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invisiblestuff

“Among the innumerable processes which take place

in the universe, there are many whose future behavior

we often wish to predict.”

E. Lorenz (1963), The predictability of hydrodynamic flow
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Zusammenfassung

Die atmosphärischen Mesoskalen beinhalten dynamische und thermodynamische Prozesse, die
durch Längenskalen von einigen bis zu einigen hundert Kilometern und Zeitskalen von Minuten
bis zu einem Tag charakterisiert werden. Atmosphärische Strömungen auf diesem Skalenbe-
reich werden als Wetter der mittleren Breiten verstanden und ihre verlässliche Vorhersage
ist ein Hauptziel meteorologischer Forschung. Dabei treten zwei grundlegende Probleme auf:
Erstens besteht kein Konsens darüber, welcher Prozess die mesoskalige Dynamik dominiert
und insbesondere dem beobachteten horizontalen kinetischen Energiespektrum zugrunde liegt.
Zweitens konnte bisher kein dominanter Skalenwechselwirkungsmechanismus bestimmt wer-
den, auf dem das Anwachsen zunächst kleinskaliger Fehler zu großen Skalen basiert. Die
vorliegende Dissertation trägt zu einem verbesserten Verständnis dieser beiden Aspekte bei,
wobei der Fokus auf dem relativen Beitrag rotationeller und divergenter Moden des horizon-
talen Geschwindigkeitsfeldes und deren Wechselwirkung liegt.

Eine fundamentale Überprüfung existierender Theorien bezüglich des horizontalen mesoska-
ligen Energiespektrums wird durch die Aufspaltung eindimensionaler atmosphärischer Wind-
messungen in rotationelle und divergente Anteile ermöglicht. Eine dementsprechende eindi-
mensionale Helmholtz-Zerlegungsmethode wurde kürzlich veröffentlicht. Diese Aufspaltung
basiert auf den mathematischen Annahmen der Homogenität und Isotropie, deren Gültigkeit
im ersten Teil der vorliegenden Dissertation getestet wird. Dazu werden neue, hochaufgelöste
globale numerische Simulationen der Atmosphäre verwendet. Die rotationellen- und diver-
genten Strömungsanteile werden mit der Helmholtz-Zerlegungsmethode aus eindimensionalen
Segmenten des Windfeldes abgeleitet. Diese werden dann mit den rotationellen und divergen-
ten Beiträgen des zweidimensionalen Windfeldes, welche als Referenz verwendet werden, ver-
glichen. Die mathematischen Annahmen der eindimensionalen Helmholtz-Zerlegungsmethode
sind auf den Mesoskalen hinreichend gut erfüllt, so dass hier das mesoskalige Verhältnis ro-
tationeller zu divergenten Geschwindigkeitsmoden korrekt reproduziert werden kann. Beide
Anteile des horizontalen Windfeldes zeigen des Weiteren eine signifikante Abhängigkeit von
dem betrachteten Höhen- und Breitengradbereich. Die Ergebnisse deuten darauf hin, dass
die mesoskalige Dynamik und das damit verbundene horizontale kinetische Energiespektrum
nicht universell sind.

Aktuelle Studien zeigen, dass das schnelle Anwachsen kleinskaliger Fehler in numerischen
Wettervorhersagen vor allem mit der konvektiven Instabilität und dem Freisetzen latenter
Kondensationswärme in Wolken zusammenhängt. Während die Fehler auf größere Skalen
expandieren, ändert sich die dominante Dynamik von signifikant divergent zu primär rota-
tionell. Der zweite Teil dieser Dissertation erforscht, ob diesem dynamischen Übergang die
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geostrophische Anpassung nach dem Einsetzen von Feuchtkonvektion zugrunde liegt. Dabei
wird sowohl ein analytischer- als auch ein numerischer Ansatz verfolgt. Zunächst wird ein
analytisches Modell für die geostrophische Anpassung einer instantanen Wärmefreisetzung
(repräsentativ für den Fehler innerhalb der Vorhersage einer Wolke) entwickelt. Die gefundene
Lösung ist die Greensche Funktion der betrachteten linearisierten, hydrostatischen Boussinesq-
Gleichungen und enthält explizit die zeitliche Entwicklung aller transienten und balancierten
Strömungsanteile. Die charakteristischen Raum- und Zeitskalen des geostrophischen Anpas-
sungsprozesses werden aus dieser Lösung bestimmt. Ferner werden drei Diagnostiken ent-
wickelt, mithilfe derer dieser Mechanismus in numerischen Simulationen identifiziert werden
kann. Die analytischen Ergebnisse werden danach mit Fehlerwachstumsexperimenten in idea-
lisierten numerischen Simulationen eines konvektiven Wolkenfeldes in einer rotierenden Umge-
bung getestet. Die gefundenen Eigenschaften des Fehlerwachstums stimmen sehr gut mit den
Vorhersagen des analytischen Modells überein. Damit unterstützen die Ergebnisse dieser Dis-
sertation die Hypothese, dass die geostrophische Anpassung konvektiver Wärmefreisetzung
das Fehlerwachstum durch die atmosphärischen Mesoskalen bestimmt.



Abstract

The atmospheric mesoscales encompass dynamical and thermodynamical processes that are
characterized by length scales between a few and a couple of hundred kilometers and tempo-
ral scales of several minutes to one day. These processes are associated with mid-latitudinal
weather and their skillful prediction is a major aim of meteorological research. In there, two
fundamental issues arise: first, there is no consensus about the principal dynamical agent on
the mesoscales that gives rise to the observed kinetic energy spectrum. Second, a dominant
scale-interaction mechanism that governs the growth of initially small-scale errors to large
scales remains undetermined. This thesis contributes to an improved understanding of these
two aspects with an emphasis on the relevance of rotational and divergent modes of motion
and their interplay.

An important observational test of theoretical studies regarding the horizontal mesoscale
kinetic energy spectrum is decoupling its rotational and divergent constituents from
one-dimensional atmospheric wind measurements. Such a one-dimensional Helmholtz-
decomposition method was recently suggested. The first part of this dissertation addresses
the validity of the strong mathematical homogeneity and isotropy assumptions underlying this
method. To that end, new high-resolution global atmospheric numerical simulations are em-
ployed. Rotational and divergent modes of motion are derived by applying the one-dimensional
Helmholtz-decomposition method to one-dimensional transects of the horizontal wind field.
The results are then compared to the divergent and rotational components obtained from the
unambiguous decomposition of the two-dimensional wind field. The mathematical assump-
tions are found to be fulfilled such that the mesoscale ratio of divergent to rotational kinetic
energy can be derived correctly with the one-dimensional Helmholtz-decomposition method.
The results suggest a significant dependence of the horizontal divergent- and rotational ki-
netic energy spectra on the considered height- and latitude ranges. This finding points to the
non-universality of the dynamics governing the mesoscale kinetic energy spectrum.

Recent studies suggest that small-scale errors in numerical weather predictions quickly am-
plify through the convective instability and the release of latent heat of condensation within
clouds. These errors then propagate to larger scales, whereby their dynamics transition from
significantly divergent to mainly rotational. The second part of this dissertation explores
the possibility that geostrophic adjustment following deep moist convection is the dominant
dynamical process governing this transition with an analytical- and a numerical approach.
An analytical framework for the geostrophic adjustment of an initial point-like pulse of heat
(representing the error within the prediction of a cloud) is developed based on the linearized,
hydrostatic Boussinesq-equations. The solution includes the Green’s function of the problem
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and contains the full temporal evolution of all transient and balanced flow components. Char-
acteristic spatial and temporal scales of the geostrophic adjustment mechanism are deduced
and three diagnostics that can be used to identify this process in numerical simulations are
proposed. These predictions are then tested in the framework of error growth experiments in
highly idealized numerical simulations of a convective cloud field in a rotating environment.
The error growth characteristics feature a high level of agreement with the analytical predic-
tions. The results of this thesis suggest that the geostrophic adjustment following convective
heating governs upscale error growth through the atmospheric mesoscales.
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Chapter 1

Introduction

1.1 Scales of atmospheric motion

The earth’s atmosphere is a nonlinear, chaotic dynamical system where a variety of dynam-
ical and thermodynamical processes of different spatial- and temporal scales interact. From
a global perspective, the whole spectrum of atmospheric motion encompasses 10 orders of
magnitude in horizontal length scales (from the mean free path length scale to the earth’s
circumference) and 20 orders of magnitude in temporal scales (from the dissipation timescale
to the age of the earth) (Emanuel, 1986). This multi-scale character of atmospheric flow
can for example be anticipated from satellite images (see Fig. 1.1). The different modes of
atmospheric motion manifest themselves in cloud structures of varying horizontal scale Lh
(e.g. relatively large-scale cloud-band associated with ascending air in warm-sector of cyclone
Vladiana, convection of notably smaller horizontal scale over the free ocean to the West of
the storm). Atmospheric processes of different scales Lh are associated with temporal scales
T and their ratio gives the associated velocity scale V .

In Fig. 1.2, various atmospheric modes of motion are displayed with the associated tempo-
ral and spatial scales. Note that in this work mainly processes in the troposphere will be
considered. The troposphere is the vertical atmospheric layer ranging from the ground to the
tropopause in 7 to 20 km altitude. It is characterized by a decrease in temperature with height
and almost all weather relevant dynamic processes take place within that layer. Processes from
upper layers play a minor role in weather dynamics and will be referred to if necessary. The
velocity scale V of atmospheric dynamical processes is shown to take a somewhat universal
value over a wide range of temporal and spatial scales, indicating that Lh and T are not
independent (i.e. phenomena of large horizontal spatial scale feature a large temporal scale
and vice versa).

Historically, different approaches have been introduced to define classes of spatial and temporal
scales of the continuous spectrum of dynamical atmospheric phenomena (e.g. sizes/resolution
of observational networks, theoretical inferences and observations of atmospheric phenomena;
for a detailed discussion see Emanuel, 1986). In the following, the general classification of at-
mospheric motion into micro-, meso- and macro-scales (and associated α-, β- and γ-subranges
put forward by Orlanski, 1975) will be employed. Note that while processes attributed to
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Figure 1.1: Meteosat Second Generation (MSG) Spinning Enhanced Visible and InfraRed Imager
(SEVIRI) image in the visible 0.6 µm channel. Storm Vladiana (center indicated with red cross)
located in the North Atlantic region on September 23 2016 12 UTC (http://brunnur.vedur.is,
courtesy of the Icelandic MetOffice and EUMETSAT).

either the micro-, meso- or macro-scale preferably occur on different atmospheric heights, mo-
tions on all three scales can in principle feature different characteristic vertical length scales
rendering a general scale separation in the vertical unfeasible (Fiedler and Panofsky, 1970).

The microscale is the small-scale end of the displayed spectrum (Fig. 1.2) and encompasses
processes with a horizontal scale smaller than a few kilometers and a timescale shorter than
an hour. It thus contains fully three-dimensional turbulent motion in the planetary bound-
ary layer, tornadoes and small-scale cumulus clouds. Major instabilities in the atmosphere,
such as thermal- (e.g. convective instability that converts potential to kinetic energy) and
shear instabilities (e.g. Kelvin-Helmholtz-instability) act on the microscales (Lin, 2007, p. 7).
Furthermore, viscous dissipation acts within the microscale to reduce the atmospheres total
energy.

On the large-scale end of the spectrum, processes with spatial scales larger than a few thou-
sands kilometers and timescales larger than a day are assigned to the macro- or more com-
monly referred to as the synoptic scale. Examples of such motions are planetary waves and
large mid-latitudinal low- and high pressure systems. Mid-latitudinal synoptic-scale motion is
mainly driven by baroclinic instability, i.e. the instability arising in the mean wind caused by
the North-South temperature gradient in the atmosphere due to differential warming by the
sun.

The third scale range in Fig. 1.2, the mesoscales, was first mentioned in a study evaluating the
use of radar measurements (Ligda, 1951) and was defined as the scale range between the mi-
croscales (”scale too gross to be observed from a single station”) and the synoptic scales (”yet
too small to appear on sectional synoptic charts”). The mesoscales thus contain processes on
spatial scales between a few to a few thousand kilometers that are associated with temporal

http://brunnur.vedur.is
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scales of several minutes to one day. Such processes are for example lee waves, clear-air turbu-
lence, slope winds (meso-γ), squall lines, severe storms, mountain wave disturbances, diurnal
variations such as land-sea winds and cloud clusters (meso-β). In addition it includes surface
and upper level fronts, hurricanes and jet stream features (meso-α)(Lin, 2007, p. 2). Impor-
tantly, while mesoscale flow can be driven by a variety of instabilities (e.g. static-, centrifugal-,
inertial-, symmetric and shear instability; Markowski and Richardson, 2010, p. 41 ff.), there
is no dominant instability corresponding to the convective- and baroclinic instabilities on the
micro- and synoptic scales respectively.
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Figure 1.2: Classification of atmospheric processes according to their associated horizontal spatial-
and temporal scales. Dashed lines indicate a constant characteristic velocity scale and characteristic
limits imposed by the Coriolis parameter f and the Brunt-Väisälä frequency N : mid-latitudinal
mesoscales motion ranges from the period of a pure buoyancy oscillation 2π/N (gravity wave motion;
∼ 10 mins) to a pendulum day (inertial oscillations; ∼ 17 h) (following Markowski and Richardson,
2010, p. 4).

The mesoscales particularly contain weather phenomena that can have a significant impact
on human life, i.e. that are accompanied by strong mean winds, wind gusts and heavy precip-
itation (referred to as high-impact weather; Craig et al., 2010). These processes are especially
in summer often associated with deep moist convection. Thus, a profound understanding of
dynamical processes acting on the mesoscale range is of great concern for various applications
(particularly related to skillful numerical weather forecasts) and are the topic of this thesis.
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The introduced various atmospheric processes are mathematically described by the so called
primitive equations. This set of nonlinear partial differential equations bases on basic conserva-
tion principles of momentum, thermodynamic energy and mass. The horizontal wind described
by the momentum equation is generally composed of a rotational and divergent component,
which are associated with vertical vorticity and horizontal divergence respectively. In the scale-
analysis technique, magnitudes of terms contained in the governing equations are estimated
and compared for various types of motion acting on different scale ranges. Certain terms
are then found to be of major or minor importance to the considered scale range, whereby
neglecting the latter might be a valid simplification to the set of equations describing the
respective dynamics. In there, balances, i.e. diagnostic relationships between certain terms,
arise (e.g. Holton, 2004, p. 40). Micro-, meso- and synoptic-scale phenomena are—besides
their classification according to their spatial and temporal scales—found to be characterized
by distinct leading order dominant dynamics (e.g. Markowski and Richardson, 2010, p. 5 ff.).
Examples for such simplifications on the different scales will be given in the following.

Microscale flow is three-dimensional in nature which implies that horizontal and vertical scales
are comparable in magnitude. In particular, dynamical pressure gradients in the horizontal
and vertical direction play a principle role. Motion on these scales is generally unbalanced
(i.e. no dominant balance relation holds) and vertical velocities and horizontal divergence are
a significant part of the underlying dynamics. On these scales the disregard of the Coriolis
force arising from the earth’s rotation is a valid approximation to the underlying equations.

On the other hand, synoptic-scale dynamics feature horizontal scales much larger than verti-
cal scales and are thus to a good approximation two-dimensional (Charney, 1948). On these
scales, two major balance relations hold: first, the pressure can be considered hydrostatic,
i.e. the vertical pressure gradient and the gravitational acceleration balance. Second, the hor-
izontal wind field is to a good approximation in geostrophic balance, i.e. horizontal pressure
gradient balances Coriolis acceleration. This geostrophic wind characteristic for synoptic-
scale flow is purely rotational and divergence-free. The mathematical equations that describe
synoptic-scale flow can thus be approximated by neglecting vertical accelerations and advec-
tion by non-geostrophic wind to leading order.

Mesoscale flow encompasses dynamical systems that contain a variety of spatial and temporal
scales. A typical example are long-lived mesoscale convective systems, which feature large
pressure gradients and horizontal and vertical accelerations of air. They are furthermore in-
fluenced by micro-physical processes through latent heating and cooling and in addition the
Coriolis force and radiative transfer might play a role. Thus, the underlying equations retain
their full complexity and simplifications generally do not apply to the full mesoscale range
(Markowski and Richardson, 2010, p. 10). In particular, the nature of dominant motion tran-
sitions through the mesoscales, from small- to large scales, from predominantly unbalanced
and divergent to predominantly balanced and rotational. Rotational and divergent mesoscale
modes “intermingle in a non-linear jigsaw puzzle” (Bühler et al., 2014), rendering a general
identification of either process as dominant unfeasible.
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1.1.1 Scale interaction processes

The complexity of atmospheric flow not only arises from the variety of dynamical processes
included in the scales of atmospheric motion. These modes of atmospheric flow furthermore
interact and exchange energy. This scale-interaction mathematically arises from the funda-
mental non-linearity of the advection-term contained in the underlying primitive equations.

The concept of atmospheric scale interactions can be illustrated by considering a simple flow
system where a weak disturbance is imposed on a slowly varying mean flow (Emanuel, 1986).
Initially, the dominant scale interaction process is the impact of the mean flow on the small
perturbation (e.g. through advection). As the disturbance grows, however, it exerts an in-
creasing influence on the mean flow and other scales of motion develop through secondary
instabilities. While this process continues, increasingly more scales of the flow are excited,
which enhances the degree of disorder in the flow and ultimately leads to a highly non-linear
flow system. Fully developed turbulence is such a flow regime, where the chaotic interaction
between numerous scales is usually treated statistically (Pope, 2000, p. 34 ff.). The question,
to which extent mesoscale motion is disordered, i.e. whether it is chaotic enough to be treated
statistically (i.e. homogeneous turbulence theory; Kolmogorov, 1941), or if dynamics can and
have to be treated explicitly (e.g. wave-mean flow interactions; Grimshaw, 1975), is a subject
of current research (e.g. Achatz et al., 2017).

Mesoscale circulations can be forced locally through instabilities and interactions with the
lower boundary such as thermal- and orographic surface inhomogeneities. They are, how-
ever, also significantly energized by scale-interaction processes with micro- and synoptic-scale
flows. Such mechanisms are for example interactions of cloud and precipitation processes with
mesoscale systems and internal adjustment of larger-scale flow systems such as fronts, cyclones
and jet streaks, respectively. One scale interaction mechanism whereby energy is transferred
from small (micro-) scales to large (synoptic-) scales through the mesoscales is the geostrophic
adjustment following convective heating. This mechanism proves particularly relevant to this
dissertation.

The geostrophic adjustment process

Latent heat release within a single convective cloud introduces an imbalance into the at-
mosphere on a typical horizontal length scale O(1 km) (Raymond, 1986). The response in
the surrounding free atmosphere is twofold: on the one hand, transient inertia-gravity waves
(IGWs), i.e. internal wave modes modified by the effect of rotation with frequencies between
the Brunt-Väisälä-frequency N and the inertial frequency f are excited (Fritts and Alexander,
2003). These waves quickly propagate out of the cloud region, a process whereby energy is
radiated away (see Fig. 1.3a and Nicholls et al., 1991). On the other hand, a synoptic-scale
balanced response is spun up by means of the geostrophic adjustment process (Rossby, 1937,
1938) on longer timescales (for a review see Blumen, 1972).

Here, the physical mechanism depicted schematically in Fig. 1.3b is understood as follows:
the latent heat release within a convective cloud generates a positive buoyancy anomaly that
strengthens an updraft (blue arrow in the center of the cloud). The upward motion causes
a positive pressure anomaly above the heating, which in turn drives a divergent outflow in
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the upper half of the troposphere (i.e. below the upper boundary imposed by the tropopause).
For continuity, the upper-level horizontally divergent motion (light blue arrows) is associated
with compensating subsidence (white arrows) and lower level convergence (gray arrows). The
Coriolis force that acts on the divergent outward motion increases the azimuthal wind. Ulti-
mately, the horizontal wind field reaches a balance between the horizontal pressure gradient
∇hp and the Coriolis force fvh. This state is referred to as geostrophic balance and the as-
sociated spun-up balanced rotational wind is centered around the location of the cloud. This
geostrophically balanced anticyclonic (i.e. clockwise rotating) vortex features a much larger
horizontal scale than the length scale of the forcing (i.e. cloud-scale), namely the first baro-
clinic Rossby radius of deformation Rd = NLv/f (with Lv characteristic vertical length scale
of the forcing, here the tropopause height) with a typical mid-latitudinal value O(1000 km)
(Gill, 1982, p. 207). At lower levels, as indicated in gray in Fig. 1.3b, a balanced vortex of
the same scale and opposite sign (i.e. cyclonic rotation) is spun up where the Coriolis force
and pressure gradient balance the convergent motion. Note that in the real atmosphere, the
lower-level convergence and -cyclone can be weakened by interactions with the lower boundary
(e.g. surface friction), as opposed to the divergence and anticyclone in upper levels where the
flow evolves more freely.

    
︸ ︷︷ ︸

NLv/f

−fvh∇hp

−fvh ∇hp

a) b)

Figure 1.3: Schematic illustration of the impact of a convective cloud on the free atmosphere. a)
Radiation of transient gravity waves. b) Spin-up of balanced flow through geostrophic adjustment
process. fvh is the Coriolis force with the Coriolis parameter f and the horizontal wind field vh =
uex+vey with components (u, v) and unit vectors of the two-dimensional cartesian coordinate system
(ex, ey). ∇hp is the pressure gradient force with p pressure and ∇h denotes the horizontal gradient
operator ∇h = ∂xex+∂yey with partial derivatives in the x- and y-direction, ∂x and ∂y, respectively.

In this section the complex dynamical and thermodynamical processes of the earth’s atmo-
sphere that feature various spatial and temporal scales were introduced. Large-scale atmo-
spheric dynamics are influenced by the Coriolis force and predominantly balanced and ro-
tational. Small-scale dynamics are not driven by the Coriolis force and mainly unbalanced
and divergent. On the mesoscale range, which is of particular concern in the current thesis,
neither mode of motion can be regarded as generally predominant. Whether or not scale
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interaction processes on the mesoscales between rotational and divergent modes of motion are
sufficiently disordered and chaotic that a statistical treatment is justified, or if they should
be treated dynamically explicit remains currently ambiguous. An example of the latter is the
geostrophic adjustment process following an imbalance imposed on the atmosphere by latent
heating within a convective cloud. Energy is thereby transferred from a kilometer-(micro)-scale
disturbance to the large synoptic scales in a non-turbulent manner. While being transitioned
from small- to large scales through the mesoscales, the nature of dominant motion changes
from predominantly unbalanced and divergent to predominantly balanced and rotational.

1.2 The atmospheric kinetic energy spectrum

One particularly intriguing property of fully turbulent, statistically homogeneous and isotropic
flows is the power-law shape of the energy spectrum (Kolmogorov, 1941; Obukhov, 1949).
While atmospheric flow on scales larger than the microscales is not characterized by fully
developed homogeneous turbulence, various atmospheric processes are known to feature a
spectral power-law behavior. One example is the size distribution of shallow cumulus clouds
(Neggers et al., 2002; Zaho and Girolamo, 2007). Another particularly relevant example to the
present study is the one-dimensional horizontal atmospheric kinetic energy spectrum, i.e. the
distribution of variance of the wind velocity components over spatial scales (e.g. Fiedler and
Panofsky, 1970). It is formally defined as (e.g. Blažica et al., 2013)

EK(k) =
1

2
(ûû∗ + v̂v̂∗) , (1.1)

where û and v̂ are the Fourier-transformed components of the horizontal wind field. Their
complex-conjugated counterparts are denoted by the asterisk. The Fourier-transform decom-
poses a field in real space into harmonic waves characterized by wavenumber k. The associated
wavelength λ = 2π/k can be understood as the horizontal spatial scale Lh introduced in sec-
tion 1.1. In the remainder of this chapter, the term kinetic energy spectrum will refer to the
one-dimensional horizontal kinetic energy spectrum if not explicitly stated otherwise.

1.2.1 Measurement data

In a series of highly recognized papers, Nastrom and Gage (1983), Nastrom et al. (1984) and
Nastrom and Gage (1985) published the first examination of the atmospheric kinetic energy
spectrum covering the whole mesoscale range based on wind measurements taken in the course
of the Global Atmospheric Sampling Program (GASP). The evaluated comprehensive GASP
data set contains almost 7000 flights from commercial airplanes over a four year period (1975
- 1979) and allowed for an extensive evaluation of statistics of atmospheric kinetic energy as
well as the variability of the kinetic energy spectrum.
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In Fig. 1.4 the spectrum of horizontal kinetic energy (averaged over all flight segments) is
displayed as a function of horizontal wavenumber k (lower x-axis) and wavelength λ (upper
x-axis). The spectrum shows a power-law behavior on two scale ranges: on the synoptic
scales (1000 km < λ < 3000 km) the spectrum follows an approximate k−3-dependence. On
the mesoscale range (here 2.6 km < λ < 300 km), the slope of the observed spectrum flattens
notably and features an approximate k−5/3-dependence. Since spectral power-law behaviors
are characteristic for self-similar systems (e.g. Pope, 2000, p. 99), the discovery of the k−3 and
k−5/3 spectral ranges as universal statistical features of tropospheric dynamics constituted a
milestone in the progress of research on mesoscale dynamics and associated scale interaction
processes.

Figure 1.4: Horizontal atmospheric kinetic energy spectrum (in m3/s2) derived from GASP aircraft
measurements (symbols; Nastrom and Gage, 1985) and functional fit to Measurements of Ozone
and Water Vapor by Airbus In-Service Aircraft (MOZAIC) aircraft measurements by (solid lines;
Lindborg, 1999). Figure taken from Skamarock (2004).

The large spatial and temporal extent of the data analyzed by Nastrom and Gage (1985)
allowed for an examination of the variability of the obtained results with season, height and
location. They found a general increase of measured spectral amplitude with latitude and
height, higher values for winter than for summer and a significant (up to 4 times) higher
mesoscale energy over the ocean than over land. The established paradigm of the universality
of the atmospheric kinetic energy spectrum (Lindborg, 1999; Tung and Orlando, 2003; Ska-
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marock, 2004), however, outclassed the associated significant variability found in the GASP
data. The universality of the observed spectral slopes is subject of ongoing research (Waite
and Snyder, 2013; Fang and Kuo, 2015; Bierdel et al., 2016; Sun et al., 2017).

1.2.2 Prevailing explanations

As indicated above, the power-law behavior of the atmospheric kinetic energy spectrum sug-
gests that the underlying dynamics are self-similar. Isotropic, two- and three-dimensional
turbulent flows are found to be self-similar on the so-called inertial subrange (see schematic in
Fig. 1.5). This is the scale range of a turbulent flow with a stationary spectrum that is located
between the injection- and dissipation scales (Frisch, 2004, p. 86). There, conserved quantities
of the underlying equations such as energy are neither injected nor diminished. They are solely
transferred through non-linear interactions between eddies, i.e. isotropic turbulent motion as-
sociated with a length scale Lh, a timescale T and velocity scale V (Richardson, 1922). In
there, eddies of similar magnitude interact, rendering the scale-interaction local in wavenum-
ber space. The concept of the inertial subrange plays a crucial role in theoretical studies
of the atmospheric kinetic energy spectrum, since it allows for a statistical treatment of the
underlying flow (see paragraph 1.1.1) and particularly the derivation of spectral slopes from
simple dimensional arguments (Kolmogorov, 1941; Obukhov, 1949; Garrett and Munk, 1972).
The kinetic energy spectrum of three-dimensional turbulence is thereby found as (Frisch, 2004,
p. 92)

E(k) ∼ ε2/3k−5/3 , (1.2)

where ε is the energy injection-, dissipation- and transfer rate and k is the wavenumber.

� �
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Figure 1.5: Schematic illustration of the inertial subrange and energy cascade established in a
stationary energy spectrum according to Kolmogorov (1941) and Richardson (1922). The energy is
injected at rate ε on large scales (k0) and dissipated through molecular dissipation at the same rate
on small scales (kν). On intermediate scales (the inertial subrange) energy is transferred at rate ε
from the large injection- to the small dissipation scale through non-linear interactions (i.e. breakup
of larger eddies into smaller ones).
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Additionally, a flow only consisting of waves is thought to feature a similar inertial region
between a spectrally-separated source and sink in a saturated (i.e. source and sink in equilib-
rium) spectrum. Owing to the fundamentally distinct underlying dynamics (waves as opposed
to eddies), however, the energy sources, sinks and transfer mechanism are radically different.

Synoptic-scale k−3 -slope

Synoptic-scale flow is quasi-two-dimensional in nature and is dominated by rotational modes
of motion (see paragraph 1.1). Two-dimensional flows conserve the enstrophy (i.e. the square
of the vorticity) in addition to the total kinetic energy. The k−3 spectral slope on the large
synoptic scales has been found to be in good agreement with dimensional considerations in
the framework of barotropic quasi-two-dimensional (Kraichnan, 1967) or quasi-geostrophic
(Charney, 1971) turbulence theory. In there, a direct or downscale (i.e. from large to small
scales) enstrophy cascade underlies the horizontal kinetic energy spectrum. Physically, the
cascade arises from the collapse of horizontal vortical structures that are energized on the
large scales by baroclinic instability (Boer and Shepherd, 1983). This theory regarding the
observed k−3 spectral slope is well-established (Waite and Snyder, 2013; Fang and Kuo, 2015;
Sun et al., 2017).

Mesoscale k−5/3 -slope

Owing to the wide spectral range covered by the mesoscales it contains processes with distinct
dominant underlying dynamics. Attributing the observed spectral slope to a single dynamical
mechanism thus appears much more complicated than on the synoptic scales (for a review see
Gkioulekas, 2006). Dimensional arguments for the energy-cascading inertial subrange in three-
dimensional isotropic turbulence result in a k−5/3 spectral slope (Kolmogorov, 1941; Obukhov,
1949). While three-dimensional turbulence theory is, as observations and modeling studies
show, appropriate for cloud-scale and below, mesoscale flow is highly stratified and clearly not
characterized by a three-dimensional, isotropic turbulent inertial subrange (Skamarock, 2004).
Over the last three decades various theories about the dynamical origin of the k−5/3 mesoscale
slope have been suggested. They can be divided according to the relative importance of
rotational and divergent energy as well as the degree of their interaction into three categories,
namely

1. eddies interacting non-linearly in a turbulent manner, i.e. purely rotational

2. IGWs interacting linearly through shear, i.e. purely divergent

3. eddies and IGWs interact non-linearly, i.e. both rotational and divergent

Besides the mentioned k−3 enstrophy subrange, two-dimensional turbulence features two en-
ergy subranges that exhibit a k−5/3 power-law behavior. They are located on the smaller- and
larger-scale side of the source region and are associated with a direct and inverse energy cascade
respectively (Merilees and Warn, 1972; Tung and Welch, 2001; Gkioulekas and Tung, 2007).
The physical mechanism that sets up a direct and inverse cascade is the collapse and merging
respectively of two-dimensional vortices. Based on the understanding that two-dimensional
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flow is the lowest order balanced approximation for mesoscale motion (i.e. geostrophic and hy-
drostatic balance hold, see section 1.1), theories of the first category interpret the mesoscales
as an inertial subrange of quasi-two-dimensional turbulence. In there, energy is injected ei-
ther on small-scales (e.g. through convective instability and associated thunderstorm anvil
outflows) and cascaded inversely (Gage, 1979; Lilly, 1983). Energy might also be injected
on large scales (i.e. through baroclinic instability) and cascaded directly (Tung and Orlando,
2003; Tulloch and Smith, 2006).

Theories of the second category attribute the mesoscale energy spectrum to primarily di-
vergent, quasi-linear IGWs (Dewan, 1979; VanZandt, 1982). This directly opposes the first
category, where rotational modes establish an energy cascade. Gravity waves are forced by
various atmospheric processes (e.g. deep moist convection, orography and baroclinic flows;
Fritts and Alexander, 2003) and can be dissipated on small scales by shear instabilities such
as Kelvin-Helmholtz instability (Dewan, 1994, 1997). Based on studies analyzing oceanic wave
spectra (Garrett and Munk, 1972, 1975), theories of the second category regard the mesoscales
as an inertial subrange, and dimensional considerations predict a k−5/3 spectral power-law de-
pendence. A self-similar direct cascade is set up through the generation of shear by larger-scale
waves and smaller-scale waves that extract energy from this shear. Note that the IGW-theory
does not postulate the absence of balanced vortical structures, it merely states that rotational
modes of motion and divergent IGWs interact weakly (Callies et al., 2014, 2016).

The third category addressing the mesoscale k−5/3-regime is stratified turbulence (Lilly, 1983;
Lindborg, 2006), i.e. turbulent flows that are subject to a stabilizing density gradient. In these
flows, quasi-horizontal meandering motions (see category 1, carrying all the flow’s vertical
vorticity) and internal waves (see category 2, carrying all the flow’s horizontal divergence)
interact in a non-linear manner (Riley and Lelong, 2000; Riley and Lindborg, 2008). An
energy-cascading inertial subrange with a k−5/3 slope is established by flow instabilities aris-
ing from vertical shearing of horizontal winds (e.g. onset of decorrelation instability and zigzag
instability; Lilly, 1983; Billant and Chomaz, 2000) by means of two processes: through the
break up of larger rotational structures in the horizontal in a two-dimensional turbulence sense
(see category 1) as well as through the development of local patches of three-dimensional tur-
bulence in local regions of strong shear (Riley and Lindborg, 2008).

