Journal of Siberian Federal University. Chemistry 2 (2017 10) 239-249

УДК 547.1'13: 546.725: 542.06

Phenylvinylidene Clusters Containing ReFePt Metal Cores and Chelate Diphosphine Ligands at the Platinum Atom

Victor V. Verpekin*a, Alexander A. Kondrasenkoa, Ruslan O. Ergaev^b, Oleg S. Chudina, Nina I. Pavlenkoa and Anatoly I. Rubayloa,b ^aInstitute of Chemistry and Chemical Technology SB RAS FRC "Krasnoyarsk Science Center SB RAS" 50/24 Akademgorodok, Krasnoyarsk, 660036, Russia ^bSiberian Federal University 79 Svobodny, Krasnoyarsk, 660041, Russia

Received 21.02.2017, received in revised form 08.04.2017, accepted 31.05.2017

Two different synthetic methods were applied to obtain heteronuclear phenylvinylidene clusters $CpReFePt(\mu_3-C=CHPh)(CO)_5(P-P)$ (P-P – bis(diphenylphosphino)ethane (1), bis(diphenylphosphino) propane (2)). The compounds were studied by IR and NMR spectroscopy. Their molecular structures were proposed based on IR, NMR spectroscopic data.

Keywords: rhenium, platinum, iron, cluster, vinylidene, heterometallic complexes, vinylidene complexes.

DOI: 10.17516/1998-2836-0021.

[©] Siberian Federal University. All rights reserved

^{*} Corresponding author E-mail address: vvv@sany-ok.ru

Фенилвинилиденовые кластеры с остовом ReFePt, содержащие хелатные дифосфиновые лиганды при атоме платины

В.В. Верпекин^а, А.А. Кондрасенко^а, Р. О. Ергаев⁶, О.С. Чудин^а, Н.И. Павленко^а, А.И. Рубайло^{а, 6} ^аИнститут химии и химической технологии СО РАН ФИЦ «Красноярский научный центр СО РАН» Россия, 660036, Красноярск, Академгородок, 50/24 ⁶Сибирский федеральный университет Россия, 660041, Красноярск, пр. Свободный, 79

Двумя различными способами синтезированы гетеротрехъядерные фенилвинилиденовые кластеры типа CpReFePt(µ₃-C=CHPh)(CO)₅(P-P) (где P-P – бис(дифенилфосфино)этан (1) или бис(дифенилфосфино)пропан (2)). Полученные соединения изучены методами ИКи ЯМР-спектроскопии. На основе спектроскопических данных предложено строение кластеров.

Ключевые слова: рений, платина, железо, кластеры, винилиден, гетерометаллические комплексы, винилиденовые комплексы.

Введение

Исследования структуры, физико-химических свойств и закономерностей образования полиметаллических соединений с различными органическими лигандами вносят вклад в фундаментальные разделы современной химии, такие как теория строения и реакционной способности, теория процессов каталитического синтеза [1–6]. Наибольший интерес вызывают исследования гетерометаллических кластеров и комплексов, в которых непредельные карбеновые лиганды координированы с несколькими атомами металлов [7–9].

Для получения кластерных гетерометаллических соединений используют в основном превращения органических молекул и лигандов на заранее сформированном металлическом центре в жестких условиях [10]. Однако такие методы индивидуальны для каждого случая, что не позволяет прогнозировать состав и строение конечного продукта.

Наиболее эффективный подход к получению гетерометаллических кластеров основан на способности моно- и биядерных гетерометаллических комплексов, содержащих непредельные углеводородные лиганды, селективно присоединять координационно- и электронно- ненасыщенные металлосодержащие фрагменты [11–16]. Данный подход успешно реализован нами для синтеза би- и трехъядерных гетерометаллических винилиденовых комплексов и кластеров [14, 17–19].

Несмотря на многообразие гетерометаллических μ_3 -винилиденовых кластеров в настоящее время известно лишь небольшое число таких соединений, содержащих атом рения. Первый μ_3 -винилиденовый кластер, содержащий атом рения CpReFePt(μ_3 -C=CHPh)(CO)₆(PPh₃) (3), был получен относительно недавно, в 2009 г. [20], позже синтезированы и охарактеризованы кластер CpReFePt(μ_3 -C=CHPh)(CO)₅[P(OPrⁱ)₃]₂ (4) и кластеры, содержащие металлический остов ReFePd и хелатные дифосфиновые лиганды при атоме палладия, CpReFePd(μ_3 -C=CHPh)(CO)₅(P-P) (P-P = dppe (5), dppp (6)) [21, 22]. Поэтому поиск новых путей синтеза, изучение закономерностей образования и свойств гетерометаллических винилиденовых комплексов рения является актуальным. В этой связи нами изучена возможность синтеза и свойства μ_3 -винилиденовых кластеров с остовом ReFePt и хелатными дифосфиновыми лигандами у атома платины.

