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Abstract

The worldwide prevalence of obesity and comorbidities such as cardiovascular diseases

and type 2 diabetes (T2D) is reaching epidemic proportions. In the past decade, a major

effort has been made to elucidate the genetics behind obesity and related health problems.

In large genome-wide association studies (GWAS), genetic variants have been identified

that associate with anthropometric traits such as body mass index (BMI). “Post-genomic”

obesity research now aims to understand the biological mechanisms underlying these as-

sociations, and to explain the large part of the heritability of BMI that could not be

attributed to the identified genetic variants, the “missing heritability”. This increasingly

involves the integrated analysis of multiple omics data, referred to as “multi-omics”.

This thesis comprises four studies that address the following post-genomic aims: (1) to

metabolomically characterize selected genetic variants associated with obesity and T2D,

(2) to explore the use of epigenomics for tackling the missing heritability of obesity and

for better understanding the complex molecular processes linking obesity with metabolic

disturbances such as insulin resistance and dyslipidemia, (3) to elucidate metabolomic

and transcriptomic consequences of long-term weight change, and finally, (4) to identify

metabolomic predictors of weight loss of obese children during lifestyle intervention.

To characterize the strongest obesity risk locus, FTO, and the T2D risk locus

TCF7L2 , a novel strategy based on metabolomics measurements during different oral and

intravenous challenge tests in healthy men was applied. This allowed the comprehensive

description of physiological challenge responses, and the exploration of genotype effects

on challenge responses. TCF7L2 risk allele carriers showed a changed response of sphin-

gomyelin and (lyso)phosphatidylcholine concentrations to intravenous glucose challenge.

These perturbations could only be detected through the challenge test, demonstrating

the utility of the approach in revealing early metabolic abnormalities prior to changes in

conventional parameters of glucose homeostasis.

Next, an epigenome-wide discovery and replication study of BMI and whole

blood DNA methylation was conducted based on more than 10,000 subjects of Euro-

pean and South Asian ancestry. This revealed solid associations for 187 methylation sites.

Downstream analyses indicate an enrichment of these loci in open chromatin sites and

an enrichment for genes involved in lipid- and insulin-related biological pathways. Fur-
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thermore, a large part of these methylation sites were associated with gene expression at

nearby genes and with genetic variants. Mendelian randomization and longitudinal analy-

ses suggest that change methylation at the majority of loci was consequential rather than

causal to change in BMI. Integration with clinical traits pinpoints selected methylation

sites as potentially being involved in the development of obesity-related comorbidities.

An integrated metabolomics and transcriptomics approach was applied for

studying the metabolic consequences of long-term body weight change in the

general population. Serum metabolomics and whole blood transcriptomics measurements

were available from a follow-up timepoint 7 years after initial assessment of weight status.

Omics data were clustered into modules of tightly connected molecules using weighted cor-

relation network analysis (WGCNA), followed by testing for association of the obtained

modules with previous body weight change. This approach revealed six omics modules

strongly associated with weight change. The four metabolite modules were centered around

very low density lipoprotein (VLDL) subclasses and markers of energy metabolism, around

high density lipoprotein (HDL) subclasses, around low density lipoprotein (LDL) sub-

classes, and around amino acids. The two gene expression modules reflected basophil/mast

cell function and red blood cell development, respectively.

Finally, serum metabolomic, anthropometric and clinical data were used to predict

weight loss success over a 1-year lifestyle intervention program for obese chil-

dren. Using the regularized regression approach least absolute shrinkage and selection

operator (LASSO), a sparse model for weight loss was built and carefully validated. The

results point towards a significant role of abdominal adipose tissue and phospholipid

metabolism in weight regulation.

The research efforts undertaken in this thesis not only deal with the challenges of multi-

omics data, but also demonstrate their enormous potential for post-genomic research.

Altogether, the findings of the studies in this thesis contribute to the completion of the

complex mosaic of described molecular processes underlying obesity and weight change and

relating them with comorbidities such as T2D and cardiovascular diseases. This improves

the understanding of disease pathogenesis and presents a starting point for the development

of individualized treatment and prevention strategies for obesity and its comorbidities.



Zusammenfassung

Die weltweite Prävalenz von Adipositas und Komorbiditäten wie kardiovaskulären Er-

krankungen und Typ 2 Diabetes (T2D) hat epidemische Ausmaße erreicht. Im letzten

Jahrzehnt wurde ein großer Aufwand in die Aufklärung der genetischen Grundlagen von

Adipositas und der damit verbundenen Gesundheitsprobleme gesteckt. In großen genom-

weiten Assoziationsstudien (GWAS) wurden genetische Varianten identifiziert, die mit

anthropometrischen Maßen wie dem body mass index (BMI) assoziiert sind. Die “post-

genomische” Adipositasforschung zielt nun darauf ab, die biologischen Mechanismen zu

verstehen, die diesen Assoziationen zugrunde liegen, sowie den großen Anteil der Heritabil-

ität von BMI zu erklären, der den identifizierten genetischen Varianten nicht zugeschrieben

werden konnte. Das beinhaltet zunehmend die integrierte Analyse verschiedener “omik”-

Daten, als “Multi-omik” bezeichnet.

Diese Dissertation umfasst vier Studien mit den folgendenen post-genomischen Zie-

len: (1) Ausgewählte mit Adipositas und T2D assoziierte genetische Varianten sollen

metabolomisch charakterisieren werden. (2) Die Rolle der Epigenomik soll im Hinblick

auf die fehlende Heritabilität von Adipositas untersucht werden, sowie hinsichtlich der

komplexen molekularen Prozesse, die Adipositas und Gewichtsveränderung mit Stoffwech-

selstörungen wie Insulinresistenz und Dyslipidämie verbinden. (3) Metabolomische und

transkriptomische Folgen langfristiger Gewichtsveränderung sollen aufgeklärt werden. (4)

Schließlich sollen metabolomische Prädiktoren der Gewichtsabnahme adipöser Kinder

während einer Lebensstilintervention identifiziert werden.

Um den stärksten Adipositas-Risikolokus, FTO, und den T2D-Risikolokus

TCF7L2 zu charakterisieren wurde eine neue Strategie angewandt, die auf

metabolomischen Messungen während verschiedener oraler und intravenöser Belas-

tungstests in gesunden Männern beruht. Dies ermöglichte es, physiologische Reaktionen

auf die metabolischen Belastungen umfassend zu beschreiben und Genotypeffekte auf diese

Reaktionen zu erforschen. TCF7L2 -Risikoallelträger wiesen eine veränderte Reaktion von

Sphingomyelin- und (Lyso-)Phosphatidylcholin-Konzentrationen auf intravenöse Glukose-

Belastung auf. Diese Veränderungen konnten erst durch den Belastungstest erkannt

werden. Das zeigt, dass der Ansatz in der Lage ist, frühe Stoffwechselabnormalitäten zu

erkennen, welche Veränderungen in konventionellen Parametern des Glukosehaushaltes

vorangehen.
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Eine epigenom-weite Assoziationsstudie zu BMI und DNA-Methylierung im

Vollblut umfasste über 10.000 Individuen europäischer und südasiatischer Herkunft in

einem Identifikations- und einem Replikationsschritt. Dabei wurden 187 Methylierungs-

stellen identifiziert, die solide Assoziationen mit BMI zeigten. In Folgeanalysen konnte

eine Anreicherung dieser Methylierungsstellen in Regionen aktiven Chromatins beobachtet

werden, sowie eine Anreichung für Gene, die in lipid- und insulin-assoziierten Stoffwech-

selwegen eine Rolle spielen. Darüber hinaus assoziierte ein großer Teil dieser Methylie-

rungsstellen mit der Expression nahegelegener Gene, sowie mit genetischen Varianten.

Die Ergebnisse von Mendelian randomization und longitudinalen Analysen deuten an,

dass die Mehrzahl der Methylierungsveränderungen nicht eine Ursache, sondern eine Folge

von BMI-Veränderungen darstellt. Wie die Integration mit klinischen Phänotypen zeigt,

sind bestimmte Methylierungsstellen möglicherweise an der Entstehung von adipositas-

assoziierten Komorbiditäten beteiligt.

Mithilfe eines integrierten Metabolomik- und Transkriptomik-Ansatzes wur-

den die metabolischen Konsequenzen langfristiger Gewichtsveränderungen

in der allgemeinen Bevölkerung untersucht. Metabolomik-Messungen im Serum

und Transkriptomik-Messungen im Vollblut waren zu einem Follow-up-Zeitpunkt 7 Jahre

nach der ersten Erfassung des Gewichtsstatus verfügbar. Die omik-Daten wurden mithilfe

einer gewichteten Korrelations-Netzwerkanalyse (weighted correlation network analysis,

WGCNA) in Module stark korrelierter Moleküle gruppiert. Danach wurde die Assoziation

dieser Module mit vorheriger Gewichtsveränderung untersucht. Dieser Ansatz brachte

sechs omik-Module hervor, die stark mit Gewichtsveränderung assoziiert waren. Die vier

Metaboliten-Module waren um Subklassen von Lipoproteinen sehr niedriger Dichte (very

low density lipoprotein, VLDL) sowie Energiestoffwechsel-Metaboliten, um Subklassen

von Lipoproteinen hoher Dichte (high density lipoprotein, HDL), um Subklassen von

Lipoproteinen niedriger Dichte (low density lipoprotein, LDL), und um Aminosäuren

gruppiert. Die beiden Genexpressions-Module reflektierten Basophile/Mastzell-Funktion

respektive rote Blutzell-Entwicklung.

In der letzten Studie wurde mithilfe von metabolomischen, anthropometrischen und klin-

ischen Daten der Erfolg bei der Gewichtsabnahme während einer einjährigen

Lebensstil-Intervention für adipöse Kinder prognostiziert. Mithilfe eines regu-

larisierten Regressionsansatzes, least absolute shrinkage and selection operator (LASSO),

wurde ein sparsames Modell für die Gewichtsabnahme entwickelt und gründlich validiert.

Die Ergebnisse weisen auf eine Rolle von abdominellem Fettgewebe sowie Phospholipid-

Stoffwechsel bei der Gewichtsregulation hin.

Die Forschungsarbeiten, die im Zusammenhang mit der Dissertation durchgeführt wurden,

zeigen Herausforderungen der Multi-omik-Daten sowie Lösungsansätze auf, und demon-

strieren das enorme Potential dieser Daten für die post-genomische Forschung. Die Ergeb-

nisse der Studien dieser Dissertation tragen gemeinsam zur Vervollständigung des kom-
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plexen Mosaiks beschriebener molekularer Prozesse bei, welche Adipositas und Gewichts-

veränderung zugrunde liegen und diese mit Komorbiditäten wie T2D und kardiovaskulären

Erkrankungen verbinden. Das verbessert das Verständnis von Erkrankungsmechanismen

und liefert einen Ausgangspunkt für die Entwicklung individualisierter Behandlungs- und

Präventionsstrategien für Adipositas und damit verbundene Komorbiditäten.
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SM, Blüher M, Arner P, Groop L, Illig T, Suhre K, Hsu Y-H, Mellgren G, Hauner H,

Laumen H (2014). “Leveraging cross-species transcription factor binding site patterns:

from diabetes risk loci to disease mechanisms.” Cell, 156(1-2), 343-358.

� Shin S-Y*, Petersen A-K*, Wahl S, Zhai G, Römisch-Margl W, Small KS, Döring A,
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1 Introduction

1.1 Obesity – a global health problem

1.1.1 Definitions

Overweight and obesity are defined as conditions of excessive fat accumulation that may

impair health (World Health Organization, 2000). With body fat mass being difficult to

measure in a non-invasive way, the body mass index (BMI),

BMI =
Body weight (kg)

(Body height (m))2
,

has evolved as the traditional measure for body size in adults (World Health Organization,

2000). According to the WHO definition, normal weight is defined as BMI ≥ 18.5 -

< 25kg/m2, overweight as BMI ≥ 25kg/m2, and obesity as BMI ≥ 30kg/m2.

Alternative non-invasive measures for body size include waist circumference, waist-hip

ratio (WHR), and waist-height ratio. These measures reflect abdominal fat mass, which

might be a better indicator for metabolic consequences than total body mass, owing to the

metabolic activity of abdominal adipose tissue, specifically visceral adipose tissue (Després,

2006) (see Section 1.1.4). However, evidence for the superiority of these measures over BMI

is not fully consistent (Huxley et al., 2010, Taylor et al., 2010, Janssen et al., 2005, Pischon

et al., 2008). In addition, information on BMI is largely available in epidemiological

studies, making it more suitable as a measure of obesity in large-scale omics meta-analyses

and replication efforts.

In children, body mass highly depends on age, sex, pubertal state and ethnicity, so

subgroup-specific percentile curves are required (Han et al., 2010). BMI percentile curves

can be calculated using the LMS method (Cole, 1990):

BMI = M(t) · (1 + L(t)S(t)zα)
1

L(t) ,

where α represents the percentile, M the median BMI at age t, S the coefficient of varia-

tion of BMI at age t, and L a Box-Cox power transformation addressing the age-dependent

skewness in BMI. z represents the z-score, or standard deviation score (SDS), of the stan-
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dard normal distribution. Conversely, the BMI-SDS can be calculated from a given BMI:

BMI-SDSLMS =

(
BMI
M(t)

)L(t)
− 1

L(t)S(t)
.

The International Obesity Taskforce (IOTF) provides international percentile curves (Cole

et al., 2000). In addition, reference curves based on a German population were published

(Kromeyer-Hauschild et al., 2001).

Due to the population specificity of BMI percentile curves, the definition of global cutoff

points for overweight and obesity is challenging (Han et al., 2010). According to the IOTF,

the percentiles passing through a BMI of 25 and 30 kg/m2 at the age of 18 are recommended

as cutoff points (Cole et al., 2000). In German reference data (Kromeyer-Hauschild et al.,

2001), these are approximately the 90th and 97th percentile (corresponding to BMI-SDS

values of 1.282 and 1.881, respectively) (Wabitsch et al., 2009). For the characterization

of the weight of extremely obese children (BMI above the 99.5th percentile), use of the

BMI-SDS is recommended (Wabitsch et al., 2009).

1.1.2 Prevalence and trends in obesity

In the last few decades, the prevalence of overweight and obesity has increased dramatically

worldwide, and is now at epidemic proportions (Ng et al., 2014). Specifically, between 1980

and 2013, global prevalence of overweight and obesity increased by 27.5% among adults,

reaching 36.9% and 10% in men, and 38.0% and 13.5% in women in 2013, respectively (Ng

et al., 2014). Prevalence was larger in developed countries throughout the observation

period, although an increasing trend was observed for both developed and developing

countries. In the German EPIC Postdam study, obesity prevalence increased from 16.6%

in men and 15.8% in women in 1994-1998 to 24.6% in men and 22.2% in women in 2004-

2008, with similar numbers observed in other European countries (von Ruesten et al.,

2011).

Obesity increasingly affects children. According to the IOTF cutoffs, the prevalence of

overweight and obesity increased by 47.1% between 1980 and 2013 and reached on average

23.8% (boys) and 22.6% (girls) in developed countries in 2013 (Ng et al., 2014). Lower,

albeit increasing, numbers were observed for developing countries. In Germany, 20.5% of

boys and 19.4% of girls (age < 20 years) were overweight or obese in 2013, and 5.5% of

boys and 5.3% of girls were obese (Ng et al., 2014).

Predictions suggest that the rate of increase in obesity prevalence might decline in devel-

oped countries, including Germany (Ng et al., 2014, Wabitsch et al., 2014).
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1.1.3 Etiology of excess body mass

The development of obesity is ultimately due to a chronic imbalance between energy

intake and energy expenditure, which are mutually regulated through complex signaling

mechanisms in intestine, brain, adipose tissue and further tissues (Woods and D’Alessio,

2008, Bell et al., 2005). This imbalance originates from a multifactorial interplay between

predisposing (epi-)genetic factors, in utero influences, and disadvantageous environmental

and behavioral factors (Rhee et al., 2012). An exception is monogenic forms of obesity,

which arise from rare mutations (Loos and Bouchard, 2003).

In human evolution, a genetic setup has become prevalent that promotes parsimonious

energy expenditure and rapid fat storage in times of plenty, improving survival during

later food shortages. This development might be due to a positive selection of “thrifty”

genotypes, i.e. genotypes promoting fat storage (Neel, 1962), or to random mutation and

genetic drift (Speakman, 2007). In recent years, industrialization has promoted an “obe-

sogenic” environment that is characterized by a sedentary lifestyle and the availability of

high-caloric diets. In this environment, such genotypes tend to promote the development

of obesity (Bell et al., 2005, Loos and Bouchard, 2003).

The heritable component of BMI has been estimated at 40-70% from twin, adoption and

family studies (Maes et al., 1997, Atwood et al., 2002, Salsberry and Reagan, 2010, Sc-

housboe et al., 2003, Stunkard et al., 1986, Loos and Bouchard, 2003). However, despite

considerable efforts to characterize the underlying genetic variants, the hitherto identified

single nucleotide polymorphisms (SNPs) explain merely 1.45% of the variability in BMI

(see Section 1.2.1, Speliotes et al. (2010)).

1.1.4 Health consequences of obesity

The high prevalence of overweight and obesity is greatly concerning, considering the se-

rious health consequences of excess body mass. These include type 2 diabetes (T2D),

cardiovascular diseases (including stroke, hypertension and coronary artery disease), dif-

ferent cancers, asthma, gallbladder disease, osteoarthritis and chronic back pain (Guh

et al., 2009). In addition, obesity is associated with increased all-cause mortality (Pischon

et al., 2008). Alarmingly, metabolic and cardiovascular risk factors such as insulin resis-

tance, dyslipidemia, hypertension and chronic inflammation are already prevalent in obese

children (Ebbeling et al., 2002, Cook et al., 2003), possibly establishing an increased adult

risk of cardiovascular diseases (Owen et al., 2009).

A causal relationship has been established between increased BMI and cardiometabolic

traits, including T2D and insulin resistance, heart failure, dyslipidemia (increased triglyc-

eride (TG) and decreased high density lipoprotein (HDL) cholesterol levels), hypertension,

and the inflammatory marker C-reactive protein (CRP) (Fall et al., 2013).

The underlying pathophysiology is not completely understood. Several mechanisms have
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been described by which obesity increases T2D risk. They include the increased release of

inflammatory cytokines – such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6)

and monocyte chemoattractant protein-1 (MCP-1) – from adipose tissue, which promote

insulin resistance through different signal cascades, and through an inhibiting effect of

TNF-α on the secretion of the insulin sensitizer adiponectin (Kahn et al., 2006, Haslam

and James, 2005). In addition, adipose tissue secretes non-esterified fatty acids (NEFAs),

leading to increased NEFA concentrations in skeletal muscle and in the liver (de Ferranti

and Mozaffarian, 2008). There, NEFAs and NEFA metabolites exert inhibiting effects

on the insulin signaling cascade, e.g. through serine/threonine phosphorylation of insulin

receptor substrates (IRS-1 and IRS-2) (Kahn et al., 2006). Furthermore, chronically ele-

vated NEFA levels might contribute to the development of β-cell dysfunction (Lupi et al.,

2002).

NEFAs and insulin resistance are also believed to be centrally involved in the obesity-

related increased cardiovascular risk. For instance, increased NEFA concentrations trigger

hepatic TG and very low density lipoprotein (VLDL) production (Klop et al., 2013) and

increase the activity of hepatic lipase (Brunzell and Hokanson, 1999). In the insulin resis-

tant state, LDL receptor activity might also be impaired, resulting in a reduced clearance

of TG-rich lipoproteins (VLDL, low density lipoprotein (LDL)) (Van Gaal et al., 2006).

Hepatic lipase hydrolyses TGs from TG-rich lipoproteins, producing small dense LDL

particles, a process that also involves cholesterol ester transfer protein (CETP) (Van Gaal

et al., 2006, Klop et al., 2013). Small dense LDL particles are specifically atherogenic due

to their slow plasma clearance, their enhanced susceptibility to oxidation, their increased

ability to enter the subendothelial space, and their lower affinity for the LDL receptor,

causing them to be mostly taken up by macrophage scavenger receptor (Van Gaal et al.,

2006, Klop et al., 2013). Furthermore, cytokines and hormones secreted by the adipose

tissue contribute to the development of atherosclerotic lesions through their inflammatory

and prothrombotic potential (Van Gaal et al., 2006).

1.1.5 Effectiveness of treatment options

Considering the various health consequences of obesity, efficient prevention and treatment

strategies are an urgent public health concern. Depending on the degree of obesity and

the presence of comorbidities, lifestyle intervention, pharmacotherapy or surgical treatment

might be indicated as treatment options (Haslam and James, 2005).

In children, lifestyle interventions based on dietary modifications, physical activity and

behavioral therapy are the primary treatment strategy (Han et al., 2010). In a systematic

review, the majority of non-pharmacological lifestyle intervention approaches resulted in

weight reduction, and some also in an improvement in cardiometabolic risk factors (Oude

Luttikhuis et al., 2009). However, not all children benefit equally from lifestyle interven-

tion. Approximately 20-40% of children taking part in long-term lifestyle intervention
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programs failed to reduce their BMI-SDS to a degree that is sufficient for an improvement

in cardiovascular risk factors (Ford et al., 2010, Reinehr et al., 2004, Reinehr and Andler,

2004). For instance, during the lifestyle intervention program “Obeldicks”, only about

20% of children achieved a BMI-SDS reduction of at least 0.5, the reduction necessary for

improvements in insulin sensitivity, blood lipid profile and blood pressure (Reinehr et al.,

2004, Reinehr and Andler, 2004). A similar success rate was observed in other programs

(Sabin et al., 2007, Ford et al., 2010).

So far, few determinants have been identified that reliably predict response to lifestyle

intervention. Both environmental and genetic factors are likely to play a role. Familial

environment, socio-economic status and psychosocial factors affect a child’s adoption of

behavior changes (Reinehr, 2011). At the same time, weight change in response to hypo- or

hypercaloric challenge has a considerable heritable component, as observed in twin studies

(Bouchard et al., 1990, 1994). Specific genetic (Ghosh et al., 2011, Reinehr, 2011) and

epigenetic (Campión et al., 2009, Bouchard et al., 2010, Milagro et al., 2011, Moleres et al.,

2013) factors were reported to associate with weight loss response. Furthermore, metabolic

factors have been linked to weight loss in both adults and children, most prominently serum

leptin concentration (Fleisch et al., 2007, Reinehr et al., 2009b).

1.2 Omics approaches in obesity research

Obesity adversely affects nearly all organ systems in the human body (Haslam and James,

2005, Han et al., 2010). Hence, systems biology approaches provide important insights into

the molecular basis of the etiology and metabolic consequences of obesity (Meng et al.,

2013). Traditionally, four functional levels of a biological system are distinguished: the

genome, the transcriptome, the proteome and the metabolome (Cornelis and Hu, 2013,

Somvanshi and Venkatesh, 2014). Recently, the epigenome has emerged as another major

molecular player (Schnabel et al., 2012, Meng et al., 2013) (Figure 1.1).

1.2.1 Genomics

Genetic variation

Genomics is the study of the structure and function of genomes, i.e. the entire deoxyri-

bonucleic acid (DNA) sequence. DNA is arranged in a double strand of complementary

nucleotides (i.e., a base – cytosine (C), guanine (G), adenine (A) or thymine (T) – bound

to the sugar deoxyribose and a phosphate group, which connects the nucleotides; Fig-

ure 1.1) (Brooker, 2005). C and G form a pair of complementary bases, as do A and

T. The largest part (> 99%) of the base sequence is shared by all human beings. It is

the genetic variants in the remaining part that make each subject individual (Ziegler and

König, 2010). These variants have developed through mutation during DNA replication,

are inherited through generations and manifest in populations during evolution. The most
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frequent and most often studied type of genetic variation are single base exchanges, single

nucleotide polymorphisms (SNPs, Figure 1.1). For the majority of SNPs, three states, i.e.

genotypes, are possible: a subject might be homozygous for the major allele, that is, both

chromosome copies carry the base that is more frequent at this specific locus throughout

the population, homozygous for the minor allele, where both chromosome copies carry

the less frequent base, or heterozygous, where the chromosome copies carry different bases

(Ziegler and König, 2010).

Genome-wide association studies (GWAS)

Technological advances have enabled the simultaneous determination of genotypes at hun-

dreds of thousands of SNPs on microarrays. This gave rise to the era of genome-wide

association studies (GWAS), that is, the univariate screening for statistical associations

between common SNPs and a phenotype or disease. Since 2005, more than 1700 published

studies on over 600 traits were included in the GWAS catalogue (Welter et al., 2014).