All theories for the dynamical origin underlying the mesoscale kinetic spectrum mentioned
above have the major assumption in common that the mesoscales can be treated statistically
as an inertial subrange (either in a turbulence- or wave sense). However, real atmospheric
mesoscale flow can be directly energized by highly intermittent processes such as fronts and
organized moist convection. The concept of a turbulent inertial subrange thus renders the
mathematical description of the mesoscale kinetic energy spectrum tractable, but its appli-
cability to real atmospheric mesoscale flow is a topic of current research (Zhang et al., 2007;
Waite and Snyder, 2013; Sun and Zhang, 2016; Weyn and Durran, 2017). All established the-
ories furthermore focus on the prediction of the k−5/3 power-law dependence of the mesoscale
kinetic energy spectrum, whereby little is known about the governing dynamical processes.
However, gaining a deeper understanding of the dynamics and scale interaction processes is
of fundamental importance to advance research in this field. To that end the separation of
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mesoscale wind velocities, as for example measured in the comprehensive GASP or MOZAIC
aircraft campaigns (see paragraph 1.2.1) into rotational and divergent flow components is a
key factor.

1.2.3 Relevance of rotational and divergent modes

Wind fields that are characteristic for real atmospheric mesoscale flow are usually associated
with rotational and divergent modes of motion, where the relative importance as well as the na-
ture of their interaction are crucial to understanding the dynamics underlying the k−5/3-inertial
range. The horizontal wind field and kinetic energy spectrum can be decomposed into rota-
tional and divergent components by means of the two-dimensional Helmholtz-decomposition
(e.g. Bühler et al., 2014, for details see chapter 2).

Rotational and divergent modes of motion have been derived from numerical model simulations
where the u- and v-wind fields are known and the application of the Helmholtz-decomposition
is straightforward. An approximate k−5/3 mesoscale spectral slope is found to be a feature of
many global circulation models (Koshyk and Hamilton, 2001; Hamilton et al., 2008; Brune and
Becker, 2013; Burgess et al., 2013; Skamarock et al., 2014), local numerical weather prediction
models (Skamarock, 2004; Bierdel et al., 2012; Blažica et al., 2013; Ricard et al., 2013) and
more idealized numerical simulations of atmospheric flow (Waite and Snyder, 2013; Sun et al.,
2017; Weyn and Durran, 2017). The Helmholtz-decomposition, however, leads to ambiguous
results: the mesoscale kinetic energy spectrum is found to be governed by predominantly
rotational (Hamilton et al., 2008) or predominantly divergent (Weyn and Durran, 2017) dy-
namics, or by an approximate equipartition of both components (Skamarock et al., 2014).
However, while simulated spectra and energy budgets can be sensitive to the model configu-
ration (e.g. horizontal and vertical resolution and strength of dissipation) a decomposition of
measurement data into rotational and divergent modes is desirable (Koshyk and Hamilton,
2001; Skamarock, 2004; Frehlich and Sharman, 2008; Augier and Lindborg, 2013; Brune and
Becker, 2013).

Large data sets taken by commercial aircraft (e.g. GASP and MOZAIC, see section 1.2.1)
contain line-measurements of the longitudinal (along-track) and transverse (across-track)
wind components (Callies et al., 2014; Lindborg, 2015). Since for the standard Helmholtz-
decomposition the two-dimensional u- and v-components of the wind field have to be known,
the separation of measurement data into rotational and divergent modes long remained un-
feasible. Recently, Bühler et al. (2014) proposed a method that allows the extraction of
rotational and divergent kinetic energy spectra from one-dimensional measurement data of
the horizontal velocity components that was further extended by Lindborg (2015). While this
one-dimensional Helmholtz-decomposition method has been applied to measurement data, it
is based on strong assumptions (e.g. homogeneity and isotropy of the underlying flow field)
that do not necessarily hold for atmospheric flow.

In this section the measured horizontal atmospheric kinetic energy spectrum has been in-
troduced. It features two distinct power-law ranges that are separated by a transition on a
scale of a few hundred kilometers: a k−3 -spectral range on the large scales and a mesoscale
k−5/3 -regime. Despite the significant variability found particularly in the mesoscale part of
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the spectrum, the discovery of the k−5/3 power-law spectrum initiated research that aimed
at determining a universal dynamical mechanism governing mesoscale flow. There is a wide
consensus about the k−3 spectral regime being associated with quasi-two-dimensional turbu-
lence. The origin of the mesoscale k−5/3 slope, however, is less clear. All so far established
theories treat the mesoscales as a spectral inertial subrange and are thus statistical in nature.
The theories do, however, make fundamentally different assumptions regarding whether the
dominant scale-interaction mechanism is primarily between rotational or divergent modes of
motion. The extraction of rotational and divergent contributions to the horizontal wind field
and the associated kinetic energy spectrum from measurement data is thus a fundamental test
of these prevailing theories. While such a one-dimensional Helmholtz-decomposition method
has recently been proposed, it bases on strong mathematical assumptions on the underlying
flow field that need to be validated.

Scale-interaction mechanisms in atmospheric flow, however, not only shape the observed hor-
izontal kinetic energy spectrum. They also determine how errors are exchanged between
different modes of atmospheric motion. Particularly the growth of initially small errors in the
numerical weather prediction process potentially renders a weather forecasts erroneous. The
general problem of predictability of atmospheric flow is the topic of the next section.

1.3 Predictability

The skillful prediction of weather, i.e. dynamical and thermodynamical processes of the mid-
latitudinal mesoscales, is one major aim of meteorological research. In the numerical weather
prediction (NWP) process, an approximated initial state of the atmosphere is determined from
observations and is integrated in time with a discretized form of the hydrodynamical partial
differential equations describing atmospheric flow (Bjerknes, 1904). The predictability time
is thereby defined as the time interval within which the variance of two solutions that begin
with slightly different initial conditions reaches some prechosen magnitude (bounded by the
error variance of two random atmospheric states) (Lorenz, 1969). In the NWP process two
aspects are found to limit the predictability of atmospheric flow: first, the employed NWP
system is imperfect. Examples of inaccuracies in the NWP model are the numerical repre-
sentation (i.e. discretization) of the governing equations and subgrid-scale processes as well as
the quality and coverage of employed observations (Sun and Zhang, 2016). The finite horizon
of a skillful weather forecast that arises from an imperfect forecasting system is referred to
as practical predictability limit (Melhauser and Zhang, 2012). The continuous increase of
computing power led together with an improvement of numerical aspects of the forecasting
system to an extension of the forecast horizon by one day per decade over the last thirty years
(Bauer et al., 2015). Second, there is a limit of predictability even if the NWP model and
the initial conditions were nearly perfect (Lorenz, 1969). This intrinsic predictability limit
originates from the basic chaotic nature of atmospheric flow (Poincaré, 1914, p. 68). As will
be explained shortly, the intrinsic predictability limit is a non-alterable characteristic of the
dynamics of the underlying flow which can in particular not be extended by improving the
employed NWP system.
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In this dissertation the intrinsic predictability limit will be assessed. Before the predictability
of real atmospheric flows will be discussed, a simple example of limited predictability that is
relevant to the NWP process will be given.

1.3.1 Deterministic chaos in low-dimensional systems

A salient step in research on predictability of dynamical systems was taken by Lorenz (1963,
in the following L63). In L63, the temporal evolution of a small perturbation introduced into
a low-dimensional (i.e. three degrees of freedom) flow system is examined. Here and in the
following, the term “error” will be used to describe the difference between an unperturbed-
and a perturbed flow. The studied system itself is deterministic, i.e. the initial conditions and
underlying mathematical equations are known and do not contain any stochastic element.
The error is found to grow exponentially, such that the evolution of the unperturbed and
of the perturbed flow rapidly diverge until they are indistinguishable from random states of
the system after a finite period of time. This chaotic behavior of the flow that originates
from the sensitive dependence of the flow evolution on the initial conditions is referred to
as deterministic chaos (Frisch, 2004, p. 27 ff.). It arises even if the underlying mathematical
equations (i.e. laws of physics) are perfectly known. The limit of predictability in the L63-
system depends on the magnitude of the initial condition error such that a reduction of the
initial error amplitude leads to an extended predictability time (Palmer et al., 2014).

An application of the simple L63-model to the earth’s atmosphere suggests that a slight error
in the initial-conditions leads to significantly different, and possibly useless, weather forecasts
(i.e. one major reason for the failure of the first weather forecast by Richardson, 1922). Owing
to the vast amount of observations required to determine the atmosphere’s state (e.g. alone
1043 in the earth’s troposphere if 10 variables are determined up to the mean free path of
molecules O(1 nm)), the exact initial condition of a system like the earth’s atmosphere will
never be known. Small inaccuracies in the initial state will always grow and lead to erroneous
forecasts.

1.3.2 Predictability of atmospheric flow

The fundamental insights gained through the L63-model constitute a major step in under-
standing atmospheric predictability and error growth. The earth’s atmosphere is, however, as
indicated above not a low-dimensional dynamical system, but rather chaotic and multiscale
in nature. In there, the interaction of various modes of motion adds additional complexity
to the predictability problem. Predictability limits in atmospheric flow arise from an error
propagation between different scales of motion that emerges from the non-linear nature of the
underlying equations (see paragraph 1.1.1).

Thus, for understanding the predictability of atmospheric flow the nature of the dominant un-
derlying scale interactions needs to be assessed first. On the mesoscales, this major dynamical
agent remains undetermined and so does the quantitative limit of mesoscale predictability.
Estimates of the latter range from couple tens of hours to several days (Anthes et al., 1985;
Zhang et al., 2007). Certain components of atmospheric flow are tied to either constant or
periodic external forcings, such as solar radiation (“summer is always warmer than winter”)
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that enable seasonal and climate predictions. These processes feature a relatively high predic-
tive skill that is potentially inherited to mesoscale flow and extends the horizon of a skillful
forecast (Anthes, 1986). Other processes, however, such as the upscale growth of inevitable
initial condition errors shorten the horizon of a skillful mesoscale forecast (Anthes et al., 1985;
Zhang et al., 2007). This thesis focuses on processes of the latter category that intrinsically
limit the horizon of a skillful weather forecast. In the following, two fundamentally different
theories for the nature of the scale interactions that lead to upscale growth of small initial
condition errors will be introduced.

The homogeneous turbulence approach

The predictability horizon arising from the upscale growth of errors in a fully turbulent flow
can be assessed with simple dimensional arguments (Lilly, 1972; Vallis, 2006, p. 363 ff.). In
there, the error is thought to be transferred between eddies of similar temporal and spatial
scales (see cascade process that governs the turbulent kinetic energy spectrum in Fig. 1.5).
Note that properties of the basic or background flow’s kinetic energy spectrum and the error
spectrum are not identical. Particularly a forward cascade underlying the background kinetic
energy spectrum can well coexist with an inverse cascade of errors. An initially small error of
a certain scale is transferred to the next larger scale in the local eddy turnover time defined
as

T (k) ∼ (V(k)k)−1 , (1.3)

where T (k) and V(k) are the characteristic time- and velocity scales of the eddy characterized
by wavenumber k. The velocity scale is given by the background kinetic energy spectrum EK
through the relationship

V(k) ∼ (EK(k)k)1/2 . (1.4)

According to the standard local cascade hypothesis, the predictability time Tp (i.e. the time it
takes for the errors to propagate from the small scale k0 to the larger scale k1) is given by the
integral of the eddy turnover time T (k) over the given scale range, reading

Tp ∼
k1∫
k0

T (k)

k
dk . (1.5)

Omitting O(1) constants and the dependency on the energy flux ε (see (1.2)), it follows for a
three-dimensional turbulent flow with a k−5/3 background EK spectrum

T3D ∼ k
−2/3
1 − k−2/3

0 . (1.6)

An important implication of (1.6) is the intrinsic predictability limit for the considered flow,
i.e. an initial confinement of the error to ever smaller scales (i.e. k0 → ∞) does not imply
T3D → ∞. The predictability time remains instead finite. This result highlights a funda-
mental difference between fully turbulent flows (predictability time intrinsically limited) and
the deterministic chaos case (ever-increasing predictability time for decreased initial errors).
For flows such as two-dimensional barotropic turbulence, which feature a background spec-
trum equal or steeper than k−3 (as observed for the synoptic-scale flow, see paragraph 1.2.1),
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however, an analogous dimensional argument as outlined in (1.3)-(1.6) leads to a significantly
different result. In this case, the predictability time can be extended arbitrarily by making the
initial error sufficiently small. Thus, the slope of the background kinetic energy spectrum in
which the errors grow plays a fundamental role for the nature of a flow’s predictability limit.

As an extension to the dimensional considerations introduced above, Lorenz (1969, in the
following L69) examined predictability limits and growth of errors of different initial scale in a
simple model based on the barotropic vorticity equation. In barotropic, two-dimensional sta-
tistically homogeneous and isotropic turbulence, energy is exchanged between different scales
of motion through nonlinear interactions of vortical horizontal structures (Kraichnan, 1967).
L69 derives a fundamental equation for error growth as a function of time and spatial scale.
In L69, a full matrix containing the scale-interaction coefficients between all scales of motion
quantitatively is considered (as opposed to the upscale growth of errors through local scale-
interactions in the dimensional example above). The slope of the background spectrum is—as
in the dimensional argument—found to play a crucial role for the error growth characteristics.
The dynamics underlying the spectral slope, however, play a minor role (Rotunno and Snyder,
2008).

In Fig. 1.6, two example scenarios of intrinsic predictability examined by L69 are displayed.
The mean background kinetic energy spectrum, i.e. averaged over an ensemble of realizations
that evolve freely from different initial conditions, is assumed to feature a k−5/3 slope (solid
gray line). The evolution of the error introduced into the model initially either on small
(experiment A) or on large scales (experiment B) is displayed for a time up to three days
(dashed lines). All predictability of a process associated with a length scale or wavelength
λ is lost when the error kinetic energy spectrum saturates, i.e. reaches the magnitude of the
background kinetic energy spectrum.

and Gingrich 2014), the loss of predictability in his 
experiments A and B is shown in Fig. 1 by plots of 
the error amplitude (measured by its kinetic energy 
KE ) as a function of horizontal scale at times ranging 
from 20 min to 3 days. Also plotted as a thick gray 
line is the background ensemble-mean atmospheric 
kinetic energy (KE) spectrum assumed by Lorenz, 
which increases in proportion to the wavelength λ 
to the 5/3 power. When KE  at a given wavelength 
increases to match KE, the error is saturated and all 
predictability at that wavelength is lost.

If, as shown in Fig. 1a, the initial error is only at the 
smallest scale (38 m) and is saturated, then that error 
modifies somewhat larger scales of motion, which 
in turn modify even larger scales. After 20 min (red 
dashed line), the errors have propagated upscale and 
are saturated between wavelengths of 38 m and 1 km; 
the errors fall off rapidly at wavelengths longer than 
1 km and are too small to plot at wavelengths greater 
than 11 km. At subsequent times, the error continues 
to cascade upscale, saturating, for example, at wave-
lengths up through 100 km in about 9 h.

Initial errors having the same absolute magnitude 
are imposed at the longest wavelength (28,300 km) in 
experiment B. As shown in Fig. 1b, the large-scale error 
propagates very rapidly downscale, becoming apparent 
at the shortest wavelengths within 20 min. These newly 
generated small-scale errors then start cascading back 
upscale in a manner similar to that in experiment A. 
By 3 h into the forecast (dashed purple lines), the spec-
tral distribution of the errors in both experiments has 
become very similar, with saturated errors at all scales 
smaller than roughly 20 km. Note that, although the 

error in experiment B actually originates in the large 
scale, it appears to originate in the small scales because 
that is where the relative error first becomes significant.

To the extent that the Lorenz model correctly de-
scribes the atmosphere, the behavior in Fig. 1a implies 
that inaccurately initialized fields at even smaller 
wavelengths, the size of butterflies, could indeed ruin a 
weather forecast. Nevertheless, comparing both panels 
of Fig. 1, it is evident that butterflies will never be of 
practical importance because trivial relative errors in 
the large scales will overwhelm 100% relative errors 
on the very small scales. The initial large-scale KE  
in experiment B is smaller by a factor of 10–9 than the 
background kinetic energy at the same scale, corre-
sponding to initial perturbations in the velocity field 
that are a factor of 10–9/2 smaller than the background 
velocities. Even on such large nominally well-observed 
scales, it is not likely that the atmospheric circulations 
at a given instant could be determined to within a rela-
tive error of 10–9/2 at any time in the foreseeable future. 
Within the context of experiments A and B, a complete 
failure to correctly initialize atmospheric features with 
a wavelength of 38 m would be of no practical impor-
tance unless the largest-scale winds can be initialized 
with relative errors less than 0.003%. Similarly, the 
even smaller-scale perturbations generated by butter-
flies should never have a practical impact on weather 
forecasts because the initial conditions at larger scales 
cannot be specified with sufficient accuracy.

SQUALL-LINE SENSITIVITIES. How appli-
cable is the preceding to the real atmosphere? The 
dynamics underlying Lorenz’s turbulence model are 

FIG. 1. Error amplitude (perturbation kinetic energy density) plotted as a function of horizontal wavelength 
for Lorenz’s (a) experiment A and (b) experiment B (dashed lines) at simulation times ranging from 20 min to 
3 days. The thick gray line shows the background kinetic energy of the ensemble-mean velocities.

238 FEBRUARY 2016|

Figure 1.6: L69-experiments A (left) and B (right): error-kinetic energy as a function of the
horizontal scale for times ranging from 0 minutes to 3 days (dashed colored lines). Thick gray line:
mean background kinetic energy spectrum with the k−5/3 slope assumed by L69. The scale increases
on x-axis from left to right. Figure taken from Durran and Weyn (2016).
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When the error is initially confined to the smallest scale (here 38 m, left panel of Fig. 1.6) and
saturated, it directly interacts with larger scales of the flow such that after 20 minutes all
predictability on scales smaller than 1 km is lost (red dashed line). The non-linear turbulent
cascade of error kinetic energy proceeds upscale, where after three days all predictability of
scales smaller 2000 km is lost.

If an error of the same amplitude as in the previous experiment is, however, initially confined
to the largest scales (λ ∼ 30.000 km, Fig. 1.6b), the evolution of the error spectrum is intrigu-
ingly similar to experiment A: the small-amplitude large scale error immediately perturbs the
small scales and the following upscale evolution of the error is almost indistinguishable from
the case where the errors were imposed directly on the small scales. This behavior is attributed
to the decreasing background kinetic energy with decreasing scale, where the error imposed
on the large scales becomes significant on small scales first.

In agreement with the dimensional considerations given above, L69 finds that the slope of
the background kinetic energy spectrum plays a decisive role in determining the possibility
to extend the forecast horizon by confining initial errors to infinitely smaller scales: the pre-
dictability time of flows with background spectra equal or steeper than k−3 can be extended
arbitrarily by making the initial error sufficiently small. In flows with shallower background
spectra, however, restricting errors to increasingly (up to infinitesimally) small scales adds
ever decreasing increments to the skillful forecast horizon. With the measured k−5/3 slope of
the horizontal kinetic energy spectrum, mesoscale atmospheric flow falls in the latter category
where “the flap of a sea gull’s wings would alter the behavior of all cumulus clouds within about
one hour” (L69) and which thus features limited intrinsic predictability. Note that owing to
the homogeneity assumption that underlays the L69-model, this statement in fact only holds
for seagulls that are homogeneously distributed over the globe.

The L69-model is—since it is solely based on the barotropic vorticity equation—highly ideal-
ized. However, an example of the application of a slightly modified L69-model (Rotunno and
Snyder, 2008; Durran and Gingrich, 2014) to the real atmosphere is given in Fig. 1.7. In there,
forecasts were computed with the full atmospheric COAMPS (Coupled Ocean-Atmosphere
Mesoscale Prediction System; Hodur, 1997) model. 100 simulations were performed with
slightly altered initial- and boundary conditions, a so called ensemble forecast. The details
of the model configuration are given in Durran and Gingrich (2014). Here, the reader’s at-
tention is drawn to the fact that the spectra shown in Fig. 1.7b result from a real-case, full
atmospheric model simulations that were initialized with real-atmospheric data. Figure 1.7b
shows the mean background (solid) and perturbation (dashed) kinetic energy spectrum. The
background kinetic energy spectrum features both the k−3 and k−5/3 spectral ranges that
are also apparent in observational data (see section 1.2.1). The initial error spectrum (here
the perturbation is the difference between one ensemble member and the ensemble mean) is
depicted a dashed blue line. The error quickly grows in amplitude and scale, whereby succes-
sively larger scales are saturated.

Figure 1.7a shows a modified version of the analytical L69-model that can be quantitatively
compared to the COAMPS results. In there, the background kinetic energy spectrum as
well as the initial error spectrum have been formulated analytically to mimic the real-case
COAMPS forecast.
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models and the COAMPS ensembles. Replacing SQG
dynamics by the original L69 2D barotropic vorticity
equation has only a modest impact, except that the er-
rors in the largest wavelengths do grow more rapidly
with barotropic vorticity dynamics. As already noted,
one additional factor that can dramatically influence the
error growth is the initial-error distribution, and that will
be the topic of the next section.

4. Why butterf lies do not matter

Adding or subtracting initial errors from selected
scales is computationally quite expensive when work-
ing with large ensembles such as those that generated
the data for Fig. 5, but it is trivial in the ssLRS model.

Figure 8a shows the effect of removing all initial er-
ror from scales smaller than 400 km in the preceding
ssLRS simulation. Fromhour 6 onward, there is virtually
no difference between the errors shown in Fig. 8a and
the case shown in Fig. 6a, which has initial errors in all
scales. Data from the complimentary experiment in
which all initial error is removed from the scales larger
than 400 km, while the small-scale errors remain un-
changed, is plotted in Fig. 8b; the error growth is
clearly much slower than that shown in Fig. 8a. For
example, consider the errors at kc 5 6 3 1025m21 (a
wavelength of about 100km). When initial errors are
only present at wavelengths greater than 400 km (Fig.
8a), Z(kc) grows to about X(kc)/3 in 6 h, but it takes
about 3 times as long for Z(kc) to reach the same value

FIG. 6. (a) KE0 spectral densityZk/k as a function of wavenumber k for the dimensional ssLRSmodel every 6 h (line
colors given in the legend). Black curve shows the saturation spectrum Xk/k. (b) Identical to Fig. 4b, except that the
curves for the total kinetic energy spectral density at each individual time are replaced by their average over hours
12–36 and plotted as the thick black line.

FIG. 7. As in Fig. 6a, except (a) smooth nonlinear saturation is not used, (b) surface quasigeostrophic dynamics are replaced by the
barotropic vorticity equation and smooth nonlinear saturation is not used, and (c) surface quasigeostrophic dynamics are replaced by the
barotropic vorticity equation.

2482 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 71

Figure 1.7: Temporal evolution of the spectral error kinetic energy density as a function of wavenum-
ber k in a) a slightly altered and dimensional version of the L69-model and b) COAMPS ensemble-and
meridional averaged kinetic energy spectra at 500 hPa initialized at 12 UTC 25 Dec 2010. Background
spectra are depicted as solid lines, perturbation spectra are depicted as dashed lines. Figure taken
from Durran and Gingrich (2014).

The prediction of the upscale growth of errors with time is again displayed as dashed lines.
For this case study, the temporal evolution of the error spectrum of the L69-model (Fig. 1.7a)
and the simulation with the full atmospheric model (Fig. 1.7b) compare well. In particular
when the simplicity of the L69-model (e.g. solely 24 degrees of freedom) is taken into account.

The three-stage error growth model

Like for the dynamics underlying the atmospheric kinetic energy spectrum (see section 1.2.2), it
is not clear to what extent homogeneous turbulence (as introduced in the previous paragraph)
is a valid framework to describe error growth in the real atmosphere. In particular, several
recent idealized and real-case numerical studies on atmospheric error growth indicate that
errors are initially confined to precipitating regions (i.e. the convective scale) and seem to
grow much faster in the presence of a convective instability and associated latent heat release
at early forecast lead times (Zhang et al., 2002, 2003; Tan et al., 2004; Hohenegger and Schär,
2007; Leoncini et al., 2010; Selz and Craig, 2015a; Sun and Zhang, 2016). This observation
suggests that atmospheric error growth may be explicitly tied to the dynamical processes acting
on the respective scale range, which are possibly intermittent and localized in nature (e.g. deep
moist convection), and to the dominant scale interaction processes (e.g. the interplay between
rotational and divergent modes of motion). This notion directly opposes the homogeneity
assumption and the unique importance of the slope of the background kinetic energy spectrum
in the L69 error growth model.
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Based on this understanding and on numerical error growth experiments within a moist baro-
clinic wave, Zhang et al. (2007, in the following Z07) suggested a three-stage model for at-
mospheric error growth (see schematic in Fig. 1.8). Note that the explicit dependence of the
error growth process on the underlying dominant dynamics renders a mathematical descrip-
tion difficult, as opposed to turbulence models where fundamental simplifications allow for
the formulation of a statistical model. Hence, the model proposed by Z07 is at this stage
conceptual.

After introducing a small-scale white noise error, Z07 found that errors initially grow in the
area of strong precipitating convection associated with diabatic heating. This fast error growth
on small convective scales is driven by the convective instability and quickly (O(1 h)) sat-
urates locally due to a complete displacement of individual convective cells (stage 1, see
Fig. 1.8). Starting from moist convection, the small-scale unbalanced errors expand. After
around O(10 h) errors are apparent in the large-scale balanced (i.e. larger than 1000 km) flow
field with a small but significant amplitude (i.e. comparable to differences between 6-12 h fore-
casts and observations in the global model employed by Zhu and Thorpe, 2006). The errors
then grow slowly within the background baroclinic instability (stage 3). More recent results,
however, suggest that barotropic interactions might also play a role (Teubler and Riemer,
2016).
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Figure 1.8: Summary of the three-stage conceptual error growth model suggested by Z07.

While error growth properties of stage 1 and 3 seem to be dominated by the convective and
baroclinic atmospheric instabilities acting on the small- and large scales respectively, there
is no dominant instability acting on the mesoscales (e.g. Markowski and Richardson, 2010,
p. 41) and the dynamical mechanism underlying stage 2 of the error growth model as the link
between stage 1 and 3 is less clear. However, as introduced in section 1.1.1, small- and large-
scale atmospheric motion is characterized by significantly unbalanced, divergent and mainly
balanced, rotational modes of motion, respectively. Thus, in the second stage of the upscale
error growth process suggested by Z07 the predominant nature of the error transforms from
unbalanced and divergent to balanced and rotational. Z07 suggest several mechanisms that
potentially underlie the mesoscale error growth dynamics. Examples of such are cold pools at
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low levels, instabilities of the front itself and geostrophic adjustment (GA) following convective
heating (see section 1.1.1). For the latter possibility, which is examined in this thesis, indica-
tions have been found in idealized (Z07) and more realistic (Selz and Craig, 2015b) modeling
studies.

Z07 examine the temporal evolution of the ratio of the domain-averaged root-mean square
difference (between a perturbed an an unperturbed simulation) of the horizontal divergence
and the vertical vorticity. This ratio is also referred to as (bulk) Rossby number Ro and
displayed in Fig. 1.9. The field, where small unbalanced scales have been filtered out, initially
features a Ro larger than unity (solid black line), indicating that the errors are dominated by
unbalanced divergent motion. After around 10 h, however, Ro drops below one, which Z07
interpret as a sign for the growth of a geostrophically balanced flow component to a significant
amplitude (i.e. slightly larger than the divergent part). Z07 hypothesize that the geostrophic
adjustment might govern this this evolution of a large-scale, balanced flow from an initially
unbalanced, small-scale perturbation. The drop of the large-scale (i.e. scales larger 1000 km)
Ro below unity at later times (after around 20 h) furthermore emphasizes the nature of the
observed error growth as an upscale process.

comparable to the balanced component at the interme-
diate scales through the remainder of the simulation.

By 12 h, the differences have a distinct organization
following the cold front of the baroclinic wave (Fig. 9b).
The differences in all the fields alternate in sign along
the front with a wavelength of roughly 300 km, which is
much larger than the scale of the differences associated
with individual convective cells and is consistent with
Fig. 6a. The alongfront organization extends into other
variables, such as rainwater (green and yellow shading)
and temperature (not shown). Away from the front, the
differences reflect propagating mesoscale gravity waves
as can be seen from the significant values of the wind
vectors away from the PV maxima and minima associ-
ated with the convective line (e.g., upper right corner of
Fig. 9b). The present experiments do not fully elucidate
the mechanisms responsible for the growth, scale, and
organization of the differences, although possibilities
include gravity waves produced by convective heating
followed by geostrophic adjustment (e.g., Chagnon and
Bannon 2005), growth of diabatic Rossby vortices (e.g.,
Moore and Montgomery 2005), cold pools at low levels
(which are present near many of the convective cells),
and instabilities of the front itself. We will show in sec-
tions 6 and 7, however, that latent heat release remains
central to the difference growth at this stage.

c. Stage 3: Large-scale baroclinic growth (beyond
12 h)

At the final stage of the error growth, the error from
the transitional stage that is carried by the balanced
motion may subsequently grow with the large-scale

baroclinic instability. This final phase of error growth
toward larger scales depends strongly on the evolution
of the background baroclinic waves and, as shown in
Fig. 7, is slower than those of convective growth and
geostrophic adjustment in stages 1 and 2. To illustrate
the error-growth behavior for the balanced, larger-scale
fields, the 2D spectral decomposition is again used. Sig-
nals with horizontal wavelengths smaller than 1000 km
are filtered out.

Figure 11 shows the filtered 500-hPa differences of
horizontal winds and perturbation pressure, over one
horizontal wavelength (4200 km) of the background
baroclinic waves at 12, 18, 24, and 36 h after the initial
error was introduced. At 12 h, in addition to the bal-
anced response in the smaller area of Fig. 9a described
above, a pronounced negative pressure perturbation
center of !0.3 hPa with an associated difference cy-
clonic circulation is induced to the southern trough re-
gion with a maximum wind difference greater than 0.5
m s"1 downstream (Fig. 11a). The maximum larger-
scale differences of negative pressure perturbation and
winds increased to greater than 0.5 hPa and 1.5 m s"1 at
18 and 24 h (Figs. 11b,c). Significant reorganization and
growth both in scale and magnitude of the difference
circulation occur at subsequent times. At 36 h, there is
a positive pressure perturbation difference with maxi-
mum greater than 0.7 hPa in the trough and a nearly
equal amplitude negative difference in the ridge (Fig.
11d), and the scale of the differences is comparable to
that of the baroclinic wave.

The above result demonstrates that, after three dif-
ferent stages of error growth starting from moist con-
vection, the small-amplitude, purely random noise can
have a noticeable impact on the forecast of moist baro-
clinic waves on the time scale of O(1 day). The ampli-
tude of the larger-scale (#1000 km) differences is com-
parable to the differences between observations and
6–12-h forecasts from global numerical weather predic-
tion models and to the initial perturbations used by Zhu
and Thorpe (2006), which are expected to grow subse-
quently with the baroclinic waves and to limit the syn-
optic-scale forecast on the time of O(5 days). The syn-
optic predictability at the medium range (longer than
1–2 days) is beyond the scope of the current investiga-
tion. The upscale growth of localized PV perturbations
with the background baroclinic waves was also exam-
ined in Beare et al. (2003) and Gray (2001).

Note that the characteristic physical processes of dif-
ferent stages of error growth can coexist at the same
time. For example, during the final phase of the bal-
anced error growth, the adjustment of diabatic heating
energy through inertia gravity waves persists and the
unbalanced response remains a significant portion of

FIG. 10. Evolution of the ratio of the domain-averaged RMS
difference of the filtered horizontal divergence over that of the
filtered relative vorticity. The solid (dotted–dashed) curve is from
signals with scales below 200 (1000) km filtered out.
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Figure 1.9: Ratio of domain-averaged root-mean square difference of horizontal divergence and
domain-averaged root-mean square difference of vertical vorticity as a function of perturbation lead
time in a simulation of a moist baroclinic wave (for details see Z07). Solid: scales larger 200 km
(M+L). Dashed-dotted: scales larger 1000 km (L). Figure taken from Z07.

Apart from the spin-up of a balanced flow component as found by Z07 (see also section 1.1.1)
the impact of a small-scale convective cloud on the surrounding atmosphere consists of a tran-
sient gravity wave response. In real-case numerical error growth experiments, Selz and Craig
(2015b, in the following SC15) examine the difference total energy (DTE). The DTE is a
simple measure for the difference between two fields (as before perturbed and unperturbed)
in the vicinity of a cloud (see Fig. 1.10). In the difference field, the black circle indicates the
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eventually becomes negligible compared to the growing
synoptic-scale difference.
In principle a mechanism for growth of perturbations

on the mesoscale is not required for the development of
a large-scale perturbation. The saturated small-scale er-
rors will directly project onto the large-scale motions and
excite baroclinic error growth.However, if we extrapolate
the projected energy at saturation time (about 11h) with
a typical baroclinic growth rate (a geopotential doubling
time of a day, which corresponds to a DTE e-folding time
of 17.3h) the final large-scale DTE amplitude is more
than an order of magnitude below the observed value
(dotted line in Fig. 3). That shows that an efficient tran-
sition through the mesoscale is able to speed up the large-
scale error growth and significantly reduce the intrinsic
predictability of the synoptic-scale flow.
The question remains what physical processes are

most important for the transition processes in the me-
soscale and the emergence of geostrophic balance.
Initial rapid perturbation growth is confined to pre-
cipitating regions, which are also regions of ascent
and upper-level divergence and are associated with
spreading gravity waves (Bretherton and Smolarkiewicz
1989). The initial perturbations shift the convective cells
and their associated circulations (Fig. 6). As shown in
Fig. 11, and especially in the animations provided in the
online supplement, the perturbed region expands out-
ward from the precipitation location in a form that vi-
sually resembles a gravity wave front. It would be
expected that as this divergent perturbation expands to
the Rossby radius of deformation, a rotational compo-
nent would spin up, leading to a geostrophically bal-
anced perturbation. While it is difficult to prove this
scenario rigorously, we will attempt to show that the
speed and duration of the spatial growth is consistent
with the hypothesis.