Экспериментальная часть

Все операции по синтезу и выделению комплексов проводили в атмосфере аргона. Растворители (бензол, диэтиловый эфир, петролейный эфир, тетрагидрофуран, хлористый метилен) предварительно очищали от примесей, следов воды и кислорода путем перегонки над соответствующими осушителями. Комплексы $Cp(CO)_2Re(\mu-C=CHPh)Pt(P-P)$ (P-P = dppe (7); dppp (8)) и CpReFePt(μ_3 -C=CHPh)(CO)₆(PPh₃) (3) синтезированы по методикам [20, 23]. В экспериментах использованы 1,2-бис(дифенилфосфино)этан (Merck), 1,3-бис(дифенилфосфино)пропан (Acros). Нонакарбонил дижелеза получали по методике [24].

Спектры ИК измеряли на ИК-Фурье-спектрометре Tensor 27 (Bruker, Германия). Спектры ЯМР ¹H, ¹³C и ³¹P регистрировали на Фурье-спектрометре ЯМР AVANCE III 600 (Bruker, Германия). Химические сдвиги в спектрах были определены относительно остаточных протонов дейтерированных растворителей и приведены в миллионных долях (м.д.). Константы спинспиновых взаимодействий указаны в герцах (Гц).

Кластеры CpReFePt(µ₃-C=CHPh)(CO)₅(dppe) (1) и CpReFePt(µ₃-C=CHPh)(CO)₅(dppp) (2) синтезированы по следующим методикам:

Синтез CpReFePt(µ₃-C=CHPh)(CO)₅(dppe) (1)

Метод 1. К раствору 0,079 г (0,079 ммоль) Ср(СО)₂Re(μ -C=CHPh)Pt(dppe) (7) в 10 мл бензола при интенсивном перемешивании в атмосфере аргона добавляли 0,121 г (0,33 ммоль) Fe₂(CO)₉. Реакционную смесь перемешивали в течение 1 ч, фильтровали через канюль, затем упаривали в вакууме. Остаток растворяли в бензоле и наносили на колонку Al₂O₃ (5×2 см). Колонку элюировали смесью гексан-бензол (7:3) и бензолом. В первой темно-красной зоне после удаления растворителей, содержалось 0,048 г (53 %) CpReFePt(μ_3 -C=CHPh)(CO)₅(dppe) (1). Из второй желтой зоны выделили 0,032 г (40 %) исходного комплекса Cp(CO)₂Re(μ -C=CHPh) Pt(dppe) (7).

Метод 2. К раствору 0,061 г (0,059 ммоль) CpReFePt(µ₃-C=CHPh)(CO)₆(PPh₃) (3) в 10 мл бензола в инертной атмосфере добавляли 0,028 г (0,070 ммоль) dppe. Реакционную смесь перемешивали в течение 2 ч, затем концентрировали при пониженном давлении до 1 мл и разбавили 10 мл гексана, образовался ярко-красный осадок. С выпавшего осадка декантировали маточный раствор, осадок промывали гексаном 3×2 мл и высушивали в вакууме. Получили 0,059 г (87 %) комплекса CpReFePt(µ₃-C=CHPh)(CO)₅(dppe) (1), идентифицированного по ИК-спектрам.

- 241 -

ИК-спектр (CH₂Cl₂, см⁻¹): 1996, 1928, 1906, 1842 (v(CO)); (KBr, см⁻¹): 1994, 1926, 1902, 1843 (v(CO)).

В спектрах ЯМР ¹Н соотношение сигналов циклопентадиенильного лиганда двух изомеров составляет 3:1.

1 изомер:

¹³C{¹H} 9MP (CD₂Cl₂) δ: 31,9 (дд, -CH₂-, $J_{CP} = 36$, $J_{CP} = 12$); 33,2 (дд, -CH₂-, $J_{CP} = 20$, $J_{CP} = 19$); 90,1 (c, C₅H₅); 96,6 (д, ${}^{3}J_{CP} = 29$, C¹=<u>C</u>²HPh); 125 – 137 (-Ph); 144,4 (C_{κπ} =C²H<u>C</u>₆H₅); 209,3 (c, Re-<u>C</u>O); 211,6 (c, Re-<u>C</u>O); 263,9 (μ-C¹, $J_{CP} = 4$).

¹H *Я*MP (CD₂Cl₂) δ : 2,46 (м, H, -CH₂-); 1,85 (м, H, -CH₂-); 2,32 (м, H, -CH₂-); 1,94 (м, H, -CH₂-); 5,13 (c, 5H, C₅H₅); 7,01 (д, H, *J*_{PtP} = 29; ⁴*J*_{HP1} = 7,7, ⁴*J*_{HP2} = 11,67, =C²<u>H</u>Ph); 6,2 - 7,8 (25H, -Ph).

