
HAL Id: hal-01572531
https://hal.inria.fr/hal-01572531

Submitted on 8 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Satisfiability Modulo Bounded Checking
Simon Cruanes

To cite this version:
Simon Cruanes. Satisfiability Modulo Bounded Checking. International Conference on Automated
Deduction (CADE), Leonardo de Moura, Aug 2017, Gothenburg, Sweden. pp.114-129, �10.1007/978-
3-319-63046-5_8�. �hal-01572531�

https://hal.inria.fr/hal-01572531
https://hal.archives-ouvertes.fr

Satisfiability Modulo Bounded Checking

Simon Cruanes

University of Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France

Abstract. We describe a new approach to find models for a compu-
tational higher-order logic with datatypes. The goal is to find counter-
examples for conjectures stated in proof assistants. The technique builds
on narrowing [14] but relies on a tight integration with a SAT solver to
analyze conflicts precisely, eliminate sets of choices that lead to failures,
and sometimes prove unsatisfiability. The architecture is reminiscent of
that of an SMT solver. We present the rules of the calculus, an imple-
mentation, and some promising experimental results.

1 Introduction

Computational higher-order logics are widely used to reason about purely func-
tional programs and form the basis of proof assistants such as ACL2 [12], Coq [8],
and Isabelle [15]. Searching for models in such logics is useful both for refuting
wrong conjectures and for testing — it is often faster and easier to test a prop-
erty than to prove it. In this work we focus on a logic with algebraic datatypes
and terminating recursive functions. Once proven terminating, these functions
have a natural interpretation in any model as least fixpoints.

The typical use case is for the users to specify a property they believe to
hold for the program they wrote and let a solver search for a (counter-)example
until some resource is exhausted — time, patience, etc. Our goal is to build a
tool that can be used for finding counter-examples in proof assistants. Figure 1
presents such a problem in TIP syntax [6] that defines natural numbers, lists,
and operations on lists, where the (unsatisfiable) goal is to find a list of natural
numbers that is a palindrome of length 2 with sum 3.

In the functional programming community, tools such as QuickCheck [5]
and SmallCheck [18] have been used to test conjectures against random values
or up to a certain depth. Feat [10] is similar to SmallCheck but enumerates
inputs by increasing size, rather than depth. However, QuickCheck is limited
when invariants have to be enforced (e.g. red-blackness of trees), forcing users to
write custom random generators, and SmallCheck and Feat can get lost quickly
in large search spaces. Lazy SmallCheck (LSC) is similar to SmallCheck but
relies on the lazy semantics of Haskell to avoid enumerating inputs that are not
needed to evaluate the property. LSC is close to narrowing [1, 14], a symbolic
approach that has ties to functional logic programming [11] and builds a model
incrementally. Nevertheless, LSC and narrowing-based tools explore the space of
possible inputs quite naively, making many counter-examples very hard to find.
All these approaches lack a way of analyzing why a given search path failed.

(declare−datatypes () ((Nat (Z) (S (prec Nat)))))
(declare−datatypes () ((List (Nil) (Cons (hd Nat) (tl List)))))
(define−fun−rec plus ((x Nat) (y Nat)) Nat
(match x (case Z y) (case (S x2) (S (plus x2 y)))))

; some definitions omitted
(define−fun−rec rev ((l List)) List
(match l (case Nil Nil) (case (Cons x l2) (append (rev l2) (Cons x Nil)))))

(assert−not (forall ((l List))
(not (and (= l (rev l)) (= (length l) (S (S Z))) (= (sum l) (S (S (S Z))))))))

Fig. 1. Looking for impossible palindromes

Modern SMT solvers are often efficient in difficult combinatorial problems.
They rely on a SAT solver to analyze conflicts and interleave theory reason-
ing with propositional choices. However, their focus is first-order classical logic,
where symbols are neatly partitioned between theory symbols that have a pre-
cise definition and user-provided symbols that are axiomatized. When a user
want to introduce their own parameterized operators, they must use quantifiers
and full first order logic, where solvers are usually incomplete. Some work has
been done on handling datatypes [4, 16] and recursive functions in SMT solvers
such as CVC4 [17] or calling an SMT solver repeatedly while expanding function
definitions as in Leon [19], but each reduction step (e.g. function call) is very
expensive.

Bridging the gap between QuickCheck and SMT solvers is HBMC [7] (Haskell
Bounded Model Checker — not published yet). HBMC progressively encodes the
evaluation graph into propositional constraints (effectively “bit-blasting” recur-
sive functions and datatypes), leveraging the powerful constraint propagations of
modern SAT solvers. However, it suffers from the same weakness as SMT-based
techniques: every evaluation step has to be encoded, then performed, inside the
SAT solver, making computations slow.

We present a new technique, Satisfiability Modulo Bounded Checking (SMBC)
that occupies a middle ground between narrowing and HBMC. On the one hand,
it can evaluate terms more efficiently than pure bit-blasting although not quite
as fast as native code; on the other hand it benefits from propositional conflict-
driven clause learning (CDCL) of modern SAT solvers to never make the same
bad choice twice. Two main components are involved: (i) a symbolic evaluation
engine (Sect. 3), and (ii) a SAT solver with incremental solving under assump-
tions (Sect. 4). Those two components communicate following lazy SMT tech-
niques [3]. Inputs are lazily and symbolically enumerated using iterative deep-
ening (Sect. 5) to ensure fairness, but we use the ability of the SAT solver to
solve under assumptions to avoid the costly re-computations usually associated
with that technique. In addition, building on CDCL allows SMBC to sometimes
prove the unsatisfiability of the problem, something evaluation-based tools are
incapable of.