First, we consider the spread of perturbations from
a selected convective cell from the P15 experiment. The
propagation speed of a gravity wave is estimated by as-
suming the hydrostatic nonrotating regime, which leads to
c 5 N/m (Gill 1982), where N is the Brunt–Väisälä fre-
quency andm is the vertical wavenumber.Note that in this
limit the gravity waves are nondispersive. We further as-
sume a deep, troposphere-filling gravity wave and thus set
the vertical wavenumber to 2p over twice the tropopause
height H, which results in a propagation speed of

c5
NH

p
. (13)

In the leftmost plot of Fig. 11 a wave front is selected and
is matched with a circle. The gravity wave speed in (13) is
estimated by calculating ameanBrunt–Väisälä frequency
over the subdomain shown in the figure and with H 5
10 km leads to c 5 36.0m s21. The radius of the circle is
then increased with that speed and its center is advected
with the large-scale wind field. It can be seen from the
figure that the circle matches the propagating wave front
closely for about an hour. After that, the wave becomes
difficult to distinguish from surrounding anomalies.
Second we consider a dimensional argument for the

time required for gravity waves to generate balanced
perturbations. The time scale for this process to happen
can be estimated roughly by the time the gravity waves
need to travel the Rossby radius of deformation rD 5
NH/f. Together with (13) we find a simple and universal
expression for this transition time scale:

tT 5
rD
c
5

p

f
, (14)

which equals 7.8 h using the Coriolis parameter at 508N.
A time scale of O(1/f ) for the error transition was also

FIG. 11. Logarithm of 500-hPa DTE of the P15 experiment (reddish colors) on a subdomain around a convective cell for four different
perturbation lead times (plt). The dark shading indicates areas of precipitation (.0.1mmh21). The black dotted circle is chosen to match
approximately the circular pattern on the west side of the convective cell in the leftmost figure (solid line). Its center (the black cross) is
advected with the horizontal wind (small scales filtered out) and its radius is increased by an estimate of the gravity wave speed of
36.0m s21. The axis tick spacing is 18 or approximately 110 km.
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Figure 1.10: Logarithm of difference total energy at 500 hPa around a convective cell for perturba-
tion lead times 2 h 30 mins to 3 h 15 mins in the real-case weather simulation by SC15. The black cross
indicates the advection of the center of the convective cell with the background wind. The associated
black circle depicts a visual fit to the spreading of the error in a gravity-wave front. Figure taken
from SC15.

visual fit of a gravity wave front excited by a convective cloud (black cross). The coincidence
of the spreading of the error (red areas of high DTE) from a convective cloud (black cross)
with the theoretical typical speed of a gravity wave response (black circle) found by SC15 is
interpreted as additional evidence that the GA mechanism might play a major role for the
stage 2 of the conceptual error growth model of Z07.

In this section the general problem of predictability of atmospheric flow, particularly in the nu-
merical weather prediction process was introduced. Initially small errors in low-dimensional,
simple dynamical systems were shown to grow exponentially and lead to rapidly diverging
forecasts. However, in these systems a reduction of the initial error amplitude significantly
expands the time interval over which a skillful prediction of the flow evolution is possible.
The earth’s atmosphere is a much more complex, high-dimensional and non-linear dynamical
system. In there, errors of successively smaller amplitude and scale grow increasingly fast.
This implies, that a reduction of the initial condition error adds ever smaller increments to
the forecast horizon, i.e. the predictability is intrinsically limited. Two theories assessing at-
mospheric upscale error growth have been introduced: on the one hand, errors are understood
to grow in a local cascade in homogeneous, turbulent flow. In there, the predictability time
is solely determined by the slope of the background kinetic energy spectrum. On the other
hand, atmospheric error growth is interpreted as a three-stage process where each stage is
dominated by different underlying dynamics. While the first and last stage of this model
appear to be related to the convective and baroclinic instabilities respectively, the dynamical
process governing the intermediate stage remains unclear. This thesis explores the geostrophic
adjustment following latent heat release within a convective cloud as possibly governing the
intermediate stage of the error growth model.
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1.4 Summary and Thesis Outline

This chapter described the complexity of atmospheric flow as a chaotic multi-scale dynamical
system. In there, processes of various temporal and spatial scales that are characterized by
distinct major underlying dynamics interact through the non-linear nature of equations gov-
erning atmospheric flow. Micro-scale processes are mainly driven by the convective instability
and the dynamics are associated with a significant divergent and unbalanced component. The
large synoptic scales, on the other hand, are mainly energized by the baroclinic instability
and the dynamics are to a good approximation balanced and rotational. On the intermediate
scales, the mesoscales, no major instability acts and neither rotational nor divergent modes
of motion are generally predominant. Mesoscale motion is partly forced by scale-interaction
processes with the micro- and synoptic-scales. These interactions might be chaotic and tur-
bulent or explicitly dependent on the underlying dynamics. One scale interaction mechanism
of the latter kind is the geostrophic adjustment process, whereby a small-scale feature that is
associated with a divergent flow component (such as a convective cloud) spins up a balanced
rotational flow on much larger scales.

One particularly intriguing feature of the mesoscales is the observed universal power-law be-
havior of the horizontal kinetic energy spectrum, which is a known feature of homogeneous
isotropic turbulence. While mesoscale flow is not characterized by fully developed three-
dimensional turbulence, the major dynamics underlying the observed spectral shape remain
uncertain. Until now, progress could be made exclusively with statistical theories owing to the
lack of a conclusive mathematical approach accounting explicitly for the underlying dynamics.
Prevailing theories are particularly in contention about whether the major underlying dynam-
ical agent is predominantly rotational or divergent in nature and to what degree the respective
modes of motion interact. In order to further understand the principal dynamics governing
the observed kinetic energy spectrum, it is thus essential to decouple rotational and divergent
modes of motion from large existing observational data sets. To that end, a one-dimensional
Helmholtz-decomposition method has recently been proposed which, however, bases on strong
mathematical assumptions of homogeneity and isotropy that do not necessarily hold for at-
mospheric flow. Before full use can be made of the great potential of this method, the validity
of the underlying assumptions needs to be tested.

One major application of meteorological research is the skillful numerical weather prediction
which is intrinsically intricate. Low-dimensional nonlinear deterministic systems are known
to show a sensitive dependence on the initial condition accuracy through the fast growth of
initially small errors. The assessment of atmospheric predictability is further complicated by
its chaotic multiscale nature. The problem of predictability of atmospheric flow and the nature
of the underlying scale interactions is currently considered from two main perspectives. One
approach bases on statistical closure models and homogeneous and isotropic turbulent flow.
In there, the slope of the kinetic energy spectrum within which the errors grow exclusively
determines the predictability time. For the measured mesoscale slope it is shown, that pre-
dictability is intrinsically limited by fast upscale growth of small-amplitude errors. Another,
dynamically motivated approach is based on current studies which suggest that small-scale
error growth in the atmosphere is not a spatially homogeneous, but rather an inhomogeneous
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and intermittent process tied to localized regions of active deep moist convection. Initially
small-scale errors are found to expand and attain the large synoptic scales where they grow
within the background baroclinic instability. In an intermediate stage, which bridges the
convective and baroclinic error growth, the nature of the differences has to transition from
small-scale unbalanced (significantly divergent) to larger-scale balanced (mainly rotational).
The dynamical mechanism underlying this transition could thus far not conclusively be de-
termined. It was, however, suggested, that the geostrophic adjustment process might play a
major role.

This thesis contributes to the presented open research questions regarding the dynamics un-
derlying the atmospheric mesoscale kinetic energy spectrum and the upscale error growth in
the following way: in chapter 2 of the present thesis, the suggested method to infer rotational
and divergent modes from (one-dimensional) flight-track data is tested in the framework of
new high-resolution global model simulations. The study presented in this chapter has mainly
been conducted during the authors’ six-month stay at the National Center for Atmospheric
Research (NCAR) in Boulder, Colorado which was supported by the Advanced Study Pro-
gram (ASP). Parts of this chapter have been published in Bierdel et al. (2016). In chapters 3
and 4 the relevance of the geostrophic adjustment process to error growth in the atmosphere
is assessed. To that end, first an analytical model is developed for an unbalanced buoyancy or
divergence forcing that creates a balanced rotational flow (chapter 3). In there, characteristic
spatial and temporal scales of the geostrophic adjustment mechanism are deduced and three
diagnostics that can be used to identify this process in numerical simulations are proposed.
These diagnostics are then employed to extract the geostrophic adjustment process from ide-
alized error growth experiments in a full numerical model of the atmosphere (chapter 4). In
a final chapter, the results of the present thesis are summarized and discussed and possible
succeeding studies that build on the results of the present thesis are suggested (chapter 5).
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Partly contained in Bierdel et al. (2016), c©American Meteorological Society. Used with permission.

Chapter 2

Rotational and Divergent Kinetic
Energy Spectra derived from
flight-track winds

2.1 Introduction

As elaborated in paragraph 1.2.2 in the introduction, it remains an open question whether the
mesoscale horizontal kinetic energy spectrum arises mainly from inertia gravity waves (Van-
Zandt, 1982; Dewan, 1997), from two-dimensional vortical flow (Gage, 1979; Lilly, 1983) or
stratified turbulence (Lindborg, 2006). To a first approximation, a flow dominated by grav-
ity waves can be distinguished from the other possibilities by an examination of the extent
to which the horizontal velocity is associated mainly with horizontal divergence rather than
vertical vorticity. The relative contribution of divergent and rotational energy to total kinetic
energy is thus a key to understanding the main dynamical agent underlying the mesoscale
energy spectrum.

While a variety of atmospheric models, including both general circulation models and models
used for numerical weather prediction, exhibit a shallowing of the mesoscale energy spectrum
that is in reasonable agreement with the observed energy spectrum (Koshyk and Hamilton,
2001; Skamarock, 2004; Hamilton et al., 2008; Bierdel et al., 2012; Blažica et al., 2013; Brune
and Becker, 2013; Burgess et al., 2013; Ricard et al., 2013; Skamarock et al., 2014), these
spectra can be sensitive to details of the model configuration (vertical resolution or strength
of dissipation; Skamarock, 2004; Brune and Becker, 2013). Particularly the comparison of
the spectral energy budgets between different models has shown marked differences (Frehlich
and Sharman, 2008; Augier and Lindborg, 2013). Moreover, various models differ widely in
their predictions for the relative magnitudes of rotational and divergent velocities at the tro-
pospheric mesoscale. Blažica et al. (2013) examine the numerical weather prediction model
ALADIN (Aire Limitée Adaptation Dynamique Développement International; Fischer et al.,
2005) and find an equipartition of mesoscale rotational and divergent kinetic energy in the
free troposphere of the midlatitudes. These findings are supported by the evaluation of data
from global circulation models (GCMs) in Skamarock et al. (2014) and Koshyk and Hamil-
ton (2001). Contrarily, Hamilton et al. (2008) and Koshyk et al. (1999) find in several (high



26 2. Rotational and divergent energy spectra derived from flight-track winds

resolution) GCM simulations that upper tropospheric kinetic energy is dominated by the ro-
tational component. Thus, observational estimates of the energy spectra for the rotational
and divergent flow will also be useful in identifying which numerical models produce mesoscale
shallowing of the kinetic energy for the correct dynamical reasons.

Many observational studies addressing different aspects of the mesoscale energy spectrum with
respect to geographical region and vertical levels found signs of mesoscale spectra dominated
by either quasi two-dimensional motion (Gage and Nastrom, 1985; Cho et al., 1999) or unbal-
anced gravity wave motions (Vincent and Eckermann, 1990; Bacmeister et al., 1996; Cho et al.,
1999). Commercial aircraft observations such as the Measurement of Ozone and Water Vapor
by Airbus In-Service Aircraft (MOZAIC; Marenco et al., 1998) provide large global datasets
of along- and across-track wind velocity measurements. Perhaps surprisingly, one-dimensional
transects of horizontal wind components are useful for estimating the spectra of the divergent
and rotational velocities. A method for doing this was first suggested by Lindborg (2007,
hereafter L07), though basic results are also implicit in early work such as Charney (1971).
More recently, Bühler et al. (2014, hereafter B14) and Lindborg (2015, hereafter L15) have
proposed approaches that are computationally simpler to implement than L07 and do not
involve second-order differentiation of measurement data which might introduce errors in the
results. Both approaches have been applied to MOZAIC observations (Callies et al., 2014;
Lindborg, 2015).

The B14 and L15 approaches follow from relations between the longitudinal-transverse and
Helmholtz decompositions, which in turn require strong assumptions on the underlying flow,
namely horizontal homogeneity and isotropy. In the real atmosphere, these assumptions of
course hold only approximately and the two approaches may be relatively more or less sen-
sitive to violations of the assumptions of homogeneity and isotropy. In this chapter, the the
accuracy of the B14 and L15 approaches for realistic flows is evaluated by applying them to
numerical output from the global atmospheric Model for Prediction Across Scales (MPAS,
Skamarock et al., 2012), where the decomposition of the velocity into rotational and divergent
components may be done unambiguously. When applied to aircraft observations (as in Callies
et al. (2014) and L15), these techniques require an additional assumption, which are not tested
here, namely that measured velocity time series can be converted to spatial transects using
the mean air speed of the plane.

The comparison of the two approaches presented in this chapter is also motivated by the
different ratios of divergent to rotational spectral energy on the mesoscales that have been
found when applying the B14 and L15 implementations to MOZAIC data. Callies et al. (2014,
hereafter C14) apply the B14 approach and find that velocity spectra at the mesoscales are
dominated by the divergent contribution, which leads them to the conclusion that inertia-
gravity waves likely account for the mesoscale energy spectrum. Contrarily, L15 finds the
opposite result, with mesoscale spectra dominated by the rotational contribution, and con-
cludes that inertia-gravity waves can be ruled out as important to the atmospheric mesoscale
energy spectrum. Besides the differences in the details of their implementations, C14 and L15
also make different choices in their handling and processing of the observations. Thus, the
sensitivity of the decomposition to some of these choices in the context of numerical simula-
tions is explored, though a detailed reconstruction of either study is not attempted.
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This chapter is structured as follows: in section 2.2, the configuration of the MPAS model
and the simulated period as well as the procedure of the spectral calculations and the B14
and L15 approaches are described. The results of this study for global data are presented in
section 2.3. General features of the kinetic, rotational and divergent energy spectra in the
MPAS model are reviewed and the estimates of the respective energy components by B14 and
L15 and the according errors are discussed. In section 2.4, it is shown that the different results
of C14 and L15 for the dominance of rotational or divergent energies on the mesoscales in the
MOZAIC data can be qualitatively reproduced by considering different subsets of the MPAS
data. This chapter concludes with a summary in section 2.5. The results of this chapter have
partly been published in Bierdel et al. (2016).

2.2 Data and methods

The B14 and L15 approaches are tested by applying them to output from global atmospheric
simulations. This section describes the numerical simulations, the various spectra that are
computed from them and the B14 and L15 implementations of the decomposition method.

2.2.1 The numerical simulation and computation of its spectra

In order to test the B14 and L15 approaches, output produced by the fully compressible non-
hydrostatic atmospheric global Model for Prediction Across Scales (MPAS), which is described
in detail in Skamarock et al. (2012), is used. The MPAS solver is discretized on a spherical
centroidal Voronoi mesh. The results presented in this chapter are computed over days 5-14
of a 15 day MPAS simulation initialized at 0000 UTC 15 January 2009, using a quasi-uniform
mesh with an average cell-center spacing of 15 km. Spectra from the model generally spin
up within 18 h and omitting the first 5 days of simulations insures that the results are not
influenced by such spin up. The simulation is identical to the 15-km simulation of Skamarock
et al. (2014, hereafter S14) and a detailed description of the model configuration, the physi-
cal parameterizations, the integration scheme and the numerical diffusion used can be found
there.

The B14 and L15 approaches provide estimates of the spectra of rotational and divergent en-
ergy, using one-dimensional power spectra of across- and along-track wind velocities as input.
These spectra will be denoted by ER(p), ED(p), ET (p) and EL(p) respectively, where p is the
along-track wavenumber. In the present chapter those spectra are calculated from the MPAS
output as follows: the data is available on an unstructured grid that lacks a global coordinate
system and is in a first step interpolated to a regular latitude-longitude grid. To that end, the
Delaunay triangular mesh as the dual of the Voronoi mesh is used, and barycentric interpo-
lation is used within the Delaunay triangle that contains a given latitude-longitude point (as
described in S14). This interpolation is performed on the interpolated height levels 8.5 km,
9.5 km, 10.5 km, 16 km, 17 km and 18 km, where model height surfaces are considered almost
horizontal. Tropospheric results (TROP) are averaged over the first three levels. In this chap-
ter stratospheric heights are furthermore included in order to assess the height-dependence
of the obtained spectra. The stratosphere is the atmospheric layer between the tropopause
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and around 50 km height. In there, dynamics are fundamentally distinct from the troposphere
and mainly determined by zonal winds that interact with waves that propagate upward from
the troposphere (e.g. Ruzmaikin et al., 2003). An average over the latter three levels is in
this chapter denoted as STRAT (16− 18 km). As a second step, the gridded one-dimensional
transects are extracted from the model output along constant latitude or longitude and these
are rendered periodic following Errico (1985). A discrete one-dimensional Fourier transform
is then applied along the transects and the resulting spectra are averaged over all longitudes
or latitudes respectively. In this chapter, longitudinal and latitudinal wavenumbers will be
denoted by k and l, respectively. All spectra displayed as a function of k will result from
one-dimensional Fourier transforms taken along circles of constant latitude averaged over all
latitudes. A dependence on l will indicate that spectra have been calculated along circles of
constant latitudes, and along constant longitudes and averaged (scales larger than the min-
imum l are neglected in k-spectra). All spectra presented in this chapter are computed at
6-hourly intervals and further averaged over the 10 days of simulation (40 time slots in total).

In order to compare the results of B14 and L15 to ER and ED obtained from full model output,
the velocity field is decomposed globally into rotational and divergent contributions. To that
end, a spherical harmonics transform is applied to the fields of vertical vorticity and horizontal
divergence on the regular latitude-longitude grid. The associated spectral representation of
the stream function and the velocity potential, and of the rotational and divergent components
of the horizontal wind can then be easily calculated and an inverse spherical harmonic trans-
form gives the rotational and divergent wind components in real space. Those fields are then
detrended in the latitudinal direction (even for global data the latitude range is restricted, see
explanation below) and a two-dimensional Fourier transform is applied. In order to obtain
a one-dimensional spectrum as a function of the along-track wavenumber, a direction for the
one-dimensional spectrum (either latitudinal or longitudinal) is chosen and the squared abso-
lute values of the Fourier coefficients for both along- and across-track velocities are summed
over the wavenumber in the across-track direction.

When taking discrete Fourier transforms of one-dimensional transects along circles of constant
latitude of the interpolated regular latitude-longitude grid, issues related to the stretching of
segments at higher latitudes to longer physical distances will arise. The influence of this ge-
ometric effect has been checked by comparing results from spectral calculations on the full,
global latitude-longitude grid (including regions at high latitudes where the effect is expected
to be significantly more pronounced) to those from a grid restricted to latitudes between 60◦S
and 60◦N. Comparing the obtained spectra with spectra computed from spherical harmonic
coefficients for the full global fields, however, indicates that this effect changes neither the
results nor the performance of the method qualitatively. The results shown in the present
chapter are nevertheless restricted to the latitude range 60◦ S to 60◦N to assure that the
geometric effect near the poles is neglected.
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2.2.2 The Bühler and Lindborg approaches

On the sphere, the two-dimensional Helmholtz-decomposition allows for the representation of
any horizontal flow field vh in terms of components associated with the divergence and the
rotation of the flow. It reads (e.g. Bott and Zdunkowski, 2003, p. 217)

vh = vh,R + vh,D = −∇× (ezψ) +∇φ ,

where vh,R and vh,D are the rotational and divergent components of the horizontal wind, ∇
denotes the horizontal gradient operator, ez is the vertical unit vector and ψ and φ are the
stream function and velocity potential. All velocity components are defined in the x-y-plane
with associated wavenumbers p and q (in order to avoid confusion with the wavenumbers k
and l that will denote longitudinal and latitudinal wavenumbers in the MPAS data), where x
is the along-track direction. Furthermore, the altitude z as well as the time t are considered
constant. Apart from the decomposition into rotational and divergent modes, a horizontal
flow field sampled along a one-dimensional flight track can also be regarded as composed of
an along- and across-track wind component, vL and vT . The one-dimensional kinetic energy
spectrum EK(p), can thus be expressed as

EK(p) = ET (p) + EL(p) = ED(p) + ER(p) . (2.1)

The p-dependence of one-dimensional spectral quantities will be omitted in the remainder of
this chapter for simplicity. Dependencies other than on p will be denoted explicitly. Assuming
the flow is horizontally homogeneous and isotropic, and given the unique and exact decompo-
sition (2.1), then ER and ED can be related to ET and EL. The equations from B14 and L15,
given in the next sections, are mathematically equivalent formulations of these relations and
thus the B14 and L15 approaches can be considered different implementations of the same
method.

The Bühler approach

Under the assumption that the stream function ψ and velocity potential φ are isotropic random
functions, B14 derive relationships between EL and ET and the two-dimensional isotropic
spectra of ψ and φ. The resulting coupled ordinary differential equations (ODEs) take a
simpler form when the y-derivatives of the velocity potential and stream function spectra, Dφ

and Dψ, are introduced as auxiliary functions, with the result

p
d

dp
Dψ(p) = Dφ(p)− ET (p) (2.2)

p
d

dp
Dφ(p) = Dψ(p)− EL(p) , (2.3)

where the subscripts L and T denote quantities derived from along- and across-track wind
velocities as before.

The ODE system (2.2)-(2.3) is solved forDψ andDφ numerically under the boundary condition
that Dψ and Dφ tend to zero for p → ∞. Note that B14 also suggest a closed form solution
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which implies the interpolation of the input EL and ET spectra to a logarithmic grid. However,
to avoid the potential errors arising from this additional step (2.2)-(2.3) are solved numerically
on the regular p-grid. The required amount of smoothing depends on the level of noise in the
data (i.e. sample size) and an averaging over wavenumber bins of width 5 · 10−8 m−1 is found
to be sufficient for the utilized data.

Adding (2.2) and (2.3) and regrouping the terms to components only associated with the
stream function or velocity potential leads to the kinetic energy spectra of rotational and
divergent winds

ER(p) = Dψ(p)− p d
dp
Dψ(p) (2.4)

ED(p) = Dφ(p)− p d
dp
Dφ(p) , (2.5)

where the subscripts R and D denote quantities derived from rotational and divergent wind
velocities (see (2.27) in B14). Note that the boundary condition that Dψ and Dφ tend to zero
for p → ∞ implies that ER and ED tend to zero for largest wavenumbers. The described
additional smoothing of the input EL and ET spectra has a negligible impact on the results
(see paragraph 2.3.2).

The Lindborg approach

The original approach of L07 begins from relationships between the two-point correlation
function of vertical vorticity and horizontal divergence and the along- and across-track veloc-
ity correlation. As in B14, statistical isotropy and homogeneity are assumed. The desired
relationships between the longitudinal-transverse and Helmholtz decompositions are derived
in L07, but the calculation of the two-point correlation functions of vertical vorticity and
horizontal divergence involves second-order differentiation of measurement data, leaving the
estimate sensitive to noise.

L15 revisits the formulas found in L07 and derives two coupled ODEs that relate the two-point
correlation functions of rotational and divergent velocities (Rrr and Rdd) to the correlation of
longitudinal and transverse velocities (Rll and Rtt). Under the boundary condition that the
correlation functions tend to zero for infinite separation distances r, the respective relation-
ships can be integrated over r and L15 finds

Rrr = Rtt −
∞∫
r

1

r
(Rtt −Rll) dr

Rdd = Rll +

∞∫
r

1

r
(Rtt −Rll) dr .
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Using the relation between structure functions and spectra for isotropic, homogeneous fields
then gives formulas relating the rotational and divergent energy spectra to the spectra of
horizontal wind velocities ((2.11) and (2.12) in L15)

ER(p) = ET (p) +
1

p

∞∫
p

(ET (p)− EL(p)) dp (2.6)

ED(p) = EL(p)− 1

p

∞∫
p

(ET (p)− EL(p)) dp , (2.7)

where definitions are as before. The relationships established by L15 relate ER and ED to EL
and ET in a simpler way than L07 and B14 and can be implemented with a simple trapezoidal
rule where no preprocessing of the input data is necessary. For comparison with the B14
approach the spectral formulas (2.6) and (2.7) will be examined in the present chapter.

2.3 Spectra obtained from global data

In the following, general characteristics of EK , ED and ER as calculated from MPAS data
(i.e. two-dimensional fields) are discussed first. EB

D,R refer to results obtained from solving (2.4)
and (2.5) (as derived in B14) numerically and EL

D,R are calculated from (2.6) and (2.7) using
a trapezoidal rule as in L15. Quantities without the superscript ’L’ or ’B’ refer to results
obtained from the two-dimensional data and are then compared to the respective EB,L

D,R. In a
third part the large scale error of the two approaches is assessed.

EK , ED and ER calculated for the considered period of time have already been presented in
S14. S14 discuss in detail the fully global results of MPAS simulations with 3 km horizontal
resolution as opposed to this study where 15 km data is calculated on a narrower latitude
band (60◦S − 60◦N) and rendered periodic in latitudinal direction. S14 furthermore use a
global spherical harmonic decomposition and a summation over spherical harmonics with the
same total wavenumber. Since the examined data is on a limited area a two-dimensional
Fourier transform is applied to the fields and results are displayed as a function of along-track
wavenumber for comparability with the B14 and L15 studies. The S14 methodology for the
calculation of one-dimensional spectra is thus slightly different from the approach utilized here
and general features of the spectra will be briefly reviewed.

2.3.1 General features of the spectra

EK is displayed as a function of longitudinal wavenumber k as red line in Fig. 2.1 for TROP
(left) and STRAT (right). As in S14, the observed features of the atmospheric energy spec-
trum, with a −3 scaling at larger scales that merges into a shallower spectrum for scales
smaller than around 500 km, is well reproduced in both height regimes. The model’s accurate
reproduction of the flow on small scales is bounded by the effective resolution, i.e. the scale at
which model filter effects become important. From a comparison with higher resolved MPAS
simulations, S14 estimate the effective resolution of the model in this configuration as 4 − 6
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Figure 2.1: EK , ER and ED as calculated from the full MPAS data set and EB,LD,R for TROP (left)
and STRAT (right) as a function of k in double logarithmic space. The spectra are taken along
longitudinal bands and then averaged over latitudes between 60◦S and 60◦N.

times the horizontal grid spacing ∆ (see solid gray vertical lines in Fig. 2.1). Thus, spectra for
the evaluated MPAS data will not be considered accurate on scales smaller than 100 km and
the term ’mesoscales’ will in the remainder of this chapter refer to the wavelength range from
100 km to 1000 km. As discussed in previous modeling studies (e.g. . Hamilton et al., 2008),
the shallowing of EK on largest (global) scales is considered a physical feature of the energy
spectrum of the real atmosphere (Boer and Shepherd, 1983), but should be interpreted with
care since the shape of the spectrum results from an average over few Fourier modes and is
thus highly variable.

As seen in S14, the mesoscale transition, i.e. the scale where the shape of the EK spectrum
changes from a steeper synoptic scale to a shallower mesoscale slope, is at somewhat longer
wavelengths in STRAT (600−800km) than in TROP (300−500 km). This shift of the transi-
tion to larger scales with height is consistent with previous studies with global models (Koshyk
and Hamilton, 2001; Burgess et al., 2013) and with idealized simulations of baroclinic waves
(Waite and Snyder, 2013). It appears to arise from upward propagating inertia-gravity waves,
where the divergent component of the flow maintains its amplitude while the rotational com-
ponent decays.

In Fig. 2.2, the fraction of ED of EK is displayed in percentage terms as a function of longi-
tudinal wavenumber for TROP (left) and STRAT (right). In TROP, ER dominates EK for
all wavenumbers. For scales larger than 1000 km, ED amounts to about 10% of EK . The
associated dominance of ER leads to the observed −3 wavenumber dependence of EK on the
large scales. From Fig. 2.1 it can be seen that the ED spectrum features a significantly shal-
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Figure 2.2: Fraction of ED of EK (E) in % from Fig. 2.1 for TROP (left) and STRAT (right). Solid
gray horizontal lines demark 10%, 50% and 90%, dashed vertical gray lines indicate horizontal scales
of 100 km and 1000 km for orientation. Dashed green and yellow lines are moving averages over three
wavenumber bins of associated opaque solid lines.

lower slope (closer to −5/3). On the mesoscales, the contribution of ED to EK increases with
decreasing scale and accounts for up to 45% of EK with an average ratio ED/ER ∼ 0.7. In
contrast, the STRAT mesoscales are characterized by a dominance of divergent motions, where
ED makes up 80% of EK on scales of a couple of hundreds of kilometers. The STRAT ER
and ED spectra cross at a scale of around 2000 km, leading to a sharper mesoscale transition
that occurs at longer wavelengths than in TROP. The mean mesoscale (i.e. averaged over all
wavenumbers in the mesoscale range 100 km− 1000 km) ratio ED/ER is found to be 4.1.

Previous modeling studies disagree concerning the ratio of ED to ER on the atmospheric
mesoscales. As in this study, S14 find an equipartition of energy between ED and ER in the
upper tropospheric mesoscales; earlier studies, such as Koshyk and Hamilton (2001), hint at
a similar result though they do not resolve the majority of the mesoscale range. Blažica et al.
(2013) examine the height dependence of the contribution of divergent to kinetic energy in
the numerical weather prediction model ALADIN and find that divergent energy amounts to
about 50% of kinetic energy in the free troposphere. Hamilton et al. (2008), in contrast, find
in simulations of a high resolution GCM that near the tropopause the rotational dominates
over the divergent energy on the mesoscales, with ER ∼ 4ED. In the stratosphere, model
simulations generally agree that transition to a flatter mesoscale spectrum occurs at larger
scales than in the troposphere and that ED increases relative to ER (Koshyk and Hamilton,
2001; Hamilton et al., 2008; Blažica et al., 2013; Burgess et al., 2013; Waite and Snyder, 2013;
Skamarock et al., 2014). Several studies (Koshyk and Hamilton, 2001; Burgess et al., 2013;
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Waite and Snyder, 2013) attribute these characteristics of the stratospheric energy spectrum
to mesoscale inertia-gravity waves propagating upward from the troposphere, though Augier
and Lindborg (2013) compare the spectral energy budgets in two different models and show
that vertical propagation of mesoscale waves is important in only one of them.

2.3.2 Estimate from B14 and L15

EB,L
D and EB,L

R are displayed as green and yellow lines in Fig. 2.1. The two approaches pro-
duce almost identical results and work very well. Due to the different solution technique and
the required smoothness of the input data, EB

D,R are marginally smoother than EL
D,R. When

plotted on a traditional log-log scale the results are almost indistinguishable from the correct
answer (black lines). The underlying mathematical assumptions of isotropy and homogeneity
must be well satisfied, at least when data is aggregated over large areas.
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Figure 2.3: Absolute error ε (in %) of EB,LD,R from Fig. 2.1 for TROP (left) and STRAT (right).
Gray horizontal lines indicate 10% and 25%. Dashed and solid green and yellow lines are moving
averages as in Fig. 2.2.

The absolute errors of B14 and L15 are displayed in Fig. 2.3. The error is defined as the abso-
lute value of the difference between EB,L

D and EB,L
R and the corresponding energy component

from MPAS data, normalized by the latter, and provides a quantitative view on the quality
of the estimates of B14 and L15. Mean mesoscale errors of EB,L

D and EB,L
R amount to 11.0%

and 7.2% (TROP) and 4.7% and 17.7% (STRAT) respectively. The largest errors are found in
EB,L
D on the largest scales and in both energy components near the grid scale. It furthermore

appears that the smaller energy component is estimated systematically worse.
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In Fig. 2.1, EB,L
D takes negative values for the two largest Fourier modes and is thus not dis-

played on the log-log scaled plot. L15 also noticed this unphysical behavior and this issue will
be addressed in paragraph 2.3.3. The errors on the small-scale end of the spectra in Fig. 2.1
arise for Fourier modes on the grid scale. Since, as pointed out before, evaluated MPAS spec-
tra are not accurate on scales smaller than 100 km due to the strong impact of model filter
effects these errors will not be discussed further.