³¹P{¹H} ЯМР (CD₂Cl₂) δ : 52,56 (P₁, J_{PP} = 7,08, J_{PtP} = 3300); 52,00 (P₂, J_{PP} = 7,08, J_{PtP} = 3600). 2 изомер:

¹³C{¹H} ЯМР (CD₂Cl₂) δ : 32,5 (м, -CH₂-); 29,8 (м, -CH₂-); 89,4 (с, C₅H₅); 96,3 (д, ³J_{CP} = 28, C¹=<u>C</u>²HPh); 125 - 137 (-Ph); 142,2 (C_{кл} =C²H<u>C</u>₆H₅); 207,4 (с, Re-<u>C</u>O); 209,1 (с, Re-<u>C</u>O); 255,1 (µ-C¹). ¹H ЯМР (CD₂Cl₂) δ : 2,68 (м, H, -CH₂-); 2,60 (м, H, -CH₂-); 2,53 (м, H, -CH₂-); 2,45 (м, H, -CH₂-);

5,37 (c, 5H, C₅H₅); 6,2 – 7,8 (25H, -Ph); 7,11 (α , H, ⁴*J*_{HP1} = 7,7, =C²<u>H</u>Ph);

³¹P{¹H} ЯМР (CD₂Cl₂) δ : 48,76 (P₁, $J_{PP} = 11,6, J_{PtP} = 3300$); 49,9 (P₂, $J_{PP} = 11,6, J_{PtP} = 3500$). Синтез CpReFePt(μ_3 -C=CHPh)(CO)₅(dppp) (**2**)

Метод 1. К раствору 0,162 г (0,159 ммоль) Ср(СО)₂Re(µ-C=CHPh)Pt(dppp) (8) в 10 мл бензола в инертной атмосфере добавляли 0,236 г (0,648 ммоль) Fe₂(СО)₉. Реакционную смесь перемешивали в течение 1 ч, фильтровали через канюль, а затем упаривали на водоструйном насосе. Остаток растворяли в бензоле и наносили на колонку Al₂O₃ (5×2 см). Колонку элюировали смесью гексан-бензол (6:4) и бензолом. В первой темно-красной зоне, после удаления растворителей, содержалось 0,057 г (31 %) CpReFePt(µ₃-C=CHPh)(CO)₅(dppp) (2). Из второй желтой зоны выделили 0,075 г (46 %) исходного комплекса Cp(CO)₂Re(µ-C=CHPh)Pt(dppp) (8).

Метод 2. К раствору 0,053 г (0,051 ммоль) CpReFePt(µ₃-C=CHPh)(CO)₆(PPh₃) (3) в 10 мл бензола в инертной атмосфере добавляли 0,025 г (0,06 ммоль) dppp. Реакционную смесь перемешивали в течение 2 ч, затем концентрировали при пониженном давлении до 1 мл и разбавляли 10 мл гексана, образовался ярко-красный осадок. С выпавшего осадка декантировали маточный раствор, осадок промывали гексаном 3×2 мл и высушивали в вакууме. Получили 0,049 г (83 %) комплекса CpReFePt(µ₃-C=CHPh)(CO)₅(dppp) (2), идентифицированного по ИК-спектрам.

ИК-спектр (КВг, см⁻¹): 1996, 1928, 1905, 1845 (v(СО)).

В спектрах ЯМР ¹Н соотношение сигналов циклопентадиенильного лиганда двух изомеров составляет 1:1.

1 изомер:

¹Н ЯМР (CD₂Cl₂) δ : 1,55 – 1,85 (м, 6H, -(CH₂)₃-); 4,95 (с, 5H, C₅H₅); 7,00 (дд, H, $J_{CP} = 10,6$, $J_{CP} = 8,6$, $J_{PtH} = 51$, =C²<u>H</u>Ph); 6,7 – 7,69 (25H, -Ph).

³¹P{¹H} ЯМР (CD₂Cl₂) δ : 1,52 (P₁, $J_{PP} = 34,7, J_{PtP} = 3231$); -0,77 (P₂, $J_{PP} = 34,7, J_{PtP} = 3488$). 2 изомер:

¹H SMP (CD₂Cl₂) δ : 5,35 (c, 5H, C₅H₅); 7,11 (μ , H, $J_{CP} = 4$, =C²<u>H</u>Ph); 6,7 – 7,69 (25H, -Ph). ³¹P{¹H} SMP (CD₂Cl₂) δ : -0,43 (P₁, $J_{PP} = 35,6$, $J_{PtP} = 3449$); -1,54 (P₂, $J_{PP} = 35,6$, $J_{PtP} = 3125$).

Результаты и обсуждение

Ранее на основе реакций биядерных комплексов $Cp(CO)_2Mn(\mu-C=CHPh)Pt(L)(L')$ (L = L' = PPh₃, P(OPrⁱ)₃, P(OEt)₃; L = PPh₃, L' = CO) с Fe₂(CO)₉ в нашей группе была синтезирована серия трехъядерных μ_3 -винилиденовых кластеров CpMnFePt(μ_3 -C=CHPh)(CO)₆(L), содержащих только терминальные фосфорсодержащие и карбонильные лиганды при атоме платины [25, 26]. Однако реакции биядерных винилиденовых MnPt комплексов, содержащих хелатные дифосфиновые лиганды с нонакарбонилом дижелеза приводили к отщеплению циклопентадиенилатрикарбонил марганца и образованию продуктов переметаллирования исходных соединений (рис. 1) [27].

