunks in vehicles according

to chosen allocation policy. For each request, we simulate the

playout of the video; the end user bu�er will be opportunistically

�lled when the vehicular cloud can be contacted, according to the

mobility provided by the Cabspo�ing trace. �e number of chunks

downloaded per contact depends on the contact duration and on the

distance between user and vehicle. In our simulations, we assume

that end users can contact the vehicular cloud with either short
(100 m) or long (200 m) range communications. �e user abandons

the playout of the video with some probability: speci�cally, when

a user watches a chunk, she decides to watch the following chunk

with probabilityw or to abandon the playout with probability 1−w .

In order to increase the number of simulations and to provide

sensitivity analysis for content size and bu�er capacity, we limit

the number of content to 10.000. We scale down the vehicle storage

capacity c to ensure that 0,1% of the total catalogue �ts in each

cache (i.e., 10 entire contents).

We compare the following allocation policies:

• Per Chunk Caching (PCC). �is policy allocates chunks of popular

content according to the model described in Section 3.1.

• Generic Tra�c (GT). �is policy allocates videos optimally ac-

cording to the Generic Tra�c policy described in Section 3.2 of

Vigneri et al. [18].
• Low Tra�c (LT). �is policy allocates videos optimally according

to the Low Tra�c policy described in Section 3.1 of Vigneri et
al. [18].

Our main goal in this preliminary evaluation is to highlight the

improvements, in terms of number of chunks o�oaded, brought by

caching per chunk compared to per content, in a relatively realistic

scenario. We therefore focus on the simpler unlimited bandwidth

policy. Once more, we stress that the actual contacts in the simulator
do not have unlimited bandwidth, but only that our allocation policy
is designed making this simplifying assumption. Nevertheless, even
this suboptimal policy already brings considerable gains. Taking

the limited bandwidth explicitly into account can provide additional

gains, but requires a careful tuning of the pi j (z) function and is

deferred to future work.

4.2 Performance evaluation
In Figure 1 we plot the percentage of chunks o�oaded for di�erent

allocation policies when communication range is 100 m or 200 m.

Speci�cally, when fractional storage is allowed (PCC), 10% more

tra�c can be o�oaded (from 35% to 45%), a relative improvent

of around 30%. As already mentioned, this happens because later

chunks have less probability to be watched which is not taken into

account by LT and GT policies. Rather, PCC replaces some of these

chunks, that are not likely to be watched, with some others. Such a

replacement brings interesting o�oading gains. What is more, the

way content is allocated into vehicles (chunks of the same content

in the same vehicle vs. chunks of the same content spread over all

vehicles) can largely a�ect the amount of data o�oaded, and can be

used by an operator to further increase performance. Because of the

large number of requests in the period considered, the con�dence

interval is too small to be distinguishable and hence is ignored.

In Figure 2 we perform sensitivity analysis according to the

probability of viewing the subsequent chunk when communication

range is 200 m. We analyse the range 0, 80− 0, 95 (i.e., a video is en-

tirely played out from 10 to 60 % of times). Similarly to the previous

scenario, PCC provides a relative improvement of at least 30% (or

10% in absolute values) in all scenarios. What is more, the e�ciency
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Figure 1: Percentage of chunks o�loaded through the vehic-
ular cloud for short and long range communications.
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Figure 2: Percentage of chunks o�loaded through the vehic-
ular cloud according to the probability of watching the sub-
sequent chunk.

of the policy improves as the abandonment probability increases.

Although this con�rms the e�ectiveness of our proposal, we be-

lieve that a �ner per chunk policy (e.g., limited bandwidth with

an appropriate function pi j (t )) would provide even larger gains.

Interestingly, considerable gains are achieved with very reasonable

storage capacities. Here the simulations are performed on a set of

10.000 contents, but in a scenario with a larger realistic catalogue

(e.g., 1000 times larger), it seems doable to store 0,1 % of the cata-

logue. E.g., if one considers an entire Torrent or Net�ix catalogue

(∼3 PB), a vehicle cache of about 3 TB already su�ces to o�oad

more than 40 % of the total tra�c for long range communications

(and 30%for short range).

5 CONCLUSION
In this paper, we have introduced a per chunk allocation policy

for video streaming from a vehicular cloud. We have shown that

the related optimization problem is hard, and we have solved two

reasonable approximations that make di�erent assumptions about

the number of chunks that can be downloaded per contact. �e

simulations performed have con�rmed that caching policies that

di�erentiate between chunks can o�oad much more tra�c, com-

pare to policies that treat all chunks of the same content the same.

A number of interesting problems remain open, such as the proper

modeling of the per chunk download success probability, as well as

the speci�c allocation of chunks to vehicles, given that the number

of replicas needed are known.
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