In Fig. 2.2 the ratio ED/EK is displayed for TROP (left) and STRAT (right). The discussed er-
rors are in fact small enough that the ratio is also estimated well with values EB,L

D /EB,L
K ∼ 0.9

in TROP and 5.2 in STRAT (compared to 0.7 and 4.1, respectively in the MPAS data). The
B14 and L15 techniques should thus be able to provide a strong observational check on the
mesoscale behavior of numerical models. As will be discussed in section 2.4, however, careful
attention must be paid to which subset (i.e. latitude and height) of observations is considered.

2.3.3 Assessment of errors

A striking feature of Figs. 2.1 and 2.3 is the relatively large error of EB,L
D on large scales.

This might result from violation of the underlying assumptions of B14 and L15 (see para-
graph 2.2.2), but another possibility is that, because of the small amplitude of ED relative to
ER, EB,L

D may be contaminated by small noise in ER. This issue is addressed by calculating
EB,L
D as in paragraph 2.3.2, but beginning from either purely rotational (vh = vh,R) or purely

divergent (vh = vh,D) components of the original MPAS velocities.
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Figure 2.4: ER and ED as calculated from the full MPAS dataset and ELD,R from the full flow field

as well as ELD,R from vh,D alone or vh,R alone, for TROP (left) and STRAT (right). Scales larger
∼ 1000 km are shown.
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If the large-scale error of EB,L
D is related to a bad signal-to-noise ratio it is expected to be

significantly reduced for the purely divergent flow.

In Fig. 2.4, ED,R and EL
D,R are displayed for scales larger than ∼ 1000 km for the full flow field

(as Fig. 2.1) and EL
D from vh,D alone or vh,R alone. All estimates of the B14 technique are

quantitatively and qualitatively almost identical to the corresponding L15 estimates and are
not shown for reasons of clarity. As discussed in paragraph 2.3.2, the difference between EB,L

D

and ED grows with increasing scale in TROP and STRAT (see black and yellow dashed lines
in Fig. 2.4). When computed from vh,R alone (dashed green line), EL

D qualitatively resembles

the estimate from the full flow field (dashed yellow line). Note especially that EB,L
D is esti-

mated with significant amplitude although the divergent wind is set to zero in the input data.
EB,L
D computed from vh,D alone (dashed red line), however, compares significantly better to

ED. These results clearly show that the poor retrieval of ED by B14 and L15 on large scales
is related to a bad signal-to-noise ratio: the big error of EB,L

D is caused by small errors in ER
on large scales that contaminate the divergent component, which is small compared to the
rotational component, and not by errors arising from violations of the underlying assumptions
on the flow, such as isotropy and homogeneity.

An analogous test of the dependence of errors of the ER estimate for from either vh,R or vh,D
alone (not shown) does not give results as clear as those for ED. The error of the ER estimate
is in particular neither in general nor on a certain scale range drastically reduced if ER is
computed from vh,R alone. This points to other error sources being more relevant to the ER
estimate than the signal-to-noise-ratio. This issue warrants further investigation.

2.4 Exploring the results of C14 and L15

C14 and L15 applied the B14 and L15 approaches respectively to the global MOZAIC commer-
cial aircraft data set. They found different ratios ED/ER on the atmospheric mesoscales and
drew differing conclusions regarding the dominant dynamical character on this scale range. In
this section, the different results of C14 and L15 are assessed with the MPAS data.

2.4.1 Comparing C14 and L15

C14 find from the application of B14 to MOZAIC data, that the rotational component
dominates the energy spectrum on the synoptic scales and that ED becomes of the same order
of magnitude as ER near the transition scale. On the mesoscales, C14 find a slight dominance
of ED over ER. The authors conclude from this that mesoscale dynamics are governed by
unbalanced ageostrophic inertia gravity wave (IGW) motions and that the transition in the
EK spectrum originates from IGWs becoming dominant on the respective scales. According
to C14, an IGW field that is dominated by near inertial waves is expected to feature a
ratio ED/ER ∼ ω2/f 2 of about unity (with f Coriolis parameter and frequency ω). The
dynamic picture that emerges from the C14 results is a forward enstrophy cascade forced by
geostrophic synoptic scale baroclinic disturbances, which is masked by inertia gravity waves
for scales smaller than about 500 km. In contrast, L15 finds, based on a structure function
analysis of MOZAIC data that ER dominates over ED on the mesoscales at all heights and
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with largest values ED/ER ∼ 0.33 in the upper troposphere. Arguing that any realistic IGW
frequency distribution features a ratio ED/ER significantly larger than unity, L15 concludes
that gravity waves can be ruled out as being the major dynamical feature leading to the
observed atmospheric energy spectrum. There are two potential causes of the disagreement
between the C14 and L15 results: first, the different results can arise from different estimates
EB,L
D,R from given ET and EL, i.e. there are inherent limitations in the accuracy of the

diagnostic methods. This possibility is ruled out by the results of paragraph 2.3.2. In what
follows, the second possibility, that the difference between the results of C14 and L15 arises
from differences in their processing of the MOZAIC measurement data, is examined.

C14 use MOZAIC data obtained in 2002-2010 and utilize only flight segments that are longer
than 6000 km and lie completely in the northern hemispheric midlatitudes (30◦N-60◦N). These
criteria reduce the number of evaluated segments to 458 and select mainly flights that are more
or less along tracks at constant latitude. The data are not separated into upper-tropospheric
and lower-stratospheric portions, but rather all flight levels are averaged together. L15 uses
the 1994-1997 MOZAIC data set without restrictions concerning the segment length (leading
to a smaller evaluated scale range than in C14) or location of the flight track. The resulting
7630 randomly oriented flight segments are separated according to ozone levels into nomi-
nally tropospheric (< 100 ppbv) and stratospheric (> 200 ppbv) heights and averaged globally.

2.4.2 MPAS results

Since C14 and L15 use different subsets of the MOZAIC data, their different conclusions with
regard to the mesoscale ratio ED/ER are not necessarily contradictory. By evaluating only
long flights in a narrow latitude band, C14 only include spectra with a longitudinal wavenum-
ber dependence in a rather homogeneous flow field. The discussion of the vertical dependence
of ED/ER and the transition scale from synoptic to mesoscale flow regimes in paragraph 2.3.1
further indicates that averaging over tropospheric and stratospheric height regions might lead
to different results than separating those heights. Furthermore, L15 averages over 16 times
more flight segments which are more randomly oriented and distributed over the globe. This
might render the evaluated data more isotropic and smooth. The latitudinal dependence of
energy spectra and the accuracy of the isotropy assumption on the flow (Nastrom and Gage,
1985; Cho and Lindborg, 2001) might also lead to different results when spectra are averaged
over the globe as opposed to a narrow latitudinal band.

Next, spectral shapes and estimates of ED/ER computed by applying the B14 or L15 tech-
niques to subsets of the MPAS data that mimic those used by C14 and L15 are compared. To
mimic the C14 setup, one-dimensional spectra are taken along constant latitudes and averaged
over latitudes in the range 30◦N-60◦N and TROP (C14 setup). For the L15 setup, the input
spectra are calculated globally along bands of constant latitude and longitude and averaged
separately for TROP and STRAT. Note that for the L15 setup the resulting spectra are dis-
played over a smaller range of wavenumbers, since the latitudinal tracks are shorter than the
longitudinal.
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Figure 2.5: Left: as Fig. 2.1 for the C14 setup. Right: as Fig. 2.3 for the C14 setup.

The left panel of Fig. 2.5 displays EK , ED and ER for the full MPAS data, as well as EB,L
D,R

for the C14 setup. ED dominates over ER up to a transition scale at around 400 − 500km.
Beyond that scale, the spectra cross and ER dominates ED for larger scales. The scale where
ER and ED cross also marks the transition of the EK spectrum from a shallower mesoscale
slope to a steeper slope on synoptic scales. This agrees well with the transition scale of 500 km
found by C14.

The errors for EB,L
D,R shown in the left panel of Fig. 2.5 as defined in paragraph 2.3.2 are

displayed in the right panel of Fig. 2.5. As before, the approaches show matching results and
error dependence on along-track wavenumber. EB,L

D compares well to ED up to a certain scale
(here around 2000 km) and becomes very noisy and takes non-physical negative values on the
largest scales (see paragraph 2.3.3). The errors of EB,L

D and EB,L
R show, in contrast to the

global data, no variation with scale and take small mean mesoscale values of 6.2% (EB,L
R ) and

3.8% (EB,L
D ).

The contribution of ED to EK is displayed in percentage terms in Fig. 2.6. For MPAS data,
the fraction of ED to EK gradually drops from roughly 70% at scales near 100 km to 50% at
400−500 km. The mean ratio ED/ER amounts to 1.8 on the mesoscales. The results based on
the full MPAS data as well as EB,L

D,R reproduce the dominance of ED over ER on the mesoscale
in the C14 setup. While the MPAS data features ED/ER ∼ 1.8 on the mesoscales, B14 and L15
estimate a value of 2.0 (see Fig. 2.6). Note additionally that due to limitations in the height
levels of the available MPAS data, the C14 setup only contains upper tropospheric height levels
8.5, 9.5 and 10.5 km. Due to the increase of mesoscale ED with increasing height as reported in
the current as well as earlier model studies the dominance of ED on the mesoscales is expected
to be more pronounced if lower stratospheric data were included.
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Figure 2.6: As Fig. 2.2 for the C14 setup.
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Figure 2.7: As Fig. 2.1 for the L15 setup for TROP (left) and STRAT (right).
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In Fig. 2.7 EK , ED and ER for full MPAS data, as well as EB,L
D,R are displayed for the L15

setup and TROP (left) and STRAT (right). The TROP spectra calculated from MPAS data
show a dominance of ER over ED across the entire scale range with an increasing dominance
with increasing scale. EK again flattens from a steep synoptic scale to a shallower slope on
the mesoscale. Contrarily, in STRAT, ED dominates ER on scales up to a horizontal scale
of around 1000 km where the spectra cross. While ED has a shallow slope close to a −5/3
wavenumber dependence, ER features a steep approximately −3 dependence on horizontal
wavenumber.

The errors according to EB,L
D,R shown in Fig. 2.7 are displayed in Fig. 2.8. In TROP, the errors

for ED and ER do not exceed values of around 10% up to scales of 1000 km with mean values
of 3.3% (EB,L

R ) and 6.7% (EB,L
D ) on the mesoscales. In STRAT, the errors of the estimate of

ED and ER take significantly larger values than the previously discussed C14 and global data
results. For the L15 setup, B14 and L15 find mean mesoscale ratios ED/ER of 0.5 (TROP)
and 1.6 (STRAT). The fraction ED/EK as calculated from MPAS data as well as for the
B14 and L15 estimates and TROP (left) and STRAT (right) are displayed in Fig. 2.9. In
TROP, ED contributes the most to EK on scales of a few hundreds of kilometers (45%) and
drops continuously to a couple of percent on scales around 1000 km. The mean mesoscale
ratio ED/ER amounts to 0.5. In STRAT (right panel of Fig. 2.9), ED dominates ER on the
mesoscales. On larger scales the amplitude of ED decreases rapidly with increasing scale. For
the full MPAS data, the mean mesoscale ratio ED/ER is 1.8. From Figs. 2.7 and 2.9 it is
obvious that the dynamics governing the mesoscales differ significantly in tropospheric and
stratospheric heights.
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Figure 2.8: As Fig. 2.3 for the L15 setup and TROP (left) and STRAT (right).
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In summary, the mesoscale ratio ED/ER larger than unity found by C14 for vertically averaged
MOZAIC data between 30◦N and 60◦N is reproduced by the B14 and L15 approaches for
a similar subset of MPAS data and the evaluated time span. Using global data averaged
over spectra aligned along constant longitudes and latitudes and separating tropospheric and
stratospheric heights with the available MPAS data and applying the B14 and L15 method
reproduces the L15 result of a dominance of mesoscale ER over ED. The errors for B14 and
L15 in comparison with MPAS data are too small to account for differences in the dominance
of ED and ER on the mesoscales. The divergent deductions drawn in C14 and L15 concerning
the ratio ED/ER on the atmospheric mesoscales do not result from differences or limitations
in the B14 and L15 approaches, but rather from the evaluation of different subsets of the
MOZAIC data. This finding is furthermore supported by the mesoscale equipartition of ED
and ER found by L07 for averaged tropospheric and stratospheric global data.
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Figure 2.9: As Fig. 2.2 for the L15 setup and TROP (left) and STRAT (right).

2.4.3 Comparison of different latitudinal regions

In the previous paragraphs the consideration of distinct height levels was found to play a
major role in the differences arising in C14 and L15. The impact of the evaluated latitudinal
region on the spectra and the relevance of rotational and divergent modes is not contained in
Bierdel et al. (2016) and will briefly be considered in the following.
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In Fig. 2.10, EK , ER and ED calculated from the full MPAS data and the L15 approach are
displayed as a function of longitudinal wavenumber k for the TROP height range. While
the estimate from the L15 approach is shown for completeness, it is similar to the results
from paragraphs 2.3.2 and 2.3.3 and will thus not be discussed explicitly. The associated
results from the B14 approach and latitudinal wavenumber spectra are similar and omitted
for clarity. As in paragraph 2.3.1, the spectra are taken along longitudinal bands, but not
subsequently averaged over the full latitudinal range (60◦S and 60◦N), but rather over three
different subsets: a northern hemispheric band (NHB, latitudes between 20◦N and 60◦N),
a Southern hemispheric band (SHB, latitudes between 60◦S and 20◦S) and a band centered
around the equator (CB, latitudes between 20◦S and 20◦N). The spectra for all regions are
qualitatively similar to the spectra averaged over the global region in paragraph 2.3.1 and
general features are discussed therein. Particularly the large-scale part of the NHB and SHB
spectra is similar. This resemblance may arise from the presence of atmospheric Rossby waves
that are a prominent feature of large-scale dynamics in both latitudinal ranges. There are,
however, noteworthy differences that will be briefly discussed in the following.
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Figure 2.10: As Fig. 2.1 for the L15 method and TROP region only and (from left to right) NHB
(Northern Hemispheric Band), SHB (Southern Hemispheric Band) and CB (Central Band). For
details see text.

The NHB and SHB spectra differ quantitatively with regard to ED: in the NHB region ED
dominates ER up to scales of around 400 km, where the spectra cross and ER dominates ED on
larger scales. Contrarily, in the SHB region, ER is dominant on the whole spectral range. The
dissimilarity on the small scales in the ED component might be related to the comparatively
higher fraction of NHB that is covered with land and an associated stronger orographically
forced gravity wave component than in SHB.

In the equatorial CB region the spectra are generally more different from the NHB and SHB
regions: while the large-scale EK is, as for the other regions, dominated by ER, the amplitude
of both components is lower on the large scales and the spectral slope is shallower. Since the
slope of ED is not significantly altered, ED has a relatively higher contributions to EK on
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the large scales compared to the other regions. While ER dominates ED on the whole scale
range, the relative contribution of ED to EK in the CB region is not as clearly increasing
with decreasing scale as for the other regions. ER and ED are rather parallel on a broad
scale range (from small scales up to O(1000 km)) with ER having twice the amplitude of ED.
Particularly the amplitude of EK on small-scales is increased compared to the NHB and SHB
regions. Generally, the reduced energy and dominance of ER on large scales in the CB region
is understood to arise from a lack of predominant large-scale dynamical mechanisms such as
Rossby waves and baroclinic instability that are apparent in mid-latitudinal regions. The
shallower slope of the large-scale ER is understood to result from the absence of a Coriolis
force and the associated absence of the enstrophy-cascade in two-dimensional turbulence (see
paragraph 1.2.2). However, complex tropical dynamical and thermodynamical processes such
as the Hadley cell and organized deep moist convection in the Madden-Julian oscillation may
contribute to the horizontal kinetic energy spectrum in the CB region.

In this paragraph EK and particularly the decomposition into ER and ED was shown to feature
differences depending on the latitudinal region that the spectra are calculated on. This result
furthermore supports the hypothesis that differences in the spectra between the C14 and L15
setups arise mainly from variations in the mesoscale spectra with latitude. For TROP, the
mesoscale energy is dominated by ED in the northern hemisphere and tropics and ER in
the southern hemisphere. This result is in agreement with observational studies that find
a dependence of mesoscale spectral variability on the latitudinal range (e.g. Nastrom et al.,
1984). Considering transects only in the zonal or meridional direction has little effect (not
shown). A detailed dynamical understanding of the presented spectra is beyond the scope
of the present study. The results, however, indicate that the dominance of either ER or ED
might depend on the geographical region and is not globally universal.

2.5 Summary

Two approaches (Bühler et al., 2014; Lindborg, 2015, B14 and L15 respectively) for estimating
rotational and divergent kinetic energy spectra from one-dimensional measurements of across-
and along-track wind components were evaluated. Both approaches are based on relations
between rotational or divergent spectra and velocity along one-dimensional tracks that follow
when the flow is homogeneous and isotropic. While B14 requires prior smoothing of the data
and the solution of a set of coupled ODEs, L15 is implemented with a simple trapezoidal rule
for solving their equations without pre-processing of the data. One-dimensional transects of
horizontal velocity fields simulated by the Model for Prediction Across Scales (MPAS) taken
along circles of constant latitudes and longitudes serve as an input to the proposed approaches.
The resulting spectra of divergent and kinetic energy are then compared to the respective spec-
tra calculated from two-dimensional fields from MPAS, where the decomposition may be done
unambiguously.

The two implementations of the decomposition method are very accurate and yield results al-
most indistinguishable from the correct solution when plotted on the traditional log-log scale.
Their errors are largest for the divergent energy on the largest scales and for both energy
components near the grid scale. At the mesoscale, errors are 11% and 7% for divergent and
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rotational components, respectively, in the troposphere, and 5% and 18% in the stratosphere.
The errors on the small-scale end of the spectrum are not further discussed since they are on
scales smaller than the effective resolution of the model. The large errors, as well as unphysical
negative values of the estimate of the divergent kinetic energy component by both approaches,
are also found by L15. While L15 relates those errors to violations of large-scale isotropy, it
is found through an examination of purely divergent flows that the cause is most likely a con-
tamination of the divergent-kinetic-energy estimate by small errors in the dominant rotational
energy.

Attributing mesoscale errors and their variation with scale to the violation of certain under-
lying assumptions is not straightforward and beyond the scope of the study presented in this
chapter. On the mesoscales, however, the errors of B14 and L15 are small enough that the
mesoscale ratio of divergent to rotational kinetic energy (i.e. whether the flow is mainly gov-
erned by quasi-two dimensional motions or inertia gravity waves) can be estimated accurately.
It is thus concluded that, at least when data are aggregated over large areas, the underlying
assumptions of isotropy and homogeneity must be well satisfied.

The application of the B14 and L15 approaches to MOZAIC data by Callies et al. (2014, C14)
and L15 led to differing conclusions concerning the mesoscale ratio of divergent to rotational
energy components. This issue was assessed by applying the B14 and L15 implementations
to various subsets of the MPAS data. Although it was not attempted to reproduce either
study in detail, a critical sensitivity of the results on the evaluated latitudinal and height
range was found: using upper-tropospheric transects aligned along circles of constant latitude
in the range from 30◦N to 60◦N gave a ratio of divergent to rotational energy of around 2,
while averaging over transects along both constant latitudes and constant longitudes, and
separated into tropospheric and stratospheric heights, showed an equipartition of rotational
and divergent energy in the upper-tropospheric mesoscale.

This result is consistent with the much larger ratio of divergent to rotational energy found by
C14 (ED/ER ∼ 2) compared to that found by L15 (ED/ER ∼ 1/3); C14 used long transects
of MOZAIC data in the same latitudinal band averaged over upper-tropospheric and lower-
stratospheric heights, while L15 considered transects with random orientation and length, and
separated data between upper-tropospheric and lower-stratospheric heights. The sensitivity
on the latitudinal region has furthermore been assessed by an examination of EK , ED and ER
in three different latitudinal regions, which led to different results regarding the dominance of
ED and ER on the mesoscales. Particularly the found dominance of ED over ER in the North-
ern hemisphere, but not in the Southern hemisphere, is in well agreement with the general
observation that atmospheric kinetic energy spectra depend on latitude and if they are taken
over ocean or over land (Nastrom et al., 1984; Cho et al., 1999). One reason for the increased
mesoscale variability over land, as speculated by Cho et al. (1999), are orographically gener-
ated gravity waves. The presented results are not in disagreement with this hypothesis, since
land covers a higher percentage of the area in the Northern hemisphere than in the Southern
hemisphere.

It is concluded that the results of C14 and L15 differ not because of inherent limitations or
differences in the approaches they use but rather from their choices of which subset of the
MOZAIC data to examine and the sensitivity of ED/ER to the selected latitude and height
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region. A more detailed discussion of the results presented in this chapter, limitations of the
conducted study as well as suggestions for subsequent research can be found in chapter 5.

In this chapter the relevance of horizontal rotational and divergent modes of motion as signa-
tures of governing mesoscale dynamics have been discussed. Understanding the relative domi-
nance and interplay of these two contributions plays thus an important role in comprehending
the mesoscale kinetic energy spectrum (see paragraph 1.2.2). However, this decomposition
of the horizontal wind is furthermore relevant to identify the dynamical agent that governs
upscale error growth through the mesoscale range: as mesoscale dynamics transition from
small- to large scales from significantly divergent to mainly rotational, errors that are initially
confined to small atmospheric scales have to transform accordingly when expanding to the
large scales. This is the topic of the following chapters 3 and 3.
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Chapter 3

Upscale error growth from convection
through geostrophic adjustment:
An analytical model

3.1 Introduction

The current literature discussing predictability of atmospheric flows and the nature of the
underlying scale interactions considers the problem from two main perspectives (see para-
graph 1.3.2). One approach is based on early research where the energy transfer between
different scales of motions is discussed in terms of local interactions between wavenumber
triads in the framework of the two-dimensional vorticity equation (Lorenz, 1969; Leith and
Kraichnan, 1972). In these models the predictability time is determined solely by the back-
ground kinetic energy spectrum, independent of other details of the underlying dynamical
model (Rotunno and Snyder, 2008). However, due to the direct energizing of the mesoscales
by processes such as deep moist convection (Waite and Snyder, 2013), the relevance of pre-
dictability estimates based on models of homogeneous turbulence to the real atmosphere is
not clear (Zhang et al., 2002, 2003; Sun and Zhang, 2016).

An alternative approach introduced in paragraph 1.3.2 is based on results from numerical
weather prediction models which suggest that error growth in the atmosphere is an initially
localized, highly intermittent phenomenon that expands upscale and plays a significant role in
contaminating the larger scale flow at longer forecast lead times (e.g. Hohenegger and Schär,
2007; Zhang et al., 2007; Rodwell et al., 2013; Selz and Craig, 2015b). In particular it has
been found that latent heat release associated with deep moist convection is a primary mech-
anism for small-scale error growth (Zhang et al., 2002, 2003; Tan et al., 2004). The upscale
error growth then depends on the underlying dynamics of the respective scale range (such
as major instabilities) as opposed to solely the slope of the background spectrum. From an
investigation of this second perspective on atmospheric error growth using idealized numerical
simulations of a moist baroclinic wave, Zhang et al. (2007) suggest a three-stage conceptual
model for atmospheric upscale error growth across a hierarchy of spatial and temporal scales
that accounts for the direct forcing of the mesoscales by convection (see schematic illustration
in Fig. 1.8). The approximately exponential error growths of the initial and final stages of this
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model (stage 1 and 3) appear to be related to convective and baroclinic instabilities acting on
small and large scales respectively (Zhang et al., 2007; Selz and Craig, 2015b). The dynamical
mechanism dominating an intermediate stage (stage 2), where small-scale unbalanced convec-
tive errors transition to larger scale balanced errors, could so far not be identified. However,
several indications for the geostrophic adjustment (GA, see paragraph 1.1.1 and schematic
illustration in Fig. 1.3) process as dominant for stage 2 of the error growth model have been
found in numerical error growth experiments (see Zhang et al., 2007; Selz and Craig, 2015b,
Figs. 1.9 and 1.10 in the introduction).

GA is one of the well-known scale-interaction processes in atmospheric fluid dynamics that
potentially contribute to the observed shape of the background mesoscale kinetic energy spec-
trum (for a review see Blumen, 1972; Schubert et al., 1980; Gill, 1982; Vadas and Fritts, 2001;
Chagnon and Bannon, 2005a,b). From an error growth perspective, however, the GA process
might play a dominant role as being the missing link in the conceptual error growth model
between the end of stage 1 and the onset of stage 3, i.e. the complete displacement of individ-
ual convective cells and growth of a balanced component of the error within the large-scale
baroclinic wave. The slight changes in the amplitude and position of the heating induced by
condensation within the convective clouds excites an altered transient wave response as well
as secondary circulation through the GA process. The errors that are initially confined on the
convective scale thus propagate upscale and enter the balanced larger scale flow. So far, how-
ever, the GA mechanism was difficult to extract from numerical simulations of atmospheric
flow since a suitable diagnostic has not yet been developed.

In this chapter an analytical formulation for the GA of an imbalance introduced into the atmo-
sphere by the heating of a convective cloud is presented. The derived solution has two major
advantages over results published in previous studies. First, it contains a time-dependent
formulation of both transients and balanced flow components in one solution as opposed to
solving for both parts separately using potential vorticity conservation (Gill, 1982; Schubert
et al., 1980). Second, it provides the solution for the buoyancy response of a rotating atmo-
sphere to a δ-function forcing in space and time. This most general solution is the Green’s
function for the mathematical problem which allows for the simple construction of a solution
for arbitrary forcings. From the solution, the temporal and spatial adjustment scales will be
identified, and diagnostics will be developed that allow an identification of the GA process in
numerical simulations.

The chapter is structured as follows. First, the analytical solution for the GA of an impulsive
heating in a rotating atmosphere and the related flow components are derived. Second, the
solution and the properties of the different terms as well as the resulting flow are discussed.
The spatial and temporal scales of the adjustment process and their dependence on the Cori-
olis parameter are examined. Third, three diagnostics that can be used to characterize the
GA process in numerical simulations are presented. The chapter concludes with a summary.
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3.2 The analytical model

A simple analytical model is employed to describe the response of a horizontally unbounded
and rotating atmosphere to a buoyancy source in the framework of linear gravity wave theory.
A two-dimensional approach will be applied first, where the atmospheric fields are not allowed
to vary in the y-direction (slab-symmetry). An associated radially symmetric calculation will
be needed later and given in paragraph 3.4.2. The model and analytical solution are based on
the work of Bretherton and Smolarkiewicz (1989, hereafter BS89) on convective adjustment,
with two main differences. The planetary rotation is included, and the buoyancy source term
is formulated as a δ-function in time as opposed to a Heaviside-function.

The equations are linearized around a quiescent background state, and thus all advective terms
are neglected. Furthermore the hydrostatic approximation and the Boussinesq approximations
are employed. The set of equations, consisting of two horizontal momentum equations, the
hydrostatic approximation, the continuity equation and the buoyancy equation, then reads

∂tu
′(x, z, t)− fv′(x, z, t) = −∂xπ′(x, z, t) (3.1)

∂tv
′(x, z, t) + fu′(x, z, t) = 0 (3.2)

−∂zπ′(x, z, t) + b′(x, z, t) = 0 (3.3)

∂xu
′(x, z, t) + ∂zw

′(x, z, t) = 0 (3.4)

∂tb
′(x, z, t) +N2w′(x, z, t) = Q(x, z, t) , (3.5)

with time t, horizontal distance x and height z. Primes denote the deviations from the quies-
cent reference atmosphere. The vector v′ = (u′, v′, w′) is the three-dimensional perturbation
wind. The density is split up into a constant reference value, a background vertical profile, and
fluctuations around it, i.e. ρ = ρ0 + ρ̃(z)+ρ′(x, z, t). With this the scaled pressure perturbation
π′ = p′/ρ0 and the buoyancy perturbation b′ = −gρ′/ρ0 are defined. The background density
profile must decrease with height and is thus responsible for the restoring force in response
to vertical displacements. The associated buoyancy frequency or Brunt-Väisälä frequency is
given by N2 = −g/ρ0dzρ̃. f is the Coriolis parameter which is assumed constant. In the
remainder of this chapter primes are dropped for convenience. The buoyancy forcing rate is
given by

Q(x, z, t) = Q0δ(x)δ(t) sin

(
mπ

Htrop

z

)
, (3.6)

where δ(·) denotes the Dirac-delta function, Q0 is the amplitude of the forcing with units
m2 s−2 and Htrop the tropopause height. The forcing Q is thus located at x = 0, and turned
on and off instantaneously at time t = 0. Its vertical structure follows a sine wave with integer
wavenumber m ∈ N, so that the forcing is assumed to vanish at the ground (z = 0) and at
the tropopause (z = Htrop). The buoyancy forcing rate (3.6) can be converted into a diabatic
heating rate, denoted by Qh with units J kg s−1, using

Qh(x, z, t) =
cpT0

g
Q(x, z, t) , (3.7)

where cp is the heat capacity of air at constant pressure and T is the air temperature (Nicholls
et al., 1991). The total heating (in Joule) that is associated with the buoyancy forcing (3.6)
can thus be calculated by integrating (3.7) over air mass and time. For the deepest vertical
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mode (m = 1) and approximating temperature and density with their background values
(T = T0, ρ = ρ0) the total heating can then be written as

Qh,tot = dx

∫
dy

∫
dz

∫
dtρ0Qh = dy

2Htropρ0Q0cpT0

πg
. (3.8)

Note that for all even vertical modes the column integrated total heating is zero.

3.2.1 The buoyancy solution

An analytical solution for the buoyancy is derived in the following. While the calculation
presented in this chapter focuses on the main mathematical steps, a more detailed (and di-
mensional) version can be found in chapter A of the appendix. To highlight the key scales of
the solution, (3.1)-(3.5) will be solved in non-dimensional terms. Each variable in the problem
is written as the product of a dimensional and non-dimensional part, i.e.

ψ = Ψψ̃ , (3.9)

where ψ = (t, x, z, u, v, w, b, π) are the original variables with characteristic magnitudes Ψ =
(T ,Lh,Lv,U ,V ,W ,B,P) and ψ̃ are the respective non-dimensional variables. Inserting the
scaling (3.9) into (3.1)-(3.5) gives

U
T ∂t̃ũ(x̃, z̃, t̃)− fV ṽ(x̃, z̃, t̃) = − PLh

∂x̃π̃(x̃, z̃, t̃) (3.10)

V
T ∂t̃ṽ(x̃, z̃, t̃) + fU ũ(x̃, z̃, t̃) = 0 (3.11)

− PLv
∂z̃π̃(x̃, z̃, t̃) + Bb̃(x̃, z̃, t̃) = 0 (3.12)

U
Lh
∂x̃ũ(x̃, z̃, t̃) +

W
Lh
∂z̃w̃(x̃, z̃, t̃) = 0 (3.13)

B
T ∂t̃b̃(x̃, z̃, t̃) +N2Ww̃(x̃, z̃, t̃) = QQ̃(x̃, z̃, t̃) , (3.14)

where the forcing reads

QQ̃(x̃, z̃, t̃) =
Q0

LhT
δ(x̃)δ(t̃) sin

(
mπLv
Htrop

z̃

)
Since the buoyancy forcing (3.6) spans the depth of the troposphere, the height scale is set as

Lv ∼
Htrop

π
:= H , (3.15)

where Htrop is the tropopause height and the factor π−1 is included for convenience. The
system of equations (3.10)-(3.14) has four externally imposed parameters, namely the Brunt-
Väisälä frequency N , the height scale H, the forcing amplitude Q0 and the rotation rate f .
The remaining characteristic magnitudes in Ψ will be expressed in terms of these parameters.
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The scales for the temporal and horizontal spatial coordinates, T and Lh, will be considered
first. Assuming that U ∼ V , the second momentum equation (3.11) implies that time scales
with the inverse of the inertial frequency, i.e.

T ∼ f−1 . (3.16)

An appropriate horizontal length scale can be derived as follows. With the vertical scale given
by (3.15), the gravity wave speed for vertical mode m is given by

cm =
NH

m
. (3.17)

The gravest (m = 1) gravity wave mode excited by the heating has the greatest propagation
speed NH. The horizontal length scale considered here is the distance this fastest gravity
wave mode travels in one inertial period T and reads

Lh ∼
NH

f
= Rd . (3.18)

This horizontal length scale can be identified as the (first baroclinic) Rossby radius of de-
formation Rd. The physical role of this length scale in the solution will be discussed in
paragraph 3.3.2. The scaling of the remaining parameters, U ,V ,W ,B and P , can easily be
obtained from (3.10) and (3.12)-(3.14) and are given in table 3.1. Since all variables of (3.10)-
(3.14) are expressed in terms of the external parameters N , f , Q0 and H the scaling of the
underlying equations is completed.

Table 3.1: Scaling of all Ψ in (3.10)-(3.14) in terms of N , f , Q0 and H.