2

We can extend SMBC to support uninterpreted types and unspecified func-
tions (Sect. 6). After presenting refinements to the calculus (Sect. 7) and an
implementation (Sect. 8), we run some experiments (Sect. 9) to compare SMBC
with some of the previously mentioned tools on various families of problems.
Detailed proofs and additional content can be found in our report.1

2 Logic

We consider a multi-sorted higher-order classical logic, without polymorphism.
A finite set of mutually recursive datatypes d1, . . . , dk is defined by a system(

di
def
= ci,1(αi,1) | · · · | ci,ni

(αi,ni
)
)
i∈{1,...,k}

where the αi,j are tuples of type arguments. We consider only standard models,
in which the domain of a datatype is the set of terms freely generated from its
constructors. Similarly, mutually recursive functions f1, . . . , fk are defined by a
set of equations f1(x1)

def
= t1, . . . , fk(xk)

def
= tk that we assume total and termi-

nating. The term language comprises bound variables, datatype constructors,
shallow pattern-matching over datatypes, λ-abstractions λx : τ. t, and applica-
tions f t1 . . . tn. Constructors are always fully applied. tσ is the application of

a substitution over bound variables σ to t. Bool
def
= {>,⊥} is a special datatype,

paired with tests if a b c that are short for case a of> → b | ⊥ → c end. A value is a
λ-abstraction or constructor application. The operators ∧ : Bool→ Bool→ Bool
and ¬ : Bool → Bool have the usual logical semantics; evaluation of ∧ is par-
allel rather than the usual sequential semantics it has in most programming
languages: t ∧ ⊥ reduces to ⊥ even if t is not a value. We will speak of parallel
conjunction. Other boolean connectives are encoded in terms of ∧ and ¬. We
also define an ad hoc polymorphic equality operator = that has the classic struc-
tural semantics on datatypes and booleans; comparison of functions is forbidden.
An unknown is simply an uninterpreted constant which must be given a value
in the model. This logic corresponds to the monomorphic fragment of TIP [6]
or the extension of SMT-LIB [2] with recursive functions, with the additional
assumption that they always terminate.

A data value is a term built only from constructor applications, bound vari-
ables, and λ-abstractions (without defined symbols, matching, or unknowns).
The depth of a data value is recursively defined as 1 on constant constructors,
1 + depth(t) for λx. t, and 1 + maxi=1...n depth(ti) on constructor applications
c(t1, . . . , tn).2 A goal set G is a set of boolean terms. A model of G is a mapping
from unknowns of G to data values, such that

∧
t∈G t evaluates to >. The depth

of a model is the maximal depth of the data values in it.

1 https://cedeela.fr/~simon/files/cade_17_report.pdf
2 A more flexible definition depth(c(t1, . . . , tn)) = cost(c) + maxi=1...n depth(ti) can

also be used to skew the search towards some constructors, as long as cost(c) > 0
holds for all c.

3

https://cedeela.fr/~simon/files/cade_17_report.pdf

In the rest of this paper, t, u will represent terms, k will be unknowns, c, d
will be constructors, and e will stand for explanations (conjunctions of literals).
We will use an injective mapping to propositional variables denoted T·U.

3 Evaluation with Explanations

The semantics of our logic relies on evaluating expressions that contain tests,
pattern matching, and (recursive) functions. Because expressions can contain
unknowns, their reduction is influenced by assignments to these unknowns. We
need an evaluator that keeps track of which choices were used to reduce a term.
In this way, when a goal term reduces to ⊥, we know that this combination of
choices is wrong.

In Figure 2, we show the evaluation rules for terms, given a substitution ρ on
unknowns. The notation t

ρ−−→e u means that t reduces to u in one step, with ex-
planations e (a set of boolean literals), under substitution ρ. We denote t

ρ−−→
∗
e u

for the transitive reflexive closure of the reduction. We write t ↓ρ (the normal
form of t under ρ) for the unique term u such that t

ρ−−→
∗
e u and no rule applies

to u. In a first approximation, ignoring the explanations, the rules correspond to
a normal call-by-need evaluation strategy for the typed λ-calculus. This matches
the definition of values given earlier: a value is a weak head normal form. It is
possible to use environments instead of substitutions, carrying bindings in every
rule, but we chose this presentation for reasons related to hash-consing, as often
used in SMT solvers. The choice of call-by-need rather than call-by-value is jus-
tified by the maximal amount of laziness it provides in presence of unknowns:
instead of waiting for function call arguments, matched terms, or test conditions
to be fully evaluated (and therefore, for their unknowns to be fully decided in
the partial model), we can proceed with only a weak head normal form.

The rules id and trans specify how explanations are combined in the reflexive
transitive closure; The rule case reduces a pattern matching once the matched
term is a value (i.e. starts with a constructor, by typing). The rule app allows
to reduce the function term in an application (until it becomes a value, that is,
a λ-abstraction); rule β is the regular β-reduction; rule def unfolds definitions
(in particular, recursive definitions are unfolded on demand). The rule decision
replaces an unknown with its value in the current substitution ρ (i.e. the partial
model). The other rules define the semantics of boolean operators and equality.
We forbid checking equality of functions as is it not computable.