Very often, the measured SNPs data are complemented by imputed genotypes (Ziegler

and König, 2010). These are estimated based on knowledge of the linkage disequilibrium

(LD) structure, i.e. the association of alleles at nearby SNPs that developed due to the

large probability of common inheritance. This requires the availability of fully sequenced

reference data from which the LD structure can be inferred. The most comprehensive set of

reference data is provided by the 1000 Genomes Project (http://www.1000genomes.org).

GWAS on obesity

The first GWAS on BMI were conducted in 2007; they identified common variants in the

fat mass and obesity associated (FTO) gene as being stably associated with obesity-related

traits (Frayling et al., 2007, Scuteri et al., 2007, Dina et al., 2007). Subsequently, large-scale

meta-analyses were conducted that confirmed the association with FTO, while at the same

time revealing associations at further loci (Loos et al., 2008, Willer et al., 2009, Thorleifsson

et al., 2009). In the largest meta-analytic effort to date, the Genetic Investigation of

ANthropometric Traits (GIANT) consortium published 32 loci independently associated

with BMI (Speliotes et al., 2010). GWAS on other anthropometric traits, early onset

obesity, extreme obesity and childhood obesity, as well as sex-stratified studies and GWAS

on BMI variability complete the picture (Berndt et al., 2013, Scherag et al., 2010, Bradfield

et al., 2012, Randall et al., 2013, Yang et al., 2012). Of note, the identified associated

variants do not necessarily have a causal role, but might be in LD with the causal variants.

The post-genomic era

Although GWAS efforts are still ongoing, their potential for identifying genetic variants

with a large contribution to disease risk seems to be close to exhaustion. With this

comes the “post-genomic” or “post-GWAS” era, which has the objective of elucidating the

http://www.1000genomes.org
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causal variants underlying the observed associations (Claussnitzer et al., 2014, Kretschmer

et al., 2014) and of understanding the biological mechanisms by which they predispose to

obesity, which is a slow process (Speakman, 2013). Another post-genomic concern is

tackling the so-called missing heritability. Despite their considerable power – the GWAS

mentioned above comprised samples of up to 300,000 subjects – the hitherto identified loci

explain only a small fraction of the variability in obesity-related traits (Speliotes et al.,

2010, Choquet and Meyre, 2011b). As mentioned above, the 32 identified genetic variants

associated with BMI explain merely 1.45% of the variation in BMI (corresponding to 2-
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Figure 1.1: Scheme of the system levels and their relation with obesity and its comor-
bidities. A, adenosine; Ala, alanine; C, cytosine; CH3, methyl group; G, guanine; Gln, glutamine;
Gly, glycine; SNP, single nucleotide polymorphism; T, thymine; U, uracil.
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4% of the heritability, estimated at 40-70%) (Speliotes et al., 2010). A power analysis

showed that a sample comprising 730,000 subjects might be sufficient to identify loci

that together account for about 4.5% of phenotypic variation in BMI (corresponding to

6-11% heritability) (Speliotes et al., 2010). This leaves at least 89% of the heritability

unexplained. Factors potentially contributing to this missing heritability include rare

genetic variants, common variants with a low penetrance, untagged structural variation

including copy number variations and short insertion-deletion polymorphisms, imprinted

genes, enthnicity-specific effects, as well as gene-environment and gene-gene interactions

(Choquet and Meyre, 2011b). Finally, epigenetic mechanisms might play an important

role (Anway et al., 2005, Fraga et al., 2005, Guerrero-Bosagna and Skinner, 2012).

Gene-environment interactions

Although the interaction of genes and environment in the etiology of excess body mass is an

accepted concept (Bell et al., 2005), less evidence exists for the interaction of specific genes

and environmental or behavioral factors. It has been shown that the obesity-predisposing

effect of the FTO locus is attenuated in physically active individuals (Andreasen et al.,

2008, Choquet and Meyre, 2011a, Ruiz et al., 2010). Similarly, the effect of an obesity risk

score comprising 12 SNPs was attenuated through high physical activity (Li et al., 2010).

Other examples include the effect of the MC4R risk genotype on treatment response during

the lifestyle intervention program Obeldicks for obese children (Reinehr et al., 2009a), and

the effect of a variant in TNFα on post-challenge NEFA levels in obese diabetic subjects

(Fontaine-Bisson et al., 2007). Ordovas and Shen (2008), Bouchard (2008), Choquet and

Meyre (2011b) provide further examples.

1.2.2 Epigenomics

Epigenetic variation

Epigenetics refers to heritable changes in gene function that are not caused by changes

in the primary DNA sequence but by biochemical modification (Tollefsbol, 2011). Im-

portant epigenetic mechanisms include DNA methylation, histone modification, chromatin

remodeling and ribonucleic acid (RNA) inference, which act in concert to regulate gene

transcription and maintain genome stability (Portela and Esteller, 2010, Rakyan et al.,

2011).

The most frequently studied epigenetic modification is DNA methylation, the enzymatic

attachment of a methyl (-CH3) group to a DNA base (Tollefsbol, 2011), which is also

the focus of this thesis. In humans, methylation occurs most frequently at the carbon-5

position of C nucleotides preceding a G nucleotide, referred to as C-phosphate-G (CpG)

sites (Miller et al., 1974, Tollefsbol, 2011). Thereby, a 5-methylcytosine is formed (Figure

1.2). Of note, the complementary strand consists of a CpG site as well, which generally
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Figure 1.2: Enzymatic conversion of cyto-
sine to 5-methylcytosine. In human DNA,
cytosine bases can become methylated by the
transfer of a methyl group from the molecule
S-adenosylmethionine to cytosine. Thereby, 5-
methylcytosine and S-adenosylhomocysteine are
formed. The reaction is catalyzed by enzymes
called DNA methyltransferases.

has the same methylation state (Suzuki and Bird, 2008). The human genome contains

more than 107 CpGs (Rakyan et al., 2011, Toperoff et al., 2012).

The distribution of methylated and unmethylated CpG sites across the genome is not

random. CpG sites tend to cluster in CpG islands, defined as genomic regions of >200

basepairs with a G+C content ≥ 50% and a ratio of observed vs. expected number of

CpG sites > 0.6 (Gardiner-Garden and Frommer, 1987), that are often found in gene

promoters and are mostly unmethylated (Portela and Esteller, 2010). On the other hand,

the majority (∼ 75%) of CpG sites throughout the genome are mostly methylated (Tost,

2010).

DNA methylation is involved in key processes including genome stability and the regulation

of gene expression (Tollefsbol, 2011). It has a crucial role in imprinting, i.e. the parent-

of-origin specific expression of genes (Reik and Walter, 2001), as well as X-chromosome

inactivation, i.e. the inactivation of one of the X-chromosome copies in females (Portela and

Esteller, 2010). An increased methylation in CpG islands or CpG island shores (regions

of lower CpG density in proximity to CpG islands) is generally associated with transcrip-

tional inactivation, for instance through interaction with other epigenetic mechanisms to

reduce the accessibility of gene promoters to methylation-sensitive transcription factors

(Portela and Esteller, 2010). Conversely, DNA methylation can also be associated with

transcriptional activation, specifically at CpG sites in gene bodies (Portela and Esteller,

2010, Zilberman et al., 2007).

Influences on DNA methylation

Through its effect on gene expression, DNA methylation can mechanistically affect indi-

vidual phenotypes and disease risks (Portela and Esteller, 2010). Epidemiological studies

are beginning to show a role of DNA methylation in human disease. However, in contrast

to genetic variation, cause and consequence of epigenetic variation are hard to distinguish,

and many factors are believed to act as confounders of the methylation - disease relation-

ship (Martin et al., 2011). Although the DNA methylation signature is in part genetically

determined (Bell et al., 2011) and animal studies suggest that it can be inherited across

generations (Guerrero-Bosagna and Skinner, 2012), DNA methylation is subject to en-

vironmental and lifestyle influences, both in utero and throughout life (Bjornsson et al.,
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2008, Rakyan et al., 2011). In twin studies, phenotypic discordance of monozygotic twin

pairs observed with increasing age was partly attributed to epigenetic changes occurring

throughtout life (Fraga et al., 2005, Wong et al., 2010), possibly as the added effect of

accumulating stochastic epigenetic events and environmental influences (Petronis, 2010).

Specific environmental factors that have been shown to affect DNA methylation at specific

CpG sites include tobacco smoking (Shenker et al., 2013, Zeilinger et al., 2013), alcohol

intake (Philibert et al., 2012, Zhu et al., 2012), physical activity (Rönn et al., 2013) and

nutrition (Milagro et al., 2011). Furthermore, many changes in DNA methylation are

associated with increasing age (Bell et al., 2012, Langevin et al., 2011, Christensen et al.,

2009), and sex-specific DNA methylation patterns exist (Liu et al., 2010, El-Maarri et al.,

2007, Boks et al., 2009). In addition, methylation varies across different tissues and cell

types. Consequently, methylation studies in biofluids representing a mixture of cell types

are subject to confounding by cell proportions (Houseman et al., 2012, Reinius et al., 2012,

Zhu et al., 2012).

Epigenomics and obesity

Recent technological advances have allowed for the genome-wide analysis of DNA methy-

lation (epigenome-wide association studies, EWAS). So far, few EWAS of obesity have

been published (Wang et al., 2010, Almén et al., 2012, Xu et al., 2013), all of which had

small sample sizes and were focused on adolescents. Recently, Dick et al. (2014) conducted

an EWAS of BMI in a cohort of 479 adults, revealing a BMI-associated CpG site in the

HIF3A gene that was confirmed in two replication cohorts, including the KORA cohort

that is the basis of this thesis.

Little evidence exists on the causality and direction of the observed associations. A can-

didate gene study showed a relation between umbilical cord methylation at RXRA and

a child’s fat mass at 9 years of age (Godfrey et al., 2011), giving evidence for a causal

effect of methylation at this site for the development of obesity. Furthermore, intervention

studies have shown that DNA methylation signatures are predictive of weight reduction

during caloric restriction (Milagro et al., 2011, Campión et al., 2009, Bouchard et al.,

2010, Moleres et al., 2013), indicating a role of DNA methylation in weight regulation. On

the other hand, changes in body mass affected DNA methylation (Milagro et al., 2011,

Bouchard et al., 2010).

1.2.3 Transcriptomics

Transcriptomics is the study of the complete set of gene transcripts (messenger RNA

molecules) in a cell or a tissue at a given time point (Cornelis and Hu, 2013), often also

termed gene expression analysis. Gene transcripts are formed during the process of tran-

scription, where the DNA corresponding to a specific gene is copied to RNA (Figure 1.1).

During the subsequent process of translation, the base sequence coded by the transcript
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is translated to a sequence of amino acids that makes up a protein. The human tran-

scriptome is highly dynamic. It strongly varies between tissues (Petretto et al., 2006) and

cellular states (Gerrits et al., 2009), and shows short-time responsiveness to environmental

stimuli such as dietary changes (Bouwens et al., 2010, Cornelis and Hu, 2013).

Microarrays are frequently employed to investigate genome-wide transcript levels (Butte,

2002). A number of cross-sectional genome-wide transcriptomics studies have been con-

ducted on obesity-related traits (Emilsson et al., 2008, Ghosh et al., 2010, Zeller et al.,

2010, Naukkarinen et al., 2010, Lee et al., 2005, Das and Rao, 2007, Takamura et al., 2008,

Walley et al., 2012, Pietiläinen et al., 2008). Emilsson et al. (2008) were able to show a

much stronger association of BMI with gene expression in subcutaneous adipose tissue

rather than whole blood. Gene expression profiling has also been successful in identifying

transcriptional markers associated with resistance of obese subjects to dietary interven-

tion (Ghosh et al., 2011), and changing in response to weight loss and weight maintenance

(Johansson et al., 2012, Larrouy et al., 2008).

1.2.4 Metabolomics

The human metabolome

Metabolomics is the comprehensive study of – ideally – all metabolites within a biological

system (e.g., a cell, tissue, biofluid or organism) under a given set of conditions (Pear-

son, 2007, Boccard et al., 2010, Cornelis and Hu, 2013). The term metabolite refers to

low molecular weight compounds (< 2000 Da) that are intermediate or end products of

physiological processes (Wishart et al., 2013). To date, the Human Metabolome Database

comprises more than 40,000 entries of metabolites (http://www.hmdb.ca, accessed Mai

2014), including lipids, amino acids, peptides, amines, carbohydrates, organic acids, nu-

cleic acids, vitamins, minerals, food additives and drugs (Boccard et al., 2010, Wishart

et al., 2013).

The metabolome of a human biosample represents a mixture of endogenous and exoge-

nous compounds. Thus, it can be seen as the combined product of (epi-)genetically de-

termined molecular processes and their interactions with extrinsic (environmental) and

intrinsic (pathophysiological) factors (Cornelis and Hu, 2013). This makes metabolomics

a promising tool in studying the etiology of diseases through the capture of a large range of

physiological pathways that are dysregulated in early disease states (Vinayavekhin et al.,

2010). Ultimately, the metabolome provides a source of potential diagnostic biomarkers

of disease processes (Vinayavekhin et al., 2010).

Metabolomics and obesity

Metabolomics has proven to be a useful tool in exploring the complex molecular distur-

bances associated with obesity in molecular epidemiological studies (Pietiläinen et al.,

http://www.hmdb.ca
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2007, Newgard et al., 2009, Mihalik et al., 2010, Kim et al., 2010, Oberbach et al., 2011,

Wang et al., 2011, Wahl et al., 2012, Szymanska et al., 2012, Floegel et al., 2014, Hanzu

et al., 2014). For instance, distinct differences in serum phopholipids, amino acids, acylcar-

nitines as well as sphingolipids were identified between 80 obese and 40 non-obese children

(Wahl et al., 2012), in agreement with other reports.

Besides cross-sectional studies, metabolomics has been useful in understanding the

metabolic effect of weight loss in behavioral intervention trials. A part of the obesity-

related metabolite changes showed improvement after participation in the 1-year inter-

vention program Obeldicks for obese children (Reinehr et al., 2014). A similar message is

conveyed by Lien et al. (2009), Oberbach et al. (2011), Perez-Cornago et al. (2014). In

addition, a potential of metabolomics to identify predictors of weight loss success during

lifestyle intervention has been indicated (Pathmasiri et al., 2012).

Metabolomics and challenge tests

The majority of metabolomics analyses are performed on fasting samples. However, as-

suming that under physiological conditions human metabolism is under tight homeostatic

regulation, more insights into metabolic disturbances in early disease states might be ob-

tained in conditions of perturbed homeostasis (van Ommen et al., 2009). Challenge tests

ranging from standardized glucose and lipid tolerance tests and mixed meals, to periods of

fasting and physical activity challenge, allowed detailed characterization of postprandial

metabolism (Ho et al., 2013, Pellis et al., 2012, Shaham et al., 2008, Krug et al., 2012,

Skurk et al., 2011) and uncovered changes in metabolic flexibility in early disease states

such as overweight, impaired glucose tolerance and insulin resistance (Deo et al., 2010,

Ramos-Roman et al., 2012, Shaham et al., 2008).

1.2.5 Integration of omics approaches

The different levels of a biological system work together in maintaining the normal function

of the system, and several if not all system levels are involved if the system is disturbed by

environmental influences or pathophysiological processes (Cornelis and Hu, 2013, Somvan-

shi and Venkatesh, 2014) (Figure 1.1). Thus, the different omics approaches complement

each other in the information they contribute to the understanding of disease-related pro-

cesses (Cornelis and Hu, 2013, Somvanshi and Venkatesh, 2014). Genomic data provide a

stable readout of the genetic predisposition to disease. Epigenomic data enable insights

into transcriptional regulation as a consequence of inherited as well as environmental in-

fluences (Rakyan et al., 2011). Transcriptomics reflects the combined regulatory processes

of gene expression, being less stable than epigenetic data but closer to the level of proteins.

Metabolomic signatures can be seen as the downstream product of the preceding omics

processes, reflecting physiological processes most closely (Cornelis and Hu, 2013).
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Few multi-omic analyses have been conducted in obesity research, most of them focusing

on two or three system levels (Li et al., 2008, Oberbach et al., 2011, 2012, Kleemann

et al., 2010, Valcárcel et al., 2014, Malpique et al., 2014). For instance, Oberbach et al.

(2011) conducted a cluster analysis based on combined serum proteomic and metabolomic

profiles and observed a clear separation of lean and obese subjects, as well as of baseline

and post-exercise timepoints with the combined data only. Valcárcel et al. (2014) inte-

grated genotype and metabolomics data by performing a GWAS on correlation differences

between pairs of metabolites that were differentially correlated in association with obe-

sity. They show a greater power of their approach in identifying genetic variants involved

in obesity-related processes. Malpique et al. (2014) studied transcriptomic signatures of

pancreatic tissue, and proteomic and metabolomic signatures of peripancreatic adipose tis-

sue of obese and lean rats. They integrated the different data sources through combined

pathway analysis and network formation, thereby identifying obesity-related mechanisms

potentially promoting the development of T2D.

1.3 Statistical analysis of omics data

Due to the special characteristics of omics data, their statistical analysis entails specific

challenges. The development of suitable statistical methods for omics data and their

appropriate application are active fields of research (Mayer, 2011).

Omics data are the result of complex sample preparation and measurement steps followed

by computational translation of signals from microarrays, MS or NMR spectra into data

points such as genotype calls, methylation proportions, RNA levels or metabolite concen-

trations. Hence, they are subject to a variety of technical influences that might “obscure”

the biological variability (Hartemink et al., 2001). Additional sources of technical variabil-

ity arise from sample storage and from the manufacturing and processing of the arrays,

plates or other facilities involved in the measurement (Hartemink et al., 2001). Data pre-

processing steps aim to exclude, reduce or otherwise account for technical variability to

improve the identifiability of the relevant biological signals. Furthermore, the applied high-

throughput techniques are unlikely to target all features, i.e., SNPs, CpG sites, transcripts

or metabolites, with the same efficiency and reliability. Thus, there is a large need for data

quality control and normalization prior to data analysis, a fact that has been recognized

throughout the omics fields (Goodacre et al., 2007, Dedeurwaerder et al., 2013).

The high dimensionality and high correlatedness of most omics data requires specific con-

siderations, both in univariate and multivariate data analysis. For instance, in the case

of univariate models, correction for multiple testing is an important action to be taken

(Dudoit et al., 2003). In multivariate data analysis, many standard approaches fail in

p > n situations, i.e. when the number of variables p exceeds the sample size n. The

appropriate multivariate approaches in turn require the careful choice of parameters and
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model validation steps (Hastie et al., 2009).

Omics data are biological data which do not always follow the distributions that stan-

dard statistical models assume (Fahrmeir et al., 2013, Du et al., 2010). Thus, one has

to carefully weigh up the pros and cons of parametric and nonparametric approaches.

Furthermore, due to the complex interrelationships between the different system levels

as well as environmental factors, the issue of biological confounding has to be taken into

account (Greenland and Morgenstern, 2001, Hernán et al., 2002). In addition, associations

of phenotypes with molecular features in the general population are often small, so power

is limited. Thus, multiple epidemiological cohorts are frequently analyzed jointly, which

requires meta-analysis and replication strategies (Normand, 1999, Ioannidis, 2007).

A further aspect is the frequent presence of missing values within omics data sets. These

arise for various reasons including technical effects and values below the detection limit

being deliberately set to missing during the step of signal translation. Depending on type

and origin of missing values in both omics and phenotype data, different approaches are

appropriate to handle these missing values (Raessler et al., 2008).

Finally, a specific characteristic of omics data is that the primary data analysis results

in potentially large sets of (multi)-omics markers associated with some kind of state,

phenotype or disease. Specific statistical and bioinformatical tools are required to extract

biological knowledge from these, e.g. to identify enriched biological pathways or functional

genomic features, to explore causality (Didelez and Sheehan, 2007) and to understand the

relation between the features (Krumsiek et al., 2011).

1.4 Aims of this thesis

In large genome-wide association studies (GWAS), obesity-related genetic variants were

identified. However, for most variants, the mechanisms underlying their association with

obesity-related traits are not yet understood, and a large part of the heritability of obesity

remains unexplained by these variants.

The overall objective of this thesis is to contribute to the post-genomic era of obesity by

means of analyzing multiple omics data to explore the molecular mechanisms underlying

obesity, weight change and related metabolic disturbances. Four studies were conducted

to pursue the following specific research questions.

In the first study (Section 4.1), the overall aim was to learn more about the early metabolic

derangements linking the strongest obesity risk locus, FTO, and the T2D risk locus

TCF7L2 to disease risk. Using a novel strategy based on metabolomics measurements

during different oral and intravenous challenge tests, the specific goals were (1) to com-

prehensively characterize physiological challenge responses in healthy subjects, and (2) to

study the feasibility of the approach for studying gene-environment interactions, specifi-

cally, (3) to explore the effect of the FTO and TCF7L2 genotypes on challenge response.
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In the second study (Section 4.2), the overall research question was whether DNA methy-

lation at specific sites could be identified as a factor contributing to obesity risk (thereby

potentially explaining a part of the missing heritability of obesity), or to the development

of obesity-related comorbidities. Specific goals were (1) to study the associations between

BMI and whole blood DNA methylation in a large meta-analysis of EWAS, (2) to char-

acterize the identified CpG sites with regard to their genomic location and proximity to

functional genomic features, their enrichment for biological pathways and for loci previ-

ously reported in GWAS for obesity and related diseases, (3) to explore association of

methylation at these sites with gene expression at nearby genes, (4) to study the rela-

tion of methylation to genetic variation at nearby sites to understand the genetic basis of

methylation, (5) to explore causality and direction of the observed associations, and (6)

to investigate whether the identified CpG sites accounted for the association of BMI with

clinical traits and incident T2D in order to explore the clinical relevance of the findings.

The third study (Section 4.3) was aimed at studying the metabolomic and transcriptomic

consequences of body weight changes over a 7-year period in the general population. Spe-

cific goals were (1) to investigate associations of weight change with serum metabolite

concentrations and blood cell gene expression, (2) to study the interrelationship of the

identified omics signatures, and the stability of the findings in relevant subgroups, e.g. of

subjects with weight gain versus weight reduction, and (3) to study the relation of the

identified omics signatures with clinical traits.

Finally, the aim of the fourth study (Section 4.4) was to explore the potential of combined

serum metabolomics and anthropometric and clinical data to predict weight loss success

over a 1-year lifestyle intervention program for obese children.

Throughout the thesis, a particular emphasis was placed on the optimized choice of sta-

tistical methodology and its careful implementation. In the first study, a statistical goal

was to find a way of identifying joint trends in challenge response trajectories of single

metabolites. The primary statistical aims of the second study were to develop MR ap-

proaches to study causality and compare the results with those of longitudinal association

analyses, to appropriately account for cell type confounding, and to use resampling proce-

dures e.g. to assess the proportion of BMI-trait associations accounted for by methylation.

The methodological tasks in the third study were the careful imputation of missing values,

and the implementation of a cluster approach that would improve the clearness and inter-

pretability of of metabolomic and transcriptomic signatures of weight change. Finally, in

the fourth study, the statistical aim was to employ a multivariate regularized regression

approach to form a sparse predictive model of weight loss success, to evaluate this model

within a nested cross-validation approach, and to compare the results obtained with this

approach to standard univariate regression results.
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In this chapter, the Cooperative Health Research in the Region of Augsburg (KORA) study,

the Virtual Institute Diabetes (VID) study and the Obeldicks study are described, and

details on the assessment of phenotypic and molecular data are given. For the coopera-

tion cohorts London Life Sciences Prospective Population Study (LOLIPOP)/EpiMigrant,

EPICOR, the Rotterdam studies, LifeLines Deep, Avon Longitudinal Study of Parents

and Children (ALSPAC), Leiden Longevity, TwinsUK and the Estonian Genome Center

of the University of Tartu (EGCUT) studies (all part of the DNA methylation analysis in

Section 4.2), subject characteristics and analysis details are provided in Appendix Tables

A.1 to A.4.

2.1 Cooperative Health Research in the Region of Augsburg

(KORA)

2.1.1 Study population

KORA is a research platform of independent population-based health surveys and subse-

quent follow-up examinations of individuals of German nationality resident in the region

of Augsburg in Southern Germany (Holle et al., 2005). Written informed consent was

obtained from all participants in accordance with institutional requirements and the Dec-

laration of Helsinki principles. The studies were approved by the ethics committee of the

Bavarian Medical Association (Bayerische Landesärztekammer). Study design, sampling

method and data collection have been described in detail elsewhere (Holle et al., 2005).