T Lv Lh U ∼ V W B P
f−1 H NH

f
Q0f
N2H

Q0f2

N3H
Q0f
NH

Q0f
N

The scaling given in table 3.1 is inserted in (3.10)-(3.14), which can be combined to yield a
partial differential equation for the buoyancy:

(∂3
t̃ ∂

2
z̃ + ∂t̃∂

2
z̃ + ∂t̃∂

2
x̃) b̃m(x̃, z̃, t̃)

= (∂2
t̃ ∂

2
z̃ + ∂2

z̃ ) δ(x̃)δ(t̃) sin(mz̃) , (3.19)

where the subscript m denotes the buoyancy solution for the vertical mode with wavenumber
m. Separating out the z̃-dependence gives an equation for the amplitude of the buoyancy
B̃m(x̃, t̃) with b̃m(x̃, z̃, t̃) = B̃m(x̃, t̃) sin(mz̃)

(∂3
t̃ + ∂t̃ −m−2∂t̃∂

2
x) B̃m(x̃, t̃) = (∂2

t̃ + 1) δ(x̃)δ(t̃) . (3.20)

As in BS89 the solution proceeds by applying the Laplace transform

L{f(t)} = F (s) =

∫ ∞
0−

f(t) exp(−st) dt, s ∈ C (3.21)
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to (3.20). The Laplace transform of n−th order temporal derivatives reads (Abramowitz and
Stegun, 1964, formula 29.2.5)

L{∂(n)
t f(t)} = snL{f(t)} −

n∑
k=1

sk−1 ∂n−kt f(t)
∣∣
0−
. (3.22)

Using these relations, the equation for the Laplace transform of the buoyancy β̃m(x̃, s̃) =
L{B̃m(x̃, t̃)} becomes

∂2
x̃β̃m(x̃, s̃)−m2(s̃2 + 1)β̃m(x̃, s̃) = −m2(s̃+ s̃−1)δ(x̃) . (3.23)

In order to evaluate B̃m(s̃), (3.23) is formally treated as a homogeneous equation and the
inhomogeneity as a boundary condition. The solution to the homogeneous equation that is
symmetric in x̃ is

β̃m(x̃, s̃) = B̃m(s̃) exp
(
−m
√
s̃2 + 1 |x̃|

)
(3.24)

To find the boundary condition corresponding to the inhomogeneous term, (3.23) is integrated
from −x̃ to x̃ and then the limit x̃→ 0 is taken. With β̃m(x̃, s̃) bounded, it follows that

lim
x̃→0

[∂x̃β̃m(x̃′, s̃)]x̃
′=x̃
x̃′=−x̃ = −m2(s̃+ s̃−1) . (3.25)

The left hand side of (3.25) can be directly evaluated using the homogeneous solution (3.24).
Noting that

∂x̃β̃m(x̃, s̃) = −mB̃m(s̃)
√
s̃2 + 1 exp(−m

√
s̃2 + 1|x̃|)sgn(x̃) ,

where sgn(·) is the sign function, it follows that

lim
x̃→0

[∂x̃β̃m(x̃′, s̃)]x̃
′=x̃
x̃′=−x̃ = −2mB̃m(s̃)

√
s̃2 + 1

and with (3.25) the amplitude reads

B̃m(s̃) =
m

2

(s̃+ s̃−1)√
s̃2 + 1

. (3.26)

The full solution for the Laplace transform of the buoyancy results from (3.24) and (3.26) as

β̃m(x̃, s̃) =
m

2

{
s̃γ̃m(x̃, s̃) + s̃−1γ̃m(x̃, s̃)

}
(3.27)

with γ̃m(x̃, s̃) =
1√
s̃2 + 1

exp
(
−m
√
s̃2 + 1 |x̃|

)
. (3.28)

Using the linearity property of the Laplace transform and the differentiation and integration
rules involving Laplace transforms (Abramowitz and Stegun, 1964, formulas 29.2.3, 29.2.4,

29.2.6 and 29.3.92) it can be shown that the inverse transform B̃m(x̃, t̃) = L−1
{
β̃m(x̃, s̃)

}
is

B̃m(x̃, t̃) =
m

2

∂t̃G̃m(x̃, t̃) +

t̃∫
0

G̃m(x̃, t̃′) dt̃′

 ,



3.2 The analytical model 53

with

G̃m(x̃, t̃) = L−1{γ̃m(x̃, s̃)}

= J0

(√
t̃2 − (mx̃)2

)
H(t̃−m|x̃|) , (3.29)

where Ji(·) is the Bessel function of first kind and integer order i and H(·) denotes the unit
step function. Finally, the solution for the buoyancy field, b̃m(x̃, z̃, t̃) = B̃m(x̃, t̃) sin(mz̃), reads

b̃m(x̃, z̃, t̃) =
m

2

J0(τ̃r)δ(t̃r)−
t̃

τ̃r
J1(τ̃r)H(t̃r)

+

t̃∫
0

J0(τ̃ ′r)H(t̃′r) dt̃
′

 sin(mz̃) (3.30)

= b̃dt
m(x̃, z̃, t̃) + b̃igw

m (x̃, z̃, t̃) + b̃b
m(x̃, z̃, t̃) ,

where

t̃r = t̃−m|x̃|

τ̃r =

√
t̃2 − (mx̃)2

are non-dimensional retarded times. The subscript of the b-terms stands for the m-th vertical
mode and the superscripts stand for the three summands of the buoyancy solution (dt=
discontinuous transition, igw= inertia-gravity wave and b=balance). It can be shown that
(3.30) reformulated in dimensional terms reduces to the solution presented by BS89 for f = 0
for their choice of the temporal forcing (i.e. Heaviside function), as expected. The analytical
solution allows the unbalanced and balanced contributions to the buoyancy to be considered
separately. From the initial set of equations (3.10)-(3.14) and (3.30) all other flow components
can be derived from the buoyancy solution. In particular, expressions for the vertical velocity
and the (transient) geostrophic wind can be derived from (3.14) and (3.30) as

w̃m(x̃, z̃, t̃) =
{
δ(x̃)δ(t̃)− ∂t̃b̃m(x̃, t̃)

}
sin(mz̃) (3.31)

ṽgm(x̃, z̃, t̃) = ∂x̃b̃m(x̃, t̃)

{
1− cos(mz̃)

m

}
, (3.32)

where b̃m(x̃, t̃) denotes the solution given in (3.30) without the sinusoidal vertical dependence,
i.e. b̃m(x̃, z̃, t̃) = b̃m(x̃, t̃) sin(mz̃). The divergence and vorticity are derived analogously from
the continuity and ṽ-momentum equations (3.13) and (3.11) as

∂x̃ũ(x̃, z̃, t̃) = −
{
δ(x̃)δ(t̃)− ∂t̃b̃m(x̃, t̃)

}
m cos(mz̃) (3.33)

∂x̃ṽ(x̃, z̃, t̃) =

{
δ(t̃)−

[
b̃m(x̃, t̃′)

]t̃′=t̃
t̃′=0

}
m cos(mz̃) . (3.34)
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The results from (3.31)-(3.34) will be employed later. Note that analytical expressions for the
temporal and spatial derivatives in (3.31)-(3.34) can be obtained but are not written explicitly
in the interest of clarity.

Two advantages of the presented solution (3.30) over results published in foregoing studies,
as already mentioned in the introduction, become apparent. First, it contains all transients
and balanced flow components in one solution and in particular the temporal evolution of
the geostrophically balanced flow can be directly computed. This evolution is described only
implicitly when using the mathematically more straightforward approach of solving for the
final (infinite time) balanced flow separately using potential vorticity conservation (Gill, 1982;
Schubert et al., 1980). Second, it provides the spatial and temporal Green’s function solution
of the buoyancy response of a rotating atmosphere to an imposed heating. For a general
buoyancy source, varying in space and time,

Q̃(x̃, z̃, t̃) =
∑
m

Q̃m(x̃, t̃) sin(mz̃) , (3.35)

the corresponding buoyancy solution can be constructed by linear superposition

b̃(x̃, z̃, t̃) =
∑
m

∞∫
−∞

∞∫
0

b̃m(x̃′, z̃, t̃′)Q̃m(x̃− x̃′, t̃− t̃′) dx̃′ dt̃′ . (3.36)

This property is useful when applying the solution to the real atmosphere, since the time and
length scales of the forcing have a major impact on the nature of the flow response (Chagnon
and Bannon, 2001, 2005a,b; Vadas and Fritts, 2001). This issue will be discussed further in
paragraph 3.3.2.

3.3 Results

In this section basic properties of the solution are described. First, the structure and physical
interpretation of the flow is given, noting the differences to the nonrotating solution of BS89.
Second, the relevant spatial and temporal scales of the adjustment process and their depen-
dence on f are identified. Finally, diagnostics are introduced that allow for a quantitative
assessment of the GA process in numerical simulations.

3.3.1 Solution structure

In the following the buoyancy solution for a pulse forcing given in (3.30) will be examined
in detail. As pointed out in section 3.2, the separability of the underlying equations allows
the solution to be represented as a sum of vertical modes. The typical vertical profile of
latent heating within a region with deep moist convection is positive throughout the column,
peaks in the mid-troposphere and therefore projects most strongly onto a half-wave spanning
the whole troposphere in the vertical (Nicholls et al., 1991). Higher vertical modes will also
be excited but the gravest tropospheric mode has the greatest speed and amplitude and
dominates the adjustment of the surrounding atmosphere to the imbalance (Mapes, 1993).
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Thus, while solving the considered problem for a set of vertical modes does not add significant
mathematical complexity, the following discussion will focus on the dominant m = 1 mode
(half a sine wave between z = 0 and z = Htrop).

For a quantitative physical description of the resulting flow field, it will be useful to plot the
solution in dimensional variables. The Brunt-Väisälä frequency is taken to be N = 0.01 s−1

and the height scale Htropπ
−1 with Htrop = 10 km. The gravity wave speed of the gravest

mode is then c1 = NH = 31.8 ms−1. The other parameters are given by: total heating is
set to Q0 = 7200 Jkg−1 which equals a heating rate of 2 J(kg s)−1 assumed by Nicholls et al.
(1991) integrated over 1 h approximate lifetime of a cloud. The Coriolis parameter is set to
f = f0 = 1.03 · 10−4 s−1.

Figure 3.1 displays the full buoyancy solution in two ways: in Fig. 3.1a a Hovmöller diagram is
shown and in Fig. 3.1b the x−dependence of the solution is displayed for four different times.
The solution has several characteristics associated with the three terms bj1 in (3.30): the black
line in Fig. 3.1a and the vertical line in Fig. 3.1b indicate a sharp front that is excited by the
pulse forcing and spreads out symmetrically from the source at speed c1 (bdt

1 ). This fast mode
propagates the disturbance with a constant amplitude to the unperturbed atmosphere, which
is displayed as white areas in Fig. 3.1a (i.e. |x| > c1 t) and is also apparent in the non-rotating
solution of BS89.
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Figure 3.1: Full buoyancy solution b1 at z = Htrop/2 a) as a function of distance from the source
and time (Hovmöller diagram) and b) spatial dependence of solution for 5h, 20h, 40h and infinity.
Gray solid, dashed and dotted lines in a) are times of cross-sections displayed in b) (see (3.30)).
Vertical gray lines in b) demark the position of the discrete front at different times.

In Fig. 3.1 a wake of negative buoyancy that is narrowing and increasing in amplitude with
time is trailed behind the wave front. The responsible term (bigw

1 ) is shown in Fig. 3.2a and
originates from a dispersive spectrum of inertia-gravity waves. The short-wavelength gravity
wave modes propagate rapidly away from the source and separate from the longer modes with
smaller phase speed, leading to a narrowing of the front. Close to the source, only the slowly
propagating modes remain, and the frequency rapidly approaches the inertial frequency f .
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Figure 3.2: As Fig. 3.1a for a) bigw
1 and b) bb1 at z = Htrop/2 (see (3.30)).

This dispersion process is discussed by Gill (1982) for an initial height perturbation in the
shallow water equations, where it is shown that the amplitude of the inertial oscillation near
the source location decays proportional to t1/2. These oscillations are also apparent in Fig. 3.2b
which shows the third term (bb

1) in the buoyancy solution.This term is associated with the
balanced flow that remains after the transient waves have left a particular part of the domain.
The oscillations are superimposed on a persistent perturbation confined close to the source
location. This part of the flow is of particular interest in this dissertation and will be examined
in more detail in the following paragraph.
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Figure 3.3: a) Geostrophic wind and b) log10 of the absolute value of the vertical velocity w1 at
z = Htrop/2. In b) blue and red colors indicate negative and positive values respectively. Note that
the vertical velocity does not exceed a value of 1 ms−1.

Physically, the following picture emerges (see also paragraph 1.1.1 and schematic in Fig. 1.3).
The impulsive heat forcing at t = 0 generates a positive buoyancy anomaly that forces an
updraft (w1 > 0) in the center of the domain. The forcing excites gravity waves that propagate
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horizontally away from the location of the heating to infinity. Furthermore the upward mass
flux drives a divergent flow in the upper half of the domain and a convergent flow in the
lower half of the domain. The Coriolis force acting on the divergent wind leads to the spin-
up of a balanced (rotational) geostrophic wind (Fig. 3.3a) around the location of the initial
imbalance. This rotational wind is anticyclonic in the upper half of the domain and cyclonic
in the lower half. Note that due to the relatively strong pressure gradients at the front, the
diagnosed geostrophic wind also has a high amplitude at the transient gravity wave front. As
the vertical velocity in the center of the domain slowly decays to zero in the limit t → ∞
(Fig. 3.3b) and the transient wave components have propagated out, the final state arising
from the impulsive heating is a geostrophically balanced vortex centered around the location
of the forcing.

3.3.2 Spatial and temporal scales of the geostrophic adjustment
process

In the following, the characteristic spatial and temporal scales of the GA process and their
dependence on the Coriolis parameter f are examined.

Spatial adjustment scale

In the long temporal limit the transient waves pass any location, i.e. the terms b̃dt
m and b̃igw

m

pointwise converge to zero. This means that the buoyancy solution point-wise converges to
b̃b
m (t̃→∞). A change in variables with the known results of the zero-order Hankel transform

shows that
lim
t̃→∞

b̃m(x̃, z̃, t̃) =
m

2
exp(−|x̃|) sin(mz̃) . (3.37)

This limit agrees with solutions found for the balanced final equilibrium separately (see Gill,
1982). The final, balanced response to the buoyancy perturbation decays exponentially away
from the perturbation location with a length scale of unity in the nondimensional equation,
corresponding to the Rossby radius of deformation Rd in dimensional terms (see (3.18)).
Thus while the solution initially behaves similarly to the nonrotating limit, where an imposed
heating generates a buoyancy perturbation that spreads outwards indefinitely (BS89), at later
times rotation effects become evident and part of the response remains confined to a finite
region with Rd being the characteristic length scale of GA

xGA ≈ Rd . (3.38)

In the large panel of Fig. 3.4 the buoyancy solution b1(x, z, t) is displayed as a function of
distance from the source for three exemplary rotation rates f = f0, 1.5f0 and 2f0 and at
large times (t → ∞). Dimensional units are employed to visualize quantitative differences
arising from the choice of different f -values, where Q0, N2 and H are fixed at the values
chosen in 3.3.1. Note that the sharp initial discontinuity associated with bdt

1 has propagated
out of the domain by this time. It can be seen that much of the perturbation is confined to
a limited region around the location of the initial forcing. The inset in Fig. 3.4 shows the
nondimensional form of the t̃→∞ result given in (3.37), where the amplitude is scaled with
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B. For the chosen scaling of amplitude, time and horizontal distance with B, f−1 and Rd

respectively, the balanced flow takes this universal form.

The solution for a buoyancy forcing with arbitrary spatial structure can be obtained as the
convolution of the Green’s function solution presented here with the forcing function. For the
final balanced flow component (bb

m(x, z, t→∞)), the time integral commutes with the spatial
averaging of the convolution (Chagnon and Bannon, 2001). As a result the spatial structure
of the final balanced flow is given by the spatial structure of the time-integrated buoyancy
source, smoothed over a scale equal to Rd by convolution with the infinite-time Green’s
function solution (3.37). Since the size of the buoyancy source associated with a convective
cloud (O(1)km) is typically small compared to the adjustment scale (i.e.Rd, O(1000)km),
the final balanced state it induces will only differ significantly from that shown in Fig. 3.4
near the sharp peak at x = 0, which will be smoothed over a distance given by the size of
the cloud. The effects of the spatial scale of the forcing on the transient response are more
complex (Chagnon and Bannon, 2005a,b), but will turn out to be less important those of the
temporal variation, as discussed below.
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Figure 3.4: Long-time limit of the spatial dependence of buoyancy at z = Htrop/2 for three different
Coriolis parameters f0, 1.5f0 and 2f0. Small inset: Same as in large panel but for the non-dimensional
quantities, see(3.37). The rescaling removes any dependence.
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Temporal adjustment scale

While the spatial adjustment scale was found in the previous paragraph by considering the
limit t̃→∞, the temporal adjustment scale can be isolated by evaluating the balanced term
of the buoyancy solution bb

m at x̃ = 0. Here the time integral can be solved analytically to
yield

lim
x̃→0

b̃bm(x̃, z̃, t̃) =

m

2

{
J0(t̃)δ(t̃)− J1(t̃)H(t̃)

+
t̃

2

(
πJ1(t̃)HS

0 (t̃) + J0(t̃)
[
2− πHS

1 (t̃)
])}

sin(mz̃) , (3.39)

where HS
j is the Struve-function of order j.
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Figure 3.5: Temporal evolution of buoyancy at the position of the source x = 0 (z = Htrop/2) for
three different Coriolis parameters f0, 1.5f0 and 2f0. Horizontal gray lines are values of the buoyancy
are associated values of the buoyancy for t → ∞. Small inset: x̃ → 0 result according to (3.39) for
amplitude and time scaled with B and f−1

0 respectively.

The three black lines in Fig. 3.5 show the temporal evolution of the buoyancy at the origin
x = 0 for the three rotation rates. The t→∞ limit is indicated by the associated horizontal
lines and reflects the dependence of the buoyancy amplitude on f already described. In
addition it can be seen that the timescale for the buoyancy to reach the final level is longer
for smaller f . As a quantitative estimate for the adjustment timescale the time of the first
maximum of (3.39) can be used, which results in

tGA ≈ 3.81f−1 . (3.40)

The adjustment time scale tGA thus amounts to around 10 h (for mid-latitudinal f -values)
which is in good agreement with the simple dimensional argument in SC15. The universality
of the temporal evolution of the solution is illustrated when time, space and amplitude are
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nondimensionalized with f−1, Rd and B respectively as in (3.39). The result is displayed in
the inset in Fig. 3.5 for x̃ = 0 where the horizontal gray line is the asymptote as before.

As discussed at the end of paragraph 3.3.2, the final balanced circulation depends only on
the time-integral of the forcing (i.e. the total heating) and not on its temporal evolution. The
transient response is composed of a spectrum of inertia-gravity waves, whose frequencies are
confined between N−1 (O(10)min) and f−1 (O(10)h), and its amplitude will therefore be
determined by the time scale of forcing in comparison to these intrinsic scales. Convoluting
the Green’s function solution with smoothly varying forcings of different durations but the
same total buoyancy source (not shown) give the expected results: the transient amplitudes
are large for any time scale smaller than N−1 and negligible for forcing scales long compared to
GA timescale f−1. The timescale of a heating introduced into the atmosphere by a convective
cloud is typically O(1)h and thus lies between the limits N−1 and f−1. In this case, the initial
sharp front in the transient response is smoothed to the time scale of the forcing function, but
otherwise the response is similar to the Green’s function shown above.

3.4 Diagnostics applicable to numerical simulations

Since the approximate equations considered here are linear they also apply to difference fields
of two flows and thus may be employed to describe the evolution of errors from the cloud-scale
up to the balanced part of the flow. The results of the analytical solution above describe how
this evolution should occur and what parameters it depends on. These predictions can be
tested in numerical simulations of flows and reveal the relevance of this picture in nature. In
this section three diagnostics are suggested for this purpose.

3.4.1 Gravity wave propagation speed

The heat source in the present linear hydrostatic calculation is formulated as a sine-wave in the
vertical with integer wavenumber m. The transient hydrostatic gravity waves excited by this
heating have, as stated in (3.17), a horizontal phase speed cm = NH/m. A heat source that
is composed of various vertical modes m thus excites a spectrum of horizontally propagating
gravity waves that spread out from the forcing region. However, since deep convection shows
a maximum heating in the mid-troposphere, it will strongly excite the gravest tropospheric
gravity wave mode, taking the form of a half-sine wave in the vertical between the ground and
the tropopause (m = 1). This mode not only dominates in amplitude but also propagates
faster (i.e. horizontal phase speed c1) than all higher order modes and should be clearly visible
in the resulting perturbation field. The identification of such a wave in non-linear numerical
simulations of a convective cloud field can provide a first test for the GA process. If the
perturbation heat source in a numerical simulation has a similar shape to that assumed in
the analytical model and for typical midlatitudinal tropospheric values for N and H wave
modes propagating with about c1 ∼ 30− 40 ms−1 should be apparent in the mid-troposphere.
Furthermore the speed should be independent of the Coriolis parameter f . Due to the linearity
assumption this should in particular also apply to the relative flow field between two numerical
experiments, as for example has been already qualitatively demonstrated by SC15.
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3.4.2 Circulation and vorticity

In the context of the model presented here, a heat source in the atmospheric flow (e.g. every
convective cloud) spins up a geostrophically balanced buoyancy perturbation and an associated
vortex on the length scale xGA after the adjustment time tGA, which remains approximately
constant subsequently. A more realistic scenario will be obtained as a superposition of many
such sources, each associated with a perturbed convective cloud. The resulting vortices su-
perimpose, accumulate and modify the vorticity field of the flow on the length scale of the
Rossby radius of deformation. This allows for the construction of a quantitative diagnostic
that relates the vorticity to the heating (precipitation) on large scales. In the following the
deepest vertical mode is considered (m = 1).

Consider an area A that is larger than the Rossby radius of deformation with convective
activity inside of it. Let C be the circulation around the area or equally the integral of the
vorticity over the area at a certain point in time. The change in circulation over a time interval
∆t = t2 − t1 must equal the sum of the individual circulations generated by the clouds (heat
sources) in the area and in the time interval, lagged by the adjustment time. If a cloud is well
inside the area A (not close to the edges) then the circulation of the cloud with respect to A
can be approximated by its circulation at infinite distance. Thus the circulation change with
respect to A can be written as

∆C := C(t2)− C(t1) =

∫
dA ζ(t1)− ζ(t2) ≈ γ∞

t2−tGA∑
t1−tGA

qi , (3.41)

where qi is the total buoyancy source of cloud i in Joules (i.e. integrated in space and in time)
and γ∞ is the circulation at infinity of a single cloud normalized by its total heating.

The buoyancy source can then be related to the precipitation rate. Assuming that all precip-
itation is in the liquid phase when it reaches the ground and that contributions from cloud
water and ice can be neglected, the circulation change can be approximated by

∆C ≈ γ∞lv

∫ t2−tGA

t1−tGA

dt

∫
dAP (x, y, t) , (3.42)

with P being the rain rate at the ground (in kg m−2 s−1) and lv the specific heat of vaporization.
Both sides of (3.42) can easily be evaluated from a numerical simulation, since it only requires
standard output variables. Note that in the absence of heating (precipitation) (3.42) reduces
to Kelvin’s circulation theorem.

For quiescent background flows a vorticity diagnostic can be derived from (3.42) without the
need to specify an area A. Since the circulation divided by area equals the vorticity on the
scale of the area, (3.42) states that changes in the coarse-grained vorticity field are related to
the history of the coarse-grained precipitation field, the latter again lagged by the adjustment
time. This can be written as

∆ζ̄(x, y) ≈ γ∞lv

∫ t2−tGA

t1−tGA

P̄ (x, y, t) dt, (3.43)
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where the overbars denote a spatial coarse-graining, e.g. a Fourier filter that removes all scales
smaller than the Rossby radius of deformation.

The parameter γ∞ can be derived from the analytical model presented above. However, to
use it for a quantitative comparison with standard numerical simulations of the atmosphere
the slab-symmetry applied so far is inappropriate. In a fully three-dimensional simulation of
a convective cloud field, the balanced motions spun up by convective cells overlap and su-
perimpose and the solution of the balanced state is expected to have a different dependence
on horizontal distance from the source than for the slab-symmetric counterpart. To enable a
quantitative comparison of the circulation arising from the analytical solution and the numer-
ical simulations the radially symmetric analogue of (3.30) will be presented in the following.
The reader might well skip ahead to (3.56), where the desired value of γ∞ is given based on
the radially symmetric mathematical model outlined in the following.

While the radially-symmetric calculation is generally analogous to the slab-symmetric calcula-
tion presented in section 3.2, there are, however, differences arising from the altered geometry
that will be pointed out here for completeness. If not stated otherwise, definitions introduced
in section 3.2 hold.

The non-dimensional radially symmetric partial differential equation (PDE) for the buoyancy
(see (3.19)) with scale Br reads{

∂3
t̃ ∂

2
z̃ + ∂t̃(∂

2
r̃ + r̃−1∂r̃) + ∂t̃∂

2
z̃

}
b̃m(r̃, z̃, t̃) (3.44)

= ∂2
z̃ (∂

2
t̃ + 1) Q̃(r̃, z̃, t̃) , (3.45)

where r̃ is the radial distance from the source with r̃ =
√
x̃2 + ỹ2 and the forcing is given by

(see (3.6))

QQ̃(r̃, z̃, t̃) =
Q0

LhT
δ(r̃)

2πr̃
δ(t̃) sin (mz̃) . (3.46)

Using (3.7) and integrating over air mass and time this buoyancy forcing approximates a total
heating of

Qh,tot =
2HtropQ0cvT0ρ0

gπ
, (3.47)

again assuming background values for temperature and density. The scaling of T ,Lh and Lv
is chosen as in table 3.1, with the only difference being the horizontal coordinate r ∼ Lhr̃.
Note that, however, the scaling of the other variables in the equations has changed due to the
altered geometry. The relevant scales of the radially symmetric problem are given in table 3.2.

The z̃-dependence can be separated out as before with b̃m(r̃, z̃, t̃) = B̃m(r̃, t̃) sin(mz̃). The

Laplace-transformed PDE (3.44) for the buoyancy amplitude β̃m(r̃, s̃) = L
{
B̃m(r̃, t̃)

}
takes

the form of a modified Bessel’s equation{
∂2
r̃ +

1

r̃
∂r̃ −m2(s̃2 + 1)

}
β̃m(r̃, s̃) = −m2(s̃+ s̃−1)

δ(r̃)

2πr̃
. (3.48)
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Table 3.2: Scaling of Ψ in radially symmetric geometry in terms of N , f , Q0 and H.

T Lv Lh Br Vr Zr Cr
f−1 H NH

f
Q0f2

N2H2
Q0f2

N3H2
Q0f3

N4H3
Q0f
N2H

The following steps are performed analogously to (3.24)-(3.27) of the slab-symmetric calcula-
tion and the inverse Laplace transform formally reads as before

B̃m(r̃, t̃) =
m2

2π

∂t̃G̃(r̃, t̃) +

t̃∫
0

G̃(r̃, t̃′) dt̃′

 (3.49)

where

G̃(r̃, t̃) = L−1
{
K0

(
m
√
s̃2 + 1 r̃

)}
. (3.50)

Here, Ki(·) is the modified Bessel function of second kind and order i. Note that finding
the inverse Laplace transform given in (3.50) is one major difference compared to the slab-
symmetric calculation where G(r̃, t̃) took a different form (see (3.29)).

The inverse Laplace transform (3.50) can now be found by inserting the integral representation
of the modified Bessel function of second kind and order ν (Abramowitz and Stegun, 1964,
formula 9.6.25)

Kν(xz) =
Γ(ν + 1/2)(2z)ν√

πxν

∞∫
0

cos(xη)√
η2 + z2

dη ,

where Γ(·) is the generalized Gamma-function, into the Bromwitch formula

L−1 {f(s)} =
1

2πi

c+∞i∫
c−∞i

exp(st)f(s) ds .

After some basic algebraic operations (that totally didn’t take the author of this thesis a week)
it follows

G̃(r̃, t̃) =
cos(τ̃ rr )

τ̃ rr
H(t̃rr) , (3.51)

where

t̃rr = t̃−mr̃

τ̃ rr =

√
t̃2 − (mr̃)2
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are non-dimensional retarded times in radially symmetric geometry. The buoyancy solution
thus reads

b̃m(r̃, t̃, z̃)

=
m2

2π

{
cos(τ̃ rr )

τ̃ rr
δ(trr)−

t̃ cos(τ̃ rr )

(τ̃ rr )3
H(trr)

−sin(τ̃ rr )

(τ̃ rr )2
H(trr) +

t̃∫
r̃

cos(τ̃ rr )

τ̃ rr
dτ

 sin(mz̃) . (3.52)

Note that setting f = 0 in the fully dimensional form of this solution basically leads to
the nonrotating radially symmetric solution presented by BS89. However, BS89 solve for a
Heaviside-function forcing in time, and thus the present Green’s function solution takes the
form of the temporal derivative of the BS89 solution (for f = 0). The present solution, as
in the slab-symmetric case, can in principle be employed to construct an analogous solution
for forcing functions with arbitrary spatial and temporal shapes. Note that, however, the
convolution operation in cylindrical coordinates is two-dimensional in nature and can only
marginally be simplified for radial symmetry (Baddour, 2009) which renders its practical
computation much more complicated than in the slab-symmetric case.

From (3.52) the balanced part of b̃m(r̃, t̃, z̃) can be obtained in the limit t̃→∞ as

b̃b
m(r̃, z̃) = lim

t̃→∞
b̃m(r̃, t̃, z̃) =

m2

2π
K0(mr̃) sin(mz̃) . (3.53)

Note from (3.53) that transitioning from slab- to radially symmetric geometry leads to a
balanced flow that has a shorter horizontal scale (i.e. more rapid decay of K0(r̃) than exp(−|˜̃x|)
in (3.37) with spatial coordinate, see also Chagnon and Bannon (2001)).

Using hydrostatic and geostrophic balance the geostrophic wind associated with b̃b
m(r̃, z̃) can

be derived and reads

ṽg,b
m (r̃, z̃) =

m2

2π
K1(mr̃) cos(mz̃)

with the associated dimension Vr in table 3.2. The balanced geostrophic vorticity in the
radially-symmetric geometry r̃−1∂r̃(r̃ṽ

g,b
m (r̃, z̃)) and has the scale Zr in table 3.2 and is given

by

ζ̃g,b
m (r̃, z̃) =

m3

2π

[K1(mr̃)

r̃
− 1

2
{K0(mr̃) +K2(mr̃)}

]
cos(mz̃) .

In order to construct a diagnostic that relates the forcing (heating rate Q0) with the amplitude
of the generated balance flow, the circulation Z̃g,b

m (r̃, z̃) is calculated as the area-integral of
the geostrophic vorticity ζ̃g,b

m (r̃, z̃) and reads

Z̃g,b
m (r̃, z̃) =

2π∫
0

dφ

r̃∫
0

r̃′Z ζ̃g,b
m (r̃′, z̃) dr̃′

= −m2 {r̃K1(mr̃)− 1} cos(mz̃) . (3.54)
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The dimension associated with the circulation is denoted as Cr and given in table 3.2. The
result (3.54), together with table 3.2, indicates that at a radius that is constant relative to Rd

the amplitude of the circulation depends linearly on f . The circulation at large distances is
finite and approaches

lim
r̃→∞

Z̃g,b
m (r̃, z̃) = m2 cos(mz̃) . (3.55)

Thus, for radial symmetry it follows from (3.47) and (3.54) that

γ∞ :=
Zg,b

1 (∞, z)
Qh,tot

=
gfπ2

2cpT0ρ0N2H2
trop

cos

(
πz

Htrop

)
. (3.56)

Typical mid-tropospheric values for density and temperature (T0 = 250 K, ρ0 = 0.7 kg m−3)
thus lead to an (anticyclonic) circulation near the tropopause (z = Htrop) of −2.8 ·10−12 m2 s−1

per Joule of diabatic heating or −6.8 · 10−6 m2 s−1 per kilogram of precipitation.

A vorticity diagnostic can be further derived from (3.42) without the need to specify an area
A. Since the circulation divided by area equals the vorticity on the scale of the area, equation
(3.42) states that temporal changes in the coarse-grained vorticity field are related to the
coarse-grained precipitation rate, temporally shifted by the adjustment time. This can be
written as

d

dt
ζ̄(x, y, t) ≈ γ∞lvP̄ (x, y, t− tGA), (3.57)

where the overbars denote a spatial coarse-graining, e.g. a Fourier filter that removes all scales
smaller than the Rossby radius of deformation and d/dt denotes the Lagrangian time derivative
with respect to these large-scale particles. For a quiescent atmosphere it approximately equals
the Eulerian time derivative. In this case (3.57) can easily be integrated over a certain time
span and both sides of the equation can be compared. If the flow is not quiescent, e.g. a
significant background flow is present, the circulation and vorticity diagnostics (3.42) and
(3.57) are still valid but have to be applied in a Lagrangian reference frame. This means
that the area A should be bounded by a material contour and d/dt describes the Lagrangian
rate of change. The large-scale flow must however be sufficiently regular to ensure that the
area A is not distorted to the point that its spatial extend is reduced to less than the Rossby
radius of deformation in any direction and accordingly the definition of a large-scale particle
is reasonable.