Whether to use small-step or big-step semantics (i.e. reducing a term by one
step if a subterm reduces, or waiting for the subterm to become a value) is of
little importance for most cases. The only exception is the rules for conjunc-
tion, in which big-step semantics is required (i.e. a ∧ b does not always reduce
when, e.g., a reduces). To see why, assume small-step semantics and consider
a

ρ−−→
∗
e1
a′

ρ−−→
∗
e3
⊥ and b

ρ−−→
∗
e2
b′ where a, b : Bool. The following reduction

a ∧ b ρ−−→
∗
e1
a′ ∧ b ρ−−→

∗
e1∪e2 a

′ ∧ b′ ρ−−→
∗
e1∪e2∪e3 ⊥ ∧ b

′ ρ−−→
∗
e1∪e2∪e3 ⊥

4

id
a

ρ−−→
∗
∅ a

a
ρ−−→e1 b b

ρ−−→
∗
e2 c

trans
a

ρ−−→
∗
e1∪e2 c

c is a constructor t
ρ−−→
∗
e c(t1, . . . , tn)

case
case t of c(x1, . . . , xn)→ u | · · · end ρ−−→e u[t1/x1, . . . , tn/xn]

f
ρ−−→e g app

f t
ρ−−→e g t

β
(λx. t) u

ρ−−→∅ t[u/x]

x
def
= t

def
x

ρ−−→∅ t

ρ(k) = t
decision

k
ρ−−→{Tk:=tU} t

a
ρ−−→
∗
e ⊥

and-left
a ∧ b ρ−−→e ⊥

b
ρ−−→
∗
e ⊥ and-right

a ∧ b ρ−−→e ⊥

a
ρ−−→
∗
ea > b

ρ−−→
∗
eb >

and-true
a ∧ b ρ−−→ea∪eb >

a
ρ−−→
∗
e >

not-true
¬a ρ−−→e ⊥

a
ρ−−→
∗
e ⊥

not-false
¬a ρ−−→e >

a
ρ−−→e a

′
eq-left

a = b
ρ−−→e a

′ = b

b
ρ−−→e b

′
eq-right

a = b
ρ−−→e a = b′

c, d are constructors c 6= d
eq-conflict

c(t) = d(u)
ρ−−→∅ ⊥

c is a constructor eq-sub
c(t1, . . . , tn) = c(u1, . . . , un)

ρ−−→∅
∧n
i=1 ti = ui

Fig. 2. Evaluation rules under substitution ρ

is imprecise because e2 is not actually needed for a ∧ b ρ−−→
∗
⊥, e1∪e3 is sufficient.

The resulting explanation is not as general as it could be, and a smaller part of
the search space will be pruned as a result.

5

Evaluation of a normal form t that is not a value in a substitution ρ is blocked
by a set of unknowns blockρ(t):

blockρ(λx. t) = ∅
blockρ(c(u1, . . . , un)) = ∅ if c is a constructor

blockρ(f t) = blockρ(f)

blockρ(case t of . . . end) = blockρ(t↓ρ)
blockρ(k) = {k} if k is an unknown

blockρ(a = b) = blockρ(a) ∪ blockρ(b)

blockρ(¬a) = blockρ(a↓ρ)
blockρ(a ∧ b) = blockρ(a↓ρ) ∪ blockρ(b↓ρ)

In some cases, the blocking unknowns are found in the normal form of sub-
terms of t. This corresponds to the evaluation rules that wait for the subterm to
become a value before reducing.

Lemma 1 (Uniqueness of values for
ρ−−→
∗
). If t

ρ−−→
∗
e1 v1 and t

ρ−−→
∗
e2 v2

where v1 and v2 are values, then v1 = v2.

Proof. The rules are deterministic, and values are always normal forms since no
rule applies to them. ut

Lemma 2. If t = t↓ρ is a normal form, then blockρ(t) = ∅ iff t is a value.

Proof. By induction on the shape of t. ut

4 Delegating Choices and Conflict Analysis to SAT

We now have evaluation rules for reducing terms given a substitution on un-
knowns but have not yet explained how this substitution is built. As in narrow-
ing [1, 14], it is constructed by refining unknowns incrementally, choosing their
head constructor (or boolean value) and applying it to new unknowns that might
need to be refined in turn if they block evaluation.3 However, in our case, the
SAT solver will do the refinement of an unknown k once it has been expanded;
the first time k : τ blocks the evaluation of a goal g (i.e., k ∈ blockρ(g)), some
clauses are added to the SAT solver, forcing it to satisfy exactly one of the literals
Tk := ci(ki,1, . . . , ki,ni

)U, where ci is a constructor of τ . Once one of the literals
Tk := tiU is true in the SAT solver’s partial model — implying that ρ(k) = ti,
as we will see next — evaluation of the goal g can resume using rule decision
(in Figure 2) and k is no longer blocking.

The state of the SAT solver is represented below as a pair M ‖ F where
M is the trail (a set of literals not containing both l and ¬l), and F is a set

3 Our framework corresponds to the special case of needed narrowing when the only
rewrite rules are those defining pattern matching.

6

of clauses. The operation subst(M) extracts a substitution on unknowns from
positive literals in the trail:

subst(M)(k) = t if Tk := tU ∈M

The interactions between the SAT solver and the evaluation engine are bidi-
rectional. When the SAT solver makes some decisions and propagations, yielding
the new state M ‖ F , the substitution subst(M) is used to evaluate the goals
in G. If all the goals evaluate to >, we can report M as a model. Otherwise,

if there is a goal t ∈ G such that t
subst(M)−−−−−−→

∗

e ⊥, M must be discarded. This

is done by adding to F a conflict clause C
def
=
∨
a∈e ¬a that blocks the set of

choices in e. The SAT solver will backjump to explore models not containing e.
Backjumping with clause C and state M ‖ F returns to a state M ′ ‖ F where
M ′ is the longest prefix of M in which C is not absurd.