The surveys S3 and S4 were conducted in 1994/1995 and 1999-2001, respectively, and

comprised independent samples of 4856 and 4261 subjects aged 25-74 years (Wolfenstetter

et al., 2012). Both cohorts were reinvestigated in the follow-up examinations F3 and F4

in 2004/2005 and 2006-2008, respectively, with 2974 and 3080 participants. KORA S4/F4

stands out as a phenotypically, biochemically and molecularly well-characterized popu-

lation cohort allowing for extensive and integrative omics analysis of obesity and weight

change.
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2.1.2 Anthropometric measurements and interviews

Body weight, height, waist and hip circumference, and systolic and diastolic blood pressure

were measured using standard protocols as described elsewhere (Rathmann et al., 2003).

For the study of metabolic consequences of weight change (Section 4.3), weight change

between KORA S4 and F4 was defined as percentage body weight change (∆BW) in kg

per follow-up year, where weight gain was coded as ∆BW, and weight loss as negative

∆BW:

∆BW = 100% ·
BW (F4) [kg]−BW (S4) [kg]

BW (S4) [kg]

Follow-up time [years]
.

Information on lifestyle factors and diseases are based on self-report during a standardized

interview conducted by trained interviewers. Ascertainment was comparable in KORA S4

and F4, allowing plausible categories of changes to be formed. To categorize physical activ-

ity level, participants were classified as “active” if they spent at least one hour of moderate

and vigorous physical activity per week during leisure time in summer and winter, and as

“inactive”, else (Meisinger et al., 2007). Changes in physical activity between KORA S4

and F4 were categorized as “no change”, “became active” and “became inactive”. Smoking

categories were formed as “current”, “former” and “never” smokers (in Section 4.3 as “ever”

and “never” smokers), and changes in smoking status were categorized as “no change”,

“started smoking” and “quit smoking”. Sleeping behavior was assessed as problems to fall

asleep or to sleep through the night, with the categories “often” and “sometimes/almost

never”, and changes were categorized as “no change”, “improvement”, “worsening”. Nu-

trition habits were assessed using a food frequency questionnaire. Based on how often

participants reported to consume 15 different food categories, their nutrition habits were

categorized as “disadvantageous”, “normal” or “advantageous” (based on recommendations

of the German Nutrition Society). Disease information, including myocardial infarction,

stroke, T2D, and cancer, is based on self-reported physician’s diagnosis. Change in dis-

ease was categorized as “incident disease during follow-up” and “no incident disease during

follow-up”. Intake of medication within seven days prior to examination was recorded with

the IDOM-Software (Mühlberger et al., 2003), and categorized according to the Anatomical

Therapeutic Chemical (ATC) classification index. Change in medication intake between

KORA S4 and F4 was denoted as “no change”, “stopped intake” and “started intake”.

2.1.3 Blood sampling and biochemical measurements

Blood samples were collected during study center visits between 8 and 11 a.m., after

participants were instructed to fast overnight for at least 8 h. Whole blood was collected

using PAXgene Blood RNA tubes (BD, Heidelberg, Germany) and stored at -80°C until

analysis. To obtain plasma, blood was immediately centrifuged and plasma frozen at -

80°C until measurments. Serum collection in KORA F4 samples has been described by

Illig et al. (2010). Briefly, blood was drawn into serum gel S-Monovette tubes (Sarstedt,
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Nümbrecht, Germany), gently inverted two to three times and rested for 30 min at room

temperature to obtain complete coagulation. This was followed by centrifugation for 10

min (2,750g at 15°C). Serum was aliquoted into synthetic straws which were kept for a

maximum of 6 h at 4°C before storage at -80°C until analysis.

In KORA F4, red blood cell count, hemoglobin concentration, hematocrit, mean corpuscu-

lar haemoglobin (MCH), mean corpuscular haemoglobin concentration (MCHC) and cell

volume of erythrocytes (MCV) were determined in a small hemogram (Coulter LH-750,

Beckman, Germany). HbA1c was determined from EDTA blood using HPLC (HA 8160,

Menarini). Fasting and 2-hour oral glucose tolerance test (OGTT) glucose levels were as-

sessed with the hexokinase method (GLU Flex; Dade Behring, Marburg, Germany). For

fasting plasma insulin measurements, a microparticle enzyme immunoassay (MEIA, IMX

Insulin, Abbott Laboratories, Wiesbaden, Germany) was used. Total, high density lipopro-

tein (HDL) and low density lipoprotein (LDL) cholesterol levels were determined in serum

using the CHOD-PAP method (CHOL Flex; AHDL and ALDL Flex, Dade-Behring, Mar-

burg, Germany). Triglyceride (TG) levels were determined with the GPO-PAP method

(TGL Flex; Dade-Behring, Marburg, Germany). C-reactive protein (CRP) was measured

with nephelometry on a BN II using reagents from Siemens (Eschborn, Germany).

2.1.4 Genotyping

Genotyping of the KORA F3 and F4 samples was performed on the Illumina Omni Express

and Affymetrix Axiom platforms, respectively. Genotypes were called with the Affymetrix

software and Genome Studio, respectively, and annotated to NCBI build 37. For both

cohorts, genotype imputation was performed based on the 1000G phase 1 reference panel

using IMPUTE v2.3.0 (Howie et al., 2009), with SHAPEIT v2 (O’Connell et al., 2014) as

a pre-phasing tool.

2.1.5 DNA methylation measurement

Genome-wide DNA methylation measurement at 485,577 genomic sites was performed us-

ing the Infinium HumanMethylation450K BeadChip® (Illumina, Inc., CA, USA, Bibikova

et al. (2011)) in 1814 KORA F4, 500 KORA F3 (comprising smokers and never smokers,

Zeilinger et al. (2013)) and 1535 KORA S4 samples. The laboratory process has been

described previously (Zeilinger et al., 2013, Petersen et al., 2014). Briefly, denaturated

single-stranded genomic DNA was subjected to bisulfite treatment using the EZ-96 DNA

Methylation Kit (Zymo Research, Orange, CA, USA). Bisulfite-converted samples were

subjected to whole genome amplification, followed by enzymatic fragmentation and ap-

plication to the BeadChips. The arrays were fluorescently stained and scanned with the

Illumina HiScan SQ scanner.

As readout, a methylated and an unmethylated signal count per CpG site are obtained.
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Counts are commonly combined to β-values, defined as the ratio of the methylated signal

intensity divided by the overall signal intensity (Bibikova et al., 2011, Du et al., 2010):

β-value =
M

M + U + α
.

Illumina recommends the inclusion of an offset α = 100 as a regularization for the situation

when both M and U are low (Du et al., 2010). Since the number of signal intensities

mostly exceeds 1000, the offset does not induce much bias. The methylation β-value can

be interpreted as the proportion of methylation at a given CpG site.

2.1.6 Gene expression measurement

RNA preparation and gene expression measurement in the KORA F4 data (n = 993 aged

62-81 years with genotype data available) has been described in detail elsewhere (Schur-

mann et al., 2012). Briefly, RNA was isolated from whole blood stored for 856± 179 days

at -80°C using the PAXgeneTM Blood miRNA kit (Qiagen, Hilden, Germany). Purity and

concentration of RNA were determined using a NanoDrop ND-1000 UV-Vis Spectropho-

tometer (Thermo Scientific, Henningsdorf, Germany). To ensure a constantly high quality

of the RNA preparations, all samples were analyzed using RNA 6000 Nano LabChips

(Agilent Technologies, Germany) on a 2100 Bioanalyzer (Agilent Technologies, Germany)

according to the manufacturer’s instructions. Samples exhibiting an RNA integrity num-

ber less than seven confirmed by manual adjustment were excluded from further analysis.

The Illumina TotalPrep-96 RNA Amplification Kit (Ambion, Darmstadt, Germany) was

used for reverse transcription of 500 ng RNA into double-stranded cDNA and subsequent

synthesis of biotin-UTP-labeled antisense-cRNA using this cDNA as the template. 3,000

ng of cRNA were hybridized to the Illumina HumanHT-12 v3 Expression BeadChip ar-

rays followed by washing and detection steps in accordance with the Illumina protocol.

BeadChips were scanned using the Illumina Bead Array Reader.

2.1.7 Metabolomics measurement on the Metabolon platform

Metabolomics measurements for 1768 KORA F4 subjects were performed on a commer-

cial mass spectrometry (MS)-based platform at the company Metabolon Inc. (Durham,

NC, USA). The analytical process, including metabolite quantification and identification as

well as quality control, has been described in detail elsewhere (DeHaven et al., 2010, Evans

et al., 2009, Suhre et al., 2011). Briefly, the analytical platform is based on two ultrahigh-

performance liquid chromatography/tandem mass spectrometry (UHPLC/MS/MS2) in-

jections and one gas chromatography/mass spectrometry (GC/MS) injection per sample.

The two UHPLC injections were optimized for basic and acidic species, respectively. In

the KORA F4 data, relative quantification for a total of 517 compounds was provided,

325 of which could so far be identified based on a standard library of MS/MS spectra.
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The identified molecules cover a large spectrum of metabolites classes including amino

acids, peptides, carbohydrates, fatty acids, glycerophospholipids, acylcarnitines, sphin-

golipids, steroids, ketone bodies, bile acid metabolites, nucleotide metabolites, vitamins

and xenobiotics. The full list of identified metabolites is provided in Appendix Table A.5.

2.1.8 Metabolomics measurement on the NMR platform

For 1788 KORA F4 samples, metabolite measurement was conducted using an nuclear

magnetic resonance (NMR)-based platform. The precise experimental methodology has

been described elsewhere (Soininen et al., 2009, Inouye et al., 2010a). Briefly, serum sam-

ples were thawed in a refrigerator at 4°C overnight. The samples were mixed gently and

centrifuged at 3400g. 300 µl of each serum sample were mixed with 300 µl of sodium phos-

phate buffer by three times slow aspiration. Sample preparation was done automatically

with a Gilson Liquid Handler215 in 5 mm outer-diameter SampleJet NMR tubes (Bruker

BioSpin, Germany). During NMR spectroscopy, samples were kept at 6°C, and measure-

ment took place at 37°C. 1H NMR spectroscopy was conducted on a Bruker AVANCE

III spectrometer operating at 500.36 MHz. NMR spectroscopy was applied within three

molecular windows, to improve the detection of metabolites from different molecular weight

classes. Two of these were applied to native serum and provide quantification of lipoprotein

subclass concentration and composition, as well as of low-molecular-weight compounds in-

cluding amino acids, ketone bodies and carbohydrate metabolites. The third molecular

window was applied to serum lipid extracts and provides information on the composition of

serum lipids including fatty acids, cholesterol and sphingomyelins (Inouye et al., 2010a).

Computational strategies of metabolite identification and quantification from the NMR

spectra are described by Inouye et al. (2010a). A total of 130 metabolic readouts were

obtained from the NMR platform.

2.2 Virtual Institute Diabetes (VID)

2.2.1 Study participants

The Virtual Institute Diabetes (VID) is a cooperative project of the Helmholtz Zentrum

München, the Ludwig-Maximilians-Universität München and the Technische Universität

München aiming to understand the molecular basis of glucose regulation and T2D. To in-

vestigate the dynamics of the serum metabolome during nutritional challenges in healthy

men dependent on the FTO rs9939609 and TCF7L2 rs7903146 genotypes, male KORA

S4/F4 participants aged 18-65 years were re-invited based on existing genotype informa-

tion. 25 men carrying the FTO rs9939609 obesity risk variant (AA genotype), 22 men

carrying the TCF7L2 rs7903146 T2D risk allele (11 TT and 11 CT genotype) and 31

subjects carrying none of the risk alleles (FTO TT genotype and TCF7L2 CC genotype)

were recruited. Individuals with known or apparent diabetes, immune suppressive therapy,
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clinical cardiovascular disease, liver disease (GOT, GPT > 3 fold above normal range),

kidney disease (creatinine > 1.2 mg/dl) and psychiatric disease were excluded from par-

ticipation. Participants did not take any medication known to affect insulin sensitivity or

secretion. All subjects were of Caucasian origin. The study was conducted in accordance

with the Declaration of Helsinki principles. Written informed consent was given by all

participants and the study was approved by the ethics committee of the Bavarian Medi-

cal Association (Bayerische Landesärztekammer). Neither the participants nor any of the

attending physicians or assistants knew the genotype of the probands at the time of the

interventions.

2.2.2 Genotyping

Genome-wide SNP data were available for 1814 KORA S4/F4 subjects from the Affymetrix

GeneChip array 6.0 (Kolz et al., 2009). Targeted genotype data were obtained for the

remaining 2,235 KORA S4/F4 participants using MALDI-TOF with the Sequenom i-Plex

Gold Assay (Holzapfel et al., 2010). Of 1,134 male participants, 93 homozygous FTO risk

allele carriers and 207 non-risk allele carriers met the inclusion criteria. Only 27 subjects

carried the TCF7L2 risk allele. Thus, both homozygous and heterozygous subjects were

included. Of these subjects, 25, 31 and 22 could be recruited for the present study,

respectively.

2.2.3 Metabolic challenge tests

Challenge tests were conducted at two different study centers in two separate visits. In-

travenous challenges took place at the Medizinische Klinik and Poliklinik IV, Ludwig-

Maximilians-Universität München, oral challenges at the human study center of the Else

Kröner-Fresenius Center for Nutritional Medicine at the Technische Universität München.

Intravenous challenges

At the first study visit, participants underwent an intravenous glucose tolerance test

(IVGTT; 0.33 g glucose/kg body weight of a 50% (vol/vol) glucose solution within 2

min) between 8 and 9 a.m. after overnight fasting (Figure 2.1). 35 min after the glucose

load, an euglycemic-hyperinsulinemic (EH) clamp was conducted. An insulin (Actrapid,

Novo Nordisk, Copenhagen, Denmark) bolus was given until stable blood glucose val-

ues of 70–80 mg/dl were reached, followed by a continuous infusion (1.05 mU/kg/h) of

short-acting human insulin and a variable infusion of a 20% glucose solution to maintain

plasma glucose concentration at 80 mg/dl for 120 min. Blood glucose was determined

in 6 min intervals throughout the clamp and measured using a bedside glucose analyzer

(Super-GL ambulance, HITADO, Möhnesee, Germany). Steady state was reached 3–4 h

after the IVGTT on average. Venous blood samples were taken from the opposite arm at

baseline, 1, 3, 5, 10, 15, 25 and 35 min after IVGTT, as well as 0, 15, 30 and 45 min after
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Figure 2.1: Scheme of
challenges conducted
at the two study visits.
Arrows indicate times of
plasma collection, with
metabolite concentrations
determined in plasma
samples taken at times
indicated by blue color.
Clamp steady state was
reached about 3-4 h after
the start of the IVGTT.
EH clamp, euglycemic-
hyperinsulinemic clamp;
HFHC meal, high-fat
high-carbohydrate meal;
IVGTT, intravenous glu-
cose tolerance test; OGTT,
oral glucose tolerance test;
OLTT, oral lipid tolerance
test.

the clamp steady state was reached. Blood samples for biochemical and metabolomics

measurements were immediately cooled to 4°C and centrifuged (10 min at 3,000 g, 4°C).

Aliquots of plasma samples were stored at -80°C until assayed.

Oral challenges

At the second study visit, oral challenge tests were conducted in the metabolic ward of

the study center (Figure 2.1). Participants were carefully instructed to consume only the

food and drinks provided by the study personnel and to refrain from any physical activity.

In order to control nutrient intake and activity levels, all participants stayed at the study

center over the two-day study period. All participants were compliant to the following

protocol: After overnight fasting, on day 1 at 8 a.m., subjects underwent a standard-

ized oral glucose tolerance test (OGTT) (75g glucose, Dextro O.G.T., Roche Diagnostics,

Mannheim, Germany) within 5 min. At 12 a.m., a high-fat high-carbohydrate (HFHC)

meal, comprising a Big Mac burger, 0.4 l Fanta and 114 g French fries (McDonald’s,

Freising, Germany) were consumed within 15 min. On day 2 at 8 am, a standardized

oral lipid drink, corresponding to 35 g fat/m2 body surface (on average, 422 ml), was

consumed within 5 min. The drink was prepared at room temperature from three parts

of Fresubin Energy drink chocolate (Fresenius Kabi, Bad Homburg, Germany) and one

part of Calogen (Nutricia, Pfrimmer, Germany). Besides the intervention meals, subjects

received a standardized supper on day one and ad libitum mineral water and unsweetened

fruit or herbal tea. The macronutrient composition of the challenge tests is shown in

Supplementary Table 1 of the original publication (Wahl et al., 2013b). During OGTT,

venous blood was taken at baseline, 15, 30, 60 and 120 min after the glucose load, with
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baseline, 1 and 2 h samples taken for metabolomics measurement. During the HFHC meal

and the oral lipid tolerance test (OLTT), samples were taken at baseline, 1, 2, 4, 6 and

8 h after the challenge, with metabolomics measurements conducted in the baseline, 2

and 6 h samples. Time points were chosen based on earlier investigations on postprandial

metabolite changes (Krug et al., 2012, Skurk et al., 2011). Blood samples for biochemical

and metabolomics measurements were immediately centrifuged (10 min at 3,000 g, 20°C),

afterwards kept frozen at -80°C and thawed only once directly before measurement.

2.2.4 Anthropometric and biochemical measurements

Anthropometric examination included measurements of body weight, height, waist circum-

ference and blood pressure according to standard procedures. Glucose levels were assessed

in plasma (first study visit) using the hexokinase method (GLU Flex, Dade Behring, Mar-

burg, Germany) and in venous blood (second study visit) by enzymatic amperometric tech-

nique (Super GL easy+, Dr. Müller Geräte Bau, Freital, Germany). Blood glucose values

were converted to plasma equivalents by multiplication with the recommended factor 1.11

(D’Orazio et al., 2005). Plasma insulin levels were measured by enzyme-linked immunosor-

bent assay (ELISA) (first study visit: LINCO research, St. Charles, USA; second study

visit: Dako #K6219, Glostrup, Denmark). Insulin sensitivity index was calculated as glu-

cose infusion rate per kg body weight necessary to maintain euglycemia during the last 45

min of the clamp steady state per unit of plasma insulin concentration. Lactate was mea-

sured by enzymatic amperometric technique (Super GL easy+ , Dr. Müller Geräte Bau,

Freital, Germany). Total cholesterol concentrations, HDL cholesterol and LDL cholesterol

levels were determined with enzymatic methods (CHOD-PAP, Dade Behring). TGs were

measured by an enzymatic color test (first study visit: GPO-PAP-method, TGL Flex,

Dade Behring; second study visit: Fluitest TG, Analyticon Biotechnologies AG, Lichten-

fels, Germany). High sensitive CRP was determined by IRMA (Dade Behring). HbA1c

was measured using the HPLC method. Total levels of non-esterified fatty acids (NEFAs)

were measured by an enzymatic colorimetric method assay (NEFA-HR, Wako Chemicals

GmbH, Neuss, Germany). Serum creatinine concentrations were assessed with a modified

Jaffe test (Krea Flex, Dade Behring). Plasma proinsulin and insulin concentrations were

quantified with ELISA Kits (LINCO research, St. Charles, USA) as described recently

(Anzeneder et al., 2011). Serum C-peptide was determined with the radioimmunoassay

from Radim Diagnostics (Pomezia, Italy). All assays were conducted according to the

manufacturers’ guidelines.

2.2.5 Metabolomics measurement on the Biocrates platform

Concentrations of 163 metabolites were determined in the plasma samples using the tar-

geted AbsoluteIDQTM kit p150 (Biocrates Life Sciences AG, Innsbruck, Austria), follow-

ing the instructions described in the manufacturer‘s manual. The procedure has been
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described in detail elsewhere (Illig et al., 2010, Römisch-Margl et al., 2011). Briefly, liq-

uid handling of plasma samples was performed with a Hamilton Microlab STARTM robot

(Hamilton Bonaduz AG, Bonaduz, Switzerland). Samples were analyzed on an API4000

LC/MS/MS system (AB Sciex Deutschland GmbH, Darmstadt, Germany) equipped with

an HTC PAL autosampler (CTC Analytics, Zwingen, Switzerland) and an electrospray

ionization (ESI) source which was used in both positive and negative mode. MS/MS anal-

ysis was run in the Multiple Reaction Monitoring mode. The entire analytical process was

controlled by the Analyst 1.4 software and the MetIQTM software package. Metabolite

concentrations were determined with the MetIQ software. The metabolite panel targeted

by the kit comprises amino acids, hexose, free carnitine (C0), conjugated carnitines (acyl-

carnitines (Cx:y), hydroxylacylcarnitines (C(OH)x:y), and dicarboxylacylcarnitines (Cx:y-

DC)), diacyl phosphatidylcholines (PC aaCx:y), acyl-alkyl phosphatidylcholines (PC ae

Cx:y), lysophosphatidylcholines (LPC a Cx:y) as well as sphingomyelins (SM Cx:y) and

hydroxysphingomyelins (SM (OH) Cx:y). See Wahl et al. (2012) for a full list of metabo-

lites. Cx:y abbreviates the lipid side chain composition and x and y denote the sum of

carbons and double bonds, respectively. Importantly, the analytical technique applied

here is not capable of determining the precise position of the double bonds and – in the

case of PCs – the distribution of carbon atoms between the two fatty acid side chains. All

Biocrates metabolite concentrations are reported in µmol/l.

2.3 Obeldicks

2.3.1 Study design

Obeldicks is a one-year weight loss intervention program based on physical activity, nutri-

tional education and behavior therapy that includes individual psychological care of the

child and his/her family. The program is tailored to obese children aged 6–15 years and

is conducted at the outpatient clinic for obesity of the Vestische Kinder- und Jugend-

klinik Datteln, Germany. All participating children were born in Germany. Children with

syndromal obesity, psychiatric or endocrine disorders including T2D were excluded. A

detailed description of the program can be found elsewhere (Reinehr et al., 2006). Written

informed consent was obtained from all parents and all children from the age of 12 years.

The study was approved by the ethics committee of the University of Witten/Herdecke. Of

the children who had completed the Obeldicks program in 2008 or 2009, 40 were randomly

selected who had reduced their BMI-SDS substantially during their one-year participation,

as defined by a BMI-SDS reduction of ≥ 0.5, and 40 with a BMI-SDS reduction of < 0.1

and a similar distribution of sex, baseline age, pubertal stage and BMI-SDS. The cut-off

at a BMI-SDS of 0.5 was chosen based on the finding of previous studies that this amount

of BMI-SDS reduction is approximately required to achieve a considerable improvement

in the cardiovascular risk profile (Reinehr et al., 2004, Ford et al., 2010). Compliance was
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given for all 80 children by participation in at least 90% of the meetings.

2.3.2 Anthropometric measures

Body height was measured to the nearest centimeter using a rigid stadiometer. Undressed

body weight was measured to the nearest 0.1 kg using a calibrated balance scale. BMI

percentiles and BMI-SDS were calculated according to Cole’s LMS-method (Cole, 1990),

applied to German reference data (see Section 1.1.1, Kromeyer-Hauschild et al. (2001)).

All children’s BMI was above the 97th percentile. Waist circumference was measured half-

way between lower rib and iliac crest (Kromeyer-Hauschild et al., 2008). Pubertal stage

was assessed according to Marshall and Tanner (1969, 1970) and categorized into three

stages based on pubic hair and genital stages: prepubertal = boys/girls with pubic hair

stage I and gonadal/breast stage I; pubertal/postpubertal = boys/girls with pubic hair

stage ≥ II and gonadal/breast stage ≥ II and boys with change of voice and girls with

menarche. Systolic and diastolic blood pressure was measured twice according to a vali-

dated protocol and the two measurements were averaged (National High Blood Pressure

Education Program Working Group on High Blood Pressure in Children and Adolescents,

2004).