Только при реакции комплекса Cp(CO)₂Mn(μ -C=CHPh)Pt(dppm) с Fe₂(CO)₉ среди продуктов реакции был получен μ_3 -винилиденовый кластер CpMnFePt(μ_3 -C=CHPh)(CO)₅(μ -dppm) (9) с выходом 46 %, в котором dppm лиганд образовывал мостик между железо- и платинасодержащими фрагментами (рис. 1) [28]. Для ренийсодержащих комплексов Cp(CO)₂Re(μ -C=CHPh) Pd(dppe) и Cp(CO)₂Re(μ -C=CHPh)Pd(dppp) было показано, что их взаимодействие с Fe₂(CO)₉ приводит к образованию трехъядерных μ_3 -винилиденовых кластеров CpReFePd(μ_3 -C=CHPh) (dppe) (6), однако в реакционной смеси образуются и другие продукты за счет взаимодействия образовавшихся кластеров **5** и **6** с Fe₂(CO)₉ [21].

Для установления возможности получения гетерометаллических трехъядерных µ₃-винилиденовых кластеров, содержащих при атоме платины хелатные дифосфиновые

Рис. 1

лиганды путем присоединения третьего металлосодержащего фрагмента к биядерным μ -винилиденовым комплексам, нами были изучены реакции биядерных RePt комплексов Cp(CO)₂Re(μ -C=CHPh)Pt(dppe) (7) и Cp(CO)₂Re(μ -C=CHPh)Pt(dppp) (8) с нонакарбонилом дижелеза. Показано, что при взаимодействии комплексов 7 и 8 с Fe₂(CO)₉ в бензоле при комнатной температуре получаются новые триметаллические кластеры CpReFePt(μ_3 -C=CHPh)(CO)₅(P-P) (P-P = dppe (1); dppp (2)) с выходами 53 и 41 % (рис. 2).

Полученные соединения представляют собой темно-красные мелкокристаллические вещества, устойчивые в инертной атмосфере, растворимые в бензоле и хлористом метилене.

Реакция комплексов 7 и 8 с Fe₂(CO)₉ напоминает аналогичную реакцию RePd комплексов Cp(CO)₂Re(μ -C=CHPh)Pd(dppe) и Cp(CO)₂Re(μ -C=CHPh)Pd(dppp), однако ReFePt кластеры 1 и 2 в отличие от 5 и 6 [21] не реагируют с Fe₂(CO)₉, и происходит селективное образование только трехъядерных кластеров, побочных продуктов при этом не наблюдается. Кластеры 1 и 2 по реакциям RePt биядерных комплексов с Fe₂(CO)₉ образуются селективно, но их выход не удается увеличить при использовании больших избытков нонакарбонила дижелеза и увеличении времени реакции. Поэтому для увеличения выходов CpReFePt(μ_3 -C=CHPh)(CO)₅(dppe) (1) и CpReFePt(μ_3 -C=CHPh)(CO)₅(dppe) (2) нами был опробован другой подход.

Ранее для трехъядерного кластера типа CpMnFePt(μ_3 -C=CHPh)(CO)₆[P(OPrⁱ)₃] была показана возможность замещения карбонильного лиганда при атоме платины на триизопропилфосфитный лиганд с образованием пентакарбонильного кластера CpMnFePt(μ_3 -C=CHPh) (CO)₅[P(OPrⁱ)₃]₂[25]. Однако возможность замещения как фосфинового, так и карбонильного лагандов при платине в CpMnFePt(μ_3 -C=CHPh)(CO)₆[P(OPrⁱ)₃] не была исследована. Известно, что замещение терминальных трифенилфосфиновых лигандов на дифосфины в комплексах Cp(CO)₂M(μ -C=CHPh)Pt(PPh₃)₂ (M = Mn, Re) протекает легко и приводит к образованию биядерных μ -винилиденовых комплексов, содержащих хелатные дифосфиновые лиганды при атоме платины, с количественными выходами [23, 29, 30]. Поэтому нами были изучены реакции CpReFePt(μ_3 -C=CHPh)(CO)₆(PPh₃) (**3**) с дифосфинами (dppe и dppp). Проведенные эксперименты показали, что при взаимодействии кластера **3** с дифосфином происходит замещение как карбонильного, так и трифенилфосфинового лигандов при атоме платины исходного кластера на хелатный дифосфиновый лиганд. При этом выходы соединений **1** и **2** значительно увеличиваются (87 и 83 % соответственно) по сравнению с выходами кластеров, полученных по реакции биядерных комплексов **7** и **8** с Fe₂(CO)₉, (рис. 3).