Lemma 3 (Monotonicity of Models). A model of G, expressed as a trail M ,

satisfies
∧
t∈G t

subst(M)−−−−−−→
∗

e >. No subset of M reduces
∧
t∈G t to ⊥.

5 Enumeration of Inputs and Iterative Deepening

We have not specified precisely how to enumerate possible models. This section
presents a fair enumeration strategy based on Iterative Deepening [13].

A major issue with a straightforward combination of our evaluation function
and SAT solver is that there is a risk of non-termination. Indeed, a wrong branch
might never be totally closed. Consider the goal p(b)∧ a+ b = Z with unknowns

{a, b}, where p(x)
def
= case x of Z→ > | S()→ > end is trivial, and + is defined

on Peano numbers by recursion on its left argument. Then making the initial
choice b = S(b2) (to unblock p(b)) and proceeding to refine a in order to unblock
a+ b = Z will lead to an infinite number of failures related to a, none of which
will backjump past b = S(b2).

To overcome this issue, we solve a series of problems where the depth of
unknowns is limited to increasingly large values, a process inspired from iterative
deepening. Because the SAT solver controls the shape of unknowns, we use
special boolean literals Tdepth ≤ nU to forbid any choice that causes an unknown
to be deeper than n; then we solve under assumption Tdepth ≤ nU. If a model is
found, it is also valid without the assumption and can be returned immediately
to the user. Otherwise, we need the SAT solver to be able to provide unsat cores
— the subset of its clauses responsible for the problem being unsatisfiable —
to make the following distinction: if Tdepth ≤ nU contributed to the unsat core,
it means that there is no solution within the depth limit, and we start again
with Tdepth ≤ n+ StepU (where Step ≥ 1). The last case occurs when the
conflict does not involve the assumption Tdepth ≤ nU: then the problem is truly
unsatisfiable (e.g., in Figure 1).

The iterative deepening algorithm is detailed below, in three parts: (i) the
main loop, in Algorithm 1; (ii) solving within a depth limit, in Algorithm 2;

7

(iii) expanding unknowns, in Algorithm 3. These functions assume that the
SAT solver provides functions for adding clauses dynamically (AddSatClause),
adding a conflict clause (Conflict), performing one round of decision then
boolean propagation (MakeSatDecision and BoolPropagate), and extract-
ing unsat cores (UnsatCore). These functions modify the SAT solver state
M ‖ F . In practice, it is also possible to avoid computing unsat cores at line 7 in
Algorithm 1, by checking for pure boolean satisfiability again, but without the
depth-limit assumption. Most computations (including the current normal form
of
∧
t∈G t) can be done incrementally and are backtracked in case of conflict.

Algorithm 1 Main Loop Using Iterative Deepening

Require: Step ≥ 1: depth increment, G: set of goals
1: function MainLoop(G)
2: d ← Step . initial depth
3: while d ≤MaxDepth do
4: res ← SolveUpTo(G, d)
5: if res = Sat then return Sat
6: else if Tdepth ≤ dU 6∈ UnsatCore(res) then return Unsat
7: else d ← d+ Step

8: return Unknown

Algorithm 2 Solving Within a Depth Limit

Require: G: set of goal terms, d: depth limit
1: function SolveUpTo(G, d)
2: AddAssumption(Tdepth ≤ dU) . local assumption
3: M ‖ F ← ∅ ‖ G . initial model and clauses
4: while true do
5: M ‖ F ← MakeSatDecision(M ‖ F) . model still partial
6: M ‖ F ← BoolPropagate(M ‖ F)

7: G′ ← {(u, e) | t ∈ G, t subst(M)−−−−−→
∗

e u} . current normal form of G
8: if (⊥, e) ∈ G′ then
9: M ‖ F ← Conflict(M ‖ F ∪ {

∨
a∈e ¬a}) . backjump or Unsat

10: else if all terms in G′ are > then return Sat
11: else
12: B ←

⋃
(t,e)∈G′ blocksubst(M)(t) . blocking unknowns

13: for k ∈ B, k not expanded do
14: F ← F ∪ Expand(k, d) . will add new literals and clauses

Theorem 1 (Termination). The function SolveUpTo in Algorithm 2 ter-
minates.

Theorem 2 (Soundness). The function SolveUpTo in Algorithm 2 returns
either Sat or Unsat. If it returns Sat, then the substitution subst(M) from

8

Algorithm 3 Expansion of Unknowns

Require: k: unknown of type τ , d: depth limit
1: function Expand(k, d)
2: let τ = c1(τ1,1, . . . , τ1,n1) | . . . | ck(τk,1, . . . , τk,nk)
3: l ← {ci(ki,1, . . . , ki,ni) | i ∈ 1, . . . , k} . each ki,j:τi,j is a fresh unknown
4: AddSatClause(

∨
t∈lTk := tU)

5: AddSatClauses({¬Tk := t1U ∨ ¬Tk := t2U | (t1, t2) ∈ l, t1 6= t2})
6: for t ∈ l where depth(t) > d do
7: AddSatClause(¬Tdepth ≤ dU ∨ ¬Tk := tU) . block this choice at depth d

the boolean trail is a model. If it returns Unsat, then there are no solutions of
depth smaller than d.

Theorem 3 (Bounded Completeness). If there exists a model of depth smaller
at most Step bMaxDepth/Stepc, then Algorithm 1 will return Sat.