2.3.3 Biochemical measurements

Blood samples were taken at 8 a.m. after overnight fasting for at least 10 h. Following

coagulation at room temperature, blood samples were centrifuged for 10 min at 8,000 rpm

and aliquoted. Biochemical measurements were conducted directly on the fresh serum

samples. TGs, total cholesterol and glucose concentrations were determined with a colori-

metric test using the VitroTM analyzer (Ortho Clinical Diagnostics, Neckargemünd, Ger-

many). LDL and HDL cholesterol were measured with an enzymatic test using the LDL-C

and HDL-C-PlusTM assays (Roche Diagnostics, Mannheim, Germany), respectively. In-

sulin concentrations were determined with a microparticle-enhanced immunometric assay

(MEIATM, Abbott, Wiesbaden, Germany). Intra- and interassay coefficients of variation

were < 5% for all tests. As a measure of insulin resistance, the homeostasis model assess-

ment of insulin resistance (HOMA-IR) was calculated as serum insulin (mU/l) × serum

glucose (mmol/l)/22.5 (Matthews et al., 1985). This index has been validated in healthy

children (Gungor et al., 2004). Aliquoted serum samples were stored at -80°C and thawed

only once at room temperature for the metabolomics assay.

2.3.4 Metabolomics measurement on the Biocrates platform

Metabolite measurement in serum samples was performed in two batches, as described

above for the VID study (Section 2.2.5).
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In this chapter, the principles and technical details of the applied statistical methods are

described. A conceptual visualization is given in Figure 3.1.

3.1 Data preprocessing and quality control

3.1.1 SNP data

To ensure data quality, observations were removed for which a sex discordance (i.e., dis-

cordance between phenotypic and genetic sex), or a discordance of genotypes available

from different genotyping platforms was observed, pointing towards sample swapping. In

addition, observations that represented population outliers (i.e., that did not cluster with

the HapMap CEU population in a joint plot of the first two principal components) or

heterozygosity outliers (i.e., observations that deviated by at least 5 standard deviations

from the mean heterozygosity rate) were excluded from the data set.

Furthermore, the observation-wise callrate was defined as the number of SNPs for which a

reliable genotype “call”, i.e. genotype assignment, could be made based on the fluorescence

signals obtained for the two alleles of the SNP. Observations with a callrate below 97%

were excluded from the data set, to ensure data reliability. Similarly a callrate threshold

of 98% was applied in a SNP-wise fashion.

Another important quality measure is the Hardy-Weinberg equilibrium (HWE), which

states that allele and genotype frequencies remain constant across the generations of a

population under certain conditions (e.g., random mating, no migration) and that therefore

there should be a fix relationship between allele and genotype frequencies (Ziegler and

König, 2010). Violation of the HWE, that is, inconsistency of the genotype distribution

of a SNP across the investigated population with the distribution expected from the allele

frequencies, in most cases points towards laboratory issues. Therefore, SNPs were excluded

when the HWE p-value was below 5× 10−6, indicating strong deviation from the HWE.

In KORA S3/F3 but not S4/F4, SNPs with a minor allele frequency (MAF) below 1% were

also excluded. After imputation, SNPs of both studies with an imputation information

score below 0.5 were excluded, and data were transformed to dosages, i.e. expected allele

counts of the non-reference allele. In total, > 31 Mio measured or imputed SNPs were
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available for analysis.
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Figure 3.1: Statistical methods applied in this thesis. Colors represent the different blocks
of statistical methods and are used consistently throughout the thesis. Grey boxes indicate refer-
ences to results and discussion sections where the respective methods are applied.

3.1.2 DNA methylation data

DNA methylation data were preprocessed as follows: First, 65 probes that represent SNPs

were excluded. Second, background correction was performed using the R package minfi,

version 1.6.0 (Aryee et al., 2014). Third, detection p-values were defined as the probability

of a signal being detected above the background signal level, as estimated from negative
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control probes. Consequently, signals with detection p-values ≥ 0.01 were removed, in-

cidating putatively unreliable signals. Similary, signals summarized from less than three

functional beads on the chip were characterized as potentially unreliable and removed from

the data set. Observations with less than 95% CpG sites providing reliable signals (72 in

KORA F4, 15 in KORA F3, 0 in KORA S4) were excluded.

To avoid spurious results, CpG sites were flagged that were targeted by cross-reactive

probes (information provided by Price et al. (2013)). These are probes that co-hybridize to

highly homologous genomic sequences other than the target sequence, causing ambiguous

signals at the targeted sites (Price et al., 2013, Chen et al., 2013). Similarly, probes with

genetic variants located in the binding sequence were flagged (Price et al., 2013). The

genetic variants might affect probe-binding efficiency and thereby the detected methylation

signals. In addition, CpG sites that themselves contained a SNP were flagged since in

that case the obtained signal is likely predominantly derived from the SNP rather than

the methylation state (Dedeurwaerder et al., 2013). In Section 4.2, the stability of the

identified methylation-BMI associations to the SNPs in the probe or in the CpG was

investigated.

To reduce the non-biological variability between observations, data were normalized. For

gene expression data, well-established normalization methods such as quantile normal-

ization (QN) exist (Bolstad et al., 2003, Irizarry et al., 2003) (see Appendix A.1.1 for

algorithm). However, re-evaluation of normalization strategies was necessary for methyla-

tion data, since these differ considerably from gene expression data in their data structure,

and QN on methylation β-values does not show a good performance (Touleimat and Tost,

2012). Several competing normalization methods for DNA methylation data were pro-

posed (Dedeurwaerder et al., 2011, Maksimovic et al., 2012, Touleimat and Tost, 2012,

Teschendorff et al., 2013, Pidsley et al., 2013). Some of these strategies, including QN

on the raw signal intensities (Pidsley et al., 2013) and beta-mixture quantile normaliza-

tion (BMIQ) (Teschendorff et al., 2013), outperformed the others in terms of reduction of

technical variation and subsequent detection of true signals (Marabita et al., 2013, Pidsley

et al., 2013). Both methods performed similarly well in KORA using the criteria proposed

by Pidsley et al. (2013), with the former performing slightly better. Therefore, QN on

the raw signal intensities was chosen to normalize the KORA data. Precisely, QN was

stratified to six probe categories based probe type and color channel (i.e., Infinium I sig-

nals from beads targeting methylated CpG sites obtained through the red and the green

color channels, Infinium I signals from beads targeting unmethylated CpG sites obtained

through the red and the green color channels, and Infinium II signals obtained through the

red and the green color channels, see Bibikova et al. (2011)) using the R package limma,

version 3.16.5 (Smyth, 2005).

Data normalization may partly reduce technical effects, but might not fully do so (Marabita

et al., 2013). Thus, another novel strategy was applied to avoid plate effects as well as
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other technical effects in the methylation data (Lehne et al., personal communication).

The method is based on the 235 positive control probes that are present on every single

position of the Infinium HumanMethylation450K BeadChip and serve as a quality control

for different data preparation and measurement steps. Based on the assumption that the

control probe intensities differ purely due to technical influences rather than biological

differences of the samples, principal components (PCs, see Section 3.4.1) of the control

probes are thought to capture the technical variability in the experiment. Including the

first 20 control probe PCs as covariates in the model considerably removed technical biases

(Lehne et al., pesonal communication). Therefore, the first 20 control probe PCs were

included as covariates in all models involving DNA methylation data in this thesis (see

also Section 3.3.2 for covariates).

3.1.3 Gene expression data

Sample quality control and imputation of missing values was performed with GenomeStu-

dioTM, version 2010.1. Thereby, 4 samples with less than 6000 detected probes (detection

p-value > 0.01) were excluded, leaving 993 KORA F4 subjects in the data set.

Data were quantile normalized using the R package lumi, version 2.8.0 (Du et al., 2008).

Quantile normalization (QN) achieves identity of the feature distributions of all observa-

tions (see Appendix A.1.1 for algorithm, Bolstad et al. (2003)). Although this method

has the strong assumption that quantile values, including the tails, are equal across all

subjects, it seems to work well for gene expression data (Bolstad et al., 2003).

For gene expression data, no control probes were available. A simple alternative was cho-

sen, namely the inclusion of known technical factors as a covariate in the statistical models.

For the KORA data, assignment to one of 30 amplification plates, sample storage time

between blood sampling and RNA isolation, and RNA integrity number were important

technical aspects explaining a large proportion of variability in the gene expression data

(Schurmann et al., 2012).

3.1.4 Metabolomics data

Metabolon platform

Technical effects were controlled for by dividing the metabolite concentration values by

the median value of samples measured on the same day for each metabolite. In addition,

outlier values of > 4 standard deviations from the mean of the respective metabolite on

the log10 scale were set to missing. Finally, 81 metabolites (42 identified, 39 unidentified)

with more than 50% missing values were excluded, and 5 observations with more than

20% missings, leaving a total of 1763 observations of 436 metabolites (283 identified, 153

unidentified) for analysis.
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NMR platform

Preprocessing of NMR data was similar to Metabolon data in terms of outlier exclusion

and detection rate thresholds. None of the metabolite traits had more than 50% missing

values. 4 observations with more than 20% missings were excluded from the data set,

leaving a total of 1784 observations for analysis.

Combined analysis of the Metabolon and NMR metabolomics platforms in

KORA

For 1658 KORA F4 subjects, both Metabolon and NMR data were available. They were

combined in a multi-platform approach in Section 4.3. Data from different metabolomics

platforms have been jointly analyzed before, and selected ratios of two metabolites deter-

mined on different platforms have provided a disease-related readout (Suhre et al., 2010).

The Metabolon and NMR data are based on different underlying techniques with different

characteristics (Vinayavekhin et al., 2010, Issaq et al., 2009). Whereas MS-based tech-

nology (Metabolon) is more sensitive and requires a small sample volume, it is usually

coupled to chromatographic separation, which often requires derivatization of metabo-

lites, preventing sample re-use. In contrast, NMR is nondestructive and also outperforms

MS-based technology in terms of its reproducibility: NMR is less susceptible to technical

effects due to less complex sample preparation and measurement steps as compared to MS

(Suhre and Gieger, 2012). Since both platforms also differ in covered metabolite spectrum,

their combined usage has been recommended (Suhre and Gieger, 2012).

20 metabolites were covered by both techniques, comprising amino acids, two fatty acids,

total serum cholesterol, 3-hydroxybutyrat, glycerol, citrate, creatinine, lactate, pyruvate

and urea. For these, the cross-platform correlations were explored. The median Pearson

correlation coefficient was 0.72, ranging from 0.19 (linoleate) to 0.91 (3-hydroxybutyrate),

and being above 0.45 for all metabolites but linoleate. Disentangling the reasons behind

the low correlation observed for linoleate is not the objective of this thesis, however,

results concerning linoleate should be interpreted with care. [M] and [N] is added to

the metabolites in this work to indicate measurement on the Metabolon and the NMR

platform, respectively. Metabolites of both platforms were assigned to super-pathways

and sub-pathways in accordance with the pathways proposed by Metabolon on the basis

of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (Appendix Table A.5).

Biocrates platform (VID study)

To determine measurement stability, the coefficient of variation of repeatedly measured

reference plasma metabolite concentrations was defined as standard deviation divided by

mean metabolite concentration. 31 metabolites showing impaired measurement stability

(coefficient of variation > 0.25 on any plate), or with >95% observations having zero

concentration, were excluded, leaving 132 metabolites for analysis.
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Slightly different quality control criteria were used for the analysis of TCF7L2 genotype

presented in Section 4.1.3. These are described in detail in the corresponding publication

(Then et al., 2013).

Measurements took place on 9 plates, with 5 reference plasma samples measured repeatedly

on each plate. This enabled the usage of the geometric ratio-based method to correct for

plate effects (Luo et al., 2010). For each metabolite j,j = 1, . . . , p, values were multiplied

with a plate-specific correction factor derived through

1. computing the geometric means of reference sample values on each plate k, denoted

as gjk,

2. computing the geometric mean of all means gjk, denoted as gj ,

3. deriving the plate-specific correction factor as fjk =
gj
gjk

, and

4. multiplying all values of metabolite j on plate k with fjk.

This method has shown good performance when applied to gene expression data in the

evaluation by Luo et al. (2010), although another investigation by Chen et al. (2011) has

found it to be outperformed by more sophisticated methods. However, since it is based

on reference samples rather than on biological samples, the geometric ratio-based method

might perform specifically well when technical and biological variation are indistinguish-

able (Chen et al., 2011). This was the case in this thesis, where biologically distinct groups

of samples (i.e., from obese and non-obese subjects, as in the Obeldicks study in Section

4.4, or from different challenge time points, as in the VID study in Section 4.1) were not

randomly assigned to the plates.

Biocrates platform (Obeldicks study)

Quality control of the Obeldicks data was conducted in a slightly different way. Three

criteria for measurement reliability were used:

(1) The concentration of the metabolite should be above the limit of detection specified

by the manufacturer in≥ 60% of the samples, since values below the limit of detection

might represent non-reliable signals.

(2) The Pearson’s correlation coefficient of the metabolite concentrations in the 43 re-

peatedly measured samples should be ≥ 0.5, since lower correlations might point

towards large technical variability.

(3) On each batch, the coefficient of variation for the metabolite concentration in a

reference sample that was measured five times on each batch should be ≤ 0.2, to

ensure measurement stability.
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33 Metabolites that failed to meet at least two of these criteria were excluded from the anal-

ysis. The majority of these were also characterized by concentrations below or marginally

above the limit of detection.

Data were then normalized using the geometric ratio-based method, based on the 43

samples measured repeatedly in both batches.

3.1.5 Phenotype data

For all analyses of the KORA F4 data, subjects were excluded that had a fasting duration

of less than 8 h. For the study in Section 4.2, one subject with BMI>50 kg/m2 was

excluded. For Section 4.3, 5 subjects with outlying values in body weight change, defined

as values outside mean ± 5 standard deviations, were excluded. In addition, in Sections

4.2 and 4.4, few subjects with missing information in relevant phenotypes were excluded

(see Section 3.2 below for details on missing value handling).

3.2 Missing data handling

3.2.1 The problem

The majority of statistical methods, including those applied in this thesis, require a com-

plete data matrix. However, missing values occur frequently in omics data. They arise

from technical reasons, from the exclusion of unreliable signals during quality control, or

from the unavailability of biosamples. Dependent on the origin of the missing values, they

might be categorized into three groups (Little and Rubin, 2002, Raessler et al., 2008):

� Missing completely at random (MCAR): Their missingness is completely independent

of the missing values themselves or any other values in the data set. This applies to

values missing for purely technical reasons, e.g. missings in methylation data when not

enough DNA has bound to the beads on the methylation chip to determine a reliable

methylated or unmethylated signal.

� Missing at random (MAR): Their missingness might depend on observed data, but

not on the missing values themselves, i.e. these values are missing randomly, given the

observed data. This applies to values missing from the systematic unavailability of

biosamples for a specified subset of subjects.

� Missing not at random (MNAR): Their missingness might depend on the missing values

themselves, even given the observed data. This applies to values that were set to missing

for being smaller than the detection limit of a laboratory machine. Note, however, that

sufficient correlation with other variables can render their missingness MAR, since their

missingness might then to a large degree be explainable by observed values.
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This categorization, together with the extent of missingness in the data set, fundamentally

determines how missing values should be handled. If missings are rare, and most observa-

tions are complete, and/or missings are MCAR, and univariate models are pursued, simple

approaches such as complete-case analysis (where each molecular feature is modeled us-

ing the available observations only) and single imputation (where a single complete data

set is generated by filling up the missing values through mean imputation or regression

techniques) might be acceptable (and even favored for computational reasons). This was

the case in the majority of the projects in this thesis, where complete-case analysis (Sec-

tions 4.2 and 4.4) or single imputation (Section 4.1) were applied. Specifically, in Section

4.4, children were excluded that had missing values in waist circumference, which was

only determined in a random part of participating children. These missing values were

considered MCAR, and despite potential loss of efficiency when applying the multivariate

LASSO approach, complete-case analysis was chosen to avoid the problem of applying

LASSO within the context of more complex missing data handling methods.

With an increasing number of missing values, complete-case analysis becomes inefficient

(or impossible), specifically in multivariate analyses, where only complete observations

can be included. Even more, if MCAR is not given (which is the case for the Metabolon

and NMR metabolomics data analyzed in Section 4.3), both complete-case analysis and

mean imputation can be associated with serious bias in the estimated effects and p-values

(Little and Rubin, 2002). More sophisticated single imputation approaches are also likely

invalid, since standard analyses on a single imputed data set underestimate the variance

of estimates since they ignore the uncertainty of the imputed values (Little and Rubin,

2002, Raessler et al., 2008).

3.2.2 Multiple imputation

A solution to this problem is multiple imputation, which has first been introduced by

(Rubin, 1978). It provides valid results if the MAR assumption is plausible, and might

give a good approximation in MNAR situations (Raessler et al., 2008). It involves three

steps (van Buuren et al., 1999):

1. Imputation: Repeated application of single imputation to generate multiple (M)

imputed data sets. This can be achieved through Multiple imputation by chained

equations (MICE) (van Buuren et al., 1999, Raghunathan et al., 2001, van Buuren,

2007); see Appendix A.1.2 for algorithm.

2. Complete-data analysis on each imputed data set.

3. Combination of the analysis results from theM data sets, thereby taking into account

the uncertainty that is due to imputation of missing values and which is reflected in

the variability of the multiply imputed values; see Appendix A.1.2 for combination

rules by Rubin (1987).
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Description of missingness and correlation structure in the data set

Multiple imputation using MICE was applied to the Metabolon and NMR metabolomics

data in Section 4.3. Prior to analysis, missingness was closely examined. Of the data set

comprising 1631 observations of 582 variables (27 phenotypes, 436 Metabolon metabolites

and 119 NMR metabolites after removal of metabolic traits representing sums, differences

or ratios), 7.2% entries were missing. The median number of missing entries among the

observations was 40 (6.9%), ranging from 11 (1.9%) to 83 (13.3%). Phenotypes had at

most 8 (0.5%) missing values. Of the Metabolon metabolites, 19 (4.4%) were completely

observed, while among the remaining 417 metabolites, 23 had more than 40% missing

values. The median number of missing observations was 25 (1.5%), ranging from 0 to 815

(50.0%). Of the NMR variables, 7 (5.9%) were completely observed. The median number

of missing entries was 6 (0.4%), ranging from 0 to 517 (32.3%). The overall missingness

pattern was unstructured (Figure 3.2), indicating that missingness did not co-occur in

Figure 3.2: Missingness pattern in the metabolomics data set. Plot of missingness indi-
cators (black, observed; light yellow, missing) for the 582 variables against the 1631 observations,
both sorted by percentage of missing values.
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large blocks of variables, which is beneficial to the imputation process in that for the

missing values of a specific variable, values of correlated variables have been observed and

can be used to improve imputation of the missing values.

For the 184 variables (177 Metabolon and 7 NMR metabolites) with more than 5% miss-

ing entries, more detailed descriptive analyses were performed. First, correlation of these

variables with all other variables was visualized in heatmaps to get an impression of how

much information for their imputation could be borrowed from other variables (example

for correlation of the 7 NMR metabolites with all NMR metabolites is shown in Figure

3.3A). Since few categorical (phenotypic) variables were included in the data set, Kendall’s

rank correlation coefficients τ were used. Each of the 184 variables showed absolute cor-

relation of |τ |> 0.1 with at least one other variable in the data set (exactly one for the

Metabolon metabolites leucylleucine, thymol sulfate and X-12443, and up to 187 for 1-

palmitoylglycerol). On the other hand, 561 of the 582 variables in the data set provided

information for at least one of the 184 variables. The strongest correlations were observed

within rather than between the two metabolomics platforms.

Second, to explore the MAR assumption, correlation heatmaps of missingness indicators

of the 184 variables with values of all variables were drawn (example for correlation of the

7 NMR metabolites with all NMR metabolites is shown in Figure 3.3B). Specifically for 4

NMR metabolites, XXL VLDL P, XXL VLDL PL, XXL VLDL L and XXL VLDL TG,

missingness showed strong negative and positive correlations with VLDL (up to τ = −0.52)

and HDL (up to τ = 0.31) metabolites, respectively. Missingness of Metabolon metabolites

showed less pronounced correlations with variable values.

Together, these descriptive insights showed that the degree of missingness in the

metabolomics data set was moderate, that the MCAR assumption was unlikely, whereas

the MAR assumption was satisfied due to the strong interrelatedness of the variables.

Thus, multiple imputation was chosen as an appropriate solution.

Imputation settings

Prior to imputation, the distribution of the continous variables was investigated. Raw,

natural log transformed, cubic root and square root transformed variables were tested

for normality using Shapiro-Wilk tests. The transformation that showed the smallest

deviation from normality was chosen, and also kept for all subsequent statistical analyses.

350, 123 and 49 variables were log, cubic root and square root transformed, respectively,

and 16 variables were not transformed.

Data were imputed with the R package mice, version 2.21 (van Buuren and Groothuis-

Oudshoorn, 2011). Both Bayesian linear regression and predictive mean matching (PMM)

were used to impute continuous variables (see Appendix A.1.2). Specifically, although

PMM might be preferable to Bayesian linear regression for being more robust, it might
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Figure 3.3: Correlation among variables and missingness. A Kendall’s correlation between
the 7 NMR variables with more than 5% missing values against all NMR variables. B Kendall’s
correlation between the missingness indicators (0, observed; 1, missing) of the 7 NMR variables
with more than 5% missing values against all NMR variables. White, |τ |< 0.15; red, τ ≥ 0.15;
blue, τ ≤ 0.15.
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have undesirable properties in the case of MAR or MNAR values arising from values below

the detection limit (i.e., actually plausible low values will be imputed with higher values).

Thus, PMM was only applied to the phenotypes and to two metabolites (XXL VLDL P

and X-12544) showing strongly asymmetric distributions even after transformation,

whereas Bayesian linear regression was applied to the remaining metabolites. To avoid

the occurence of negative metabolite values generated through Bayesian linear regression,

the squeeze function was used as a postprocessing step wherever variables were not

log-transformed. Dichotomous and categorical variables were imputed using logistic and

generalized logistic regression, respectively.

Covariates for the imputation models were chosen according to the recommendations de-

scribed in Appendix A.1.2. Specifically, auxiliary variables were included as covariates if

they correlated with the value or missingness of incomplete variables at |τ |> 0.1 and were

observed for at least 20% of the subjects missing the incomplete variable. The number of

auxiliary variables was restricted to 30. Unidentified Metabolon metabolites (see Section

2.1.7) were only imputed, if they represented auxiliary variables for identified variables,

or for unidentified auxiliary variables. After imputation, unidentified metabolites were

removed from the data set.

Imputation diagnostics

20 imputed data sets were generated with 10 iterations each, which ensured convergence of

the imputation algorithm sufficiently for all variables. Example plots are shown in Figure

3.4 for XXL VLDL P [N] (32.3% missing values) and and 1,7-dimethylurate [M] (42.7%

missing values). At 20 imputations, relative efficiency (RE, see Appendix A.1.2) was above

0.97 for all analyses. Distributions of imputed and observed values of each variable were

compared by means of kernel density plots, revealing, as expected, by trend lower imputed

than observed values for a number of metabolites (extreme example 1,7-dimethylurate [M]

in Figure 3.5).

Combination of single imputation estimates

Where appropriate, i.e. for combination of linear regression estimates, Rubin’s rules were

applied (see Appendix A.1.2, Rubin (1987)). To cluster metabolites, WGCNA was applied

to each imputed data set. Since clustering solutions differed only marginally, a single

clustering solution from one imputed data set was chosen. As an ad hoc solution, the

clustering solution that assigned the majority of metabolites to a module, leaving the

lowest number of metabolites unassigned, was chosen. All subsequent models involving

the module eigengenes were again combined using Rubin’s rules.
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Figure 3.4: Convergence of the MICE algorithm for two selected variables. Plotted
is mean (left) and variance (right) of imputed values for each of 5 imputation chains across 100
iterations, exemplarily for two variables with large numbers of missing values.
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for the first five imputations.
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3.3 Univariate data analysis

3.3.1 Modeling the relation between a phenotype and a matrix of molec-

ular variables

In this thesis, univariate screening for associations between molecular features and a spe-

cific phenotype/state was frequently performed as a key explorative step.

The linear regression model

The linear regression model was most frequently applied (in Sections 4.2 to 4.4). It is

given as

y = Xβ + ε = η + ε, ε ∼
(
0, σ2In

)
,

where y = (y1, y2, . . . , yn) denotes an n× 1 continuous response vector corresponding to n

independent observations, X an n×(p+1) covariate matrix, β = (β0, β1, . . . , βp) a (p+1)×1

vector of unknown regression coefficients (including an intercept), η the linear predictor,

and ε an n× 1 error term with the common variance σ2 (Fahrmeir et al., 2013, Faraway,

2002) (see details on estimation of the parameters β and σ2 and hypothesis testing in

Appendix A.1.3). Note that p is used to abbreviate both the number of covariates and

the p-value in this thesis.