Рис. 3

Таблица. Данные спектров ЯМР ¹H, ³¹P и ¹³C (δ , ppm, [*J*, Hz]) кластеров CpReFePt(μ_3 -C¹=C²HPh)(CO)₅(dppe) (**1**), CpReFePt(μ_3 -C¹=C²HPh)(CO)₅(dppp) (**2**), CpMnFePt(μ_3 -C¹=C²HPh)(CO)₅(μ -dppm) (**9**) и комплексов Cp(CO)₂Re(μ -C¹=C²HPh)Pt(dppe) (**7**), Cp(CO)₂Re(μ -C¹=C²HPh)Pt(dppe) (**8**)

	ЯМР						
Комплекс	¹³ C			ιΗ		³¹ P	
	C1	C ²	C ₅ H ₅	=C ² <u>H</u> Ph	C ₅ H ₅	\mathbf{P}^1	P ²
1	263,9 д	96,6 д	90,1 c	7,01 д	5,13 c	52,56 д	52,00 д
	${}^{2}J_{\rm CP} = 4$	${}^{2}J_{\rm CP} = 29$	*89,4 c	${}^{3}J_{\rm PtH} = 29$	*5,37 c	$J_{\rm PtP} = 3300$	$J_{\rm PtP} = 3600$
	*255,1 c	*96,3 д		${}^{4}J_{\rm HP1} = 7,7$		$^{2}J_{\rm PP} = 7,08$	$^{2}J_{\rm PP} = 7,08$
		${}^{2}J_{\rm CP} = 28$		${}^{4}J_{\rm HP12} = 11,67$		*48,76 д	*49,90 д
				*7,11 д		$J_{\rm PtP} = 3300$	$J_{\rm PtP} = 3500$
				${}^{4}J_{\rm HP1} = 7,7$		$^{2}J_{\rm PP} = 11,6$	$^{2}J_{\rm PP} = 11,6$
2	-	-	-	7,00 дд	5,95 c	1,52 д	-0,77 д
				${}^{3}J_{\rm PtH} = 51$	*5,35 c	$^{2}J_{\rm PP} = 34,7$	$^{2}J_{\rm PP} = 34,7$
				${}^{4}J_{\rm HP1} = 8,6$		$J_{\rm PtP} = 3231$	$J_{\rm PtP} = 3488$
				${}^{4}J_{\rm HP12} = 10,6$		*-0,43 д	*-1,54 д
				*7,11 д		$^{2}J_{\rm PP} = 35,6$	$^{2}J_{\rm PP} = 35,6$
				${}^{4}J_{\rm HP1} = 4,0$		$J_{\rm PtP} = 3449$	$J_{\rm PtP} = 3125$
7	234,57 дд	138,34 дд	86,31 c	8,02 дд	5,09 c	49,20 д	51,89 д
	$J_{ m PtC1} =$	$^{2}J_{\text{PtC2}} = 101,4$		$^{3}J_{\rm PtH} = 20,83$		$^{2}J_{\rm PP} = 36,34$	$^{2}J_{\rm PP} = 36,34$
	= 764,05	$^{3}J_{C2P} = 2,91$		${}^{4}J_{\rm PH} = 13,14,$		$J_{\rm PtP} = 4267$	$J_{\rm PtP} = 2493$
	$^{2}J_{\text{C1P}} = 66,46$			${}^{4}J_{\rm PH} = 14,29$			
8	233,41 дд	137,61 т	85,61c	7.17 дд	4,82 c	14,77 д	9,90 д
	$J_{\rm PtC1} = 813,79$	${}^{2}J_{\rm PtC2} =$		$^{3}J_{\text{PtH}} = 17,66$		$^{2}J_{\rm PP} = 6,24$	$^{2}J_{\rm PP} = 6,24$
	$^{2}J_{\text{C1P}} = 65,55;$	= 104,99		${}^{4}J_{\rm PH} = 13,19$		$J_{\rm PtP} = 4285$	$J_{\rm PtP} = 2312$
	2,59			${}^{4}J_{\rm PH} = 15,42$			
9	311,70 c	94,17 д	88,25 c	7,01 д	4,49 c	17,84 д	65,96 д
	$J_{\rm PtC1} = 68,5$	$^{2}J_{\text{PtC2}} = 169,6$	*88,46 c	${}^{3}J_{\rm PtH} = 55,1$	*4,80 c	$J_{\rm PtP} = 3439$	$J_{\rm PtP} = 96$
		$^{3}J_{PC2} = 3,4$		${}^{4}J_{\rm PH} = 3,0$		$^{2}J_{\rm PP} = 31$	${}^{2}J_{\rm PP} = 31$
				*6,23 c		*12,89 д	*68,74 д
				${}^{3}J_{\rm PtH} = 54,3$		$J_{\rm PtP} = 3346$	$J_{\rm PtP} = 58$
				${}^{4}J_{\rm PH} = 3,0$		$^{2}J_{\rm PP} = 29$	$^{2}J_{\rm PP} = 29$

Примечание * - химические сдвиги изомеров кластеров.