Proof. The depth d is always a multiple of Step. Let dmin ≤MaxDepth be the
smallest multiple of Step such that there is a model of depth≤ dmin. Iterations of
the loop with d < dmin return Unsat by soundness of SolveUpTo (Theorem 2);
the iteration at depth dmin returns Sat. ut

5.1 Application to the Introductory Example

We illustrate our technique on an example.4 Pick the same definitions as in

Figure 1, but with the goal set G
def
= {rev(l) = l, length(l) = 2, sum(l) = 2} where

the unknown is a list l. Unlike in Figure 1, this problem is satisfiable. Assuming
Step = 1, we start solving under constraint Tdepth ≤ 1U. Under the empty
substitution, G reduces to a set of terms all blocked by a pattern matching on
l; expansion of l into {Nil, Cons(x1, l1)} follows, where x1 : Nat and l1 : List are
fresh unknowns. Suppose the SAT solver picks Tl := NilU. G reduces to {>,⊥,⊥}
with explanations {Tl := NilU}, so the conflict clause ¬Tl := NilU is asserted,
added to the partial model with no effect, and the solver backtracks.

The next boolean decision must be Tl := Cons(x1, l1)U. Subsequently, G re-
duces to

{append(rev(l1),Cons(x1,Nil)) = Cons(x1, l1), length(l1) = 1, x1 + sum(l1) = 2}

(more precisely, to a less readable version of these terms where function defi-
nitions are unfolded into some pattern matching). The resulting set is blocked
both by l1 (in the first two terms) and x1 (in x1 + sum(l1)). Expansion of these
terms yields {Nil, Cons(x2, l2)} and {Z, S(y1)}, but the choice Cons(x2, l2) is
blocked by Tdepth ≤ 1U. The solver must choose Tl1 := NilU, which entails

length(l) = 2
ρ−−→
∗
{Tl:=Cons(x1,l1)U} length(l1) = 1

ρ−−→
∗
{Tl1:=NilU} 0 = 1

ρ−−→
∗
∅ ⊥

4 The example is provided at https://cedeela.fr/~simon/files/cade_17.tar.gz

along with other benchmarks.

9

https://cedeela.fr/~simon/files/cade_17.tar.gz

The conflict clause ¬Tl := Cons(x1, l1)U∨¬Tl1 := NilU triggers an Unsat result,
but only because of the assumption Tdepth ≤ 1U.

The main loop (Algorithm 1) then proceeds to depth 2, and tries to solve the
problem again under the assumption Tdepth ≤ 2U. The SAT solver can now pick
Tl1 := Cons(x2, l2)U. At some point, it will pick Tl2 := NilU (the other choice
is too deep), Tx1 := S(y1)U, Ty1 := ZU, Tx2 := S(y2)U, and Ty2 := ZU. Other
choices would reduce one of the goals to ⊥: once the shape of l1 is fixed by
the length constraint, rev(l) = l reduces to x1 = x2 and sum(l) = 2 becomes
x1 + x2 = 2, and wrong choices quickly reduce those to ⊥. At this point,∧
t∈G t

ρ−−→
∗
> and we obtain the model l = Cons(1,Cons(1,Nil)).

6 Extensions of the Language

6.1 Uninterpreted Types

Finding counter-example for programs and formalizations that use only recur-
sive function definitions might still involve uninterpreted types arising from type
Skolemization or abstract types. To handle those in SMBC, e.g. for a type τ ,
which corresponds to a finite set of domain elements denoted elt0(τ), elt1(τ), . . .
(domain elements behave like constructors for evaluation). We also introduce
type slices τ[0...], τ[1...], . . . where τ

def
= τ[0...]. Conceptually, a type slice τ[n...] cor-

responds to the subtype of τ that excludes its n first elements: τ[n...]
def
= {eltn(τ),

. . . , eltcard(τ)−1(τ)}. Then, we introduce propositional literals Tempty(·)U that
will be given a truth value by the SAT solver; if Tempty(τ[n...])U is true, it
means τ[n...] ≡ ∅; otherwise, it means τ[n...] ≡ {eltn(τ)} ∪ τ[n+1...]. We assume
¬Tempty(τ[0...])U. Expansion of some unknown k : τ[n...] yields the following
boolean constraints:

Tempty(τ[n−1...])U⇒ Tempty(τ[n...])U
Tdepth ≤ nU⇒ Tempty(τ[n...])U

Tk = eltn(τ)U ∨
(
¬Tempty(τ[n+1...])U ∧ Tk := k′U

)
where k′ : τ[n+1...] is a fresh unknown belonging in the next slice of τ . To express
constraints on τ , the input language provides finite quantifiers ∀x : τ. F and
∃x : τ. F (which abbreviates ¬(∀x : τ. ¬F)). The quantifier is interpreted with
the following rules:

ρ(Tempty(τ[n...])U) = >
forall-empty

∀x : τ[n...]. F
ρ−−→{Tempty(τ[n...])U} >

ρ(Tempty(τ[n...])U) = ⊥
forall-pair

∀x : τ[n...]. F
ρ−−→{¬Tempty(τ[n...])U} F [eltn(τ)/x] ∧

(
∀x : τ[n+1...]. F

)
10

6.2 Functional Unknowns

With uninterpreted types often come functions taking arguments of uninter-
preted types. We can also wish to synthesize (simple) functions taking booleans
or datatypes as parameters. It is possible to build functions by refinement, using
currying (considering only one argument at a time) depending on its argument’s
type. Expansion of a functional unknown f : a→ b depends on a:

– If a = Bool, f ∈ {λx. if x t1 t2} where t1, t2 : b are fresh unknowns of type b
that are deeper than f .