In Section 4.3, interactions between covariates were included in the linear predictor in

order to perform subgroup analyses. Specifically, the basis model

yi = β0 + β1∆BWi + β2sexi + β3agei + β4BWbaseline,i + εi

was extended to incoporate a subgroup indicator Subi = I(subject i outside subgroup)

(where the subgroup was consecutively specified as weight gain/weight loss, obese (BMI

> 30) /non-obese, central obese (waist-hip ratio (WHR) > 1 in males and > 0.85 in

females)/not central obese, male/female, and age > 55/≤ 55 years) and its interaction

with the remaining covariates:

yi = β0 + β1∆BWi + β2sexi + β3agei + β4BWbaseline,i + β5Subi

+β6Subi ∆BWi + β7Subi sexi + β8Subi agei + β9SubiBWbaseline,i + εi.

The main effects β1 to β4 were then interpreted as effects of the respective covariates within

the subgroup, whereas the interaction effects β6 to β9 reflect the difference in covariate

effects between the groups of subjects outside vs. within the subgroup.
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The linear mixed-effects model (LME)

To study the effect of different challenges on metabolite concentrations in the VID study

(Section 4.1), the linear model could not be used. Due to multiple measurements per sub-

ject, the assumption of independent observations with uncorrelated error terms εi would

have been violated. The linear mixed-effects model allows for correlation among the obser-

vations of a subject by explicitly modeling subject-specific effects. A simple representation

is (Fahrmeir et al., 2013):

yi = Xiβ + Zibi + εi, i = 1, . . . , ni, with

bi ∼ N (0,D)

εi ∼ N
(
0, σ2Ini

)
,

where

yi the ni × 1 vector of the response at ni measurements of subject i

Xi a ni × (p+ 1) matrix of covariates for subject i including an intercept

Zi a ni × q matrix of covariates for subject i including an intercept

bi a q × 1 vector of subject-specific effects

εi the ni × 1 vector of error terms corresponding to subject i.

Specifically, in Section 4.1, a random intercept model was fitted, where q = 1, so Zi = 1ni

and bi is a scalar with scalar variance d2. It assumes that all measurement corresponding

to a subject i have a subject-specific response level, which is expressed as the random

intercept bi that adds to the global intercept β0. The model assumes that all measure-

ments corresponding to a subject i show the same correlation with each other (Fahrmeir

et al., 2013). Estimation, testing and parameter interpretation are very similar as for the

linear model described above. More details, for instance on restricted maximum likelihood

estimation of the variance components, can be found in Fahrmeir et al. (2013).

Random intercept LMEs were fitted using the R package nlme, version 3.1-103 (Laird

and Ware, 1982). Prior to analysis, best-fitting random effects were determined using the

Akaike information criterion, and random intercept was consequently used in all models.

Separate models were fitted for each of the four metabolic challenges (see Section 2.2.3).

The specific model formulation was (for each of the 132 metabolites):

yij = β0 +β1I(tj = 1)+β2I(tj = 2)+β3BMIi+β4Agei+β5I(Genotypei = AA)+ bi0 + εij ,

where tj represents the time point with baseline as reference (see Figure 2.1 for an explana-

tion of the two post-challenge timepoint for each challenge), yij the scaled log-transformed

concentration of the respective metabolite for subject i at timepoint tj , and I(·) the indi-

cator function.

The effect of challenge on metabolite concentration was investigated by testing the two



42 3 Statistical methods

linear hypotheses with t tests: β1 = 0 and β2 − β1 = 0, referring to the challenge ef-

fect between baseline and the first post-challenge time point, and between the first and

second post-challenge time point, respectively. Similarly, challenge-induced changes in

clinical traits were investigated, including all time points for which measurements were

available (Figure 2.1). To assess genotype effects on challenge response of metabolites or

clinical traits, interactions between time points and genotype were added to the LMEs,

additionally including interactions of BMI and age with time point to adjust for BMI or

age effects on challenge response. Genotype main and interaction effects of these models

were interpreted as genotype effect on baseline concentrations and on challenge response,

respectively.

The logistic regression model

Finally, in the case of binary responses, such as disease status (Sections 4.2 and 4.3) or

weight loss success (Section 4.4), logistic regression was used (Fahrmeir et al., 2013). See

Appendix A.1.4 for model formulation.

3.3.2 The choice of covariates

The appropriate choice of covariates in the above described models was given particular

attention in this thesis. When the association between a response variable and an inde-

pendent variable is studied, additional covariates need to be correctly specified (1) to to

ensure that model assumptions are met, (2) to reduce the “noise” in the response variable,

thereby increasing the power to detect true associations with the independent variable of

interest, and (3) to avoid confounding of the investigated association.

Prior knowledge on variables that relate to both response and the independent variable

of interest, as well as knowledge on the direction of these associations is crucial for an

appropriate choice of covariates (Hernán et al., 2002). Here, the definition of confounders

and colliders comes into play.

Confounders can be defined as variables that represent a common cause of response and

independent variable (Greenland and Morgenstern, 2001). It is widely acknowledged that

confounders need to be adjusted for (e.g., by including them as covariates in the model) to

avoid spurious false associations between response and independent variable. The problem

is visualized in Figure 3.6A. An example is a model with a specific age-related metabolite

as response, BMI as independent variable, and age as confounder, where age is known to

have an effect on BMI. If age is not included in the model, the metabolite would be found

to be associated with BMI due to their common association with age. Note that in some

instances, it might be reasonable also to include variables that might be on the causal

path between independent variable and response (i.e., potential mediators) as covariates

to abolish indirect effects.
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Figure 3.6: Confounder versus collider. A Missing adjustment for a confounder can cause
spurious associations between variables X and Y. B Adjustment for a collider can cause spurious
associations between variables X and Y.

Associations with genetic variants are least prone to confounding, since alleles of a genetic

variant are inherited randomly and should not be affected by phenotypes. However, there

are few exceptions. These include population stratification, which refers to the situation

where confounding occurs through an admixture of subpopulations that differ in both their

allele frequencies and in the phenotype (Ziegler and König, 2010).

Particularly challenging confounders for methylation and expression data analysis from

whole blood samples are the proportions of blood cells. Whole blood is a heterogeneous

mixture of different cell types that differ strongly in DNA methylation and expression of

specific genes (Houseman et al., 2012, Reinius et al., 2012, Zhu et al., 2012). At the same

time, phenotypes and diseases might be associated with changes in blood cell proportions.

Evidence for an effect of body mass on blood cell proportions is given by Bellows et al.

(2011) and Trottier et al. (2012). Thus, cell proportions are potentially strong confounders

of methylation (or gene expression) - phenotype relationships that need to be accounted for

(Jaffe and Irizarry, 2014). Since cell type measurements were not available for the KORA

data in Section 4.2, proportions of selected cell types (i.e., granulocytes, monocytes, B cells,

CD4+ T cells, CD8+ T cells and natural killer cells) were estimated using the procedure

proposed by Houseman et al. (2012). This is a two-step projection procedure where in the

first step, the 500 most cell type-specific CpG sites are determined from pure cell data,

and in the second step this information is used to infer cell proportions from the target

whole blood data (i.e., KORA). The obtained estimates of the six cell proportions were
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included as covariates when modeling the methylation data. A slightly different approach

was used for the gene expression data analysis in Section 4.3. Transcripts associated with

specific relevant cell types, that is, reticulocytes and basophils, were obtained (Whitney

et al., 2003) and subjected to PCA (see Section 3.4.1). The resulting PCs were used as

covariates in the model of interest.

Colliders are variables that represent a common consequence of response and independent

variable (Janszky et al., 2010, Cole et al., 2010). Conditioning on a collider, e.g. by

including it as a covariate in the model, can cause spurious associations even in absence

of a true association between response and the independent variable of interest (Figure

3.6B). An example is given with a specific methylation site as response, which is involved in

inflammation (say, methylation is positively associated with CRP levels) but not related

to body weight, and BMI (which causes CRP levels to rise, Fall et al. (2013)) as the

independent variable. If CRP is included as a covariate in the model, a spurious negative

association between methylation and BMI might results. This is due to the fact that given

high CRP levels and high methylation levels, large BMI is less likely to be the reason for

the high CRP levels than if methylation levels had been lower.

Thus, it is important to know potential confounders and colliders of a specific research

question before model building. Specifically for omics data, associated factors are just

beginning to be understood, and even more basic is the knowledge on the causal relations

(see Section 3.5 below). Thus, to abolish confounding while avoiding the inclusion of a

collider, it might be a good approach to start with a sparse model comprising only few

covariates, and potentially include more covariates in additional models. If the inclusion

of covariates diminishes the association between a molecular features and a phenotype,

confounding may have been present. If it profoundly strengthens their association, or

indicates an association that was not present without these covariates, the covariates

might have been colliders and the association should not be trusted.

The specific covariates included in models in this thesis are given in the respective sections

in Chapter 4.

3.3.3 Violation of the distribution assumption

The models described in Section 3.3.1 are parametric models, which might be loosely

translated to “models with a distribution assumption”. Specifically, the linear and linear

mixed-effects models assume a normally distributed error term, which is equivalent to

assuming a normally distributed response conditioning on the covariates:

ε ∼ N
(
0, σ2In

)
y = Xβ + ε ∼ N

(
Xβ, σ2In

)
.



3.3 Univariate data analysis 45

Both omics data and phenotypic traits were not always normally distributed. Phenotypes

often assumed a right-skewed distribution, as did metabolite concentrations and transcript

levels. Methylation values represent proportions that are defined on the unit interval (0, 1)

(Bibikova et al., 2011) and do not show a normal distribution (Wahl et al., 2014). Three

different strategies were applied in this thesis to address this issue.

Response transformation

As a simple remedy to achieve at least approximate normality and ensure the applicabil-

ity of simple parametric models, the response variable was frequently transformed. Gene

expression data in Sections 4.2 and 4.3 were log2-transformed, Biocrates metabolite con-

centrations in Section 4.1 were natural log-transformed, as were clinical trait levels in

Sections 4.2 and 4.3. For Metabolon and NMR metabolite concentrations in Section 4.3,

the transformation achieving the smallest deviation from normality was chosen for each

metabolite (compare Section 3.2.2).

Robust effect estimation

An alternative solution is to use more robust approaches. Ordinal regression (Harrell, Jr.,

2006) was applied in Section 4.1 to assess differences in baseline characteristics between

genotype groups, and rank correlation (Kendall, 1938) was applied to the Metabolon and

NMR metabolomics data in Section 4.3 to investigate missingness (see Section 3.2.2).

Permutation tests

A third option that was frequently applied in this thesis is the use of a standard parametric

model followed by a non-parametric test such as a permutation test. The idea behind

permutation tests is that the distribution of a test statistic obtained from fitting the model

to B permuted data sets with a randomly shuffled response vector resembles its distribution

under the null hypothesis that there is no effect (Moore et al., 2003, Knijnenburg et al.,

2009, Radmacher et al., 2002). The proportion of resampling folds where the test statistic

θ
(b)
perm is at least as extreme as the observed test statistic θ̂obs in the original data can

therefore be interpreted as a p-value:

p-value =
1

B

B∑
b=1

I(|θ(b)perm|≥ |θ̂obs|).

Note that permutation tests are computationally intensive, and that the number B of

required permutations increases with the required resolution of the p-value (and conse-

quently, with the number of tests performed, see Section 3.3.4 on multiple testing) (Kni-

jnenburg et al., 2009). A solution can be to normal approximate the null distribution of

the test statistic, and then to derive the p-value in a parametric way.
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Figure 3.7: Dis-
tribution of the
response variable
“BMI-SDS change
during interven-
tion” (∆BMI-SDS)
in the Obeldicks
study. A Histogram.
B Normal quantile-
quantile plot. The
distribution is not
normal according to
Shapiro-Wilk test
(p-value = 0.0019).
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A permutation test with B = 10, 000 permutations was applied in the VID study (Section

4.1), where the response variable ∆BMI-SDS by design did not follow a normal distri-

bution, since only children with a substantial BMI-SDS reduction, and children without

BMI-SDS reduction, were included in the study (Figure 3.7). Permutation testing was

also applied several times in this thesis to determine the significance of test statistics the

distribution of which is not known. These include the measure of predictive performance

of the LASSO model, Q2, in Section 4.4 (see Section 3.4.2 for the statistical method), and

the inter- and intra-module connectivity measures in Section 4.3 (see Section 3.4.1 for the

statistical method). In Section 4.2, a permutation test with normal approximation was

used in the context of correlation analysis of average methylation signals of 187 CpG sites

between different tissues. In that analysis, independence of the “observations” (i.e., CpG

sites) is not necessarily given, so the conditions for standard inference are not met. Finally,

permutation tests were applied within the context of enrichment analyses in Sections 4.1,

4.2 and 4.3 (see Section 3.5 for methodology).

Bootstrap

In Section 4.2, non-parametric bootstrap was chosen as a mode of inference, which is also

based upon resampling. In contrast to permutation testing, observations are sampled as

a whole, traditionally with replacement to obtain bootstrap samples of size n. Bootstrap

p-values for H0: θ = 0 can be derived as follows, according to the guidelines by Hall and

Wilson (1991):

� Estimate θ̂obs from the observed data.

� Generate B bootstrap samples. In each sample, estimate θ(b).

� Define p-value = 1
B

∑B
b=1 I(|θ(b) − θ̂obs|≥ |θ̂obs|). Alternatively, normal approximate

the null distribution of |θ(b) − θ̂obs|.

Specifically, bootstrap p-values were obtained to assess significance of the part of the

association between BMI and a clinical trait that was explained by a CpG site (or several
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CpG sites), i.e., the“indirect”effect. First, to determine“total”and“direct”(i.e., remaining

after adjustment for CpG(s)) association of BMI and trait, two linear/logistic regression

models were fitted in the case of continuous/binary traits: Clinical trait was modeled as

a function of BMI and discovery covariates (Section 4.2), without and with CpG(s) as

additional covariate(s), respectively. BMI effect on clinical trait estimated in both models

was defined as β̂total and β̂direct, and indirect effect as β̂indirect = β̂total − β̂direct. Then,

H0: βindirect = 0 was tested, using the bootstrap procedure described above with normal

approximation, after a very good normal distribution fit of |β(b)indirect−β̂indirect| was observed

at B = 10, 000.

A potential upward bias in the estimation of βindirect using all CpGs was anticipated, arising

from the fact that βdirect was estimated in a model including 187 additional covariates.

Thus, 187 additional covariates were also added in the other model as randomly permuted

CpGs. Subsequently, β
(b)
total was estimated from this model and the average 1

B

∑
β
(b)
indirect

across all bootstrap samples was compared to β̂indirect. Bias was negligible.

3.3.4 Multiple testing

With the high dimensionality of omics data comes the challenge of multiple hypothesis test-

ing. The larger the number of tests (i.e., of molecular features) p, the larger becomes the

probability of false discoveries. Assume that for each molecular feature j, j = 1, 2, . . . , p,

a null hypothesis Hj is tested and rejected at pj < α, where α is commonly chosen as 0.05

in single-test scenarios. Then the probability of a false rejection would be

P (any false rejection) = 1− P (no false rejection) = 1−
p∏
j=1

P (Hj not falsely rejected)

= 1−
p∏
j=1

(1− α) = 1− (1− α)p,

which assumes values above 0.5 from p ≥ 14.

In this thesis, two different correction procedures were applied to avoid this problem:

the Bonferroni procedure (Sections 4.2 and 4.3) and the Benjamini-Hochberg procedure

(Benjamini and Hochberg (1995), Sections 4.1 and 4.4). The Bonferroni procedure controls

the family-wise error rate (FWER), i.e. the probability of any false rejection, whereas the

Benjamini-Hochberg procedure controls the false discovery rate (FDR), i.e. the expected

proportion of false rejections (Dudoit et al., 2003). See Appendix A.1.5 for details.

3.3.5 Power calculation

The power of a statistical model is defined as the probability of detecting a true effect

(Walters, 2004). Power is tightly interrelated with the sample size n, the significance level
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α, and the effect size. For simple statistical methods, such as the standard t test, analytical

formula exist to determine the power of a model at a given n, α = 0.05 and effect size.

As models become more complex, as in the case of Section 4.1, where the power for

identifying an interaction effect in an LME is wanted, analytical power formula are difficult

to derive, and bootstrap methods might be used instead (Efron and Tibshirani, 1994,

Walters, 2004). B = 10, 000 bootstrap samples (Section 3.3.3) were drawn stratified

by genotype, the model of interest is fitted to each bootstrap sample and a p-value p(b)

determined. Then, power was determined as 1
B

∑B
b=1 I(|p(b)|< α∗), where α∗ represents

the significance level of interest (e.g., α/p in the case of Bonferroni adjustment, see Section

3.3.4). In addition, the sample size needed in a future study to achieve a power of 80%,

given that the observed effects were true effects, was calculated. Therefore, the procedure

described above was repeated with increasing sample size, and the sample size, for which

the estimated power for a given significance threshold exceeded 80%, was recorded.

3.3.6 Meta-analysis and external validation

In Section 4.2, results from several independent cohorts were combined to increase the

power to detect small BMI-methylation effects. Results of discovery, replication and down-

stream analyses were combined by meta-analysis. Generally, fixed-effects and random-

effects meta-analyses are distinguished (see Appendix A.1.6 for details). The former

assumes a common true effect underlying all studies, an assumption that implies that

studies are similar in phenotypic and technical characteristics (Borenstein et al., 2010).

This assumption was assessed in Section 4.2 by means of the heterogeneity measures Q

and I2 (Borenstein et al., 2010, Higgins and Thompson, 2002). Sufficient homogene-

ity was observed for all meta-analyses (after genomic control), so fixed-effects meta-

analyses were used. All meta-analyses were conducted using METAL, version 2011-03-25

(http://www.sph.umich.edu/csg/abecasis/Metal/).

For the epigenome-wide discovery step in Section 4.2, genomic control was applied to

both p-values of the individual studies and the meta-analysis to account for population

structure within and between the studies. Genomic control was developed for genome-

wide association testing of SNPs to control for an inflated magnitude and variability of

test statistics (associated with an increased number of false positives), termed genomic

inflation, that results e.g. from the presence of population stratification (Devlin et al.,

2001). The genomic inflation factor λ is derived as

λ = median
j=1,...,p

(
1− χ2

1 (pj)

1− χ2
1 (0.5)

)
,

where pj denotes the individual p-values across p methylation sites, and χ2
1 the quantile

of the χ2 distribution with one degree of freedom. λ is a robust estimate for genomic

inflation, since – assuming that the majority of sites does not associate with the phenotype

http://www.sph.umich.edu/csg/abecasis/Metal/
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of interest – the p-value distribution should be approximately uniform on [0,1] and thus

centered around 0.5. Thus λ > 1 indicates deflation of p-values, i.e. inflation of test

statistics. If λ > 1, genomic control can be achieved through

pj,GC = P

(
X2 >

χ2
1 (pj)

λ

)
,

where pj,GC are the corrected p-values and X2 a random χ2
1 distributed variable.

Besides meta-analysis, it has become common practice in genome-wide studies to confirm

the results obtained from an initial meta-analysis in a replication stage, i.e. to perform

external validation of the identified associations. The need for validation has arisen from

the observation that several initially reported GWAS findings failed to be replicated, and

that inconsistency of effect sizes between studies led to the overestimation of effect sizes

in most initial investigations (”winner’s curse” phenomenon) (Ioannidis, 2007). In Section

4.2, a two-stage approach was applied, where significant findings from the discovery stage

where put forward to replication, and associations reaching p < 0.05 in the replication

stage and p < 10−7 in a joint meta-analysis of both discovery and replication cohorts

where declared significant.

3.4 Multivariate data analysis

In the context of this thesis, the term multivariate analysis is used to refer to statistical

approaches that simultaneously model a large number of molecular features. Unsupervised

and supervised multivariate strategies can be distinguished. Unsupervised strategies are

aimed at describing the relations among the features, without considering the phenotype,

and to potentially reduce dimension of the feature matrix, whereas supervised strategies

intend to describe the relation of the features with the phenotype. More specifically, their

aim is to predict the phenotype (as the response) based on the features (Hastie et al.,

2009).

3.4.1 Unsupervised statistical approaches

Principal component analysis (PCA)

PCA aims to reduce dimensionality by transforming the p features into orthogonal prin-

cipal components (PCs) resembling linear combinations of the features and successively

explaining maximum variance in the data (Jolliffe, 2002) (See Appendix A.1.7 for details).

Depending on the data, the first few principal components explain a large proportion of

the variance, so dimension is reduced by focusing on the first few principal components

without great loss of information. PCA was frequently applied in this thesis, e.g. within

the context of adjustment for technical confounding via control probe PCs (see Section

3.1.2 for method, Section 4.2 for application), for cell type confounding (see Section 3.3.2



50 3 Statistical methods

for problem, Section 4.3 for application), and within the context of WGCNA to summarize

the signal of feature modules (see below for method, Section 4.3 for application).

Cluster analysis

To group features according to their similarity among the observations, cluster analysis

was applied in different applications in this thesis.

As a prerequisite, the similarity, or dissimilarity, between features needs to be defined.

Frequently chosen definitions are the Euclidean distance, and dissimilarity measures based

on correlations between features. The Euclidean distance between two n×1 feature vectors

xj and xl is defined as

d(xj ,xl) = ||xj − xl||=

√√√√ n∑
i=1

|xij − xil|2.

It can be extended to cluster time trajectories of features xj·· (Genolini et al., 2013), i.e.

n × T matrices of concentrations of features j and l, observed for n subjects at T time

points:

d(xj··,xl··) =

√√√√ n∑
i=1

T∑
t=1

|xijt − xilt|2.

Furthermore, correlation-based dissimilarity measures can be defined that do not require

the features to be on the same scale, e.g.:

d(xj ,xl) =
1− cor (xj ,xl)

2
= 1− 1 + cor (xj ,xl)

2
= 1− sjl, (3.1)

where cor(·) corresponds to Pearson’s correlation coefficient. Within the context of

WGCNA (see below), another improved correlation-based dissimilarity measure is

proposed (Zhang and Horvath, 2005).

Two clustering concepts can be distinguished, which were both applied in this thesis: K-

means clustering and hierarchical clustering (Hastie et al., 2009) (see Appendix A.1.8 for

definition). The former aims to assign all features to a pre-specified number of K clusters.

The latter does not achieve a hard grouping of features into a pre-specified number of

clusters, but rather generates a hierarchical tree of features based on similarity, which can

potentially be followed by tree cutting to obtain defined clusters.

In Section 4.1, K-means clustering with the longitudinal Euclidean distance measure was

applied in order to cluster 132 investigated metabolites according to similar challenge-

induced concentration changes rather than similar concentrations per se. The imple-

mentation in the R package kml3d, version 2.1, was used (Genolini et al., 2013). Prior

to clustering, log-transformed metabolite concentrations were mean-centered and scaled
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across all time points, and differences between adjacent time points within each challenge

(IVGTT/EH clamp, OGTT, OLTT, and HFHC meal, see Section 2.2.3) were used as basis

for the clustering, yielding T = 8 challenge responses. In kml3d, missing values were im-

puted using the copyMean method described by Genolini and Falissard (2011). To choose

the optimal number of clusters, three criteria were considered, all of which are measures of

the similarity within the clusters in relation to the similarity between clusters: the Calinski

& Harabasz, the Ray & Turi and the Davies & Bouldin criteria (Appendix A.1.8). Since

superiority of any of these criteria above the others is controversially discussed, the three

criteria were fused (Kryszczuk and Hurley, 2010). To make them comparable, negative

values of the Ray & Turi and Davies & Bouldin criteria were used and all criteria were

min–max normalized to a [0, 1] range. Kryszczuk and Hurley (2010) showed the best ac-

curacy for a decision-level fusion method, DF-A, where the fused criterion is defined as the

arithmetic mean of the optimal number of clusters according to each of the criteria. They

did not, however, consider the case of repeated runs yielding multiple clustering solutions

per cluster number. Therefore, two methods were applied to find the optimal cluster num-

ber, first, a modified decision-level method, where first, for each number of clusters the

“best” clustering solution was selected according to the Calinsky and Harabasz criterion,

subsequently, the DF-A method was applied on the resulting nine partitions and finally,

the partition with the largest fused criterion was chosen as the optimal partition. As a

sensitivity analysis, the score fusion-based method SF-A was applied, where the arith-

metic mean of the three normalized criteria was calculated for each of the 9,000 clustering

solutions and the solution with the largest arithmetic mean was selected. Both meth-

ods identified very similar optimal clustering solutions, and partitions identified by the

decision-based method are reported.