Because of the linearity all diagnostics above can be applied to error growth experiments
by using difference fields between two runs as long as the runs are quiescent or large-scale
advective differences remain small. Consider for example an experiment like SC15 where two
simulations are identical until one is being perturbed with noise at time t1. The evolution of
vorticity and circulation in the difference field at the scale of the Rossby radius is then given
by the differences in the precipitation field that originate from convective-scale error growth.

3.4.3 Rossby number

If the gravity wave transients are neglected, the flow that is associated with a buoyancy
source changes during the GA process from significantly divergent to purely rotational. More
generally, the ratio of divergence over rotation of the flow and its temporal evolution may
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serve as a diagnostic for GA and has been applied to numerical simulations before (e.g. Zhang
et al. (2007) and SC15). In SC15 this ratio was called a Rossby number and was defined as
the root mean square (RMS) of the divergence over the RMS of the vorticity. It was applied
to different ranges of spatial scales and to the relative flow between two experiments.

In this section the analytical model is used to predict how this diagnostic will evolve in
time. To this end the flow generated by one pulse of forcing at the space-time origin as in
(3.6) is considered. The transient parts of the solution will be neglected and thus only the
circulation associated with the term bb

m in (3.30) will be taken into account. For convenience
the maximums norm ‖ ·‖max is used here instead of the RMS. With this and (3.30) the Rossby
number can be approximated as

Ro(t̃) :=
‖div‖max

‖rot‖max

≈
∣∣∂t̃b(x = 0, t̃)

∣∣∣∣b(x = 0, t̃)
∣∣ =

∣∣J0(t̃)
∣∣∣∣∣∫ t̃0 J0(t′)dt′
∣∣∣ . (3.58)

For t̃ → 0 the integral in the denominator approaches zero while the numerator is finite,
resulting in a large Rossby number that indicates a mainly divergent flow. At later time the
numerator oscillates towards zero while the denominator converges to a constant so that the
Rossby number converges towards zero indicating a mainly rotational flow. The speed of this
transition is according to (3.58) proportional to f since the Rossby number is a function of
the non-dimensional time only. Therefore Ro is a suitable diagnostic to assess the adjustment
timescale discussed in paragraph 3.3.2.

With regard to its application to more complex numerical simulations it has to be noted
however that the diagnostic (3.58) is non-linear and a simple superposition principle as in
(3.41) does not apply. Therefore the exact value of Ro at a certain time will depend on many
other aspects of the considered flow and cannot be predicted from this simple consideration.
One the other hand (3.58) is independent of the strength of the forcing and since spatial
superposition of clouds affects the numerator and the denominator in the same way, the f -
scaling should be robust and could be tested in numerical experiments with varying rotation
rates.

3.5 Summary

In this chapter, an analytical model for the geostrophic adjustment (GA) of an initially lo-
calized heating imposed in a quiescent atmosphere was examined. The model is based on the
linearized, hydrostatic slab- and radially symmetric Boussinesq equations. A solution is found
for the buoyancy perturbation arising from an impulsive, localized heating and all other atmo-
spheric flow components can be derived from this. The present solution is in good agreement
with previous analytical studies that examined the GA mechanism (Schubert et al., 1980;
Chagnon and Bannon, 2005a,b). The localized delta-forcing of the presented model allows for
a specification of the Green’s function of the employed set of equations and thus a straight-
forward deduction of the solution for an arbitrary spatio-temporal forcing by superposition.
Furthermore, the solution includes all (transient and balanced) flow components and thus in
particular the temporal evolution of the balanced flow can be estimated (in contrast to Gill,
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1982, who considers only the large-time limit).

With these generalizations, scaling characteristics and diagnostics that may help to identify
the GA mechanism in more complex numerical simulations can be derived. In particular the
following three diagnostics are suggested:

1. The analytical model predicts gravity waves with phase speeds that are independent
of f and inversely proportional to the vertical mode m of the forcing. In agreement
with previous studies it is assumed that the convection projects mainly onto the gravest
vertical mode (m = 1), which results in a phase speed of the waves of c1 = NH.

2. The analytical model suggests a relationship between changes in the balanced, large-
scale vorticity and the time-lagged latent heating. For an evaluation of this relationship
the precipitation can be used as a proxy for the latent heating.

3. When neglecting the transients the response to the heat source evolves over time from
purely divergent to purely rotational. The timescale of this transition is proportional
to f−1. The ratio of divergence over vorticity (Rossby number) can be extracted from
numerical simulations and the f -dependence of its evolution can be tested.

The limitations of the results presented in this chapter as well as possible future studies are
generally discussed in chapter 5. However, one limitation of the presented calculation is rele-
vant to the following chapter and will thus be discussed here.

Linearity is one major assumption which underlies the presented calculation and implies that
the amplitude of the flow that is generated by the heat sources remains small. The linear and
also the hydrostatic assumptions are clearly violated within the convective clouds themselves.
However, heating by convective clouds typically generates small amplitude flow responses
implying that linearity is expected to hold for the wave response and secondary circulation
excited by the heating (Nicholls et al., 1991; Schubert et al., 1980). If the linearity assumption
holds the predictions of the analytical model can be applied to single convective clouds as well
as to a field of convective clouds by linear superposition. In addition they can be applied to
difference fields between two simulations in the context of an error growth study.

While the strong assumptions underlying the analytical calculation presented here render
the comparison between the analytical solution and simulations of observed weather situa-
tions complicated, it is possible that the GA process could be unambiguously identified in
an idealized numerical setup. Consider a simulation of a field of convective clouds, without
a large-scale background flow. If the flow is perturbed on small scales (as in Selz and Craig,
2015b), the upscale growth of the perturbations is predicted to follow the GA evolution shown
by the analytical solution, with temporal and spatial scales of f and Rd respectively. This
scaling could be tested by varying the Coriolis parameter carefully (i.e. such that the scale
separation between the convective forcing scale and Rd is guaranteed, Shutts and Gray, 1994).
In this way the three diagnostics presented in this chapter could be applied to demonstrate
whether GA is responsible for the upscale error growth. In the following chapter, the results
of such experiments will be presented.
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Chapter 4

Upscale error growth from convection
through geostrophic adjustment:
idealized numerical simulations

4.1 Introduction

In paragraph 1.3.2 the three-stage conceptual error growth model following Zhang et al. (2007)
(see also schematic illustration in Fig. 1.8) was introduced. In there, errors imposed on the
small-scales initially grow from the convective instability (stage 1) and ultimately perturb the
large-scale balanced flow (stage 3). Indications for the geostrophic adjustment (GA) following
an imbalance imposed on the atmosphere by deep moist atmospheric convection as a possible
mechanism underlying the intermediate stage 2 of this model were found in numerical error
growth studies (Zhang et al., 2007; Selz and Craig, 2015b). In the previous chapter 3, an
analytical solution describing the GA of a localized, impulsive heating generated by the latent
heat release within a convective cloud was found. The calculation was based on the linearized,
hydrostatic slab- and radially-symmetric Boussinesq-equations. In there, three diagnostics
that allow for an identification of the GA mechanism in numerical error growth experiments
were suggested (see section 3.5):

1. The hydrostatic deepest tropospheric gravity wave mode propagating with the associ-
ated horizontal phase speed should be clearly identifiable. This phase speed should be
independent of the Coriolis parameter f .

2. The large-scale vorticity is linearly related with the accumulated divergence (convertible
to the precipitation rate) through a proportionality factor αf (with α constant).

3. A scaling in space and time with the Rossby radius of deformation and the Coriolis
parameter respectively renders the solution and derived quantities (such as the Rossby
number) universal.

The study presented in this chapter aims at closing the gap in the hierarchy of complexity
between the analytical investigation of the GA process presented in chapter 3 and the com-
plex numerical studies shown by Zhang et al. (2007) and Selz and Craig (SC15 2015b, in the
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following ). To that end, idealized numerical perturbation experiments are performed within
a convective cloud field in a rotating environment.

Several idealized numerical studies addressed the impact of convective clouds on the environ-
ment in non-rotating and rotating frameworks. Studies that examine non-rotating environ-
ments focus on the wave response excited by the convective heating (depending on whether
the model is (in-) compressible: acoustic-, Lamb- and gravity waves; Chagnon and Bannon,
2005a). Bretherton and Smolarkiewicz (1989) and Mapes (1993) found that an isolated heat-
ing as introduced into the atmosphere by a single convective cloud in an idealized hydrostatic
two-dimensional numerical model excites a spectrum of horizontally propagating gravity waves
that communicates the imposed perturbation to the surrounding atmosphere. Nicholls and
Pielke (2000) additionally found in a three-dimensional and compressible cloud model that
the deepest tropospheric gravity mode (vertical wavenumber 1) propagates fastest, thus dom-
inates the response and produces deep subsidence warming that compensates for the upward
transport of mass by convection (see also Lane and Reeder, 2001). In numerical studies that
examine the response of a rotating atmosphere to a heating imposed by a convective cloud,
basic characteristics of the non-rotating systems wave response still hold. The waves are, how-
ever, constrained by the rotation. They do not propagate out from the source region infinitely
and a balanced state evolves after the geostrophic adjustment process (Liu and Moncrieff,
2004). It was found that the propagation properties of the deepest tropospheric gravity wave
modes nevertheless do not depend on the rotation rate (Liu and Moncrieff, 2004), where the
relative contributions of transient and balanced energies to the total budget do (Shutts and
Gray, 1994; Gray, 1996).

The main goal of this chapter is to test whether the dynamical process that underlies up-
scale error growth through the atmospheric mesoscales is GA. To that end, idealized sim-
ulations of a convective cloud field on a f -plane (i.e. constant Coriolis parameter imposed)
are performed with a non-hydrostatic, fully three-dimensional atmospheric numerical weather
prediction model on a large domain. In order to test the suggested scaling with f , three
control-simulations with different close-to planetary rotation rates are performed. For each
of the simulations a slightly perturbed twin experiment is conducted and the error growth is
examined in the difference field (between a control and perturbed simulation). Apart from
the comparison of traditional error growth measures employed by foregoing studies (such as
Rossby number and domain-integrated difference total energy, see Figs. 1.9 and 1.10), the
theoretical concept of GA is reconciled with the study of upscale error growth through the
atmospheric mesoscales by testing the three predictions made in chapter 3 for the GA process
in the numerical simulations.

The current chapter is structured as follows: in a first part, the employed numerical model
and the set up of the simulations are introduced. Then, the kinetic energy spectrum and
the domain-integrated difference total energy as standard error growth measures are briefly
discussed. In the next section, the perturbed simulations are examined by testing the three
predictions for GA by the analytical model. The chapter concludes with a summary.
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4.2 Experimental setup

In this chapter, numerical simulations are performed with the atmospheric numerical weather
prediction model provided by the Consortium of Small-Scale modeling (COSMO; Baldauf
et al., 2011). Note that as opposed to the global MPAS model employed in chapter 2,
the COSMO-model is a high-resolution limited-area model. The fully non-hydrostatic and
compressible COSMO model is based on the primitive thermo-hydrodynamical equations.
Various subgrid-scale processes (e.g. turbulent diffusion, radiation, shallow convection, soil-
processes and soil-atmosphere interactions) are parametrized in the model which is utilized
operationally with a horizontal resolution of 2.8 km at the German National Meteorological
Service (DWD). This horizontal resolution is understood to be high enough to (at least partly)
explicitly simulate deep moist convection (convection-permitting) and only shallow convection
is parametrized. The effective resolution (i.e. the wavelength at which the model spectrum de-
cays relative to a simulation with finer grid spacing) amounts to 4 − 5 times the horizontal
grid-spacing (Bierdel et al., 2012) and scales smaller than this are not represented accurately.

Version 5.0 of COSMO is used in idealized mode on a f -plane with periodic lateral boundaries
and a homogeneous flat landscape at an elevation of 500 m as lower boundary. The horizontal
coordinates cover 1601 grid points spaced at a distance of 2.8 km. The resulting large horizon-
tal domain of approximately 4500×4500 km is chosen to cover several times the Rossby radius
of deformation, which leads to an accurate representation of the larger scales of the flow. In
the vertical the model has 57 grid points with resolution decreasing from ∼ 100 m at the lower
boundary to 800 m at the model top at 30 km. The model is initialized homogeneously with an
sounding that was taken in Payerne, Switzerland (CH, Radiosonde 06610) at 12 UTC 30 July
2007. The sounding is very unstable with a Convective Available Potential Energy (CAPE)
of 2000 J kg and preceded the formation of strong convective storms and mesoscale convective
systems (Bischof, 2011). Note that for better comparability with the theoretical results from
chapter 3 and unlike in Lange and Craig (2014), the horizontal wind of the sounding is set to
zero and no convective organization occurs. Here, convection is initialized by holding the soil
temperature constant at a value 3 K higher than the lowest data point of the initial sounding
and by a long-wave radiative cooling that further destabilized the atmosphere. The initial
symmetry of the atmosphere is slightly perturbed with a Gaussian-distributed uncorrelated
grid-scale noise with zero mean and a standard-deviation of 0.05 K on the temperature field
in all model levels. The described experiments (control runs, CTRL) are performed from 0 to
110 h for three different rotation rates f0 = 1.03 · 10−4s−1, 1.5f0 and 2f0. The rotation rates
are chosen such that the time- and length scales of the adjustment process change significantly
enough to be detected in the employed diagnostics, but in a manner that the scale separation
between the forcing (i.e. convective) and adjustment scales (Rossby radius of deformation Rd)
is guaranteed (Shutts and Gray, 1994).

In order to give a visual impression of the simulated flow field an exemplary horizontal wind
field is shown in Fig. 4.1. In there, the absolute value of the upper-tropospheric horizontal
wind field |vh| is shown for the CTRL-run and f0. The total simulation lead time t = 72h has
been chosen rather arbitrarily, but lies within the period where the perturbation experiments
are performed (i.e. perturbation lead time 22h, see below).



72 4. Upscale error growth through geostrophic adjustment: simulations

Figure 4.1: Absolute value of the horizontal wind field |vh| in m/s for the CTRL run with Coriolis
parameter f0 at total hour 72 (perturbation lead time 22h) and upper-tropospheric heights (z ∼
10 km)

In Fig. 4.2 the area-mean precipitation rate is shown for the three CTRL-runs as a function
of model lead time. The initial rapid increase of the precipitation rate is associated with the
onset of strong, short-lived and small-scale convection after a couple of hours. The onset of
convective activity is associated with a rapid decrease in CAPE (not shown), which has a
negative feedback on the convective activity and results in the drop of the precipitation rate
until around 25 h. After the initial transients and convective clouds have decayed, convective
activity arises with smaller mean precipitation rates that level out on 0.12 mm h−1.
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Figure 4.2: Temporal evolution of the area-mean precipitation rate of the CTRL runs for the three
rotation rates f0, 1.5f0 and 2f0 (solid, dashed and dotted respectively). The vertical gray line depicts
the time at which the perturbation is added.
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For each of the three CTRL simulations a slightly perturbed twin experiment (PERT) is
conducted, where (following SC15), Gaussian-distributed, uncorrelated grid-scale noise with
zero mean and a standard deviation of 0.01 K is added to the temperature field on all levels after
50 h model run time and the model runs freely for 60 h. The instant where the perturbations are
imposed on the background flow and the time span of the PERT experiments were chosen such
that the GA process can be identified from upscale error growth characteristics: first, no other
dynamical process or balance dominates the GA mechanism on respective scales. Second, the
small-scale forcing (i.e. convective activity) is independent of f . Due to the imposed rotation
the atmosphere approaches a state with fast rotating, small-scale low-pressure systems that
are separated on a distance of the order of the Rossby radius of deformation (Nolan et al.,
2007; Khairoutdinov and Emanuel, 2013). However, in the time span of 50-110 h of the present
simulation, the background flow is still characterized by a convective cloud field that did not
enter a regime where larger-scale storms have developed and other dynamical processes (such
as cyclostrophic balance) dominate the GA process (see Fig. 4.1). The Rossby-number of
the background flow is constant (not shown), indicating that there is no significant drift in
the (rotational) background flow. Additionally, the convective-scale forcing is after the decay
of initial transients to a good approximation independent of f (see Fig. 4.2). The chosen
time-span of 50− 110 h thus fulfills both requirements.

4.3 Error growth measures

Before the three predictions made by the analytical model will be employed to extract the
GA mechanism from the numerical simulations, the kinetic energy spectrum and the domain
integrated difference total energy (diDTE) will be introduced as two standard diagnostics in
studies of upscale error growth.

Spatial kinetic energy (EK) spectra give substantial insight into the distribution of energy
amongst different scales of motion in a flow field and are calculated in the traditional way
(see Skamarock, 2004; Bierdel et al., 2012). EK spectra of the horizontal difference wind
(δvh(x, t) = vh,PERT(x, t) − vh,CTRL(x, t)) have been employed in error growth studies (Dur-
ran et al., 2013; Selz and Craig, 2015b) to identify the speed of error growth and associated
saturated scales (i.e. the scale at which the error spectrum has the same amplitude as the
background spectrum). The slope of the background EK spectrum furthermore sets the pre-
dictability time in models that interpret upscale error growth as a turbulent cascade (see also
sections 1.3 and 4.5, Lorenz, 1969; Rotunno and Snyder, 2008).

In Fig. 4.3 the EK spectrum, averaged temporally between 50 h and 110 h and vertically over
the free troposphere of the CTRL runs is shown in the traditional double-logarithmic axis. The
kinetic energy spectra are very similar for the three rotation rates with respect to amplitude
per wavenumber and spectral slope. For all three rotation rates, EK has little energy on the
largest scales, peaks at a wavelength at around 200− 500 km and drops off more shallow than
the measured k−5/3 spectral dependence on the atmospheric mesoscales, with an approximate
k−1.4 slope (see dashed gray line in Fig. 4.3). The build-up of an EK spectrum with significant
mesoscale energy in a flow field that only features small-scale convection confirms findings by
recent studies (Waite and Snyder, 2013; Sun et al., 2017). This aspect particularly concerns
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Figure 4.3: Kinetic energy spectrum of the CTRL runs averaged over times 50 − 110 h in double
logarithmic space. Spectra are calculated on horizontal levels in the free atmosphere and then aver-
aged. Rotation rates of f0, 1.5f0 and 2f0 are indicated as solid, dashed and dotted lines respectively.
The gray dashed line indicates a spectral slope k−1.4 and the hatched area marks wavelengths below
the effective resolution.

the vital debate about the dynamic origin of the mesoscale EK spectrum (Bierdel et al., 2016,
and references therein). However, the examination of the dynamic origin of the mesoscale
energy spectrum is beyond the scope of this chapter.

The domain integrated difference total energy (diDTE) is a simple norm for error growth
that has been employed by foregoing studies (Zhang et al., 2003; Selz and Craig, 2015b). Ini-
tially introduced by Ehrendorfer and Errico (1995), the diDTE involves the horizontal wind
components u and v and the temperature T and reads

diDTE(t) =
1

V

∫
V

1

2

[
(δu)2 + (δv)2 +

cp
Tr

(δT )2

]
dV (4.1)

where δψ refers to the difference of field ψ between a perturbation and control run (δψ =
ψPERT − ψCTRL), V is the integration volume, cp is the heat capacity of dry air at constant
pressure and Tr = 287 K is a reference temperature.

The diDTE is separated with a Fourier filter into the small convective scales S and the larger
scales L where the balanced flow is expected to emerge. The scale ranges for the f0-run are
chosen as S = 0−200 km and L > 200 km (see SC15) and the scale ranges for 1.5f0 and 2f0 are
scaled according to Rd (i.e. 1.5f0 : [0− 133] km, [> 133] km and 2f0 : [0− 100] km, [> 100] km).
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Figure 4.4: diDTE as a function of perturbation lead time on a semi-y-log scale for the three
different rotation rates f0 (solid), 1.5f0 (dashed) and 2f0 (dotted). The scaled S and L scales are
displayed in red and green respectively.

The diDTE for the scaled S and L ranges is displayed for the three rotation rates as a function
of perturbation lead time in Fig. 4.4. The small-scale error growth properties (red curves) are
not significantly different for the three rotation rates. SC15 show that the speed of the error
growth and the final amplitude of the errors in stage 1 of the conceptual model are related
to the CAPE and precipitation rate respectively. Thus, given the independence of the mean
precipitation rate (see Fig. 4.2) and CAPE (not shown) of f the independence of the diDTE
on the S-scales is an expected result. On the larger scales (green curves), the initial (i.e. first
2− 3 h) fast growth does not differ significantly between the three runs. On this scale range,
however, the timescale of the saturation of the initial rapid error growth as well as final diDTE-
level show a significant dependence on the rotation rate f . In particular, the diDTE takes the
highest (lowest) value for the highest (lowest) rotation rate. This behavior qualitatively agrees
with the expected scaling featured by the isolated GA mechanism, where the amplitude of the
horizontal wind and the buoyancy scale linearly with f (see table 3.1) meaning that a heating
of the same amplitude generates a large-scale balanced response with a higher amplitude for
higher rotation rates. The large-scale diDTE is associated with the balanced part of the flow
that evolves from the small-scale perturbation. According to the third diagnostic suggested
based on the analytical model (see section 3.4), these diDTE-curves should take a unique
shape (i.e. be independent of f) when time is scaled with the geostrophic adjustment time
scale f−1.

Primarily owing to the quadratic nature of the energy spectrum and the diDTE, comparing
these two diagnostics for the analytical model (a single convective cloud and spin up of one
associated balanced vortex, see chapter 3) and the numerical simulations (an ensemble of
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convective clouds) is not straightforward. In the relative flow between a PERT and CTRL
simulation, the shift of individual convective clouds appears as a field of massflux-dipoles. By
taking the square the sign of the up- and downdrafts is lost. If a Fourier transform is applied
to this squared field, the scale information will be only contained in the dipole separation
distance as opposed to the actual spreading of errors amongst different scales of the flow. The
same difficulty arises for the superposition of the EK spectrum, where in particular the cloud
spacing and clustering scales play a decisive role. As opposed to the balanced vortex scale,
these cloud-separation distances do not scale with f and thus render the comparison between
a single-cloud analytical solution and a cloud-ensemble numerical simulation complex.

For given reasons, for time, space and amplitude scaled with f , the EK spectra and larger-scale
diDTE curves of the different f -runs do not collapse onto each other. As indicated in chapter
3 there are diagnostics derived from the analytical model that are better suited to extract the
GA mechanism from the idealized numerical simulations. These diagnostics will be discussed
in the following section.

4.4 Test of GA in numerical simulations

In this part the three diagnostics developed in the analytical framework in chapter 3 are
employed to identify the GA process in numerical error growth experiments with a full atmo-
spheric model. To that end, the difference fields (perturbed minus control run) of the present
numerical simulations will be examined.

4.4.1 Lag-correlation and gravity wave speed

In the analytical calculation a deep tropospheric (vertical wavenumber m = 1) hydrostatic,
linear gravity wave front was predicted with f -independent horizontal propagation speed
c = NH(π)−1 = 36.6 ms−1 (with Brunt-Väisälä frequency N = 0.01 s−1 (averaged over
free troposphere) and scale height is H = 11.5 km, see chapter 3). This first baroclinic
wave mode manifests itself in vertical displacements which are the most significant in the
mid-troposphere (Nicholls et al., 1991). SC15 examine the temporal evolution of the 500 hPa
DTE around a convective cell (see Fig. 1.10) and visually deduce the speed at which the
perturbation spreads out as c ≈ 36.0 ms−1. The resemblance of the theoretical value and
the value derived from the complex numerical simulation of a realistic weather situation
suggests that deep tropospheric gravity waves might be the dynamical process that spreads
the perturbations out from convective areas. To extract the gravest gravity wave mode
from the present numerical simulations, the lag-correlation of the difference vertical velocity
δω(x, t) = ωPERT(x, t)−ωCTRL(x, t) at 500 hPa (i.e. the cross-correlation between δω(x, t) and
∆ω(x, t+ ∆t) for a time-lag ∆t) is calculated. The horizontal distance of the maximum of the
lag-correlation function then defines together with the time-lag ∆t the gravity-wave speed c.
Note that the presence of the deepest gravity wave mode is a characteristic of every (CTRL
and PERT) simulation at any time. The signal is, however, more clear at early perturbation
lead times and in the difference field where noise is filtered out and the signal-to-noise ratio
is amplified.
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Figure 4.5 shows the lag-correlation coefficient as a function of horizontal distance for
three different time-lags ∆t = 10, 15, 20 min and Coriolis parameters f0, 1.5f0 and 2f0.
The lag-correlation has been averaged over seven different times t between 2 and 3 hours
perturbation lead time. The correlation is as expected the greatest for very short distances
and the overall values are small. There are, however, for the time-lags ∆t = 10, 15, 20 min
distinct correlation maxima at 23.0, 33.6 and 44.8 km that result in dominant gravity wave
speeds 38.3, 37.7 and 37.3 ms−1, with an average of 37.6 ms−1. This result holds for all
rotation rates (see comparison solid, dashed and dotted curves in Fig. 4.5) and has two major
implications: first, the high level of agreement of the found gravity wave speed with the
theoretical value suggests that in the complex, nonlinear numerical simulation the forcing
through latent heat release within convection projects strongly on the deepest tropospheric
mode and that the gravity wave response is linear (even if the convective forcing itself is
highly nonlinear, see chapter 3). Second, the independence of the obtained result on f
confirms the study by Liu and Moncrieff (2004) that the horizontal phase speed of the gravest
tropospheric gravity wave mode is widely unaffected by the change in rotation rate. The
universality of the propagation characteristics of the transient gravity waves excited by the
convective forcing suggest that the experiments are well designed in a way that the change of
the rotation rate does not affect other parameters that are relevant to the convective forcing
(e.g.N , H). The clear sign of the gravest hydrostatic wave mode furthermore indicates that
the perturbation heat source has a similar shape to that assumed in the linear model, which
provides a first test for the GA mechanism in the fully nonlinear model simulation.
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Figure 4.5: Lag-correlation coefficient Clag(∆t) for δω(x, t) at 500 hPa and ∆t = 10, 15, 20 min
(black, gray and light gray respectively) as a function of horizontal distance. Solid, dashed and
dotted lines are rotation rates f0, 1.5f0 and 2f0 respectively. Red dots and lines depict correlation
maxima of the f0 curves.
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4.4.2 Vorticity diagnostic

The second diagnostic derived from the analytical model for the identification of the GA
process from numerical simulations suggested in chapter 3 is a direct relationship between
the coarse-grained vorticity ζ̄(x, y) (in s−1) and precipitation rate anomaly P̄ (x, y, t) (in
kg m−2 s−1) which reads (see paragraph 3.4.2)

δζ̄(x, y) ≈ α f

∫ t2−tGA

t1−tGA

P̄ (x, y, t) dt (4.2)

with α =
gπ2lv

2cpT0ρ0N2H2
cos
(πz
H

)
.

In there, α is positive and depends on various constants and properties of the background
sounding (i.e. specific heat of vaporization lv, reference values for temperature and density
T0 and ρ0, Brunt-Väisälä frequency N , tropopause height H, specific heat capacity of air at
constant pressure cp and acceleration through gravity g), but explicitly not on the Coriolis
parameter. According to the physical picture established in chapter 3 associated with (4.2),
every convective cloud spins up a geostrophically balanced buoyancy perturbation and an as-
sociated vortex on the length scale xGA ∼ Rd (with Rd = NHf−1 being the first baroclinic
Rossby radius of deformation) after the adjustment time tGA ∼ f−1. These vortices super-
impose linearly, accumulate and modify the vorticity field of the flow on the length scale of
Rd. Due to the linearity assumption, this picture also holds for the relative flow between a
control- and a perturbed simulation and can thus be employed to study error growth. The
vorticity field needs to be examined on scales larger than the Rossby radius. Only on these
large scales of the flow, the full vh field that underlies the vorticity diagnostic is associated
with the balanced part of the flow.

Relationship (4.2) is now tested in the framework of the three numerical simulations with
Coriolis parameters f0, 1.5f0 and 2f0. The difference upper tropospheric vorticity (averaged
over four levels between 9.5 km and 10.9 km) and the difference accumulated precipitation
are Fourier filtered, such that scales smaller than the associated Rd (i.e. 1000 km, 670 km and
500 km for f0, 1.5f0 and 2f0 respectively) are neglected. The height levels are chosen based on
the sinusoidal vertical shape of (4.2) that predicts a maximal amplitude of the balanced vortex
of positive sign at the tropopause and thus renders the signal most clear at this height. Note
that according to (4.2), a linear scaling between the coarse-grained upper tropospheric vor-
ticity and the associated accumulated precipitation field is expected to hold for the vorticity
at time t and the accumulated precipitation until time t− tGA. According to paragraph 3.3.2
in chapter 3, the adjustment timescale is given by tGA ∼ 3.81f−1 ≈ 10 h. For simplicity and
owing to the hourly numerical output, we consider tGA = 12 h, 8 h and 6 h for the f0, 1.5f0

and 2f0 runs respectively.
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In Fig. 4.6 the filtered vorticity at perturbation lead time t = 58 h and the accumulated
precipitation field at respective lagged times t − tGA are shown in the upper and lower row
respectively for the three rotation rates f0 (left), 1.5f0 (center) and 2f0 (right). A qualitative
visual comparison of the vorticity- and associated precipitation fields reveals a high correlation
between positive accumulated precipitation features and anticyclonic upper level vorticity
anomalies. For higher rotation rates, a precipitation anomaly of certain amplitude generates
a stronger vorticity feature, a relationship that is reflected in the proportionality factor α · f
in (4.2).
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Figure 4.6: Spatially filtered (scales larger than respective Rd) upper-tropospheric vorticity (aver-
aged between 9.5 km and 10.9 km height, upper row) and accumulated precipitation rate at ground
(lower row) for the three rotation rates f0 (left), 1.5f0 (center) and 2f0 (right). The vorticity is dis-
played for perturbation lead time t = 58h and the precipitation field for t−τGA, where τGA = 12 h, 8 h
and 6 h for f0, 1.5f0 and 2f0 respectively. The vorticity has been multiplied by a factor of 106 for
visualization.
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Uniqueness of estimated slope

In order to extract α in (4.2) from the three present simulations, the vorticity fields shown in
the upper row of Fig. 4.6 are scattered point-wise with the associated precipitation fields in
the lower row and a linear functional fit is applied to the data. The slope of the fit then equals
α · f , where the GA-hypothesis in hydrostatic linear theory predicts that α is independent of
f . Since (apart from the constants g, π, lv, cp, T0 and ρ0) the tropopause height and stability
of the atmosphere are found to be identical for the three f -runs (see paragraph 4.4.1), α is
expected to be constant in all three numerical experiments.

Since the displayed vorticity and accumulated precipitation fields are large-scale Fourier-
filtered, they are highly auto-correlated. While the quality of the slope estimate does not suffer
from the redundant information contained in the underlying fields (i.e. the auto-correlation),
the uncertainty of the fit is significantly underestimated and should be estimated based on
the number of independent grid-points of the fields (i.e. number of effective degrees of free-
dom Neff). While there are different approaches to determine Neff in real data (Wang and
Shen, 1999), however, the examined highly idealized fields are Fourier filtered which implies
that the decorrelation length and the effective sample size are to a high degree imposed by
the filter. With the cutoff wavelength Rd depending on f , the effective sample size is given
by the number of Fourier coefficients that are considered for the inverse transformation from
Fourier- to real space and amounts to Neff = 61, 137 and 241 for f0, 1.5f0 and 2f0 respectively
(with symmetries in Fourier space as well as real and imaginary parts of complex numbers
independently accounted for).

The standard deviation σ of the linear fit is estimated based on regularly resampled (regu-
lar grid with

√
Neff grid points in x- and y-direction respectively) vorticity and precipitation

fields, while the slope of the fit is obtained from the full data set (Nx ×Ny). The dependence
of the obtained α and σ on the resampling method has been addressed with a bootstrapping
method, where Neff points are drawn from a uniform random distribution N -times and the
linear fit is applied to the independent samples (not shown). For N = 1000 the slope and
standard deviation do not show a significant dependence on the location of the underlying
sampled points.

In the upper panel of Fig. 4.7 the upper tropospheric vorticity is scattered point-wise with the
associated precipitation fields in the right column and a linear functional fit is applied to the
data. From the high anti-correlation r smaller than −0.7 for all runs, the spatial coincidence of
the fields anticipated from Fig. 4.6 holds in a point-wise sense and for the decorrelated fields.
The α-values are given in the upper row of table 4.1. The α-values are not significantly dif-
ferent (i.e. all lie within one-standard-deviation) for f0, 1.5f0 and 2f0 and thus do not depend
significantly on f , which agrees well with the prediction (4.2) by the analytical model. Note
that the reduced uncertainty associated with the estimate of α for higher f values is owed to
the respective larger Neff.
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Figure 4.7: Spatially filtered (λ > Rd) upper tropospheric (i.e. average over four vertical levels
between 9.5 and 10.9 km, upper panel) and lower tropospheric (i.e. average over four vertical levels
between 2.1 and 0.9 km, lower panel) vorticity and accumulated precipitation rate scattered for f0,
1.5f0 and 2f0 (columns from left to right). r denotes the correlation coefficient of the uniformly
sampled Neff data points. Solid lines are least-squares fits with slope α · f . Standard deviations are
given in table 4.1.