– If a is uninterpreted, f is λx. switch(x,m) where m is a table mapping
(elti(a))i=0... to fresh unknowns of type b (built lazily, in practice) and switch
is otherwise similar to case.

– If a is a datatype, f is either a constant function λx. kf where kf is an un-
known of type b or λx. case x of ci(y)→ ki y | · · · end where each ki is a fresh
unknown taking the corresponding constructor’s arguments as parameters.
The constant case is used to be able to build functions that only peek super-
ficially at inputs — otherwise, all function descriptions would be infinite in
the model. The choice between the two forms for f is performed by the SAT
solver; the non-constant case might be blocked by depth constraints. If a is
infinite, bounded completeness is lost immediately, as we cannot generate all
functions a→ b.

– Otherwise, a is a function type and we should reject the initial problem.

7 Refinements to the Calculus

7.1 Multiple Conflict Clauses

Sometimes, a partial model causes a failure for several reasons: in the presence
of parallel conjunction, both formulas can reduce to ⊥. It would be wasteful
to keep only one reason, because all of them might be useful to prune other
branches. In this case, instead of just picking one explanation and discard the
others, as suggested in Figure 2, we add a new explanation constructor, e1 ⊕
e2, that combines two unrelated explanations, such that ⊕ is associative and
commutative and (e1 ⊕ e2)∪ e3 ≡ (e1 ∪ e3) ⊕ (e2 ∪ e3). Intuitively, a

ρ−−→e1⊕e2 b
means that a evaluates to b under substitution ρ assuming the choices in e1 or
in e2 are made — those choices are never incompatible, but they might not be
the same subset of subst(M). We add a new rule for ∧:

a
ρ−−→
∗
ea ⊥ b

ρ−−→
∗
eb
⊥

and-left-right
a ∧ b ρ−−→ea⊕eb ⊥

In case of conflict
∧
t∈G

ρ−−→
∗⊕

i∈I ei
⊥ , we obtain a set of conflict clauses{∨

a∈ei ¬a | i ∈ I
}

that will prune distinct parts of the partial model.

11

7.2 Unification Rules

Equality already has many rules, but we can optimize it further. In our im-
plementation, relying on hash-consing, we simplify t = t into > in constant
time, even when t contains unassigned unknowns. We can optimize equality fur-
ther in the special case where reduction leads to a term c(t1, . . . , tn) = k or k =
c(t1, . . . , tn) where k is an unknown and c a constructor or domain element. This
term reduces with no explanation to if checkTk :=c(u1,...,un)U (

∧n
i=1 ti = ui) ⊥,

where checkTk :=c(u1,...,un)U : Bool is a new term construct that requires c(u1, . . . ,
un) to be one of the cases resulting from the expansion of k. In the ⊥ case, the
explanation forces the SAT solver to pick c(u1, . . . , un) instead of ruling out the
wrong choice d(u1, . . . , um); if there are more than two constructors, this forces
directly the right choice instead of trying every wrong choice.

c(u1, . . . , un) is a case of k
unify

k = c(t1, . . . , tn)
ρ−−→∅ if checkTk :=c(u1,...,un)U (

∧n
i=1 ti = ui) ⊥

ρ(k) = c(u1, . . . , un)
check-true

checkTk :=c(u1,...,un)U
ρ−−→{k:=c(u1,...,un)} >

ρ(k) = d(u1, . . . , um) d 6= c
check-false

checkTk :=c(u1,...,un)U
ρ−−→{¬(k:=c(u1,...,un))} ⊥

8 Implementation

We implemented SMBC in OCaml5 using a modular SAT solver6 that is flexible
enough that we can add clauses dynamically and parameterize it with a theory
solver. It also supports incremental solving under assumptions, which is neces-
sary for the efficiency of the iterative deepening exploration. The core solver is
around 3,200 lines long, including the term data structures, the symbolic evalua-
tion and the main loop. This implementation is a prototype that can be used, but
we believe it could be made much faster with more work and perhaps by using
a lower-level language. The code is free software, under a permissive license.

Our description of evaluation rules in Figure 2 is quite high-level and can be
implemented in various ways.7 We chose to represent terms as perfectly shared
directed acyclic graphs in which binders and bound variables rely on De Bruijn
indices. The perfect sharing diminishes memory usage and makes let statements
superfluous. We store in every term a pointer to a pair (explanation, term) that
stores the current normal form of this term, effectively implementing a crude

5 https://github.com/c-cube/smbc/
6 https://github.com/Gbury/mSAT
7 For example, it might be possible to write an efficient interpreter or compiler for

use-cases where evaluation is the bottleneck, as long as explanations are tracked
accurately and parallel conjunction is accounted for.

12

https://ocaml.org
https://github.com/c-cube/smbc/
https://github.com/Gbury/mSAT

form of memoization. Any assignment of this pair must be undone upon back-
tracking — in a similar way as in congruence closure algorithms [3]. Similarly,
unknowns are records with mutable pointers to a list of possible cases (once
they have been expanded) and to their current assignment, which is reverted
during backjumping thanks to a central backtracking stack that is controlled by
the SAT solver. A good representation of explanations is required for efficiency,
because union will be performed very often during the evaluation of terms and
should be as fast as possible.