Полученные соединения изучены методами ИК-, ЯМР-спектроскопии. В таблице приведены основные данные спектров ЯМР ¹H, ³¹P и ¹³C кластеров **1** и **2**.

Из данных ЯМР-спектров полученных соединений (таблица) видно, что кластеры 1 и 2 в растворах находятся в виде смеси двух изомеров. На основе измерения соотношений инте-

гральных интенсивностей сигналов атомов фосфора в спектрах ЯМР ³¹Р и сигналов циклопентадиенильных лигандов в спектрах ЯМР ¹Н кластеров установлено, что соотношение изомеров составляет 3:1 и 1:1 для кластеров **1** и **2** соответственно.

О наличии в полученных кластерах мостикового μ_3 - η^2 : η^1 : η^1 -координированного винилиденового лиганда однозначно свидетельствуют данные спектров ЯМР ¹Н и ¹³С, в которых сигналы винилиденового и циклопентадиенильного лигандов находятся в областях δ типичных для μ_3 -винилиденовых трехъядерных кластеров (табл. 1) [11, 26]. Однако в ЯМР-спектрах синтезированных кластеров **1** и **2** обнаружены некоторые особенности, которые дают возможность лучше понять их строение.

Так, например, при переходе от исходного биядерного комплекса Cp(CO)₂Re(μ -C=CHPh) Pt(dppe) (7) к соответствующему кластеру CpReFePt(μ_3 -C=CHPh)(CO)₅(dppe) (1) в спектре ЯМР ¹³С наблюдается не только смещение химических сдвигов атомов C¹ и C² винилиденового лиганда, но также изменение величины их констант J_{CP} (таблица). В спектре ЯМР ¹³С кластера **1** константа спин-спинового взаимодействия у атома C² в несколько раз больше, чем у атома C¹, в исходном комплексе **7** с мостиковым μ_2 -винилиденовым лигандом, и наоборот, константа ² J_{CP} атома C¹ в несколько раз больше константы ³ J_{CP} атома C² (таблица). Такое изменение значений констант J_{CP} атомов C¹ и C² свидетельствует о π -координации винилиденового лиганда с атомом платины в **1**. Ранее подобное изменение констант J_{CP} наблюдалось при переходе от биядерного RePd комплекса к ReFePd трехъядерному кластеру **5**, в котором согласно рентгеноструктурным данным винилиденовый лиганд образует σ -связи с атомами рения и железа и π -связь с атомом палладия [21].

В исходных биядерных комплексах 7 и 8 атомы фосфора дифосфиновых лигандов неэквивалентны и находятся в разных положениях относительно µ-винилиденового лиганда [23, 30]. Эта неэквивалентность отражается в их спектрах ЯМР ³¹Р. Так, сигнал в слабом поле, имеющий большую величину константы J_{PtP} , был отнесен к атому P¹, находящемуся в *цис*-положении к винилиденовому лиганду, а сигнал в сильном поле со значительно меньшей константой J_{PtP} – к атому P² в *транс*-положении к винилидену. В спектрах ЯМР ³¹Р трехъядерного кластера CpMnFePt(µ₃-C=CHPh)(CO)₅(µ-dppm) (9) найдено, что разница между химическими сдвигами ядер P¹ и P² лиганда dppm составляла 50 м.д., а константа J_{PtP} атома фосфора, координированного с железным фрагментом, была в 60 раз меньше константы J_{PtP} атома фосфора, координированного с платиной (таблица) [28]. Эти данные свидетельствуют о том, что в 9 один фосфор лиганда dppm координирован с атомам платины, а другой – с атомом железа. Подобные сдвиги атомов фосфора и константы J_{PtP} обнаружены и для других соединений, в которых хелатные дифосфины связывают атомы железа и платины [31, 32]. В спектрах ЯМР ³¹Р кластеров 1 и 2 также наблюдаются неэквивалентные сигналы ядер фосфора (таблица), что свидетельствует о том, что оба атома фосфора дифосфинового лиганда связаны с платиновым фрагментом.

Таким образом, показано, что кластеры CpReFePt(µ₃-C=CHPh)(CO)₅(dppe) (1) и CpReFePt(µ₃-C=CHPh)(CO)₅(dppp) (2) могут быть синтезированы с помощью двух разных подходов. Первый метод основан на металлировании биядерных винилиденовых комплексов 7 и 8, в ходе которого происходит координация фрагмента [Fe(CO)₃] по связи C=C винилиденового лиганда исходного комплекса, при этом образуется триметаллический остов ReFePt, а винилиденовый лиганд приобретает мостиковую µ₃-η²:η¹:η¹-конфигурацию. Второй метод состоит в модификации лигандного окружения известного ReFePt кластера **3**, при этом идет замещение карбонильного и трифенилфосфинового лигандов в платинасодержащем фрагменте исходного кластера на хелатный дифосфиновый лиганд, конфигурация металлоостова не изменяется. На основании анализа данных спектров ИК и ЯМР ¹H, ³¹P и ¹³C и сравнения их с данными ранее синтезированных би- и трехъядерных соединений предложено строение трехъядерных кластеров **1** и **2**. Установлено, что винилиденовый лиганд в этих соединениях координирован с тремя атомами металлов, образуя σ -связи с атомами рения и железа и π -связь с атомом платины; оба атома фосфора дифосфиновых лигандов связаны с платиновым фрагментом.