Hierarchical clustering was applied in Sections 4.2 and 4.4 mainly for visualization pur-

poses. In Section 4.2, clinical phenotypes were clustered based on their association with

methylation at selected CpG sites using the R package gplots, version 2.13.0 (Warnes

et al., 2014). The Euclidean distance was used to define distance between pairs of traits,

and cluster distance was defined through complete linkage (see Appendix A.1.8). In Sec-

tion 4.4, a matrix of pairwise Pearson’s correlation coefficients of selected metabolites was

subjected to agglomerative hierarchical clustering using the R package Heatplus, version

2.1.0 (Ploner, 2011). Distance between pairs of metabolites was defined as the Pearson’s

correlation-based distance, and cluster distance was defined through complete linkage.

Weighted gene co-expression network analysis (WGCNA)

Within the context of gene expression data, a framework for clustering features, and poten-

tially visualize them as a correlation network, has been introduced by Zhang and Horvath

(2005) and termed weighted gene co-expression network analysis or weighted correlation

network analysis (WGCNA). Although the method was developed for gene expression
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data, it has been successfully applied to metabolomics data (see e.g., Zhang et al. (2013)).

Zhang and Horvath (2005) propose to define dissimilarity between two features xj and xl

using the topological overlap dissimilarity measure, i.e. a measure of the interconnectedness

of features:

dωjl = 1− ωjl = 1−
∑

u=1,...,p ajuaul + ajl

min(cj , cl) + 1− ajl
,

where ajl is the adjacency between xj and xl defined as

ajl = |sjl|λ= |1 + cor (xj ,xl)

2
|λ,

with sjl the correlation-based similarity as described in Equation 3.1, and cj the connec-

tivity of feature j defined as

cj =
∑

u=1,...,p

aju.

Clustering based on the topological overlap measure was shown in an application example

to give rise to more distinct modules than the standard correlation-based dissimilarity

measure (Zhang and Horvath, 2005).

It is recommended to choose the tuning parameter λ such that the scale-free topology

criterion is satified. Scale-free topology of a network is given when the connectivity c

of the features follows the power law p(c) ∼ c−γ , which is approximately given for most

biological networks (Jeong et al., 2000) and can therefore be used as a plausibility/quality

criterion for constructed networks. The scale-free topology criterion implies

log(p(c)) = log(c−λ) = −λlog(c) ⇔ cor (log(p(c)), log(c)) = −1.

Thus, Zhang and Horvath (2005) propose to choose λ such that the signed squared corre-

lation

signed R2 = (−1) · sign
(

log(p(c))

log(c)

)
cor2 (log(p(c)), log(c))

is close to 1. In practice, a trade-off exists between scale-free topology and mean connec-

tivity: the larger λ, the larger R2 tends to be (although no monotonic relationship exists),

but the smaller becomes the mean connectivity of the features, which is undesirable for

cluster formation (Zhang and Horvath, 2005). Thus, it is proposed to chose the smallest

λ meeting a minimum R2 threshold such as 0.85 (see Figure 3.8 for the application in this

thesis).

The matrix
(
dωjl

)
can subsequently be subjected to e.g., hierarchical clustering. Clear-

cut clusters (also referred to as network modules) can be simply obtained by cutting the

tree at a specified height. Alternatively, a dynamic tree cutting algorithm can be used

(Langfelder et al., 2008).

To obtain a representative summary signal from each module, Horvath and Dong (2008)
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Figure 3.8: Choice of
the scale-free topol-
ogy parameter λ in
weighted correla-
tion network anal-
ysis (WGCNA). A
Metabolomics data. B
Gene expression data.
The smallest λ (13 and 8,
respectively) with R2 ≥
0.85 was chosen.

show that a sensible measure is the first principal component of a PCA on the scaled matrix

of features of the respective module k, X(k). This is equivalent with determining the first

eigengene from a singular value decomposition of X(k). Thus, MEk is used to denote the

module eigengene (ME) of module k (Langfelder and Horvath, 2008). Subsequently, a

measure of module membership strength can be derived for each feature of a module k as

c
(k)
j = cor (xj ,MEk) ,

and intramodular connectivity can subsequently be defined as the average c
(k)
j across all

module members j.

In Section 4.3, WGCNA was performed to cluster metabolites and transcripts, using the

R package WGCNA, version 1.34 (Langfelder and Horvath, 2008). The 411 identified

metabolites (281 from the Metabolon platform and 130 from the NMR platform) were

jointly subjected to WGCNA. For WGCNA on transcriptomics data, the intention was to

keep the focus on genes relevant for blood metabolism. Therefore, transcripts were pre-

selected prior to clustering based on their association with metabolite concentrations. Prior

to modeling, log2-transformed transcriptomics data were adjusted for the three technical

variables RNA integrity number, amplification plate indicator as well as sample storage

time (see Section 3.1.3 and Schurmann et al. (2012)). This was achieved by modeling

transcript levels as a function of these variables to obtain the model residuals for use

as “adjusted transcript levels” in subsequent analyses. Association between transcripts

and metabolites was then determined using univariate linear models with transformed

metabolite as response (see Section 3.2), and adjusted transcript as covariate, adjusting

for age and sex, and a linear model additionally adjusted for BW and ∆BW to avoid

the selection of transcripts related to metabolites due to their common association with

these variables (see Section 3.3.2 on confounders and colliders). 2537 transcripts with at

least a suggestive association (p < 10−5) in both models where selected for WGCNA.
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Figure 3.9: Weighted
correlation network
analysis (WGCNA)
cluster dendrograms.
Metabolomics data and
gene expression data were
clustered into 8 and 19
modules, respectively.
Grey color represents
features showing a low
connectivity that are not
assigned to a cluster.
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Soft-thresholding powers of λ = 13 (metabolite network) and 8 (transcript network) were

chosen (Figure 3.8). Figure 3.9 visualizes the cluster dendrograms derived from hierarchical

clustering of the features based on topological overlap dissimilarity, with distance between

clusters defined through average linkage (Appendix A.1.8). Modules obtained through

dynamic tree cutting, followed by merging closely correlated modules at a dendrogram

height of 0.25, are visualized as colors.

Relationships between modules and phenotypes/disease were determined by modeling the

association of the ME’s with external information. Relationships among modules, i.e.

inter-module connectivity (within and between the metabolite and gene expression net-

works), were determined through Pearson’s correlation between the respective ME’s. The

effect of ∆BW status (i.e., weight gain versus weight loss) on inter-module connectivity

were studied using permutation testing (Section 3.3.3), defining the test statistic as differ-

ence in inter-module connectivity, and shuffling weight change status randomly 105 times.

Similarly, the effect on intra-module connectivity was investigated.
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3.4.2 Supervised statistical approaches

The p >> n problem

In Section 4.4, the aim is to form a predictive model of weight loss during intervention.

Since the number of features p = 144 exceeds the number of observations n = 80, and in

addition, features (metabolites) show strong correlation wiht each other, standard methods

to model weight loss as a function of all features, such as multiple linear regression, fail

(Hastie and Tibshirani, 2004, Hastie et al., 2009). Consider the definition of the least

squares estimate β̂ in Appendix Equation A.2. The rank of the n× (p+ 1) matrix X is

rg(X) = rg(XT ) ≤ min(n, p+ 1) = n,

and of the (p+ 1)× (p+ 1) matrix XTX

rg(XTX) ≤ min(rg(XT ), rg(X)) = n.

Thus, XTX does not have full rank and is therefore not invertible, so the least squares

solution does not exist. Or rather, an infinite number of perfect solutions to the least

squares criterion exists. In addition, if the features are strongly correlated, multicollinear-

ity can occur even in p < n scenarios. In that case, XTX might be close to singular and

the parameter estimation becomes instable (Faraway, 2002).

Methods that cope with the p >> n scenario can be categorized into approaches based on

(1) explicit variable selection (univariate or multivariate), (2) dimension reduction (e.g.,

PC regression or Partial Least Squares (PLS) regression, as applied in Wahl et al. (2012))

and (3) methods handling a high number of variables directly (Boulesteix et al., 2008).

The latter include (a) regularization methods (b) ensemble methods (Hastie et al., 2009).

In Section 4.4, a regularized regression method, the least absolute shrinkage and selection

operator (LASSO) was chosen, which was considered specifically elegant since it combined

regularization with internal variable selection, achieving also a good interpretation of the

coefficients of the selected variables as effect strengths (Hastie et al., 2009). The R package

glmnet, version 1.7.3, was used (Friedman et al., 2010).

The least absolute shrinkage and selection operator (LASSO)

In LASSO regression, a regularization term is added to the least squares criterion (Equa-

tion A.1) that penalizes large coefficients (in absolute terms):

β̂
LASSO

= arg min
β

εT ε+ λ

p∑
j=1

|βj |,
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Figure 3.10: Visualization of the
LASSO estimation (adopted from
Tibshirani (1996)). Solid grey area,
constraint region |β1|+|β2|≤ t; ellipses,
contours of the residual sum of squares;
β̂, full least squares estimate.

●
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where λ is the penalization parameter. The minimization problem can also be written as

β̂
LASSO

= arg min
β

εT ε, subject to

p∑
j=1

|βj |≤ t.

The penalization yields coefficient estimates shrunken towards zero, dependent on the size

of λ, thereby allowing for a solution of the minimization problem even in the p >> n case.

There is no closed form for β̂
LASSO

as there is for the least squares estimate, but efficient

algorithms are available for computing the coefficient paths β̂
LASSO

(λ) (Tibshirani, 1996).

A specific property of LASSO is the intrinsic variable selection: The most informative

features are selected into the model, whereas the coefficients of the remaining features are

shrunken to exactly zero. Why this is the case might be understood when looking at the

visualization of the LASSO minimization problem in the p = 2 scenario in Figure 3.10

(Tibshirani, 1996, Hastie et al., 2009). The residual sum of squares has elliptical contours,

with the full least squares estimate β̂ in the center. The constraint region resembles a

diamond (|β1|+|β2|≤ t). Minimizing the residual sum of squares under this constraint

means finding the first point where the elliptical contours hit the constraint region. This

might occur at a corner of the constrain region, resulting in setting one parameter, here

β2, to exactly zero.

Model validation and performance assessment

To assess the predictive performance of a multivariate statistical approach, different mea-

sures are available. In the situation with a continuous response, as in Section 4.4, an

appropriate measure is the equivalent to the coefficient of determination in linear regres-

sion, i.e. 1 minus the residual sum of squares divided by the total sum of squares:

R2 = 1−
∑n

i=1 (yi − ŷi)2∑n
i=1 (yi − ȳ)2

,

where yi represents the observed response for subject i, ŷi the response predicted from the

model (in the case of LASSO: ŷi = xTi β̂
LASSO

), and ȳ the average observed response. In
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metabolomics applications, the terms R2 and Q2 are frequently use to distinguish the mea-

sures evaluated on the data used for model fitting and on independent data, respectively

(Broadhurst and Kell, 2006). Importantly, R2 and Q2 cannot, unlike in unregularized

regression, be interpreted as the percentage of total variance of the response variable ex-

plained by the model. Still, they might serve as goodness-of fit measures with respect to

the fit of the present data and to the prediction of independent data, respectively.

Model performance should not (only) be evaluated in the data involved in the model fitting,

since these would (1) overestimate model performance and (2) favor complex models that

fit the data at hand extremely well but perform poorly on independent data. This issue is

referred to as overfitting. Thus, independent data are required. This applies to two steps

during model building and validation:

� Step 1: Appropriate tuning of the model hyperparameter(s): The tuning

parameter(s) of a model (e.g., λ or t in the case of LASSO) control(s) the tradeoff

between complexity/variance and sparseness/smoothness/bias. Strong penalization of

the coefficient estimates (e.g., large values of λ; small values of t) yields a sparse model

(with few selected features) that might underfit the data and have a large bias (e.g.,

a smaller accuracy in the data set). On the other hand, weak penalization yields a

complex model that might overfit the data and have a larger variance. For more details

on the bias-variance tradeoff see Hastie et al. (2009). During parameter tuning, the

hyperparameter(s) is/are chosen that optimize(s) model performance (with regard to a

certain criterion such as Q2) in independent data.

� Step 2: Model evaluation: The data on which the model is evaluated must be

completely blind to all previous model fitting and validation steps in order to obtain

an unbiased estimate of predictive model performance (Dupuy and Simon, 2007, Varma

and Simon, 2006).

When large data sets are available, data might be divided into a training data set, to

which the model is fitted, a validation data set in which model performance is determined

according to different hyperparameter values chosen during model fit, and a test data set, in

which the final model is evaluated (Hastie et al., 2009). Very often, as in Section 4.4, large

data sets are not available for omics data, since measurement is costly, and biosamples

might be rare. Thus, strategies for efficient data re-use might be applied (Hastie et al.,

2009, Boulesteix et al., 2008). These include cross-validation (CV), where (1) the data

set is split into k non-overlapping folds (e.g., k = 10 might be chosen, Ambroise and

McLachlan (2002)), (2) model fitting is iteratively performed in all folds but one left-out

fold, and (3) model performance is then assessed in this left-out fold, which serves as

validation data in this step. Finally, model performance is averaged across all folds.

In Section 4.4, CV was used for both parameter tuning (step 1) and model evaluation

(step 2) (Figure 3.11). This was achieved by using a nested CV procedure, where the
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hyperparameter λ was tuned in the inner CV loop and predictive performance estimated

in the outer CV loop (Varma and Simon, 2006). The procedure was repeated 10 times

to increase stability (Braga-Neto and Dougherty, 2004). Finally, the significance of the

estimated model performance was assessed using permutation tests (Radmacher et al.,

2002) with 10,000 permutations (see Section 3.3.3 for permutation tests).

Data set (n = 80) 

Outer training set 

Split randomly into kouter = 10 subsets: 

Test  

set 1. Outer CV step: 

Split randomly into kinner = 8 subsets: 

Inner training set 
Test  

set 
1. Inner CV step: 

Inner CV: Parameter tuning 

 

In each inner CV step:  

Do with a grid of 100 different values of the tuning 

parameter λ: 

• Fit lasso model to inner training set 

• Predict outcome for inner test set using this model 

 Predicted 𝑦 (λ) for whole outer training set (n‘ = 70) 

 

Parameter tuning: 

Calculate Q2(λ𝑗), j = 1,…,100 

 Optimal tuning parameter that achieves the best 

predictive performance in this loop: λ∗ = 𝑎𝑟𝑔m𝑎𝑥
λ𝑗

(Q2(λ𝑗))  

Inner training set 
Test  

set 

Inner training set 
Test  

set 

… 

Inner training set 
Test  

set 

2. Inner CV step: 

3. Inner CV step: 

8. Inner CV step: 

Outer training set 
Test  

set 
2. Outer CV step: 

Outer training set 
Test  

set 10. Outer CV step: 

… 

Outer CV: Prediction accuracy and final model 

 

In each outer CV step:  

• Fit lasso model to full outer training set using 

respective λ* obtained from inner CV 

• Predict outcome for outer test set using this model 

 Predicted 𝑦  for whole data set  

 

Predictive performance: 

Q2 = 1 - 
 (𝑦𝑖−𝑦 𝑖)

2
𝑖

 (𝑦𝑖−𝑦 )2𝑖

 

… 
… 

Outer training set 
Test  

set 
3. Outer CV step: 

… 

Randomly repeat outer CV loop ktimes = 10 times: 

Final measures 

• Final λopt: most frequently chosen λ*  

• Final coefficients: obtained by fitting LASSO model 

to whole data set using λopt as tuning parameter 

• Variable stability: frequency with which a variable 

has been selected in the 10x10 outer CV steps 

• Average 𝑄 2 

Permutation test to assess significance 

Do for 1,…,10000: 

• Draw a random permutation of the outcome vector y 

• Repeat the complete repeated nested CV procedure 

described above 

 Permutation p-value for predictive performance: 

         p-value = 
1

10,000
# 𝑄 2

𝑝𝑒𝑟𝑚 ≥ 𝑄 2  

Figure 3.11: Repeated nested cross-validation and permutation scheme.
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3.5 Extracting biological knowledge and integrating omics

data

3.5.1 Enrichment analysis

It is plausible to believe that if a phenotype, disease or state is associated with changes in

biological processes, then this should be reflected by a change in more than one molecular

feature (although this depends on the coverage of the omics data). Thus, potentially

long lists of association signals might be analyzed for enrichment/overrepresentation of

features in known biological pathways (external knowledge), in clusters of features defined

through data-driven methods such as cluster analysis (Section 3.4.1) or graphical models

(Section 3.5.3), in genomic locations (e.g., location to CpG islands, location in/near genes,

or location with regard to functional features) or in sites previously associated with some

other trait.

A simple test of enrichment is Fisher’s exact test (Fisher, 1922). Imagine that of p fea-

tures, the numbers of significant/non-significant features, and of features belonging/not

belonging to a certain pathway are given in Table 3.1.

Table 3.1: Fisher’s exact test for pathway enrichment.

# Signif. associated fea-
tures

# Not associated fea-
tures

Total

# Features in pathway k R− k R
# Features not in pathway C − k p− C −R+ k p−R
Total C p− C p

Then, the probability of observing this matrix given the row and column sums and assum-

ing the null hypothesis “no enrichment” is given by the hypergeometric distribution:

P (X = k) =

(
R

k

)(
p−R
C − k

)
(

p

C

) .

Thus, a parametric enrichment p-value, i.e. the probability of observing a matrix “as

extreme” as the one observed given the null hypothesis, can be obtained by adding the

probabilities of the matrices with an even smaller probability.

This test is the basis of the majority of enrichment analyses in Section 4.2, including en-

richment of the identified CpG sites in specific genomic locations and functional features

provided by Illumina (Bibikova et al., 2011) and downloaded from the UCSC database

(Ram et al., 2011), as well as pathway enrichment using the gene set enrichment analysis

(GSEA) MSigDB platform (http://www.broadinstitute.org/gsea/msigdb). Fisher’s

http://www.broadinstitute.org/gsea/msigdb
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exact test also underlies the core analysis module of the commercial Ingenuity Path-

way Analysis (IPA) software tool, applied in Section 4.3, where a test for enrichment

of genes in biological pathways from the Ingenuity Konwledge Base is performed (see

http://www.ingenuity.com). Analyses were conduced with IPA build version 308606M;

content version 18488943; release date 2014-03-23. The reference set of features was de-

fined as genes represented on the Illumina HumanHT-12 v3 BeadChip, and only human

annotations were considered. In case multiple probes mapped to one gene, the probe ex-

hibiting the largest module membership was considered. Finally, Fisher’ exact test is the

basis of the enrichment analysis for gene ontology (GO) terms performed in Section 4.3 us-

ing the R packages GO.db, version 2.9.0, AnnotationDbi, version 1.22.6, and org.Hs.eg.db,

version 2.9.0.

Fisher’s exact test is based on a significance threshold that dichotomizes features into “as-

sociated” versus “not associated”. Tests taking into account the ranking or the test statis-

tics of the features might be more powerful. An example is weighted enrichment analysis

as applied by Krumsiek et al. (2012b). For each cluster (or pathway) c an enrichment

statistic Sc is defined as the weighted sum of (absolute) test statistics across all features

belonging to that cluster. A permutation test can be conducted to determine significance

by randomly permuting assignment of the features to the cluster, determining S
(b)
c in each

permutation b, b = 1, 2, . . . , B and obtaining a p-value as 1
B

∑B
b=1 I

(
S
(b)
c ≥ Sc

)
.

This procedure was applied in Section 4.1 with B = 107 permutations to determine enrich-

ment of associations in data-driven metabolite clusters. It was further applied in Section

4.3 with B = 105 to determine enrichment of co-clustering metabolites, weighted by their

module membership strengths (see Section 3.4.1) in pre-specified metabolite super- and

sub-pathways. A permutation test also underlies the enrichment analysis for genes pre-

viously published in GWAS on different traits, using Meta-Analysis Gene-set Enrichment

of variaNT Associations (MAGENTA, http://www.broadinstitute.org/mpg/magenta,

(Segrè et al., 2010)) in Section 4.2. Of note, permutation tests are more appropriate than

Fisher’s exact test when analyzing enrichment specifically for methylation data, where the

latter might induce bias due to differences in the coverage of different genes and genomic

locations by the measured CpGs. This was demonstrated for GO enrichment analysis

recently (Geeleher et al., 2013). Consequently, the enrichment results based on Fisher’s

exact test in Section 4.2 should be interpreted with care.

3.5.2 Causal inference

A major issue with the observational studies in this thesis is that it is not known, which

of two associated variables is the cause and which is the consequence, or whether both

variables are common effects of a (possibly unknown) confounder (Didelez and Sheehan,

2007). Longitudinal studies help to elucidate temporal relationships, which are a prereq-

uisite but not a sufficient condition for causality (Hill, 1965). In randomized controlled

http://www.ingenuity.com
http://www.broadinstitute.org/mpg/magenta
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trials, subjects are randomly assigned to the treatment groups, so the relation between

treatment and effect is unconfounded. However, ethical or technical reasons very often

prohibit the conduction of randomized controlled trials. For instance, it is not possible to

modify DNA methylation in humans in order to investigate its effect on BMI.

In an approach called Mendelian randomization (MR), data on genetic variation is uti-

lized to infer causality (Smith and Ebrahim, 2003, Didelez and Sheehan, 2007, Bochud

and Rousson, 2010). It relies on the fact that the alleles of a genetic variant are inherited

randomly from parents to offspring. Thus, the relation of a genetic variant with a pheno-

type should not be confounded (neglecting e.g. the case of population stratification). The

principle of MR, which goes back to the more general concept of instrumental variable

estimation, is visualized in Figure 3.12, where X and Y correspond to a molecular fea-

ture - phenotype pair for which an association has been observed, and Z corresponds to

the instrument(al) variable, i.e. the genetic variant (or a score of several genetic variants)

known to affect X. If the effect of X on Y is causal and the study has enough power, Z

should also associate with Y . If it does not, the hypothesis of a causal relation might be

rejected (Didelez and Sheehan, 2007).

Y X 

Z 

postulated 

U 

Pheno CpG 

SNP 

postulated 

U 

A 

B 

Pheno CpG 

SNP 

postulated 

U 

CpG causal CpG consequential 

Figure 3.12: Mendelian Randomization (MR). A General setup: Z represents a genetic
variant (score) that serves as an instrumental variable to estimate the causal effect of X on Y.
B Application example of a two-directional MR approach: The causal effect of methylation at a
specific CpG site on a phenotype (Pheno) can be estimated using single nucleotide polymorphisms
(SNPs) known to affect methylation. Vice verse, the causal effect of the phenotype on methylation
can be estimated.

An ad hoc MR approach

Thus, an ad hoc “MR” approach is to compare the observed association of Z and Y with

the association predicted from the product of the observed effect sizes between Z and X as
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well as X and Y . This approach was developed to explore causality of BMI-methylation

associations in Section 4.2.

For the causal direction (CpG (X) causal to BMI (Y ), Figure 3.12B left-hand side), for

each CpG the strongest associated cis-SNP (≤1 Mb distance) was used as instrument

Z. Consequently, linear models were used to assess the associations between Z and X

as well as X and Y , adjusted for the discovery covariates of this study (see Section 4.2).

To increase power, SNP (Z)-BMI (Y ) associations were retrieved from a large GWAS

previously published by the GIANT consortium (n > 100,000, Speliotes et al. (2010)).

Effect sizes and standard errors for the predicted association between Z and Y were

derived as follows:

βpred = βZX · βXY , and

SEpred =
√

SE2
ZX · SE2

XY + SE2
ZX · β2XY + SE2

XY · β2ZX .

Inverse normal transformed BMI was used to make results consistent with those of Spe-

liotes et al. (2010).

For the consequential direction (CpG (Y ) consequential to BMI (X), Figure 3.12B right-

hand side), Z was defined as genomic risk score (GRS) Z =
∑

k wkZk, k = 1, . . . , 31, i.e.

the sum of expected risk alleles Zk from the 31 SNPs previously reported to associate with

BMI (Speliotes et al., 2010) (32 less one SNP, rs7359397, which showed an association with

one of the CpGs independent of BMI), weighted with wk, the effect sizes derived from the

same publication. Both observed and predicted Z-Y associations were determined from

the available data, similar as described for the causal direction above.

Evidence for causality was declared when the observed effect was significant and had the

same direction as the predicted effect. This approach does not attempt to assess the

conditions underlying MR, and does not provide an actual estimation of the causal effects.