In addition, the evaluation function performs acyclicity checks to prune im-
possible branches early, and aggressively caches the normal forms of terms, stash-
ing their old value on the central backtracking stack. Since we follow the architec-
ture proposed by Barrett et al. [3], SMBC can delegate all branching to the SAT
solver. Every time a boolean decision is made by the SAT solver (followed by
propagation), the evaluation engine is called so as to prune bad models early. It
does so by re-evaluating the set of goals G, which must contain at least one term
not reduced yet, and cannot contain ⊥ (see Algorithm 2). This re-evaluation is
made faster by starting from the cached normal forms instead of the original
goals. If all goals in G reduce to >, the model is valid; if one of them reduces
to ⊥, the SAT solver immediately receives a conflict clause that will make it
backtrack.

9 Experiments

We ran a few experiments to compare SMBC with other approaches, namely
LSC, HBMC, CVC4 [17], and Inox, a standalone version of Leon [19]. We do
not compare against QuickCheck, SmallCheck, or Feat, because they are not
designed to solve such tightly constrained problems. All the data and the code of
SMBC can be found at https://cedeela.fr/~simon/files/cade_17.tar.gz.
For this experiment, we wrote some problems and borrowed some others from
HBMC’s test suite. We tried to pick diversified benchmarks so as to expose the
strengths and weaknesses of each tool. TIP does not come yet with an exhaustive
set of satisfiable benchmarks that would rely primarily on recursive functions.
Benchmarks from our previous work on CVC4 [17] are expressed in SMT-LIB
rather than TIP and use quantified axioms instead of recursive definitions, which
makes them hard to use in our purely computational setting. The same holds of
SMT-LIB and TPTP in general.

The solvers were run on a 4-cores Intel i5 CPU with 60 seconds timeout and
a limit of 8 GB of RAM. Below, we give some numbers in Table 1 and then
analyse the results on some categories of problems. The second column of the
table is the number of satisfiable and unsatisfiable problems. Categories out of
scope are marked with “–”.

Expr Given arithmetic expressions, an evaluation function and several flawed
simplifications, the goal is to find an expression such that its simplification
does not evaluate to the same term. Here HBMC and Inox shine, but SMBC

13

https://cedeela.fr/~simon/files/cade_17.tar.gz

Problems (SAT–UNSAT) SMBC HBMC LSC CVC4 Inox

Expr (3–1) 2–0 3–0 2–0 0–0 3–0
Fold (2–0) 2–0 – – – –
Palindromes (1–2) 1–2 1–1 0–0 0–0 0–1
Pigeon (0–1) 0–1 – – 0–1 0–0
Regex (12–0) 7–0 2–0 11–0 – 0–0
Sorted (2–2) 2–2 2–2 2–0 0–1 2–1
Sudoku (1–0) 1–0 1–0 0–0 0–0 0–0
Type Checking (2–0) 2–0 2–0 0–0 0–0 0–0

Table 1. Results of the Experiments

and LSC have more trouble due to the large branching factor of the search
tree.

Fold Those examples are about synthesizing a function that distinguishes be-
tween lists by only looking at one element at a time (plus an accumulator).
In other words, we fold a function f on all elements, and the goal is to pick f
such that it can distinguish between close, but distinct, lists. This problem
is outside the scope of all the tools the author knows about, simply be-
cause it combines an uninterpreted type with an unknown of function type,
but SMBC has no problem synthesizing what is in essence a state machine
transition function.

Palindromes After defining unary natural numbers and lists, we look for lists
that are palindromes (i.e., rev(l) = l) that have some additional constraint
on their sum or length. Some of those problems are more difficult variations
of the problem from Section 5.1. Some of the problems are satisfiable and
some are unsatisfiable. For example, the goal in long rev sum2.smt2 is to
disprove the existence of a palindrome of length 200 with sum 1; HBMC
times out because there are too many computations, and LSC cannot detect
unsatisfiability. Those problems are easy but the toplevel goal is a parallel
conjunction that needs to be treated properly, which is why LSC fails to
solve even the satisfiable instances.

Pigeon A computational version of the classical pigeon hole problem, here with
4 holes for 5 pigeons. This requires handling uninterpreted types and unsat-
isfiable problems.

Regex Basic regular expressions are represented by a datatype featuring con-
stants, star, and disjunction. The goal is generally to find a regular expres-
sion that matches a given string. Here, LSC shines and HBMC is in trouble,
because (comparatively) many computations are required to check each in-
put. SMBC has a good success rate here, even though its relatively naive
interpreter is much slower than LSC’s native compiled code.

Sorted Some problems about finding sorted lists of natural numbers that have
additional properties (on their length, reverse, sum, etc.). The problems are
fairly easy, but some of them are unsatisfiable.

14

Sudoku A sudoku is represented as a list of lists of a datatype with 9 construc-
tors. Some functions to check whether the sudoku is valid (no duplicate in
any line, column or block) are defined, an initial state is given, and the goal
is simply to solve the sudoku. This is also a combinatorial problem on which
HBMC takes only 2 s, SMBC takes 12 s, and LSC times out. Here, it pays
to bit-blast because the SAT solver can propagate constraints among the
sudoku cells.

Type Checking This example comes from the HBMC draft report [7]. Terms
of the simply typed λ-calculus are defined by a datatype (variables being
mapped to De Bruijn indices), along with a type-checking function that
takes a term t, a type τ and an environment Γ (i.e. a list of types), and
returns > iff Γ ` t : τ holds. The goal is to find a term that has type
(a → b) → (b → c) → (a → c) in the empty environment: in other words,
to synthesize the composition operator from its type. The task is difficult
because of the fast growth of the search space, in which LSC drowns, but
SMBC manages well.