Работа выполнена в рамках комплексной программы фундаментальных исследований Сибирского отделения РАН № 11.2 «Интеграция и развитие», проект № 11.2П.V44-13 «Синтез и исследование свойств гетерометаллических трехъядерных винилиденовых кластеров – перспективных предшественников гетерометаллических материалов и новых химических веществ».

Список литературы

1. Sculfort S., Braunstein P. Intramolecular d10-d10 interactions in heterometallic clusters of the transition metals. *Chem. Soc. Rev. 2011.* Vol. 40(5). P. 2741–2760.

2. Adams R.D. Metal segregation in bimetallic clusters and its possible role in synergism and bifunctional catalysis. *J. Organomet Chem. 2000.* Vol. 600 (1–2). P. 1–6.

3. Xiao J., Puddephatt R.J. Pt-Re clusters and bimetallic catalysts. *Coord. Chem. Rev. 1995.* Vol. 143. P. 457–500.

4. Ungva F. Application of transition metals in hydroformylation. Annual survey covering the year 2000. *Coord. Chem. Rev. 2001.* Vol. 218. P. 1–41.

5. Thomas J.M. et al. High-performance nanocatalysts for single-step hydrogenations. Acc. Chem. Res. 2003. Vol. 36, № 1. P. 20–30.

6. Werner H. Vinylidenerhodium complexes as promising tools for C-C coupling reactions Coord. Chem. Rev. 2004. Vol. 248, № 15–16. P. 1693–1702.

7. Ritleng V., Chetcuti M.J. Hydrocarbyl ligand transformations on heterobimetallic complexes. *Chem. Rev. 2007.* Vol. 107(3). P. 797–858.

8. Wheatley N., Kalck P. Structure and reactivity of early-late heterobimetallic complexes. *Chem. Rev. 1999.* Vol. 99(1). P. 3379–3419.

9. Adams R.D., Captain B. Hydrogen activation by unsaturated mixed-metal cluster complexes: new directions. *Angew. Chem. Int. Ed. Engl. 2008.* Vol. 47, № 2. P. 252–257.

10. Able E.W., Stone F.G.A., Wilkinson G. Comprehensive Organometallic Chemistry: Heteronuclear metal-metal bonds. Vol. 10. Under ed. Adams R.D. Pergamon, 1995. 423 p.

11. Bruce M.I. Organometallic chemistry of vinylidene and related unsaturated carbenes. *Chem. Rev. 1991.* Vol. 91(2). P. 197–257.

12. Zhang L. et al. Remarkable Reactions of Cationic Carbyne Complexes of Manganese and Rhenium with the Carbonylrhodium Anion $[Rh(CO)_4]^{-}$. A Novel Route to Heteropolymetallic Bridging Carbyne Complexes with μ - and μ_3 -Carbyne Ligands. *Organometallics. 2003.* Vol. 22(5). P. 4369–4371.

13. Werner H. et al. The Rhodium Compounds $C_3H_3Rh(=C=CHR)P^iPr_3$ as Building Blocks for the Synthesis of Heterometallic Di- and Trinuclear Vinylidene-Bridged Complexes. *Chem. Ber. 1988.* Vol. 121. P. 1565–1573.

14. Berenguer J.R., Lalinde E., Teresa Moreno M. An overview of the chemistry of homo and heteropolynuclear platinum complexes containing bridging acetylide (μ -C=CR) ligands. *Coord. Chem. Rev. 2010.* Vol. 254(7–8). P. 832–875.

15. Stone F.G.A. Zero-valent platinum complexes and their role in the synthesis of di-, tri-, and tetra-nuclear metal compounds. *Inorg. Chim. Acta. 1981.* Vol. 50. P. 33–42.

16. Bruce M.I. Transition Metal Complexes Containing Allenylidene, Cumulenylidene, and Related Ligands. *Chem. Rev. 1998.* Vol. 98(8). P. 2797–2858.

17. Werner H. et al. Ambidentate Behavior of Mononuclear Vinylidenerhodium Complexes – Novel C-C Coupling of a Methyl to a Vinylidene Group. *Angew. Chem. Int. Ed. Engl. 1984.* Vol. 23. P. 431–432.

18. Kolobova N.E. et al. Reactions of manganese π -acetylenic, η -vinylidenic, and η -allenylidenic complexes with Fe₂(CO)₉ crystal and molecular structure of Cp(CO)₂Mn(μ_2 -C=CHCOOCH₃)Fe(CO)₄. *J. Organomet. Chem. 1982.* Vol. 228. P. 265–272.