Therefore, it was complemented by a more formal MR approach.

A formal MR approach

In a more formal MR approach, the causal (part of the) effect of X on Y was estimated

using a two-stage least squares (TSLS) approach:

X = β0X + βXZ + εX ⇒ X̂(Z) = β̂0X + β̂XZ

Y = β0Y + βY X̂(Z) + εY .

It can be shown that the MR estimate (β̂Y ) is an approximately unbiased estimate of the

causal effect (Bochud and Rousson, 2010). This approach can be extended to include sev-

eral genetic variants Z1, Z2, . . ., or a GRS (Palmer et al., 2012). Also, known confounders

can easily be incorporated as additional covariates. Tests of the null hypothesis βY = 0
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can be based on the asymptotic normality of βY .

This MR approach is subject to several limitations. First, the MR estimate is biased in

finite samples, with the relative bias (relative to the bias of the one-stage least squares

estimate) being inversely proportional to the coefficient of determination R2 of the step

1 model: bias(MR)
bias(LS) ≈

K
nR2 , where n is the sample size and K the number of instruments.

Thus, if Z explains only little of the variance in X, bias is introduced. A rule of thumb is

that an F statistic of less than 10 indicates a weak instrument, since F = R2/K
(1−R2)/(n−K−1)

is approximately inversely proportional to bias(MR)
bias(LS) and thus, relative bias is approximately

10% when F = 10 (Bound et al., 1995, Staiger and Stock, 1997, Palmer et al., 2012). Since

SNP effects are typically small for common diseases and phenotypes, resulting in low R2

values, MR studies intending to estimate the association between a phenotype X and a

molecular feature Y require very large sample sizes to avoid weak instrument bias.

Second, instrumental variables need to meet three core conditions (Didelez and Sheehan,

2007):

(1) Z 6⊥ X, i.e. Z must be associated with X,

(2) Z ⊥ Y |(X,U), i.e. Y must be independent from Z conditionally on X and any

(un)observed confounders U , that is, Y is only affected by Z through X, and

(3) Z ⊥ U , i.e. Z must be independent of U .

Conditions (2) and (3) require that no genetic variants that are in linkage disequilibrium

with Z are associated with Y and U , respectively, that no population stratification is

present, and that the genetic variant does not have pleiotropic effects, i.e. effects on several

phenotypes associated with Y or U . More conditions and assumptions are discussed by

Didelez and Sheehan (2007) and Bochud and Rousson (2010). Note that conditions (2)

and (3) are not possible to be tested directly, due to the fact that U is unknown.

Application of the TSLS approach to methylation data

In Section 4.2, TSLS was applied to determine the causal part of the observed methylation-

BMI associations. Within the EWAS discovery cohorts, SNP data from five (sub-)cohorts

(three EpiMigrant cohorts based on three different genotyping platforms, KORA F4 and

KORA F3) were available.

Prior to MR, genetic confounding, i.e. confounding of the methylation-BMI association by

known BMI SNPs (Speliotes et al., 2010), was explored using linear models with and with-

out adjustment for each SNP. None of the associations were subject to genetic confouding.

Next, for the causal direction (CpG (X) causal to BMI (Y ), Figure 3.12B left-hand side),

the same SNPs were used as described for the ad hoc approach above. Prior to TSLS, the

assumption Z ⊥ Y |X was tested as a surrogate for Z ⊥ Y |(X,U) using an equivalence test
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with the null hypothesis “no independence” (Z 6⊥ Y |X) as proposed by (Millstein et al.,

2009). Precisely, the following algorithm was used with z, x and y representing vectors

of observed values of Z, X, and Y , and C being a matrix of covariates:

1. Fit the model x = β0x + zβzx + CβCx + εx, permute εx randomly to obtain ε
(b)
x ,

b = 1, . . . , B, then define x(b) = β̂0x + zβ̂zx + Cβ̂Cx + ε
(b)
x using the estimated

parameters.

2. For b = 1, . . . , B, fit the model y = β0y + x(b)βxy + zβzy + CβCy + εy and compute

the F statistic F (b) for the test with H0: βzy = 0.

3. Obtain degrees of freedom df1 and df2 and compute non-centrality param-

eter λ = F (b)df1(df2−2)
df2

− df1, then transform F (b) to normally distributed

U (b) = ψ−1
(
P (F < F (b))

)
, where F represents an Fdf1,df2,λ distributed random

variable. Then, U (b) is normally distributed with mean 0 and standard deviation

derived empirically from the distribution of the U (b), b = 1, . . . , B.

4. Determine p-value for H0: βSNP (βzy) 6= 0 as the probability of observing U given

its null distribution derived above.

Results from the five cohorts were meta-analyzed using a z-score based fixed-effects meta-

analysis. 69 CpGs had a combined p-value below 0.05/184 (Bonferroni) and were subse-

quently submitted to MR analysis.

To avoid weak instrument bias (see above, Palmer et al. (2012)), in each single cohort

only CpGs with an F statistic above 10 for the test for the SNP-CpG association were

submitted to TSLS. Since single cohorts were small, F < 10 was frequently observed and

only 52 CpGs could be analyzed in TSLS in at least one cohort. TSLS was performed

using the function ivreg from the R package AER, version 1.2-2 (Kleiber and Zeileis, 2008).

Were results from more than one cohort were available, they were meta-analyzed using a

z-score based fixed-effects meta-analysis.

For the consequential direction (CpG (Y ) consequential to BMI (X), Figure 3.12B right-

hand side), Z was defined as GRS as described above for the ad hoc approach, with

the difference that only SNPs with a significant result in the equivalence test (H0: βSNP

(βzy) 6= 0 rejected) were included in the GRS. In addition, only cohorts with F > 10

were considered. For 134 of the 187 CpGs, at least one study met instrument strength

requirements.

3.5.3 Graphical models

To understand the interrelationship of feature modules defined through WGCNA in Section

4.3, Gaussian graphical models were applied.

In Gaussian graphical models, pairwise partial correlations between the features (here:

module eigengenes, see Section 3.4.1) are visualized as connective edges between nodes
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representing the features. The partial correlation coefficient between two variables Xj and

Xk is defined as their correlation, conditioned on all other variables. It can be computed

as the standard Pearson correlation coefficient between the residuals of the regression of

Xj on the remaining variables X−(j,k) and the residuals of Xk on X−(j,k). In case of a

full-ranked Pearson correlation matrix Σ, the matrix Z of partial correlations ζjk can be

derived in a single matrix inversion step (Lauritzen, 1996, Krumsiek et al., 2011):

Z =
(
ζjk

)
=

(
−

ωjk√
ωjjωkk

)
, with

(
ωjk

)
= Σ−1.

Krumsiek et al. (2011) and Krumsiek et al. (2012a) provide solid proof that graphical

models based on partial correlations of metabolite concentrations indeed recover metabolic

pathway reactions.

Sex, age, body weight and previous weight change (∆BW) were included as covariates.

Since multicollinearity among the MEs might result in spurious negative partial correla-

tions (see collider problem described in Section 3.3.2), pairwise marginal correlation (i.e.

Pearson’s correlation, uncorrected for any other variables) was required to have the same

sign for a network edge to be drawn, and partial correlation was cut at the magnitude of

marginal correlation prior to network formation.

3.6 Software

The majority of statistical analyses was performed using R (R Core Team, 2013). Specifi-

cally, versions 2.14.2 and 2.15.1 were used to preprocess and analyze the VID data (Section

4.1), version 3.0.1 was used to preprocess and analyze the DNA methylation data in Sec-

tion 4.2 and the metabolomics and transcriptomics data in Section 4.3. Version 2.14.2 was

used to analyze the Obeldicks data (Section 4.4).





4 Results and Discussion

4.1 Characterization of obesity and type 2 diabetes risk loci

by metabolic challenge tests

As described in Section 1.2.1, obesity has a large heritable component. The fat mass and

obesity associated (FTO) gene constitutes the strongest obesity risk locus identified so far.

It accounts for approximately 25% of the variability in BMI explained by the variants

identified in the most recent GWAS (Speliotes et al., 2010). For type 2 diabetes (T2D),

the strongest genetic risk in Caucasians is conferred by variants in the transcription factor

7-like 2 (TCF7L2) locus (Morris et al., 2012).

The mechanisms behind the increased disease risk associated with FTO and TCF7L2

remain largely unknown. For TCF7L2 SNPs, an effect on insulin secretion was observed

(Lyssenko et al., 2007), whereas FTO might act through an effect on food intake (Tung

and Yeo, 2011). Metabolic challenge tests show promise in revealing early metabolic

dysregulation associated with risk genotypes that are not observed in the fasting state

(see Section 1.2.4, van Ommen et al. (2009)). They might give rise to new hypotheses

concerning the mechanisms underlying disease risk associated with genetic variants.

The aim of this study was to provide a comprehensive comparison of the plasma

metabolomics response to five different challenges in healthy men (Figure 4.1). This was

then used as a basis for studying the feasibility of these challenge tests for the identification

of genotype-challenge interactions, using the examples of FTO and TCF7L2.

The results reported in this section are part of the publications
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Figure 4.1: Virtual institute diabetes (VID): Study design and analysis strategy. De-
tails on recruitment and challenge tests are given in Section 2.2. Color coding of statistical methods:
yellow, data preprocessing and quality control (Section 3.1); red, univariate data analysis (Section
3.3); violet, multivariate data analysis (Section 3.4); blue, extraction of biological knowledge (Sec-
tion 3.5). EH clamp, euglycemic-hyperinsulinemic clamp; FTO, fat mass and obesity associated ;
HFHC meal, high-fat high-carbohydrate meal; IVGTT, intravenous glucose tolerance test; LME,
linear mixed-effects model; OGTT, oral glucose tolerance test; OLTT, oral lipid tolerance test;
TCF7L2, transcription factor 7-like 2.
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4.1.1 Metabolic challenge response

The study population comprised 25 FTO risk allele carriers, 22 TCF7L2 risk allele carriers

and 31 subjects carrying none of the risk alleles (Figure 4.1). After an initial screen for

genotype effects, FTO effects were found to be marginal. Slightly stronger TCF7L2 effects

were observed (see below). Therefore, the 31 non-risk allele carriers and the 25 FTO risk

allele carriers, but not the 22 TCF7L2 risk allele carriers were included in the general

investigation of metabolic challenge responses. Together, metabolite challenge responses

were explored in a total sample of 56 subjects aged 24-66 years (see Table 4.1 for baseline

characteristics). Of these, 48 took part in the intravenous challenge tests and 39 in the

oral challenge tests, with an overlap of 31 participating in both.

Table 4.1: Baseline characteristics of the VID study population, overall and per FTO
genotype.

Variable Overall
(n=56)

FTO risk
allele carriers
(n = 25)

Non-carriers
(n = 31)

p-value

Age (years) 50.5 (10.3) 50.1 (10.2) 50.9 (10.6) 0.832
BMI (kg/m2) 26.7 (2.9) 26.3 (3.3) 27.1 (2.4) 0.309
Waist circumference (cm) 97.9 (8.9) 96.9 (10.3) 98.7 (7.8) 0.940
Systolic blood pressure (mmHg) 136.0 (18.9) 137.0 (18.1) 135.3 (19.8) 0.742
Diastolic blood pressure (mmHg) 81.4 (11.4) 81.3 (10.6) 81.5 (12.2) 0.641
Total cholesterol (mg/dl) 207.1 (36.3) 203.0 (35.2) 210.4 (37.5) 0.723
LDL cholesterol (mg/dl) 124.3 (35.2) 117.9 (30.1) 129.4 (38.5) 0.540
HDL cholesterol (mg/dl) 55.7 (16.2) 60.3 (18.3) 52.0 (13.4) 0.152
Triglycerides (mg/dl) 131.1 (62.3) 121.8 (49.6) 138.5 (70.9) 0.461
Non-esterified fatty acids (mmol/l)a 0.50 (0.27) 0.47 (0.04) 0.51 (0.29) 0.513
Insulin (mU/l) 78.4 (41.3) 92.1 (27.9) 67.4 (47.2) 1.000
Glucose (mg/dl) 24.3 (33.3) 12.0 (20.6) 34.1 (38.4) 0.359
HbA1c (%) 5.6 (0.26) 5.6 (0.27) 5.5 (0.25) 0.271

Insulin sensitivity indexb 0.11 (0.05) 0.11 (0.05) 0.11 (0.05) 0.894
Lactate (mmol/l)a 7.3 (2.2) 6.7 (0.14) 7.4 (2.4) 0.513
C-reactive protein (mg/dl) 0.26 (0.39) 0.18 (0.15) 0.33 (0.50) 0.452
Thyroid-stimulating hormone (µU/ml) 1.5 (0.81) 1.5 (0.86) 1.5 (0.79) 0.431

Data are shown as mean (standard deviation) and refer to the value at the first study visit. p-values were
derived from ordinal regression models adjusted for BMI, age, and study center. a Non-esterified fatty
acids and lactate measurements were available for 2 FTO risk allele carriers and 11 non-carriers only. b

Insulin sensitivity index was calculated for the 24 carriers and 24 non-carriers that participated in the EH
clamp challenge. BMI, body mass index; HDL, high density lipoprotein; LDL, low density lipoprotein.

Challenge responses of clinical parameters (glucose, insulin, triglycerides (TGs), non-

esterified fatty acids (NEFAs) and lactate) and metabolite concentrations (132 metabo-

lites) were investigated by means of linear mixed-effects models (LMEs) adjusted for age,

BMI and genotype (see Section 3.3.1). After correction for multiple testing using the

Benjamini-Hochberg procedure (see Section 3.3.4), a significant change of plasma concen-

trations in response to at least one of the challenges was observed for all clinical traits

and metabolites (see detailed results in Supplementary Tables 2 and 3 of the original

publication (Wahl et al., 2013b)).
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Next, K-means clustering was applied to group metabolites according to similarities in the

observed metabolite challenge responses (see Section 3.4.1 for methodology). The optimal

clustering solution is shown in Figure 4.2, comprising four clusters of metabolites with a

similar challenge response profile.

Cluster 4, comprising only hexose, can be used to explain the visualization. The mean of

standardized log-transformed hexose concentrations is shown for each time point. Because

of standardization, the curve is centered around zero for each metabolite. Hexose is the

only metabolite with a strong concentration increase in response to intravenous glucose

tolerance test (IVGTT), followed by a decrease during euglycemic-hyperinsulinemic (EH)

clamp, and with a strong increase in response to oral glucose tolerance test (OGTT),

followed by a decrease at 2 h, which likely explains its separate clustering. In addition, in

the figure, significant changes determined using LMEs are indicated as solid red lines. The

hexose response during the different challenges compares well to that of glucose determined

by an enzymatic assay (Figure 4.3A,C), validating the observed response.

Of note, the cluster approach tended to group metabolites with similar biological structures

together. Whereas hexose formed a separate cluster (cluster 4), the largest cluster (cluster

1) comprised all measured phosphatidylcholines (PCs), lysophosphatidylcholines (LPCs)

and sphingomyelins (SMs) as well as carnitine and the acylcarnitines C4, C5:1, C8:1, C10:2

and C18:0. For visualization, separate time course plots are shown for the biological groups

within cluster 1 (Figure 4.4). Cluster 2 contained all investigated amino acids as well as

the acylcarnitines C3 and C5, whereas cluster 3 comprised the remaining 14 acylcarnitines.

Both the results of the LMEs and of the clustering remained stable when the analysis of

metabolite levels was restricted to the subjects who participated in all challenge tests (data

not shown).

OGTT

In response to the oral glucose challenge, glucose levels increased significantly with a

peak at 30 min, decreasing to baseline level 2 h after the glucose load (Figure 4.3C). A

correspondingly delayed increase of insulin and lactate was observed with a peak at 1 h

(Figure 4.3D,G).

Using LMEs, significant concentration changes were observed for 116 metabolites in the

first hour and for 29 metabolites in the second hour (Figure 4.2). Grouping of metabolites

by K-means clustering showed that the majority of metabolites decreased in the first

hour post-OGTT, including amino acids (cluster 2), with the biggest fold change observed

for leucin/isoleucine (mean fold change 0.76, corrected p = 6.7 × 10−17), tyrosine (0.84,

p = 2.4×10−9), and methionine (0.86, p = 1.3×10−7), acylcarnitines (cluster 1 and 3) and

NEFAs (Figure 4.3F) as well as phospholipids (cluster 1). Amino acids and acylcarnitines

showed a further decrease between 1 and 2 h after challenge.
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Figure 4.2: K-means clustering of challenge response profiles. Mean scaled concentrations
of each metabolite at the different time points are shown, connected through lines. See Section
3.4.1 for details on clustering procedure and choice of the number (K = 4) of clusters. Solid red
lines, significant concentration changes as identified in linear mixed-effects models (LMEs), after
correction for multiple testing. Dotted black lines, not significant. Metabolites belonging to the
respective cluster are specified on the right-hand side of the graphs, the number of metabolites
in each cluster is included in the graph titles. c45, 45 min after clamp steady state; EH clamp,
euglycemic-hyperinsulinemic clamp; HFHC meal, high-fat high-carbohydrate meal; IVGTT, in-
travenous glucose tolerance test; OGTT, oral glucose tolerance test; OLTT, oral lipid tolerance
test.
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Figure 4.4: Time courses of challenge response for different biological metabolite
groups within cluster 1. Mean scaled concentrations of each metabolite at the different time
points are shown, connected through lines. Solid red lines, significant concentration changes as
identified in linear mixed-effects models (LMEs), after correction for multiple testing. Dotted
black lines, not significant. Metabolites belonging to the respective biological group are specified
on the right-hand side of the graphs, the number of metabolites in each group is included in the
graph titles. c45, 45 min after clamp steady state; EH clamp, euglycemic-hyperinsulinemic clamp;
HFHC meal, high-fat high-carbohydrate meal; IVGTT, intravenous glucose tolerance test; OGTT,
oral glucose tolerance test; OLTT oral lipid tolerance test.
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IVGTT and EH clamp

After intravenous glucose injection, glucose and insulin plasma concentrations increased

immediately, with a peak at 1 min (Figure 4.3A,B). As shown by LMEs and K-means

clustering, the metabolite response to IVGTT at 35 min post-challenge was largely similar

to the 1 h response to oral glucose, with decreases in amino acids (cluster 2), acylcarnitines

(cluster 1 and 3), and phospholipids (cluster 1) (Figure 4.2). By trend, a weaker amino

acid decrease (not significant for Gln, His, Pro, Ser and Thr), and a slightly stronger

acylcarnitine decrease were observed during 35 min IVGTT as compared to 1 h OGTT.

Decreases in PCs were similar, whereas decreases in SMs were slightly weaker in response

to intravenous glucose (Figure 4.4). Whereas most LPCs decreased in response to both the

oral and intravenous glucose challenge, the very-long-chain species LPC a C26:1 showed a

significant increase in response to IVGTT (corrected p = 9.1× 10−3).

Between the 35 min IVGTT measurement and the EH clamp steady state measurement,

51 significant metabolite changes were observed in LMEs. K-means clustering illustrated

that hyperinsulinemia led to further significant decreases of amino acid levels that were

stronger than the decrease induced by the glucose load (Figure 4.2). Also, levels of all 21

measured acylcarnitines continued to decrease significantly during the EH clamp, whereas

carnitine (cluster 1) increased. Concentrations of PCs, predominantly of those with up to

36 carbon atoms, decreased significantly during EH clamp, whereas no significant change

was observed for longer-chain PCs and for SMs (Figure 4.4). Also, for most LPCs, no sig-

nificant change was observed in response to EH clamp, with the exception of two saturated

LPCs, LPC C16:0 (corrected p = 5.7× 10−3) and C17:0 (corrected p = 7.9× 10−3), which

showed concentration increases, and the unsaturated LPC C18:2 (corrected p = 2.8×10−2),

which decreased.

Mixed-nutrient challenges

Metabolic response to mixed-nutrient challenges (OLTT, HFHC meal) was assessed 2

and 6 h post-challenge. During both challenges, insulin increased with a peak at 1 h

(HFHC meal) and 2 h (OLTT) (Figure 4.3D), whereas glucose and lactate showed only a

slight increase during the HFHC meal, which was not significant during the OLTT (Figure

4.3A,G). TG concentrations increased in response to both challenges, with a peak between

4 and 6 h (Figure 4.3E).

Metabolite response to OLTT was as follows: amino acids largely increased at 2 h (sig-

nificant in the case of Val, Leu/Ile, Met, Pro, Tyr, Orn, corrected p-values ranging from

4.5−2 to 4.5× 10−13), followed by a decrease at 6 h (significant in the case of Val, Leu/Ile,

Met, Pro, Tyr, His, Phe, Thr, Arg and Gly, corrected p-values ranging from 2.4× 10−2 to

1.7× 10−19) (Figure 4.2). Acylcarnitines (cluster 3) and NEFAs decreased during the first

2 h and increased thereafter. Two sets of acylcarnitines, C3 and C5 (cluster 2) as well

as C4, C5:1, C8:1, C10:2 and C18 (cluster 1) clustered separately from the majority of
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acylcarnitines (cluster 3). This separate clustering was largely attributable to a diverging

response of acylcarnitines from clusters 1, 2 and 3 to mixed-nutrient challenges, whereas

the response of acylcarnitines from the three different clusters to glucose challenges was

similar. For instance, during OLTT, the acylcarnitines C3, C4 and C5 (cluster 2) increased

during the first two hours, decreasing thereafter, similar to the response observed for free

carnitine (C0).

Phospholipid response to OLTT was divergent, with SMs not showing a significant response

at all (Figure 4.4). For some PCs, a significant increase at 2 h (PC aa C34:2/3, C36:2 and

PC ae C38:2) and at 6 h (additionally PC aa C36:1, C36:3/4/6, C40:2/3, C42:2 and PC

ae C34:2, C36:2, C38:0, C40:0/1) was observed. LPCs differed in their response to OLTT

depending on their chain length and degree of saturation. The long-chain unsaturated

LPCs C18:2 (corrected p = 9.7× 10−7) and C20:3 (corrected p = 2.2× 10−2) significantly

increased at 6 h post-OLTT, whereas saturated LPCs (corrected p-values ranging from

9.5×10−3 to 3.3×10−12) and LPC C16:1 (corrected p = 4.6×10−3) significantly decreased.

The response to the HFHC meal was largely comparable to the response observed to the

OLTT. However, amino acid concentrations showed a more pronounced increase in the

first 2 h, and a less pronounced decrease between 2 and 6 h, as compared to the OLTT

(Figure 4.2). Moreover, acylcarnitines (cluster 3) showed a more pronounced increase at

2 h and a less pronounced decrease between 2 and 6 h, indicating a weaker β-oxidative

response to HFHC meal as compared to OLTT. Similarly to the OLTT, the acylcarnitines

C3 and C5 (cluster 2) behaved oppositely to the majority of acylcarnitines (cluster 3). In

contrast to 2 h OLTT, where apart from four PCs no significant responses were observed

for phospholipids, SMs tended to decrease in the first 2 h during HFHC meal, as did some

PCs, whereas the LPCs C16:0, C17:0, C18:2, C20:3/4 increased (Figure 4.4).

4.1.2 Effect of the FTO rs9939609 risk allele on challenge responses

Next, it was explored whether the FTO risk allele modified challenge responses, thereby

revealing early metabolic disturbances associated with the risk allele. In terms of baseline

clinical traits (Table 4.1) and fasting metabolite concentrations, no differences were ob-

served between the 25 carriers of the FTO rs9939609 risk allele (AA genotype) and the 31

carriers of the TT genotype. Likewise, when the effect of the FTO genotype on metabolite

challenge responses as well as response of glucose, insulin, TGs, NEFAs and lactate was

explored by means of interaction terms in LMEs (see Section 3.3.1) adjusted for BMI and

age and the respective interactions with time point, no significant FTO genotype effects

on responses to IVGTT, OLTT and HFHC meal were observed. During OGTT, a ten-

dency to a weaker decrease of concentrations of 15 long-chain PCs and one SM (cluster

1) could be observed in the first hour post-challenge in FTO risk allele carriers compared

to non-carriers at an uncorrected p-value of < 0.05 (Figure 4.5, Supplementary Table 4

of the original publication (Wahl et al., 2013b)). Furthermore, for acylcarnitine C12:1
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Figure 4.5: Investigation of FTO genotype effect on OGTT-induced metabolite
changes. a Significant enrichment of FTO-OGTT interaction at 1 h post-challenge in cluster
1. b Time course plots of OGTT-induced metabolite changes in FTO risk allele carriers (dashed
green line) and non-carriers (solid black line). Metabolite abbreviations are explained in Section
2.2.5.