Table 4.1: α values (in m2 kg−1) associated with scattered fields in Fig. 4.7 for the upper (Upper
TROP) and lower (Lower TROP) troposphere and f0, 1.5f0 and 2f0.

f0 1.5f0 2f0

α
(−8.08± 1.26) · 10−2 (−6.96± 0.64) · 10−2 (−7.25± 0.38) · 10−2 Upper Trop
(−3.59± 0.69) · 10−2 (−4.12± 0.36) · 10−2 (−3.72± 0.19) · 10−2 Lower Trop
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Since thus far only one instant has been discussed, the α values estimated from the point-wise
scatter of the upper-level vorticity at perturbation lead time t with the accumulated precipita-
tion at t− tGA are shown for ten perturbation lead times in Fig. 4.8 to validate the persistence
of the presented results. The solid lines depict α estimated from the three f -runs and the
associated hatched areas of the same color indicate the 1σ interval. The α values and the
associated uncertainty do not vary significantly (i.e. all lie within one standard-deviation) and
are thus not significantly distinct for different f values during the evaluated period.

Equation (4.2) has so far been discussed for upper tropospheric layers where the vorticity
anomaly takes its maximum. Owed to the cosine-shape in the vertical, a second maximum of
negative sign is expected to occur on lower tropospheric levels. In order to test this prediction,
the vorticity field is averaged over four lower tropospheric height levels (between 0.9 km and
2.1 km) and α and σ are calculated as before (see paragraph 4.4.2). The result is shown in
the lower panel of Fig. 4.7. In good agreement with the expectation, the linear relationship
obtained for the upper troposphere is reversed, meaning that positive precipitation anomalies
lead to positive (i.e. cyclonic) lower-level vorticity anomalies. As before, the correlation be-
tween the two fields is high with r-values larger than 0.6 for all runs. The α-values are given
in the lower row of table 4.1. As for the upper tropospheric heights, the α-values for f0, 1.5f0

and 2f0 are not significantly different (i.e. lie within one standard deviation). This finding also
holds for the times shown in Fig. 4.8 (not shown). The hypothesis based on the analytical
model, i.e.α is independent of f , is thus also verified for lower tropospheric layers.
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Figure 4.8: Slope of tropopause height vorticity (average of 4 levels between 9.5 km and 10.9 km
taken from perturbation lead time t=51-58h and scattered with the accumulated precipitation field
at t− τGA (see Fig. 4.7).
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Quantitative comparison with theoretical value

Second, the order of magnitude estimate of α in (4.2) is quantitatively compared with the
values obtained from the linear regression given in table 4.1. With tropospheric values chosen
as T0 = 250 K, ρ0 = 0.7, N = 0.01 s−1, H = 11.5 km and constants cp = 1004 J (kg K)−1

and lv = 2.5 · 106 J (kg)−1 the order-of magnitude estimate for the upper troposphere and f0

amounts to α = 5.21 · 10−2m2 kg−1 (with opposite sign in the lower troposphere). While the
order of magnitude compares well with the values obtained from the slopes of the regression
lines, this value is marginally larger than the obtained upper tropospheric values (with an
average of the three upper TROP α-values ∼ −7.43 · 10−2m2 kg−1). This is understood to
be owed to the fact that (4.2) is based on the Boussinesq-approximation, which implies that
the density is assumed constant through the whole considered layer (here the troposphere). If
the density was allowed to decrease with height (as in higher order —such as the anelastic—
approximations), the upper-level outflow and associated vorticity would be stronger for a
given precipitation anomaly than in the in the Boussinesq-approximated counterpart. This
results in a larger α value for upper levels. In the lower troposphere this relationship is
reversed, meaning that accounting for a decrease of density with height results in a weaker
lower level inflow and associated vorticity anomaly for a given precipitation anomaly than
in the Boussinesq-approximated counterpart. The averaged lower tropospheric α-values are
∼ 1.42 · 10−2m2 kg−1 and thus smaller than the order of magnitude estimate and thus agree
well with this understanding. The obtained overestimation of α for upper tropospheric heights
compared to the theoretical value (and vice versa) is thus in good agreement with the expected
behavior owed to limitations of the Boussinesq-approximation.

4.4.3 f-scaling

The Rossby number (RO) is defined in SC15 as the ratio between a squared divergence and
vorticity norm and reads

RO =

√
||δD||
||δζ|| with ||δD||, ||δζ|| = 1

V

∫
V

δD2, δζ2 dV , (4.3)

where the horizontal divergence δD and the vertical vorticity δζ are calculated from the
horizontal difference wind field (δvh(x, t) = vh,PERT(x, t)− vh,CTRL(x, t)) and integrated over
a volume V that covers 1595 grid-points in each horizontal direction (i.e. 1601 total grid-points
minus 6 repeated grid-points of the cyclic horizontal domain) and 18 vertical levels between
3 and 10 km altitude. The vertical range covers the free troposphere and excludes boundary
layer effects and is chosen as in SC15 for better comparability. For the Rossby-number the
relative contributions of rotational and divergent flow components on different scales are of
interest, as opposed to the vorticity diagnostic where solely the large balanced scales were
evaluated. The Rossby number is thus calculated for two different scale ranges (i.e. small
convective scales S and larger scales L), where a Fourier filter is applied to the difference
divergence and vorticity fields and the S− and L−scale ranges for the three f -runs are chosen
as in section 4.3.
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As divergence and vorticity can be interpreted as proxies for unbalanced and balanced motions
respectively (see Bühler et al., 2014, and chapter 2), a Rossby number larger than unity
(i.e. divergence dominates vorticity) indicates that the underlying wind field is unbalanced.
Accordingly, a Rossby number dropping from initially higher values is a sign of an increasing
degree of geostrophic balance in the underlying wind field.

The analytical solution for the linear GA problem examined in chapter 3 predicts for space
and time scaled with Rd and f respectively a unique shape (i.e. functional form that does not
depend on f) for the Rossby number. Note that it was also shown that the amplitude of the
balanced vortex as well as the associated divergent circulation depend linearly on f , but this
scaling cancels out in the Rossby number which is the ratio between these two quantities.
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Figure 4.9: Rossby number RO calculated from δvh(x, t) = vh,PERT(x, t) − vh,CTRL(x, t) for the
three different f -values. a) RO as a function of perturbation lead time t, S and L scales. b) RO as
a function of non-dimensional perturbation lead time t̃ = ft, solely L scales.
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Figure 4.9a displays the Rossby number of the difference wind field for the three different f -
values and the scaled S- and L-scales. The small-scale relative flow between two realizations
is dominated by convective activity that is not in geostrophic balance. This characteristic is
reflected in a Rossby number on the small scales that is initially slightly larger than unity
and levels out on a marginally smaller value (i.e. saturation of small scale errors that remain
unbalanced throughout the simulation). The small-scale Rossby number shows a negligible
dependence on the Coriolis parameter f . This is in good agreement with the finding from
paragraph 4.4.1 that in the present numerical setup convective activity acting on scales sig-
nificantly smaller than Rd is not influenced by the systems rotation rate.

On larger scales, however, there is a significant difference between the temporal evolution of
the Rossby number when different rotation rates are imposed: while the curves are initially
similar and take a value around 2 (meaning that larger scale dynamics are not balanced at
early perturbation lead times), they diverge with increasing perturbation lead time. Note that
since the errors are introduced on small-scales, the initial high values of the Rossby-number
on the larger scales are most likely attributable to projections from the small-scales due to
Fourier filtering (SC15). The decay of the Rossby number with time is, however, associated
with an increasing degree of geostrophic balance in the underlying flow field (i.e. the errors)
and is shorter for higher rotation rates and vice versa.

Additionally to space scaled with the Rossby Radius of deformation (see Fig. 4.9a), the green
curves in Fig. 4.9b depict the larger scale Rossby number for time scaled with f . Evidently,
for the employed choice of scaling, the Rossby number for the difference field of the full nu-
merical simulations takes a unique shape (i.e. functional form that does not depend on f).
Particularly note that the Rossby number scaling (3.58) in chapter 3 holds for all times in the
numerical simulations. The Rossby number in the complex, fully three-dimensional, nonlinear
simulation of a convective cloud field scales thus as predicted by the linear analytical model
of the GA following convective heating.

4.5 Summary

This chapter aims at closing the gap in complexity in a hierarchy of models (from the analytical
calculations in chapter 3 to numerical simulations of realistic weather situations) that aimed at
assessing the dynamical process that underlies upscale error growth through the atmospheric
mesoscales. Geostrophic adjustment (GA) following convective heating was suggested as a
possible dynamical process underlying the transition from small-scale unbalanced to larger-
scale balanced errors (Zhang et al., 2007; Selz and Craig, 2015b) but appears difficult to
extract from numerical simulations. In chapter 3, the GA of a point-like heat source was
examined analytically and three concrete predictions that allow for an identification of the
GA mechanism in numerical simulations were proposed where the Coriolis parameter f plays
a major role. In the present chapter idealized numerical error growth experiments within a
convective cloud field and three different imposed Coriolis parameters are employed to test
these predictions. The results are summarized in the following.



86 4. Upscale error growth through geostrophic adjustment: simulations

First, the analytical model treats the GA mechanism in the highly simplified framework of
the linearized, hydrostatic slab- (and radially-) symmetric Boussinesq-equations, where la-
tent heating within a convective cloud is assumed to excite a transient divergent circulation
that contains most energy in the hydrostatic deepest tropospheric gravity wave mode. In a
numerical simulation that reproduces this dynamical process accurately, features propagat-
ing with the associated horizontal phase speed should be clearly identifiable. The horizontal
phase speed extracted from the numerical simulations shows a high level of agreement with
the analytical value and is furthermore independent of the rotation rate. From these results
it is concluded that the transient divergent circulation that is initiated by a convective cloud
(i.e. heating) in the fully nonlinear model simulation agrees well with the respective assump-
tion made in the simplified analytical model and indicates that the numerical simulations were
successfully designed in a way that the forcing of the mesoscale circulation by convection is
independent of f (while the mesoscale circulation itself depends on f).

Second, the analytical study of GA in chapter 3 suggests that the balanced, large-scale vor-
ticity is linearly related to the accumulated divergence (convertible to the precipitation rate)
through a proportionality factor. In the numerical simulations, this relationship holds in a
point-wise sense and a positive precipitation anomaly generates an anticyclonic (cyclonic)
balanced vorticity feature in upper (lower) tropospheric heights. The proportionality factors
qualitatively and quantitatively agree well with associated predictions made by linear hydro-
static theory. This results suggest that the GA mechanism might play a role in transitioning
errors from small unbalanced to larger balanced scales. Note that, however, in a more realistic
numerical simulation with significant surface friction and/or topography, the correlation be-
tween the precipitation anomaly and the associated vorticity at lower levels is expected to be
worse than the upper tropospheric counterpart due to the more complicated boundary layer
effects.

Third, the temporal and spatial coordinates of the analytical solution are shown to naturally
scale with the Coriolis parameter f and the Rossby radius of deformation respectively. This
choice of scaling renders the shape of the solution and particularly the functional form of the
Rossby number universal (i.e. independent of f) in the theoretical GA study. The Rossby
number is calculated from the numerical model output with the three rotation rates. Scaling
the result according to the prediction by the analytical model shows that the curves collapse
onto each other, which indicates that the Rossby number of the difference fields of the pre-
sented numerical simulations shows the same behavior as the prediction of the isolated GA
process.

The three major results suggest that the diagnostics proposed by the analytical model were
successfully applied to identify the GA mechanism in numerical simulations. A discussion of
the implications and limitations of the presented results can be found in chapter 5.



Chapter 5

Summary and Discussion

Atmospheric dynamical phenomena associated with diabatic processes experienced as mid-
latitudinal weather are attributed to the mesoscales, i.e. typically feature horizontal length
scales between a few and a couple of hundred kilometers and time scales of several minutes
to one day. Undoubtedly, the skillful prediction on this scale range and the sources of asso-
ciated uncertainties are a topic of major interest to meteorological research. In spite of their
importance to present-day numerical weather prediction, fundamental aspects regarding dom-
inant mesoscale dynamics and scale-interaction processes that govern upscale error growth in
the atmosphere remain uncertain. While this thesis can by no means fully solve these open
issues, it contributes to an improved understanding of current research questions in two ways:
first, a method to decouple mesoscale rotational and divergent modes of motion from aircraft
measurements of horizontal wind velocities has been successfully and positively tested in the
framework of global numerical model simulations. This method can in the future be applied
to atmospheric measurement data and thus potentially provide insights into the dominant
dynamics underlying the mesoscale kinetic energy spectrum. Furthermore, indications for the
non-universality of mesoscale dynamics and the associated horizontal kinetic energy spectrum
were found. Second, geostrophic adjustment following convective heating was identified as a
principal dynamical mechanism that effectively propagates errors from small- (significantly
divergent) to large (mainly rotational) scales, which intrinsically limits the predictability of
atmospheric motion. The relative importance of rotational and divergent modes of motion as
well as the nature of their interaction play a major role in identifying the dynamical agent
that governs mesoscale dynamics as well as upscale error growth. In the following, the results
of these two parts will be summarized and discussed, and possible subsequent studies will be
suggested.

Rotational and divergent energy spectra derived from flight-track winds

Bühler et al. (2014) proposed a one-dimensional Helmholtz-decomposition method that allows
for the decoupling of rotational and divergent modes from one-dimensional aircraft measure-
ments. Two different implementations of this decomposition method have been applied by
Callies et al. (2014) and Lindborg (2015) to aircraft measurement data with different re-
sults regarding the relative importance of rotational and divergent modes of motion on the
mesoscales. In chapter 2 of this thesis the accuracy of both implementations of the suggested
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one-dimensional Helmholtz-decomposition method was tested in the framework of global nu-
merical atmospheric simulations. One-dimensional transects of horizontal velocity fields sim-
ulated by the Model for Prediction Across Scales (MPAS) taken along circles of constant
latitudes and longitudes served as input to the proposed approaches. The resulting spec-
tra of divergent and rotational kinetic energy were then compared to the respective spectra
calculated from two-dimensional fields from MPAS, where the decomposition may be done
unambiguously. Furthermore, the variability of the spectra with the examined latitude- and
height-ranges was assessed. The results of this chapter have partly been published in Bierdel
et al. (2016) and the two major findings are outlined in the following.

First, both suggested implementations of the one-dimensional Helmholtz-decomposition
method are very accurate and yield results almost indistinguishable from the correct solu-
tion. Particularly on the mesoscales the errors of the proposed methods are small enough
that the ratio of divergent to rotational kinetic energy can be estimated accurately. It is
thus concluded that, at least when data are aggregated over large areas, the assumptions
on the underlying flow of isotropy and homogeneity must be well satisfied. This thesis thus
demonstrates that the suggested techniques provide a strong observational check of model-
and theoretical results with existing large commercial aircraft data sets.

Second, applications of the proposed methods in foregoing studies have led to contradictory
results regarding the dominance of either rotational or divergent modes of motion on the
mesoscale range (Callies et al., 2014; Lindborg, 2015). As summarized in the previous para-
graph, the two implementations of the one-dimensional Helmholtz-decomposition method were
demonstrated to yield practically identical results. It was, however, shown in this thesis that
the apparent differences arise from an examination of different latitudinal and height regions of
the same data set. The mesoscale divergent kinetic energy was found to generally increase with
altitude (see also Koshyk and Hamilton, 2001; Waite and Snyder, 2013; Skamarock et al., 2014;
Weyn and Durran, 2017) and an inclusion of lower stratospheric data leads to a significantly
stronger divergent kinetic energy component than if only tropospheric data were considered.
Regarding the latitudinal region, the mesoscale divergent energy was found to dominate the
rotational contribution particularly on the Northern hemisphere as opposed to the Southern
hemisphere where the rotational energy is dominant. This finding is in agreement with results
found by Nastrom et al. (1984) and Cho et al. (1999), i.e. that atmospheric kinetic energy
spectra depend on latitude and if they are taken over ocean or over land. Cho et al. (1999)
speculate that orographically-generated gravity waves increase mesoscale spectral variability
over land. Since land covers a higher percentage of the area in the Northern hemisphere than
in the Southern hemisphere, the results presented are not in disagreement with this hypoth-
esis. In the equatorial region, where the major dynamics are significantly different from the
mid-latitudes, the rotational component dominates the whole spectral range. However, the
dominance over the divergent component is less pronounced than in the mid-latitudes and
the amplitude of the large-scale kinetic energy is comparatively reduced. A corollary is that
explanations of the dynamics underlying the mesoscale kinetic energy spectrum may vary be-
tween different regions of the atmosphere. Future studies that analyze these dynamics will
need to account for such variations.



89

A detailed examination of the dynamical origin of the mesoscale horizontal kinetic energy
spectrum is beyond the scope of this thesis. One major limitation of the examined real-case
study is that it merely encompasses 15 days in Northern hemispheric winter and a horizontal
grid spacing of 15 km of the employed numerical model. With this data set, the full variability
of the kinetic energy spectrum and the rotational and divergent parts can not be assessed.
Particularly the impact of deep moist convection on the mesoscale horizontal kinetic energy
spectrum can not be determined conclusively for two reasons: first, the energetic contribution
of deep moist convection over land in the Northern hemisphere is underrepresented in the
selected winter season. Second, deep moist convection is generally not simulated explicitly in
the employed numerical model owing to the too coarse horizontal resolution. It is parameter-
ized as a subgrid-scale process and might thus not be accurately represented.

The successful test of the suggested one-dimensional Helmholtz-decomposition method pub-
lished in Bierdel et al. (2016) has already proven relevant to subsequent research (i.e. cited
by Callies et al., 2016; Achatz et al., 2017; Bühler et al., 2017; Sun et al., 2017) and the
method was applied to (oceanic) measurement data by Balwada et al. (2016) and Rocha
et al. (2016). Furthermore, an explicit wave-vortex decomposition based on the examined
Helmholtz-decomposition method has been developed by Bühler et al. (2014, 2017). While
the direct evaluation of this second step is not part of the present thesis, the successful applica-
tion of the Helmholtz-decomposition method to complex atmospheric flow also gives confidence
in the applicability of the wave-vortex decomposition, as both methods are partly based on
the same mathematical assumptions (Callies et al., 2016). As introduced in paragraph 1.2.2,
prevailing theories assessing the meososcale energy spectrum fundamentally differ with re-
gard to a dominance of either rotational or divergent modes of motion. The positively tested
one-dimensional Helmholtz-decomposition method should in the future further be applied to
atmospheric measurement data such as the well-noted GASP data set (see paragraph 1.2.1).
The resulting insights into rotational and divergent contributions to the horizontal kinetic
energy spectrum might transform the understanding of mesoscale dynamics.

The universality of the mesoscale horizontal kinetic energy spectrum and the associated
k−5/3 power-law shape is a major paradigm of mesoscale dynamical meteorology (see para-
graph 1.2.1). All established theories for the mesoscale horizontal kinetic energy spectrum
build on this assumption. In this dissertation, however, the horizontal kinetic energy spec-
trum and its rotational and divergent constituents were found to depend on the examined
geographical region. This result points to non-universal dynamics underlying the mesoscale
kinetic energy spectrum and confirms foregoing idealized modeling studies. In there, in partic-
ular atmospheric deep moist convection was found to be of crucial importance: the measured
atmospheric k−5/3-mesoscale kinetic energy spectrum is shown to develop in a flow that lacks
large-scale dynamics and is solely energized by small-scale deep moist convection (Sun et al.,
2017; Weyn and Durran, 2017). The associated kinetic energy spectrum features a significant
divergent contribution and depends sensitively on the atmosphere’s moisture content (Waite
and Snyder, 2013). Deep moist convection is a process that intimately depends on the state
of the surrounding atmosphere determined by the prevailing weather regime and season. The
apparent dependence of the mesoscale kinetic energy spectrum on small-scale intermittent pro-
cesses such as convection suggests that it is sensitive to these details of the examined data set.
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While the variability of the mesoscale kinetic energy spectrum and the impact of atmospheric
convection clearly warrants further research it has not yet been systematically analyzed.

In a possible follow-up study the variability of the horizontal kinetic energy spectrum and
its rotational and divergent constituents could be systematically and quantitatively analyzed.
To this end, a more conclusive, high-resolution data set is needed. Simulations such as op-
erational forecasts by the numerical weather prediction model COSMO-DE (Consortium of
Small-Scale modeling, Baldauf et al., 2011) that feature a convection-permitting horizontal
resolution O(1 km) can be analyzed. In order to assess the spectral dependence on the season
and prevailing weather regime, the simulations should encompass several years, and summer
and winter months. The spectral energy could then quantitatively be associated with parame-
ters such as precipitation, the convective time scale (Keil et al., 2014), the surface pressure or
the convective available potential energy (CAPE) in order to systematically assess the regime-
dependence.

Together with her colleague Tobias Selz, the author of this thesis has already initiated such
a study. First results are shown in Fig. 5.1. The results are preliminary and the evaluated
data contains merely three months in summer 2011 and operational COSMO-DE forecasts
valid at 15 UTC (for details see caption of Fig. 5.1). The operational COSMO-DE forecasts
are routinely provided by the German National Meteorological Service (DWD) and cover a
region that contains Germany and also parts of the neighboring countries. The horizontal
kinetic energy spectrum (Fig. 5.1a), its spectral slope (Fig. 5.1c) and small-scale amplitude
(Fig. 5.1d) are highly variable over the considered time period. Owing to the size of the model
domain, the displayed spectra cover scales up to 1000 km. In there, June 22 2011 15 UTC
is an extreme event (see red dots in Figs. 5.1c and d). For the shown 15 UTC forecast, the
slope of the horizontal kinetic energy spectrum is particularly shallow and the small-scale
kinetic energy is exceptionally high. The associated precipitation field displayed in Fig. 5.1b
indicates that this day was characterized by intense (partly organized) convective activity.
These first results indicate that particularly small-scale kinetic energy correlates well with the
precipitation rate. If these results prove to be robust they will show that the mesoscale kinetic
energy spectrum is regime-dependent, i.e. sensitive to the current state of the atmosphere (as
characterized e.g. by temperature, pressure and precipitation) associated with the examined
geographical region and season. This directly opposes the notion of the universal atmospheric
kinetic energy spectrum introduced in paragraph 1.2.1. In particular, the dependence of the
small-scale horizontal kinetic energy spectrum on the precipitation rate hints at the potential
of atmospheric deep moist convection to directly energize the mesoscale range. If this hy-
pothesis proves correct, the fundamental inertial-subrange assumption of theoretical studies
assessing the mesoscale kinetic energy spectrum is violated (see paragraph 1.2.2). For theories
to advance in this field, the dynamics governing the kinetic energy spectrum and its associated
variability should be understood first. It will then be possible to assess the resulting kinetic
energy spectrum.

Finally, the full variability of the measured kinetic energy spectrum and the rotational and
divergent contributions can not be assessed by analyzing data taken by commercial aircraft.
In particular regions of active deep moist convection are generally avoided or overflown and
thus not contained in the data set. Flight routes are furthermore located on heights between
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Figure 5.1: a) Upper-tropospheric horizontal kinetic energy spectra of the operational COSMO-DE
forecast for 15 UTC initialized at 00 UTC of the same day from May 01 2011 to September 30 2011
as a function of wavenumber in traditional double-logarithmic axes (gray). The spectrum for June
22 2011 15 UTC is highlighted (blue). Least-squares fit to power-law spectrum with coefficient −1.52
between two vertical gray dotted lines is marked in red. b) Precipitation rate on June 22 2011 15
UTC (dark blue and purple colors). Land is displayed in green, ocean in light blue and isolines of the
500 hPa geopotential in steps of 100 m2/s2 (black). c) Spectral slopes estimated as in a) scattered
against the precipitation rate. d) Small-scale kinetic energy (i.e.λ ∼ 30 km) scattered against the
precipitation rate. In c) and d) values for May 01 2011 to September 30 2011 are displayed in blue
and June 22 2011 15 UTC is highlighted in red (courtesy of Tobias Selz).

9 and 12 km and usually clustered in the jet stream region for minimization of fuel consump-
tion. It is thus desirable to apply the suggested one-dimensional Helmholtz-decomposition
method to measurements taken by research aircraft (see Callies et al., 2016). One example
is aircraft data taken in the course of the NAWDEX (North Atlantic Waveguide and Down-
stream Impact Experiment) field campaign in autumn 2016 over the North Atlantic Ocean.
There, measurement aircraft explicitly targeted regions of particularly strong diabatic modi-
fication of the dynamics. For example, one research flight on which the author of this thesis
was mission scientist measured the waveguide near the warm conveyor-belt outflow associated
with cyclone Vladiana shown in Fig. 1.1. However, attributing mesoscale errors and their
variation with scale to the violation of certain underlying assumptions of the one-dimensional
Helmholtz-decomposition method is not straightforward and beyond the scope of this thesis.
Transects measured in the course of research flights might be shorter, on lower altitudes and
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significantly affected by deep moist convection or rising air masses in a warm-conveyor belt.
An application of the one-dimensional Helmholtz-decomposition method to this measurement
data should thus be preceded by a more extensive evaluation of possible error sources related
with the violation of underlying assumptions such as homogeneity.

A general corollary is that a focus of future studies employing numerical models or measure-
ment data as outlined above should focus first on understanding dominant mesoscale dynamics
and scale-interactions as well as the associated regime-dependence. These insights can subse-
quently be used to analyze the mesoscale kinetic energy spectrum and its variability.

Upscale error growth from convection through geostrophic adjustment

The second part of this dissertation addressed the question whether geostrophic adjustment
(GA) following atmospheric deep moist convection governs the second stage of the conceptual
error growth model by Zhang et al. (2007, see also paragraph 1.3.2). The GA mechanism was
exploited in the current thesis with a twofold, analytical and numerical, approach.

First, an analytical model for the GA of an initially localized heating imposed on a quiescent
atmosphere was presented in chapter 3. The model is based on the linearized, hydrostatic
slab- and radially-symmetric Boussinesq-equations. A solution was found for the buoyancy
perturbation arising from a localized pulse heating. The solution has two major advantages
over results published in previous studies. First, it contains all transients and balanced flow
components in one solution as opposed to solving for both components separately by using
potential vorticity conservation (Gill, 1982; Schubert et al., 1980). Second, it provides the
solution for the buoyancy response of a rotating atmosphere to a Delta-function forcing in
space and time. The solution to this forcing is the Green’s function for the mathematical
problem. It allows for the simple construction of a solution for arbitrary forcings by linear
superposition. From the buoyancy solution, spatial and temporal scaling characteristics are
derived. Furthermore, three diagnostics that may help to identify the GA mechanism in
numerical simulations were suggested. In there, the Coriolis parameter plays a major role.
The diagnostics are:

1. The analytical model predicts gravity waves with phase speeds that are independent
of f and inversely proportional to the vertical mode m of the forcing. In agreement
with previous studies it is assumed that the convection projects mainly onto the gravest
vertical mode (m = 1), which results in a phase speed of the waves of c1 = NH.

2. A linear relationship is predicted by the analytical model between the rate of change of
the balanced, large-scale vorticity and the (time-lagged) latent heating. For an evalua-
tion of this relationship the precipitation can be used as a proxy for the latent heating.

3. When neglecting the transients the response to the heat source evolves over time from
purely divergent to purely rotational. The timescale of this transition is proportional
to f−1. The ratio of divergence over vorticity (Rossby number) can be extracted from
numerical simulations and the f -dependence of its evolution can be tested.
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Linearity is one major assumption which underlies the calculation presented in chapter 3 and
implies that the amplitude of the flow that is generated by the heat sources remains small.
The linear and also the hydrostatic assumptions are clearly violated within the convective
clouds themselves. However, heating by convective clouds typically generates small amplitude
flow responses implying that linearity is expected to hold for the wave response and for the
secondary circulation excited by the heating (Nicholls et al., 1991; Schubert et al., 1980).
Nonlinear effects (Raymond, 1987) can nevertheless become relevant for very large heating
rates, leading to a large amplitude of the transient response (Chagnon and Bannon, 2005a).
This effect is a known problem in convective-scale data assimilation where spurious convec-
tive cells are generated non-linearly by waves excited by a local perturbation of the model
state (Lange et al., 2017). If the linearity assumption holds, however, the predictions of the
analytical model can be applied to single convective clouds as well as to a field of convective
clouds by linear superposition. In addition they can be applied to difference fields between
two simulations in the context of an error growth study.

In chapter 4 the predictions based on the analytical model were compared with complex, fully
nonlinear COSMO model simulations of a convective cloud field in a rotating environment. In
order to test the suggested scaling with the Coriolis parameter and the established diagnos-
tics, three control-simulations with different close-to planetary rotation rates were performed.
For each of the simulations a slightly perturbed twin experiment was conducted and the error
growth was examined in the difference field (between a control and perturbed simulation). The
numerical experiments were carefully designed such that possible issues concerning the com-
parability between the highly idealized analytical calculation (i.e. linear, hydrostatic theory in
the framework of Boussinesq-equations) and complex, fully nonlinear model simulations were
avoided. This has been achieved by neglecting large scale flow and topography, and choosing
the imposed Coriolis parameters such that differences in the upscale error growth were appar-
ent while the small-scale convective activity remained unchanged. In this idealized numerical
setting, three major results suggest that the diagnostics following from the analytical model
were successfully applied to identify the GA mechanism in numerical simulations. First, the
gravest gravity wave mode with a f -independent horizontal phase speed could be detected.
Second, the proportionality factors between the balanced, large-scale vorticity and the accu-
mulated precipitation agreed qualitatively and quantitatively well with associated predictions.
Third, scaling the Rossby number according to the prediction based on the analytical model
showed the expected f -dependence. Note that particularly in the second diagnostic any ad-
vection with the background flow was neglected. While in the idealized study the initial wind
field could simply be set to zero, this limitation can be mitigated in more realistic numerical
simulations by considering a Lagrangian reference frame. These results show that the diagnos-
tics derived from the analytical model were successfully applied to identify the GA mechanism
in numerical simulations.

Based on the results presented in chapters 3 and 4 the arising image for upscale error growth
from precipitating regions is the following: small-scale error growth is understood to be sat-
urated (i.e. end of stage 1) when all individual convective cells are displaced. The difference
field is then an ensemble of massflux-dipoles with varying amplitude. Every cloud in the differ-
ence field initiates a gravity wave response, which propagates dominantly with the speed of the
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gravest hydrostatic gravity wave mode in mid-tropospheric levels. The divergent upper-level
outflow and convergent lower-level inflow then set up a balanced rotational flow while under-
going GA. The characteristic time- and length-scales of the arising vortices is proportional to
the inverse Coriolis parameter f−1 and the Rossby radius of deformation Rd (see schematic in
Fig. 1.3). The GA process might thus link the convective (stage 1) to the baroclinic (stage 3)
error growth of the conceptual model suggested by Zhang et al. (2007).

In paragraph 1.3.2 the two prevailing viewpoints on atmospheric predictability, i.e. the turbu-
lent cascade (Lorenz, 1969) and the three-stage approach (Zhang et al., 2007) were introduced.
While the three-stage error growth model has been investigated in this thesis, one aspect that
allows for the distinction between the suggested GA-hypothesis and the turbulent cascade
theory is the scaling of the characteristic time-scale of upscale error growth with the Corio-
lis parameter f . According to the GA-framework, the time of the appearance of large-scale
balanced errors is linearly inversely proportional to f , i.e. tGA ∼ f−1 (see (3.40)). In the
standard local cascade hypothesis introduced in paragraph 1.3.2 the predictability time Tp
is the integral of the eddy turnover time τk over the given scale range (Lilly, 1972). For a
background kinetic energy spectrum with a powerlaw-dependence EK(k) ∼ k−β it follows
from (1.5) that Tp ∼ (kL − kS)(β−3)/2. For the large-scale being the Rossby radius of de-
formation Rd (see (3.38)) the large-scale wavenumber is given by kL = 2πf/(NH). If kS is
either equally scaled with Rd or constant (implying that the scale of the forcing by convective
heating does not depend on f), the predictability time reads

Tp ∼ f (β−3)/2 . (5.1)

In this cascade picture, the predictability time is—for β not equal to unity—different from the
geostrophic adjustment timescale tGA ∼ f−1. In the present idealized numerical simulations
the horizontal background kinetic energy spectrum features a f -independent slope that takes
the approximate value β ∼ 1.4 (see Fig. 4.3). It is thus fairly steeper than the mesoscale
β ∼ 1.67 (= 5/3) slope that follows from measurement data (Nastrom et al., 1984). The aris-
ing f−0.8-scaling of the predictability time contradicts the f−1-scaling of the GA hypothesis.
Note that this simple calculation of upscale growth neglects up-amplitude growth that might
have to be considered for completeness. For a more accurate comparison of the cascade- and
geostrophic adjustment hypotheses as possibly determining the predictability time the spec-
tral slope should furthermore be estimated with an accurate mathematical approach (Clauset
et al., 2009; Stumpf et al., 2012). However, while the difference between the two scalings (f−0.8

and f−1) appears small, it is large enough for the f−0.8 scaling to depart significantly from the
linear f -scaling of the Rossby number shown in Fig. 4.9. This indicates that the dynamical
process that governs error growth in the numerical simulations described in chapter 4 may not
be associated with a turbulent cascade.