Overall, SMBC appears to be well balanced and to have good results both on
problems that require computations and on problems where pruning of impossi-
ble cases is critical. Given the simplicity of our implementation, we believe these
results are promising, and that SMBC occupies a sweet spot between handling
computations well and traversing the search space in a smart way.

10 Conclusion

After describing a new technique for finding models in a logic of computable
functions and datatypes, we presented ways of extending the language and
described a working implementation. By combining symbolic evaluation with
SAT-based conflict analysis, the approach is aimed at difficult problems where
the search space is large (e.g., because of parallel disjunction and independent
sub-problems) and large amounts of computations must be performed before
discovering failure. It can be described as a spiritual heir to evaluation-driven
narrowing [14] that replaces traditional exploration of the space of possible in-
puts by conflict driven clause learning. We hope that this work will benefit model
finders in proof assistants, in particular Nunchaku [9, 17].

Acknowledgments The author would like to thank Jasmin Blanchette, Martin

Brain, Raphaël Cauderlier, Koen Claessen, Pascal Fontaine, Andrew Reynolds, and

Martin Riener, and the anonymous reviewers, for discussing details of this work and

suggesting textual improvements.

References

1. Sergio Antoy, Rachid Echahed, and Michael Hanus. A Needed Narrowing Strategy.
Journal of the ACM (JACM), 2000.

15

2. Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard Ver-
sion 2.6. http://www.SMT-LIB.org, 2016.

3. Clark Barrett, Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Splitting
on demand in SAT modulo theories. In International Conference on Logic for
Programming Artificial Intelligence and Reasoning, pages 512–526. Springer, 2006.

4. Clark Barrett, Igor Shikanian, and Cesare Tinelli. An Abstract Decision Procedure
for Satisfiability in the Theory of Recursive Data Types. Electronic Notes in
Theoretical Computer Science, 174(8):23–37, 2007.

5. Koen Claessen and John Hughes. QuickCheck: a lightweight tool for random testing
of Haskell programs. Acm sigplan notices, 46(4):53–64, 2011.

6. Koen Claessen, Moa Johansson, Dan Rosén, and Nicholas Smallbone. TIP: Tons of
Inductive Problems. In Conferences on Intelligent Computer Mathematics, pages
333–337. Springer, 2015.

7. Claessen, Koen and Rosén, Dan. SAT-based Bounded Model Checking for Func-
tional Programs. https://github.com/danr/hbmc (unpublished), 2016.

8. The Coq Development Team. The Coq Proof Assistant. http://coq.inria.fr/.
9. Simon Cruanes and Jasmin Christian Blanchette. Extending Nunchaku to De-

pendent Type Theory. In Jasmin Christian Blanchette and Cezary Kaliszyk, ed-
itors, Proceedings First International Workshop on Hammers for Type Theories,
HaTT@IJCAR 2016, Coimbra, Portugal, July 1, 2016., volume 210 of EPTCS,
pages 3–12, 2016.

10. Jonas Dureg̊ard, Patrik Jansson, and Meng Wang. Feat: Functional Enumeration
of Algebraic Types. ACM SIGPLAN Notices, 47(12):61–72, 2013.

11. Michael Hanus. A unified computation model for functional and logic program-
ming. In Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages. ACM, 1997.

12. Matt Kaufmann and J Strother Moore. ACL2: An industrial strength version of
Nqthm. In Computer Assurance, 1996. COMPASS’96, pages 23–34. IEEE, 1996.

13. Richard E Korf. Depth-first iterative-deepening: An optimal admissible tree search.
Artificial intelligence, 27(1):97–109, 1985.

14. Fredrik Lindblad. Property directed generation of first-order test data. In Trends
in Functional Programming, pages 105–123. Citeseer, 2007.

15. Lawrence C Paulson. Isabelle: A generic theorem prover, volume 828. Springer
Science & Business Media, 1994.

16. Andrew Reynolds and Jasmin Christian Blanchette. A decision procedure for (co)
datatypes in SMT solvers. In International Conference on Automated Deduction,
pages 197–213. Springer, 2015.

17. Andrew Reynolds, Jasmin Christian Blanchette, Simon Cruanes, and Cesare
Tinelli. Model Finding for Recursive Functions in SMT. In Nicola Olivetti and
Ashish Tiwari, editors, Automated Reasoning - 8th International Joint Conference,
IJCAR 2016, Coimbra, Portugal, June 27 - July 2, 2016, Proceedings, volume 9706
of Lecture Notes in Computer Science, pages 133–151. Springer, 2016.

18. Colin Runciman, Matthew Naylor, and Fredrik Lindblad. Smallcheck and lazy
smallcheck: automatic exhaustive testing for small values. In Acm sigplan notices,
volume 44, pages 37–48. ACM, 2008.

19. Philippe Suter, Ali Sinan Köksal, and Viktor Kuncak. Satisfiability modulo re-
cursive programs. In International Static Analysis Symposium, pages 298–315.
Springer, 2011.

16

http://www.SMT-LIB.org
https://github.com/danr/hbmc
http://coq.inria.fr/

	Satisfiability Modulo Bounded Checking
	1 Introduction
	2 Logic
	3 Evaluation with Explanations
	4 Delegating Choices and Conflict Analysis to SAT
	5 Enumeration of Inputs and Iterative Deepening
	5.1 Application to the Introductory Example

	6 Extensions of the Language
	6.1 Uninterpreted Types
	6.2 Functional Unknowns

	7 Refinements to the Calculus
	7.1 Multiple Conflict Clauses
	7.2 Unification Rules

	8 Implementation
	9 Experiments
	10 Conclusion