19. Werner H. et al. Synthese und Kristallstruktur von Heterometall-zweikernkomplexen mit Vinyliden-brückenliganden. J. Organomet. Chem. 1985. Vol. 289. P. C5–C12.

20. Antonova A.B. et al. Chemistry of vinylidene complexes. XVIII. Synthesis and molecular structure of the novel trinuclear μ 3-vinylidene complex CpReFePt(μ_3 -C=CHPh)(CO)₆(PPh₃). J. Organomet. Chem. 2009. Vol. 694(1). P. 127–130.

21. Verpekin V.V. et al. Chemistry of vinylidene complexes. XXIII. Binuclear rhenium–palladium vinylidene bridged complexes, their reactions with diiron nonacarbonyl. *J. Organomet. Chem. 2014.* Vol. 770. P. 42–50.

22. Верпекин В.В., Чудин О.С., Пирязев Д.А., Рубайло А.И., Громилов С.А., Семейкин О.В. Новый трехъядерный µ₃-винилиденовый кластер CpReFePt(µ₃-C=CHPh)(CO)₅[P(OPr)₃]₂. Журнал структурной химии. 2015. Vol. 44. Р. 823–825.

23. Antonova A.B. et al. Chemistry of vinylidene complexes. XXI. Synthesis, spectroscopic and structural study of the RePt and MnPt μ -vinylidene complexes. *Inorg. Chim. Acta. 2013.* Vol. 394. P. 328–336.

24. Braye E.H. et al. Diiron Enneacarbonyl. John Wiley & Sons, Inc. P. 178-181.

25. Antonova A.B. et al. Chemistry of vinylidene complexes XI. Synthesis of trinuclear MnFePt complexes by means of consecutive assemblig out of mono- and dimetal vinylidene precursors. *Inorganica Chim. Acta. 1995.* Vol. 230. P. 97–104.

26. Antonova A.B. Use of the Mn=C=C system in organometallic and organic synthesis *Coord*. *Chem. Rev. 2007.* Vol. 251(11–12). P. 1521–1560.

27. Antonova A.B. et al. Chemistry of vinylidene complexes XII. Transmetalation of the ixvinylidene ligand in the reaction of $Cp(CO)_2MnPt(\mu-C=CHPh)(dppp)$ with $Fe_2(CO)_9$. Formation of new Pt, PtFe₂ and PtFe₃ complexes. J. Organomet. Chem. 1996. Vol. 524. P. 81–85.

28. Antonova A.B. et al. Chemistry of vinylidene complexes. XIII. The reaction between $Cp(CO)_2MnPt(\mu-C=CHPh)(\eta^2-dppm)$ and $Fe_2(CO)_9$: simultaneous formation of the μ_3 -vinylidene MnFePt and μ_4 -vinylidene PtFe₃ clusters . Crystal structure of $(\eta^5-C_5H_5)MnFePt(\mu_3-C=CHPh)$ (CO)₆[η^1 -PPh₂CH₂P(=O)Ph₂. J. Organomet. Chem. 1999. Vol. 577. P. 238–242.

29. Antonova A.B. et al. Chemistry of vinylidene complexes X. Synthesis and characterization of the vinylidene bridged complexes $Cp(CO)_2MnPt(\mu-C=CHPh)(P-P)$ with chelating diphosphine ligands P-P = dppm, dppe or dppp at the platinum atom. *Inorganica Chim. Acta. 1991.* Vol. 182. P. 49–54.

30. Антонова А.Б. et al. Химия винилиденовых комплексов. Сообщение 19. Новые гетерометаллические μ -винилиденовые комплексы со связями Re-M (M = Pd, Pt). Молекулярная структура (η^5 -C₅H₅)(CO)RePt(μ -C=CHPh)(μ -CO)(Ph₂PCH₂PPh₂). Известия Академии наук. Серия химическая. 2009. Vol. 5. P. 933–940.

31. Knorr M., Strohmann C., Braunstein P. Reactivity of Silylated Dinuclear Iron-Platinum Acyl Complexes: Formation of μ -Vinylidene Complexes and Crystal Structures of the Acyl Complex [(OC)₃{(MeO)₃Si}Fe(μ -dppm)Pt{C(O)Me}(t-BuNC)] and the μ -Vinylidene Complex [(OC)₃Fe{ μ -C=C(H)Ph}(μ -dppm)Pt(PPh₃)]. Organometallics. 1996. Vol. 15, Nº 6. P. 5653–5663.

32. Braunstein B.P. et al. Mixed-Metal Cluster Formatiom By Carbonylmetalate-Induced Pt-P Bond Cleavage in [PtCl₂(Ph₂PCH₂PPh₂)]. *Angew. Chem. Int. Ed. Engl. 1987.* Vol. 26. P. 88–89.