In this dissertation the growth of small-scale, small-amplitude initial errors through the GA
process and thus the intrinsic predictability problem was assessed (Melhauser and Zhang,
2012; Sun and Zhang, 2016). Thus, the results presented in chapters 3 and 4 particularly do
not account for a potential downscale impact of large-scale errors that might pose a practical
limit to the predictability of atmospheric flow in certain weather regimes (Durran et al., 2013;
Durran and Gingrich, 2014). The results presented in this thesis are, however, not limited to
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the intrinsic predictability case where errors grow in the first stage from infinitesimally small
initial amplitude and scale. The suggested mechanism underlying upscale error growth in the
second stage is rather generally applicable and practically relevant to numerical simulations
where the latent heat release within convective clouds is a small-scale source of uncertainty
(Zhang et al., 2007; Selz and Craig, 2015b).

In a real-case study of an European forecast bust, Rodwell et al. (2013) identified the ac-
curate representation of mesoscale convective systems (over North America) and associated
subgrid-scale structures as crucial to the skillful numerical weather prediction over Europe.
In Rodwell et al. (2013), the impact of latent heating within convective clouds that are not
or only partly resolved is found to grow upscale due to a significant diabatic modification
of the upper level Rossby wave train. In atmospheric numerical models subgrid-scale pro-
cesses are parameterized. This signifies that they are not explicitly resolved by the model’s
grid-resolution and are represented in the model by a simplified process. Convective-scale
variability in numerical models that feature a too coarse spatial resolution to explicitly resolve
convection can be accounted for by employing stochastic subgrid-scale parameterizations. In
there, a random component is introduced into the modeling system on unresolved scales. Selz
and Craig (2015a) find that the correct representation of the variability associated with con-
vective clouds and the subsequent upscale propagation are crucially important to a correct
estimate of the large-scale variability (e.g. reflected by an increased reliability of an ensemble
prediction system (EPS)). This dissertation provides dynamically motivated insights into the
upscale impact of convective heating on explicitly resolved or unresolved scales. It thus may
particularly contribute to improving current subgrid-scale parameterizations and their impact
on the resolved parts of the flow. An example will be given in the following.

Widely used stochastic physical parameterizations such as kinetic energy backscatter schemes
(SKEBs, Shutts, 2005) and perturbed parameterization tendencies (Buizza et al., 1999) are de-
signed in an ad-hoc manner to improve the spread of operational EPS. Recently, Shutts (2015)
suggested a dynamically motivated modified SKEBs (i.e. Stochastic Convective Backscatter,
SCB), where the only source of random model error accounted for is deep convection. In there,
every convective grid point instantaneously forces a near-grid scale concentric divergence and
vorticity response which is solely driven by the mass-flux profiles provided by the convective
parameterization. The SCB scheme is shown to produce a similar spread as the operationally
used, less dynamically motivated combination of SKEBs and perturbed parameterization ten-
dencies. Details of the physical response in the SCB scheme, particularly the outer spectral
smoothing- or adjustment scale and the time scale of the response, are currently not based
on a theoretical model. The current thesis may help to improve such stochastic parameteriza-
tions by contributing to a more profound dynamical understanding of the upscale growth of
convective-scale uncertainty. It particularly provides a dynamical reasoning for the time- and
length scales involved in the SCB scheme.

Finally, the three stage-error growth model suggested by Zhang et al. (2007) is highly con-
ceptual in nature and the analytical description presented in chapter 3 assesses merely the
transitional stage of this model in a simplified mathematical framework. As a follow-up
study, a quantitative and more comprehensive mathematical framework for the three-stage
error growth model might be formulated on the basis of multiscale asymptotics (Klein, 2009;
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Achatz et al., 2017). In this framework, subsets of the full equations that govern atmospheric
flow are derived for the small-, meso- and large-scales by an identification of dominant dy-
namics through a scale analysis. Atmospheric error growth from small- to large scales can
then be assessed in a mathematically more rigorous manner by solving a hierarchy of sets of
equations. The solution to a set of equations serves as a forcing to the larger-scale dynamics
and scale-interaction coefficients will be accounted for explicitly. The author of this thesis
plans to conduct an according study in the course of a PostDoc project in the framework of
the Waves to Weather (W2W) Transregional Collaborative Research Center.



Appendix A

Detailed dimensional calculation:
Geostrophic adjustment of a point-like
buoyancy forcing in slab-symmetric
geometry

In this chapter of the appendix an extended and dimensional version of the analytical model
presented in chapter 3 is given. This chapter might thus be particularly insightful for students
or a reader who intends to perform an analogous calculation. Note that while this chapter is
part of the appendix, the notation might differ slightly from the notation employed in the rest
of the thesis. However, all symbols used in this chapter are introduced.

In the following simple analytical model the response of a horizontally unbounded, rotating
atmosphere to a slab-symmetric buoyancy source (’cloud’) of zero width is examined. From the
obtained buoyancy solution the pressure and geostrophic wind will be derived. The starting
point are the linearized, hydrostatic, inviscid, rotating Boussinesq-equations (see for example
Vallis (2006, p. 99) or Gill (1982, p. 256)) [with a reference density ρ0 = 1 kg m−3]. The
slab-symmetric, rotating equations read

∂tu
′(x, z, t)− f0v

′(x, z, t) = −∂xπ′(x, z, t) (A.1)

∂tv
′(x, z, t) + f0u

′(x, z, t) = 0 (A.2)

−∂zπ′(x, z, t) + b′(x, z, t) = 0 (A.3)

∂xu
′(x, z, t) + ∂zw

′(x, z, t) = 0 (A.4)

∂tb
′(x, z, t) +N2w′(x, z, t) = Q(x, z, t) , (A.5)

where v′(x, z, t) = (u′, v′, w′) is the three-dimensional perturbation wind vector with com-
ponents u′, v′ and w′, π′ = p′/ρ0 is the scaled pressure perturbation, b′ = −gρ′/ρ0 is the
perturbation buoyancy and f0 denotes the Coriolis parameter. The ” ’ ” denotes a perturba-
tion from a reference field at t = 0 (according to the decomposition ψ(t) = ψ̄ + ψ′(t)). Since
the considered initial state is a quiescent atmosphere the prime is dropped for convenience.
N2 = −g/ρ0dzρ0 is the Brunt-Väisälä frequency and

Q = Q0δ(x)δ(t) sin(mz) (A.6)
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is the buoyancy source. δ(ξ) denotes the Dirac-delta function with

b∫
a

δ(ξ) dξ =

{
1, if 0 ∈ [a, b],

0, otherwise.

The forcing Q is thus turned on and off ’instantaneously’ at time t = 0, located at x = 0 and
its vertical structure follows a sine wave with wavenumber m = nπ/H (with the tropopause
height H) (see Nicholls et al. (1991) and Fig. A.1).

0.0 0.2 0.4 0.6 0.8 1.0
sin(mz)

2

4

6

8

z [km]

Figure A.1: The vertical structure of the heating Q = Q0δ(x)δ(t) sin(mz) with m = π/H.

The partial differential equation (PDE) for the buoyancy perturbation b = b(x, z, t) is obtained
by the following calculation, where two equations relating w and b are derived and then w is
eliminated:

∂x∂z(A.1) : ∂t∂z∂xu− f0∂x∂zv = −∂2
x∂zπ

(A.3)
= − ∂2

xb
′

with (A.4) : − ∂t∂2
zw − f0∂x∂zv = −∂2

xb

∂t : −∂2
t ∂

2
zw − f0∂x∂z∂tv = −∂t∂2

xb (A.7)

In order to eliminate v the associated momentum equation is used:

∂x∂z(A.2) : ∂t∂z∂xv = −f0∂x∂zu .

It thus follows for (A.7)

−∂2
t ∂

2
zw + f 2

0∂z ∂xu︸︷︷︸
−∂zw

= −∂t∂2
xb

−∂2
t ∂

2
zw − f 2

0∂
2
zw = −∂t∂2

xb . (A.8)

The second equation relating b and w is derived as follows:

∂2
t ∂

2
z (A.5) : ∂3

t ∂
2
zb+N2∂2

t ∂
2
zw = ∂2

t ∂
2
zQ

⇒ ∂2
t ∂

2
zw = N−2[∂2

t ∂
2
zQ− ∂3

t ∂
2
zb] (A.9)

and ∂2
zw = N−2[∂2

zQ− ∂t∂2
zb] . (A.10)
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With (A.9) and (A.10) it follows for (A.8):

−N−2[∂2
t ∂

2
zQ− ∂3

t ∂
2
zb]− f 2

0N
−2[∂2

zQ− ∂t∂2
zb] = −∂t∂2

xb

⇒ ∂3
t ∂

2
zb− ∂2

t ∂
2
zQ− f 2

0∂
2
zQ+ f 2

0∂t∂
2
zb = −N2∂t∂

2
xb

∂3
t ∂

2
zb+ f 2

0∂t∂
2
zb+N2∂t∂

2
xb = ∂2

t ∂
2
zQ+ f 2

0∂
2
zQ . (A.11)

The z-dependence can be separated out by expansion in eigenfunctions of ∂2
z :

∂2
zei(z) = −λ2ei(z) with ei(z) = sin

(
i
π

H
z
)

= sin(miz)

The expansion reads

b(x, z, t) =
∑
i

Bi(x, t)ei(z) =
∑
i

Bi(x, t) sin(miz)

and in the following only a forcing which corresponds to an integer-wavenumber i = 1, i.e.
m = m1 = π/H,B(x, t) = B1(x, t) is going to be considered.
The PDE for the amplitude B(x, t) with b′(x, z, t) = B(x, t) sin(mz) then reads

∂3
tB(x, t) + f 2

0∂tB(x, t)− c2∂t∂
2
xB(x, t) = Q0δ(x)∂2

t δ(t) + f 2
0Q0δ(x)δ(t) , (A.12)

where c = N/m denotes the spreading (’gravity wave’) velocity of the disturbance.
The Laplace transform

L{f(t)} = F (s) =

∫ ∞
0−

f(t) exp(−st) dt, s ∈ C (A.13)

is applied to (A.12) and it follows

∞∫
0−

∂3
tB(x, t) exp(−st) dt

︸ ︷︷ ︸
I

+f 2
0

∞∫
0−

∂tB(x, t) exp(−st) dt

︸ ︷︷ ︸
II

−c2∂2
x

∞∫
0−

∂t B(x, t) exp(−st) dt

︸ ︷︷ ︸
III

(A.14)

= Q0δ(x)

∞∫
0−

∂2
t δ(t) exp(−st) dt

︸ ︷︷ ︸
IV

+f 2
0Q0δ(x)

∞∫
0−

δ(t) exp(−st) dt

︸ ︷︷ ︸
V

(A.15)

For the evaluation of terms I − V the following two identities are employed: The Laplace
transform of the n−th order temporal derivatives of a function f(t) (I. N. Bronstein and
Mühlig, 2001, p. 735)

L{∂(n)
t f(t)} = snL{f(t)} − sn−1f(0−)− sn−2∂tf(t)|0− − . . .− s∂(n−2)

t f(t)|0− − ∂(n−1)
t f(t)|0−

= snL{f(t)} −
n∑
k=1

sk−1 ∂n−kt f(t)
∣∣
0−

(A.16)
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and the Laplace transform of the Dirac-delta function

∞∫
0−

δ(t) exp(−st) dt = 1 . (A.17)

With (A.16) and (A.17) it follows for the terms given in (A.14)

I : s3β(x, s)−∂2
tB(x, t)|t→0− − s∂tB(x, t)|t→0− − s2B(x, t)|t→0−︸ ︷︷ ︸

=0

II and III : sβ(x, s)−B(x, t)|t→0−︸ ︷︷ ︸
=0

IV : s2 −∂tδ(t)|t→0− − sδ(t)|t→0−︸ ︷︷ ︸
=0

V : 1 .

It thus follows for the Laplace-transformed PDE with β(x, s) = L{B(x, t)}:

s3β(x, s) + f 2
0 sβ(r, s)− c2s∂2

xβ(x, s) = Q0δ(x)(s2 + f 2
0 )

∂2
xβ(x, s)− 1

c2
(s2 + f 2

0 )β(x, s) = −Q0δ(x)

c2
(s+ f 2

0 s
−1) . (A.18)

The desired solution vanishes for x→∞ owing to

lim
x→∞

β(x, s) = lim
x→∞

∣∣∣∣∣∣
∫

0→∞

B(x, t) exp(−st) dt

∣∣∣∣∣∣
= lim

x→∞


x/c∫
0

B(x, t) exp(−st) dt
︸ ︷︷ ︸

=0

+

∞∫
x/c

B(x, t) exp(−st) dt

 ,

where the triangle inequality gives

lim
x→∞

β(x, s) ≤ lim
x→∞

∞∫
x/c

|B(x, t)| |exp(−st)| dt

≤ lim
x→∞

max(B(x, t))

∞∫
x/c

|exp(−st)| dt
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and thus

lim
x→∞

max(B(x, t))

∞∫
x/c

|exp(−st)| dt ≤ lim
x→∞

max(B(x, t))

∞∫
x/c

exp(−st) |cos(bt)− i sin(bt)|︸ ︷︷ ︸
=2

dt

= lim
x→∞

2 max(B(x, t))

∞∫
x/c

exp(−st) dt

= lim
x→∞

2 max(B(x, t))[−s−1 exp(−st)]t→∞t=x/c

= lim
x→∞

2 max(B(x, t))s−1 exp(−sx/c) = 0 ,

where a and b denote the real and imaginary parts of s respectively.

Since the desired solution vanishes for x→∞ and interest lies on the response outside of the
source region (x 6= 0), the in x-symmetric solution

β(x, s) = B(s) exp

(
−1

c

√
s2 + f 2

0 |x|
)

(A.19)

is guessed for the homogeneous equation.

Since the second derivative of β(x, s) is proportional to δ(x), the solution has a kink at x = 0
(first derivative is H(x)). For β(x, s) it holds

β(x, s) = B(s) ·
{

exp(−ϑ(s)x), x > 0

exp( ϑ(s)x), x < 0 ,
(A.20)

where ϑ(s) = c−1
√
s2 + f 2

0 has been used for simplification.
Formally, (A.18) is treated as a homogeneous equation and the inhomogeneity as a boundary
condition defining the strength of the kink B(s). In order to find an expression for B(s), the
PDE (A.18) is integrated from −x to x and then the limit x→ 0 is taken:

lim
x→0

x∫
−x

∂2
xβ(x′, s) dx′ − ϑ(s)2 lim

x→0

x∫
−x

β(x′, s) dx′ = ξ(s) lim
x→0

x∫
−x

δ(x′) dx′

︸ ︷︷ ︸
=1

for β(x, s) bounded: lim
x→0

x∫
−x

β(x′, s) dx′ = 0

⇒ lim
x→0

[∂xβ(x′, s)]x
′=x
x′=−x = ξ(s) , (A.21)

where ξ(s) = −Q0c
−2(s+ f 2

0 s
−1) has been introduced for simplification. The left hand side of

(A.21) can be directly evaluated using (A.20) and with

∂xβ(x, s) = B(s)ϑ(s) ·
{
− exp(−ϑ(s)x), x > 0

exp( ϑ(s)x), x < 0
= B(s)ϑ(s) exp(−ϑ(s)|x|) ·

{
−1, x > 0

1, x < 0 ,
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it follows

lim
x→0

[∂xβ(x′, s)]x
′=x
x′=−x = lim

x→0
{−B(s)ϑ(s) exp(−ϑ(s)x)−B(s)ϑ(s) exp(ϑ(s)x)} (A.22)

= −2B(s)ϑ(s) . (A.23)

With (A.21) it thus follows

B(s) = −1

2

ξ(s)

ϑ(s)

and the solution for β(x, s) takes the form

β(x, s) = −1

2

ξ(s)

ϑ(s)
exp (−ϑ(s) |x|) (A.24)

with ξ(s) = −Q0c
−2(s+ f 2

0 s
−1)

and ϑ(s) = c−1
√
s2 + f 2

0 .

This formula can also be written as

β(x, s) =
Q0

2c

[
sf(x, s) + f 2

0 s
−1f(x, s)

]
with f(x, s) =

1√
s2 + f 2

0

exp

(
−(|x|c−1)

√
s2 + f 2

0

)
.

From the linearity property of the Laplace transform, f(s) = Af1(s) + Bf2(s) and F (t) =
AF1(t) +BF2(t) (Abramowitz and Stegun, 1964, formula 29.2.3), it follows

B(x, t) = L−1 {β(x, s)} =
Q0

2c

[
L−1 {sf(x, s)}+ f 2

0L−1
{
s−1f(x, s)

}
)
]
. (A.25)

With the differentiation and integration rules involving Laplace transforms (Abramowitz and
Stegun, 1964, formulas 29.2.4 and 29.2.6) it holds

g(s) = sf(s)− F (t)|0 G(t) = ∂tF (t) (A.26)

g(s) =
1

s
f(s) G(t) =

t∫
0

L−1{f(s)} dτ . (A.27)

While inverse Laplace transforms can generally be obtained by a contour-integration around
branch cuts in the complex plane, they might also be found in lookup-tables. The latter
applies to the current function f(x, s), where the inverse Laplace-transform is according to
Abramowitz and Stegun (1964, formula 29.3.92) given by

F (x, t) = L−1{f(x, s)} = J0(f0

√
t2 − (|x|/c)2)H(t− (|x|/c) , (A.28)

where J0(· · · ) denotes the Bessel function of first kind and order zero.
With F (x, t)|0 = 0 it follows

L−1 {sf(x, s)} = L−1 {sf(x, s)− F (x, t)|0} = ∂tF (x, t) . (A.29)
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With the integration rule it follows

L−1
{
s−1f(x, t)

}
=

t∫
0

F (x, τ) dτ (A.30)

and with (A.29) and (A.30) equation (A.25) becomes

B(x, t) =
Q0

2c

∂tF (x, t) + f 2
0

t∫
0

F (x, τ) dτ

 .

With F (x, t) from (A.28) it follows for the full buoyancy solution b(x, z, t) = B(x, t) sin(mz)

b(x, z, t) =
Q0

2c

∂tF (x, t) + f 2
0

t∫
0

F (x, τ) dτ

 sin(mz)

=
Q0

2c

− f0 t

g(x, t)
J1(· · · )H(· · · ) + J0(· · · )δ(· · · )

+ f 2
0

t∫
0

J0(f0g(x, τ))H(τ − |x|/c) dτ

 sin(mz) , (A.31)

where the abbreviations

g(x, t) =
√
t2 − (|x|/c)2

Jψ(· · · ) = Jψ(f0g(x, t))

H(· · · ) = H(t− |x|/c)
δ(· · · ) = δ(t− |x|/c)

have been used.
With the hydrostatic equation (A.3) the perturbation pressure reads

π(x, z, t) =

z∫
0

b(x, z′, t) dz′

=
Q0

2c

∂tF (x, t) + f 2
0

t∫
0

F (x, τ) dτ

 z∫
0

sin(mz′)dz′

=
Q0

2c

− f0 t

g(x, t)
J1(· · · )H(· · · ) + J0(· · · )δ(· · · )

+ f 2
0

t∫
0

J0(fg(x, τ))H(τ − |x|/c) dτ

(− 1

m
cos(mz) +

1

m

)
. (A.32)
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For very large t � |x|/c the geostrophic balance is expected to hold (i.e. the temporal
derivative of the u-velocity vanishes in (A.1)) and the geostrophic wind reads

vg(x, z, t) = f−1
0 ∂xπ(x, z, t) =

Q0

2cf0

∂x∂tF (x, t) + f 2
0

t∫
0

∂xF (x, τ) dτ

 (− 1

m
cos(mz) +

1

m
)

=
Q0

2cf0

− ∂x( f0 t

g(x, t)
J1(· · · )H(· · · )

)
︸ ︷︷ ︸

I

+ ∂x (J0(· · · )δ(· · · ))︸ ︷︷ ︸
II

+ f 2
0

t∫
0

∂xJ0(f0g(x, τ))H(τ − |x|/c)︸ ︷︷ ︸
III

dτ

(− 1

m
cos(mz) +

1

m

)
, (A.33)

where the derivatives of the Bessel functions are calculated from the associated series expansion
as shown in the following. The series expansion of the Bessel function of first kind and order
ν reads From (Lide, 2005, p. A-93, formula 2)

Jν(x) =
∞∑
k=0

(−1)k

k!(k + ν)!

(x
2

)2k+ν

Thus, for F (x, t) = J0(f
√
t2 − a2) with a = x/c reads

∂tJ0(f
√
t2 − a2) =

∞∑
k=0

(−1)kk

(k!)2

(
f
√
t2 − a2

2

)2k−1
f t√
t2 − a2

.

Since the first summand (k = 0) vanishes the summation can be carried out from k = 1 and
an index shift j = k − 1 can be performed

∂tJ0(f
√
t2 − a2) =

f t√
t2 − a2

∞∑
j=0

(−1)j+1(j + 1)

(j + 1)!(j + 1)!

(
f
√
t2 − a2

2

)2j+1

= − f t√
t2 − a2

∞∑
j=0

(−1)j

(j + 1)!j!

(
f
√
t2 − a2

2

)2j+1

= − f t√
t2 − a2

J1(f
√
t2 − a2) . (A.34)

It analogously holds

∂xJ0(f
√
t2 − a2) =

f x

c2
√
t2 − a2

J1(f
√
t2 − a2) . (A.35)

The different terms of the geostrophic wind given in (A.33) thus calculate as

I =
f0 t x

c2g(x, t)3
J1(· · · )H(· · · )− f 2

0 t x

2c2g(x, t)2
[J0(· · · )− J2(· · · )]H(· · · )
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− f0 t

cg(x, t)
J1(· · · ) δ(· · · ) sgn(x)

II =
f0 x

c2g(x, t)
J1(· · · ) δ(· · · ) + J0(· · · ) ∂xδ(· · · )

III =
f0 x

c2g(x, t)
J1(· · · )H(· · · )− c−1J0(· · · )δ(· · · ) sgn(x) .

Again, for t� |x|/c (i.e. H(· · · ) = 1; δ(· · · ) = 0) the geostrophic wind reads

vg(x, z, t) =
Q0

2cf0

[
− f0 t x

c2g(x, t)3
J1(· · · ) +

f 2
0 t x

2c2g(x, t)2
[J0(· · · )− J2(· · · )]

+ f 2
0

 t∫
0

f0 x

c2g(x, t)
J1(· · · )H(· · · )− c−1J0(· · · )δ(· · · ) sgn(x) dτ


(
− 1

m
cos(mz) +

1

m

)
(A.36)

and with

− f 2
0

c

t∫
0

J0(· · · )δ(· · · ) sgn(x) dτ = −f
2
0

c
H(· · · ) sgn(x) (A.37)

the solution for vg(x, z, t) reads

vg(x, z, t) =
Q0

2c

− t x

c2g(x, t)3
J1(· · · ) +

f0 t x

2c2g(x, t)2
[J0(· · · )− J2(· · · )]

+ f 2
0

t∫
0

x

c2g(x, t)
J1(· · · )H(· · · ) dτ − f0

c
H(· · · ) sgn(x)


+

(
− 1

m
cos(mz) +

1

m

)
. (A.38)

The full expression under the integral cannot be evaluated analytically and has to be approx-
imated.
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Appendix B

List of Abbreviations

ALADIN Aire Limitée Adaptation Dynamique Développement In-
ternational

CAPE Convective Available Potential Energy

COAMPS Coupled Ocean-Atmosphere Mesoscale Prediction System

COSMO Consortium of Small-Scale modelling

CTRL Control simulations

DTE Difference Total Energy

diDTE Domain integrated Difference Total Energy

DWD German National Meteorological Service

GA Geostrophic Adjustment

GASP Global Atmospheric Sampling Program

GCM General Circulation Model

IGW Inertia-Gravity Wave

MOZAIC Measurement of Ozone and Water Vapor by Airbus In-
Service Aircraft

MPAS Model for Prediction Across Scales

MSG Meteosat Second Generation

NWP Numerical Weather Prediction

ODE Ordinary Differential Equation

PDE Partial Differential Equation

PERT Perturbed simulations

ppbv Parts per billion by volume

TROP Tropospheric height range (8.5− 10.5 km)

RMS Root-Mean-Square

Ro Rossby number

SCB Stochastic Convective Backscatter

SEVIRI Spinning Enhanced Visible and InfraRed Imager
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SKEB Stochastic Kinetic Energy Backscatter

STRAT Stratospheric height range (16− 18 km)



Appendix C

List of Symbols

A Area

α Proportionality factor between coarse-grained vorticity and
precipitation

b′ Buoyancy perturbation

B Characteristic buoyancy scale

Br Characteristic buoyancy scale in radially-symmetric geom-
etry

B̃m Amplitude of buoyancy perturbation with vertical
wavenumber m

β̃m Laplace transform of B̃m

b̃b
m Summand of the buoyancy solution associated with bal-

anced flow

b̃dt
m Summand of the buoyancy solution associated with discon-

tinuous transition

b̃igw
m Summand of the buoyancy solution associated with inertia-

gravity wave component

C Circulation

Cr Characteristic scale of balanced geostrophic circulation in
radially-symmetric geometry

cm Gravity wave speed of mode with vertical wavenumber m

cp Heat capacity of dry air at constant pressure

cv Heat capacity of dry air at constant volume

δχ Difference of field χ between perturbed and control simu-
lation

∂nχA n-th order partial derivative of field A with respect to χ

δ(·) Dirac-delta function

dt Total derivative dt = ∂t + v · ∇
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D Horizontal divergence

Dψ y-derivative of spectrum of stream function

Dφ y-derivative of spectrum of velocity potential

E Fraction of divergent of kintic energy

ED One-dimensional power-spectrum of divergent energy

EK One-dimensional power-spectrum of kinetic energy

EL One-dimensional power-spectrum of along-track energy

ER One-dimensional power-spectrum of rotational energy

ET One-dimensional power-spectrum of across-track energy

EB
D,R One-dimensional power-spectrum of divergent and rota-

tional energy calculated from the Bühler -method

EB
D,R One-dimensional power-spectrum of divergent and rota-

tional energy calculated from the Lindborg-method

(ex, ey, ez) Unit vectors of the three-dim. cartesian coordinate system

exp(·) Exponential function

f Coriolis parameter

f0 Coriolis parameter with midlatitudinal value f0 = 1.03 ·
10−4s−1

F (s) Inverse Laplace-transform of function f(t)

g Gravitational acceleration

γ∞ Circulation at infinity of a single cloud normalized by its
total heating

H Characteristic vertical scale

H(·) Heaviside-function

HS
j Struve-function of order j

HTrop Height of the troposphere

Jj(·) Bessel function of first kind and order j

k Wavenumber

Kj(·) Modified Bessel function of second kind and order j

L Large scales

l Wavenumber

lv Specific heat of vaporization

L−1 {·} Inverse Laplace transform

Lh Characteristic horizontal length scale

Lv Characteristic vertical length scale

m Vertical integer wavenumber of forcing
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M Medium scales

N Brunt-Väisälä-frequency

Neff Effective degrees of freedom

Nx, Ny Number of gridpoints in x- and y-direction

∇ Horizontal gradient operator

ω Frequency of inertia-gravity waves

p Along-track wavenumber

q Across-track wavenumber

Rd First baroclinic Rossby radius of deformation

Rdd Two-point correlation function of divergent velocity

Rll Two-point correlation function of longitudinal velocity

Rrr Two-point correlation function of rotational velocity

Rtt Two-point correlation function of transversal velocity

t Time

T Characteristic time scale

tGA Characteristic temporal scale of the geostrophic adjust-
ment process

Tp Predictability time

T0 Constant reference temperature

t̃r, τ̃r Non-dimensional retarded times

U Characteristic horizontal velocity scale

V Characteristic horizontal velocity scale

Vr Characteristic horizontal velocity scale in radially-
symmetric geometry

vh Horizontal wind field

v′ Three-dimensional perturbation wind vector with compo-
nents (u′, v′, w′)

vh,D Divergent component of horizontal wind

vh,R Rotational component of rotational wind

π′ Scaled pressure perturbation

P Rain rate at ground

P Coarse-grained rain rate at ground

P Characteristic pressure scale

ψ Stream function

φ Velocity potential

qi Total buoyancy source of cloud i

Q Buoyancy source
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Q0 Amplitude of buoyancy forcing

Qh Diabatic heating

Qh,tot Total diabatic heating

ρ Density

ρ0 Constant reference value for density

ρ̂ Background vertical profile of density

ρ′ Density fluctuations around constant value and back-
ground profile

S Small scales

V Volume

W Characteristic vertical velocity scale

xGA Characteristic spatial scale of the geostrophic adjustment
process

z Height

ζ Vertical vorticity

ζ Coarse-grained vertical vorticity

ζ̃g,bm Balanced geostrophic vorticity

Zr Characteristic scale of balanced geostrophic vorticity in
radially-symmetric geometry

Z̃g,b
m Balanced geostrophic circulation
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Lange, H., Craig, G. C., and Janjić, T. (2017). Characterizing noise and spurious convection
in convective data assimilation. Manuscript submitted for publication.

Leith, C. E. and Kraichnan, R. H. (1972). Predictability of turbulent flows. J. Atmos. Sci.,
29:1041–1058.

Leoncini, G., Plant, R. S., Gray, S. L., and Clark, P. A. (2010). Perturbation growth at the
convective scale for CSIP IOP18. Quart. J. Roy. Meteor. Soc., 136:653–670.

Lide, D. R. (2005). CRC Handbook of Chemistry and Physics, Internet Version 2005. CRC
Press, Boca Raton, FL.

Ligda, M. G. H. (1951). Radar storm observations. In Compendium of meteorology, pages
1265–1282. Amer. Meteor. Soc., Boston.

Lilly, D. K. (1972). Numerical simulation studies of two-dimensional turbulence: II. Stability
and predictability studies. Geophys. Astrophys. Fluid Dyn., 4:1–28.

Lilly, D. K. (1983). Stratified turbulence and the mesoscale variability of the atmosphere. J.
Atmos. Sci., 40:749–761.

Lin, Y.-L. (2007). Mesoscale dynamics. Cambridge University Press.

Lindborg, E. (1999). Can the atmospheric kinetic energy spectrum be explained by two-
dimensional turbulence? J. Fluid Mech., 388:259–288.

Lindborg, E. (2006). The energy cascade in a strongly stratified fluid. J. Fluid Mech., 550:207–
242.

Lindborg, E. (2007). Horizontal wavenumber spectra of vertical vorticity and horizontal diver-
gence in the upper troposphere and lower stratosphere. J. Atmos. Sci., 64 (3):1017–1025.

Lindborg, E. (2015). A Helmholtz decomposition of structure functions and spectra calculated
from aircraft data. J. Fluid Mech., 762:R4.

Liu, C. and Moncrieff, M. W. (2004). Effects of convectively generated gravity waves and
rotation on the organization of convection. J. Atmos. Sci., 61:2218–2227.

Lorenz, E. (1963). Deterministic nonperiod flow. J. Atmos. Sci., 20:130–141.

Lorenz, E. (1969). The predictability of a flow which possesses many scales of motion. Tellus,
21:289–307.

Mapes, B. E. (1993). Gregarious tropical convection. J. Atmos. Sci., 50:2026–2037.

Marenco, A., Thouret, V., Nédélec, P., Smit, H., Helten, M., Kley, D., Karcher, F., Simon,
P., Law, K., Pyle, J., Poschmann, G., Wrede, R. V., Hume, C., and Cook, T. (1998).
Measurement of ozone and water vapor by airbus in-service aircraft: The MOZAIC airborne
program, an overview. J. Geophys. Res., 103:2156–2202.



BIBLIOGRAPHY 119

Markowski, P. and Richardson, Y. (2010). Mesoscale Meteorology in Midlatitudes. John Wiley
& Sons, Ltd.

Melhauser, C. and Zhang, F. (2012). Practical and intrinsic predictability of severe and
convective weather at the mesoscales. J. Atmos. Sci., 69:3350–3371.

Merilees, P. E. and Warn, T. (1972). The resolution implications of geostrophic turbulence.
J. Atmos. Sci., 29:990–991.

Nastrom, G. D. and Gage, K. S. (1983). A first look at wavenumber spectra from GASP data.
Tellus A, 35A(5):383–388.

Nastrom, G. D. and Gage, K. S. (1985). A climatology of atmospheric wavenumber spectra
of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42:950–960.

Nastrom, G. D., Gage, K. S., and Jasperson, W. (1984). Kinetic energy spectrum of large-
and mesoscale atmospheric processes. Nature, 310:36–38.

Neggers, R. A. J., Jonker, H. J. J., and Siebesma, A. P. (2002). Size statistics of cumulus
cloud populations in large-eddy simulations. J. Atmos. Sci., 60:1060–1074.

Nicholls, M. E. and Pielke, R. A. (2000). Thermally induced compression waves and gravity
waves generated by convective storms. J. Atmos. Sci., 57:3251–3271.

Nicholls, M. E., Pielke, R. A., and Cotton, W. R. (1991). Thermally forced gravity waves in
an atmosphere at rest. J. Atmos. Sci., 48:1869–1884.

Nolan, D. S., Rappin, E. D., and Emanuel, K. A. (2007). Tropical cyclogenesis sensitivity to
environmental parameters in radiative-convective equilibrium. Quart. J. Roy. Meteor. Soc.,
133:2085–2107.

Obukhov, A. M. (1949). Structure of the temperature field in turbulent flows. Izv. Akad. Nauk
SSSR, Ser. Geofiz., 13:58–69.

Orlanski, I. (1975). A rational subdivision of scales for atmospheric processes. Bull. Amer.
Meteor. Soc., 56(5).
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