(cluster 3), a slightly stronger decrease was observed during the first hour post-challenge

in FTO risk allele carriers compared to non-carriers (uncorrected p = 0.011). A weighted

enrichment analysis (see Section 3.5.1) showed that the observed FTO effects were signifi-

cantly enriched for cluster 1, that is, FTO effects on OGTT response of phospholipids were

observed more often than expected by chance (p < 1 × 10−7) (Figure 4.5). Results were

similar when BMI and BMI-time point interaction were omitted from the model (data not

shown).

To investigate the power of the chosen LME interaction models for analyzing FTO geno-

type effects on challenge response, post hoc power analyses were performed for two rep-

resentative metabolites, SM C20:2 (β = 0.66 (95% CI: 0.16, 1.16), p = 1.1 × 10−2) and

PC ae C44:5 (β = 0.25 (0.03, 0.47), p = 2.5 × 10−2) (see Section 3.3.5). Assuming that

the observed genotype effects on the 1 h OGTT response for these metabolites resemble

the respective true effects, the power to observe p-values lower than 10−3 was 23.2% and

12.1%, and to observe Bonferroni-significant p-values, 5.1% and 1.9%, respectively. Thus,

the present study was largely underpowered to detect genotype interaction effects. To

observe p-values lower than 10−3 with a reasonable power of 80%, a sample size of 90

and 116 would have be needed, and to observe Bonferroni-significant p-values lower than

5.0× 10−5, a sample size of 126 and 160, respectively.
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4.1.3 Effect of the TCF7L2 rs7903146 risk allele on intravenous chal-

lenge response

TCF7L2 risk allele effects on IVGTT and EH clamp response were reported in a separate

publication (Then et al., 2013). The underlying study population comprised 17 TCF7L2

risk allele carriers (8 homozygous, TT genotype; 9 heterozygous, CT genotype), as well

as the 24 non-carriers that participated in the intravenous challenge tests. See Table 1

of the original publication Then et al. (2013) for detailed characteristics. No significant

genotype effects were observed on metabolite concentrations in the fasting state.

For 17 phospholipid metabolites, concentration changes during IVGTT were significantly

modified by the TCF7L2 risk allele (Table 4.2). Note that this table also comprises

sums of metabolite concentrations, since in this publication, 45 metabolite sums were

jointly analyzed with the single metabolite concentrations, as proposed in the Biocrates

Table 4.2: Metabolites and sums with significant effect of the TCF7L2 genotype on
IVGTT response.

IVGTT
response
(non-
carriers)

IVGTT response
(TCF7L2 risk
allele carriers)

Genotype interaction effect

Metabolite β p-value β p-value β p-value corrected p-value

Sphingomyelins
SM (OH) C14:1 0.05 6.2E-01 -0.45 9.0E-04 -0.50 4.8E-03 3.9E-02
SM (OH) C22:1 0.02 8.4E-01 -0.49 7.3E-04 -0.51 7.1E-03 5.0E-02
SM (OH) C22:2 0.04 7.2E-01 -0.57 1.6E-04 -0.61 2.0E-03 3.6E-02
SM (OH) C24:1 0.09 4.6E-01 -0.57 1.3E-04 -0.66 8.3E-04 3.6E-02
SM C16:0 0.06 7.0E-01 -0.64 5.7E-04 -0.70 4.3E-03 3.9E-02
SM C16:1 0.02 8.8E-01 -0.64 2.1E-04 -0.66 3.5E-03 3.6E-02
SM C18:0 0.00 9.9E-01 -0.57 2.1E-04 -0.57 4.7E-03 3.9E-02
SM C18:1 0.02 8.9E-01 -0.52 5.2E-04 -0.53 6.5E-03 4.8E-02
SM C24:0 0.05 6.8E-01 -0.61 2.7E-04 -0.67 2.6E-03 3.6E-02
SM C24:1 0.07 6.1E-01 -0.55 7.4E-04 -0.61 4.2E-03 3.9E-02
SMs 0.05 7.2E-01 -0.65 3.7E-04 -0.70 3.5E-03 3.6E-02
SM C 0.05 7.2E-01 -0.64 3.9E-04 -0.70 3.6E-03 3.6E-02
SM (OH) 0.04 7.4E-01 -0.53 3.5E-04 -0.57 3.5E-03 3.6E-02
long-chain SMs 0.06 6.4E-01 -0.60 4.7E-04 -0.66 3.2E-03 3.6E-02
long-chain SM C 0.06 6.4E-01 -0.60 5.0E-04 -0.66 3.4E-03 3.6E-02
long-chain SM (OH) 0.09 4.6E-01 -0.57 1.3E-04 -0.66 8.3E-04 3.6E-02
Lysophosphatidylcholines
LPC a C14:0 0.39 1.3E-02 -0.42 2.6E-02 -0.81 1.6E-03 3.6E-02
LPC a C16:0 -0.04 7.5E-01 -0.64 3.4E-05 -0.60 2.6E-03 3.6E-02
LPC a C16:1 -0.07 3.6E-01 -0.47 1.4E-06 -0.40 1.2E-03 3.6E-02
LPC a C17:0 -0.04 7.6E-01 -0.57 1.4E-04 -0.53 6.1E-03 4.7E-02
LPCs -0.12 2.4E-01 -0.63 2.8E-06 -0.51 3.0E-03 3.6E-02
saturated LPCs -0.03 8.1E-01 -0.65 3.2E-05 -0.62 2.2E-03 3.6E-02
Phosphatidylcholines
PC aa C28:1 -0.13 2.4E-01 -0.60 1.4E-05 -0.47 7.3E-03 5.0E-02
PC aa C40:4 -0.05 5.6E-01 -0.48 8.4E-06 -0.43 1.8E-03 3.6E-02
PC ae C40:5 -0.10 4.9E-01 -0.84 1.1E-05 -0.74 2.7E-03 3.6E-02

Metabolite abbreviations are explained in Section 2.2.5.
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MetaDisIDQTM manual. They are assumed to indicate a certain metabolic state or pro-

cess. Specifically, TCF7L2 risk allele carriers showed a significantly stronger decline of

metabolite concentrations during IVGTT as compared to non-carriers for 10 out of 13 SM

species as well as for the total sum of SMs and different partial sums. A similar obser-

vation was made for four out of 14 individual LPC species as well as for the sum of all

measured LPC species, and the sum of measured saturated LPCs. Finally, of 74 anal-

ysed PCs, three, namely PC aa C28:1, PC aa C40:4 and PC ae C40:5, showed a stronger

concentration decrease in TCF7L2 risk allele carriers as compared to non-carriers during

IVGTT.

When metabolic effects to EH clamp were investigated, no significant genotype effects were

observed on metabolite concentration changes between the post-IVGTT timepoint (35

min) and the clamp steady state timepoint. Accordingly, significant effects were observed

when baseline and clamp steady state concentrations were compared, which were largely

similar to the effects on IVGTT response described above (see Table 4 of the original

publication (Then et al., 2013).

4.1.4 Discussion

Using a targeted metabolomics approach, changes in metabolite plasma levels elicited

by the challenge tests IVGTT, EH clamp, OGTT as well as OLTT and HFHC meal were

characterized. Furthermore, it was investigated whether challenge responses were modified

by known obesity and T2D risk alleles at the FTO and TCF7L2 loci, respectively.

Unsupervised clustering identified four metabolite clusters with a distinct response profile

across all challenge tests. Even though no biological knowledge was used for cluster forma-

tion, metabolites were largely clustered into groups of biological and structurally related

molecules. Moreover, these metabolite groups (amino acids, hexose, acylcarnitines, and

phospholipids) also formed the most clearly defined sub-networks in a Gaussian graphi-

cal modeling approach based on partial correlations of fasting metabolite concentrations

in a large population representative sample (Krumsiek et al., 2011). Here, it could be

demonstrated that these groups of structurally related metabolites also show comparable

postprandial responses, as it has been observed for other metabolite panels before (Ho

et al., 2013, Pellis et al., 2012).

Metabolic response to glucose and insulin challenges

Both glucose challenges, OGTT and IVGTT, triggered a switch from catabolism to an-

abolism in the three major nutrient axes, as reflected by increase in lactate levels (stimula-

tion of glycolysis), decrease in amino acid concentrations (inhibition of proteolysis) as well

as decrease in acylcarnitine and NEFA concentrations (inhibition of fat oxidation). Simi-

lar observations during OGTT have been reported before (Ho et al., 2013, Shaham et al.,
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2008, Skurk et al., 2011, Zhao et al., 2009). Moreover, it could be replicated that the fold

changes during the 2 h OGTT were most prominent for the amino acids leucine/isoleucine,

tyrosine and methionine (Ho et al., 2013, Shaham et al., 2008, Skurk et al., 2011). These

neutral amino acids share common insulin-dependent transporters that mediate amino

acid shuttling into peripheral tissues (Deo et al., 2010, Skurk et al., 2011), in exchange for

glutamine, which did not decrease during OGTT and IVGTT in this study.

It was observed that the intravenous glucose challenge exerted a weaker anti-proteolytic

effect at 35 min as compared to the 1 h oral glucose challenge. Oral glucose triggers the

release of incretin hormones such as glucose-dependent insulinotropic polypeptide (GIP)

and glucagon-like peptide 1 (GLP-1) which stimulate glucose-dependent insulin release

(Ranganath, 2008). This incretin effect accounts for the higher insulin secretion in response

to oral as compared to intravenous glucose, and can contribute to the amplification of

insulin-induced metabolic effects such as reduced proteolysis. Prolonged decrease during

EH clamp further supports the notion that the observed amino acid decrease is mediated

by insulin.

The anti-β-oxidative response to IVGTT, measured by a decrease in acylcarnitines at 35

min, was stronger as compared to the 1 h OGTT response. Various in vitro studies have

shown a stimulatory effect of GLP-1 and GIP on lipolysis in human and murine adipocytes

(Getty-Kaushik et al., 2006, He et al., 2010, Ruiz-Grande et al., 1992, Sancho et al., 2005,

Timper et al., 2013, Vendrell et al., 2011, Villanueva-Peñacarrillo et al., 2001). Further-

more, a positive association between fasting plasma GLP-1 concentration and fat oxidation

has been observed in humans (Pannacciulli et al., 2006). An incretin-induced prolipolytic

effect might potentially attenuate insulin-induced suppression of lipolysis. In contrast to

this hypothesis, a recent clamp study has shown an abolishment of the lipolytic effect of

GLP-1 in the presence of insulin (Seghieri et al., 2013). In addition, these differences be-

tween OGTT and IVGTT might also be attributable to a more immediate plasma insulin

response to intravenous than to oral glucose.

In this study, a significant downregulation of plasma levels was observed for most phos-

pholipids, including PCs, LPCs and SMs, during both OGTT (1 h) and IVGTT (35 min).

The decrease of PCs may be explained by insulin triggering hydrolysis of PCs by the acti-

vation of specific phospholipases, as previously reported in rat myotubes (Standaert et al.,

1996a), rat adipocytes (Standaert et al., 1996b), rat hepatocytes (Donchenko et al., 1994)

and human hepatoma cells (Novotná et al., 2003). In addition, insulin triggers both LDL

receptor activity (Duvillard et al., 2003, Nägele et al., 1997) and adipose tissue lipoprotein

lipase protein expression (McTernan et al., 2002), thereby stimulating clearance of phos-

pholipid containing lipoproteins from the circulation (Ogita et al., 2008). Apart from few

PCs with up to 36 carbon atoms, no further reduction of PC and SM plasma levels during

EH clamp was observed, suggesting a selective saturation of the described processes.

Of note, the very-long-chain LPC C26:1 increased in response to IVGTT but not OGTT,
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whereas most mediumand long-chain LPCs decreased in response to the glucose challenge

tests. Metabolism of very-long-chain fatty acids is unique with an initial oxidation in

peroxisomes before mitochondrial β-oxidation (Lee et al., 2012). The findings of this

study are consistent with peroxisomal fat oxidation being inhibited by insulin (Hamel

et al., 2001) and induced by incretins (Lee et al., 2012, Svegliati-Baroni et al., 2011).

Metabolic response to meal challenges

The observed metabolite changes induced by OLTT and HFHC meal may be attributed

to both the specific nutrient contents of the respective challenges and to putative insulin

effects. For instance, the protein contained in the test meals provoked increases in amino

acid plasma concentrations in the first 2 h of both challenges, whereas decreases in amino

acid levels at 6 h are likely attributable to anti-proteolytic insulin effects. Plasma amino

acid concentrations showed a stronger increase at 2 h and a weaker decrease at 6 h in

response to the HFHC meal, potentially attributable to the fact that during HFHC meal,

subjects consumed twice the amount of protein (32 g) as compared to the OLTT (17.8 g)

on average. In agreement with a putative insulin effect on lipolysis and lipid clearance,

decreases in acylcarnitine, NEFA, PC and SM concentrations were observed at 2 h, more

pronounced during HFHC meal, where a stronger and earlier (at 1 h as compared to 2

h during OLTT) insulin peak was observed. By 6 h, a peak in TGs was observed (as by

Lopez-Miranda et al. (2007), Westphal et al. (2000)), insulin reached baseline concentra-

tions and acylcarnitine, NEFA and PC concentrations increased, consistent with dietary

lipids being oxidized and incorporated into phospholipids.

A group of acylcarnitines, including the short- and medium-chain species C3, C4, C5, C5:1,

C8:1 and C10:2, showed a diverging response to mixed nutrient challenges as compared

to the majority of acylcarnitines. This is in agreement with the postprandial increase

of C3 and C4 (by trend also of C5 and C10:2) observed by Ramos-Roman et al. (2012).

Krug et al. (2012) found the short-chain acylcarnitines (C3, C4, C5 and C5:1) to respond

similarly to diverse anabolic and catabolic challenges as the branched-chain amino acids

(BCAAs), tyrosine and methionine. Short-chain fatty acids, including isovalerate (C5),

α-methylbutyrate (C5), isobutyrate (C4), and proprionate (C3), are byproducts of BCAA

metabolism (Lúıs et al., 2011). Thus, the corresponding acylcarnitines may be derived

from a triggered metabolism of BCAAs after oral protein intake, which is additionally

supported by the here observed clustering of these acylcarnitines with amino acids.

6 h after OLTT, concentrations of the majority of metabolites differed significantly from

concentrations in fasting plasma samples. Thus, analyzing fasting and nonfasting samples

together in epidemiological studies should be avoided to prevent confounding.

Taken together, the combination of different challenge tests applied in this study allowed a

thorough characterization of the physiological behavior of distinct metabolite subclasses.
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Assessment of genotype-challenge interactions

Metabolic challenge tests have assisted the detection of early metabolic changes associated

with risk-conferring genotypes (Fontaine-Bisson et al., 2007, Franks et al., 2007, Tan et al.,

2006, Weickert et al., 2007, Wybranska et al., 2007). Such genotype-associated metabolic

effects may be hidden behind tight homeostatic regulation when solely fasting state condi-

tions are analyzed (van Ommen et al., 2009). Here, targeted metabolomics was used as a

hypothesis free approach to investigate whether metabolite responses to defined challenges

may contribute in unraveling novel genotype effects at the known obesity risk locus FTO

rs9939609 (Frayling et al., 2007, Speliotes et al., 2010) and at the known T2D risk locus

TCF7L2 rs7903146 (Morris et al., 2012).

The results suggest alterations in post-IVGTT sphingolipid and phospholipid metabolism

in subjects carrying the TCF7L2 risk genotype that were not observed in genome-wide

metabolomics association studies in the fasting state (Gieger et al., 2008, Illig et al., 2010,

Suhre et al., 2011). Specifically, most sphingomyelins and few phosphotidylcholine and

lysophosphatidylcholine showed a stronger reduction of plasma concentration in carriers

of the TCF7L2 risk allele as compared to non-carriers upon IVGTT, with concentrations

remaining low during EH clamp. Although metabolite differences were not significant in

the fasting state, these metabolite showed by trend higher levels in risk allele carriers.

Sphingomyelins and phosphatidylcholines are important structural components of plasma

lipoprotein and cell membranes and are involved in the regulation of cell function, mem-

brane protein trafficking and inflammation (Gault et al., 2010). Increased sphingomyelin

levels have been reported in subjects with T2D (Zhu et al., 2011). A possible explana-

tion of the stronger sphingomyelin decrease in risk allele carriers compared to non-carriers

upon IVGTT is an increased action of the enzyme sphingomyelinase. Sphingomyelinase

degrades sphingomyelins to ceramide, thereby potentially contributing to β-cell apopto-

sis (Zhang et al., 2009). Inhibition of ceramide synthesis decreased β-cell apoptosis and

defective protein trafficking in β-cells exposed to lipotoxicity (Boslem et al., 2011). In

addition, mitochondrial dysfunction might be involved in decreased insulin secretion upon

altered membrane sphingomyelin and ceramide content (Yano et al., 2011). Together,

these findings provide a potential link between TCF7L2-induced changes in sphingolipid

metabolism and reduced β-cell function. Importantly, an impaired first-phase insulin re-

sponse in TCF7L2 risk allele carriers as compared to non-carriers was also observed in the

VID study (Then et al., 2013). Experimental studies may lead to a closer understanding

of the underlying processes.

Strengths and limitations

Plasma metabolomic responses to five different metabolic challenges were comprehensively

investigated. Thereby, previously unknown postprandial effects on the metabolite profile
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were identified, including previously unreported metabolic effects of IVGTT and EH clamp.

A more thorough comparison of responses to different challenges is provided than has been

reported before in a similarly sized sample. The combined statistical approach of LMEs

and K-means clustering allowed to elaborate similarities and divergences in responses to

the five challenges for distinct metabolite groups. Using interaction models, the utility

of the chosen approach for investigating genotype-specific effects could be explored. The

present study provides a framework for further analysis of additional risk variants.

A limitation of this study is the small sample size and the lack of replication. Post hoc

power analyses showed that a two- to threefold sample size would have been needed to

detect the potential small FTO-OGTT interaction effects as statistically significant. Ac-

cordingly, a similarly larger genotyped cohort would have been needed as recruitment

base. Thus, the presented data indicate the limitations of hypothesis-free explorative

investigations in experimental settings (Bouchard, 2008), where the identification of geno-

type effects most likely strongly depends on the appropriate choice of challenges and the

comprehensiveness of the analyzed metabolomics panel. Furthermore, only male subjects

were included to increase the homogeneity of the study population, which is advantageous

for the investigation of gene-environment interactions. However, it should not be ignored

that men and women differ in their postprandial metabolic response (Ho et al., 2013).

Thus, generalization to both sexes should happen with care. In addition, metabolomics

measurements in shorter time intervals during the challenges would have allowed a more

detailed characterization of metabolic response profiles. Also, the study was limited to an-

abolic challenges, which might be complemented by catabolic challenges such as prolonged

fasting or exercise in future investigations.

Conclusions

This study contributes to the understanding of the physiological plasma metabolomics

response to different metabolic challenges, and assesses the utility of the chosen approach

for unraveling genotype-challenge interactions. The obtained results confirm established

effects of oral glucose or mixed nutrient intake on carbohydrate and protein metabolism.

Previously unreported responses in different phospholipid metabolites are presented and

metabolite changes in response to IVGTT as compared to OGTT are reported for the

first time. A post hoc power analysis on FTO-challenge interactions demonstrates the

limited feasibility of such an experimental approach for large-scale hypothesis-free testing

of genotype effects. At the same time, early TCF7L2 -conferred perturbations of sphingo-

and phospholipid metabolism were observed that could only be detected through challenge

tests and that occured in a stage when conventional parameters of glucose homeostasis

were not yet affected, thereby improving the understanding of the molecular mechanisms

underlying the development of T2D in subjects with the TCF7L2 risk allele.
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4.2 Methylome-wide association study of body mass index

Studying body mass-related DNA methylation signatures is promising from two perspec-

tives. First, epigenetic mechanisms might be involved in the development of obesity,

potentially explaining a part of the missing heritability. Second, epigenetic regulation is

a potential pathway underlying obesity-related pathogenic processes including disturbed

lipid and glucose metabolism. To examine these two perspectives, an EWAS of BMI

was conducted in a two-stage discovery-replication analysis comprising more than 10,000

subjects to identify and validate the perturbations in DNA methylation associated with

obesity (Figure 4.6). The identified loci were integrated with other omics data as well as

clinical data to obtain new insights into the role of these loci in the development of obesity

and its cardiometabolic consequences.

The contents of this section are mainly based on the manuscript

� Wahl S∗, Lehne B*, Drong AW*, Loh M*, Zeilinger S, Fiorito G, Kasela S, Richmond

R, Dehghan A, Franke L, Esko T, Milani L, Relton CL, Kriebel J, Prokisch H, Herder

C, Peters A, Illig T, Waldenberger M, Bell JT, Franco OH, van der Harst P, Lindgren

CM, McCarthy MI, Matullo G, Gieger C#, Kooner JS#, Grallert H#, Chambers JC#.

“Epigenome-wide association study reveals extensive perturbations in DNA methylation

associated with adiposity and its metabolic consequences.” in preparation.

4.2.1 Epigenome-wide association and replication

In the first stage, epigenome-wide association testing was performed in four large

population-based studies comprising 5387 subjects of European (n = 2707) and South

Asian (n = 2680) origin. Characteristics and analysis details are summarized in Appendix

Tables A.1 and A.2. In each cohort, associations of DNA methylation and BMI were

determined using linear models with BMI as response and methylation at a single CpG

site as the covariate, adjusting for age, sex, physical activity, smoking status, alcohol

intake, estimated white blood cell proportions and technical variables (see Section 2.1.2

for exact definition of behavioral factors, Section 3.1.2 for technical effects, Section 3.3.2

for choice of covariates). There was little evidence for heterogeneity of effects between the

ethnic groups. Therefore, results could be meta-analyzed using inverse-variance weighted

fixed-effects meta-analysis (see Section 3.3.6). The genomic control inflation factor ranged

from 0.98 to 1.29 in the individual studies, and was 1.11 in meta-analysis. Genomic

control correction was applied before and after meta-analysis.

278 CpG sites showed genome-wide significant (p < 10−7) association with BMI. These

CpGs were distributed between 207 genetic loci. The lead marker at each of these loci,

defined as the CpG site with the lowest p-value for BMI association, was selected for further

∗,# contributed equally
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analysis. Conditional analyses suggest the presence of multiple CpG sites independently

associated with BMI at 23 of these loci (p < 10−7 after conditioning on the lead CpG site

of the respective locus). There were no additional loci showing association of methylation

with BMI at p < 10−7 on either of the sex chromosomes.
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Figure 4.6: Epigenomics of BMI: Study design and analysis strategy. Details on studies
and omics measurements are given in Section 2.1 and in Appendix Tables A.1 to A.3. Color coding
of statistical methods: yellow, data preprocessing and quality control (Section 3.1); red, univariate
data analysis (Section 3.3); blue, extraction of biological knowledge (Section 3.5). eQTL, expression
quantitative trait locus; EWAS, epigenome-wide association study; ENCODE, Encyclopedia of
DNA Elements.
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43 of the 207 CpGs contained one or more known SNPs within their probe sequence, which

may impair hybridization of the probe (see Section 3.1.2). To ensure that these SNPs –

58 in total – are not causing spurious association results, 1000G-imputed SNP data were

obtained from a subset of n = 3961 subjects from the discovery cohorts (Appendix Table

A.4). Of the 58 SNPs, 38 were non-monomorphic in at least one of the studies, and 13

had minor allele frequencies (MAFs) above 1%. No genetic confounding by any of these

38 SNPs was observed (Figure 4.7). However, 11 SNPs showed significant association

with methylation at the respective CpG site (p < 1.3× 10−3, corresponding to Bonferroni

correction), including 3 low-frequency SNPs located within the CpG site itself (Table 4.3).

Since it cannot be excluded that these associations are due to hybridization artefacts rather

than biological mechanisms, the corresponding 11 CpGs were excluded from downstream

analyses involving SNPs. Furthermore, for four CpGs, cross-hybridization of the probe

had been reported (Price et al., 2013), including cg19373099 (CRYGFP locus), cg25096107

(IGHA2 locus), cg13097800 (RPL10L locus) and cg10505902 (PDE4DIP locus).

The 207 lead CpGs were put forward to the replication stage, where association with

BMI was tested among 4874 subjects from 9 studies (see Appendix Tables A.1 and A.3

for characteristics and analysis pipelines). For 187 loci, BMI-associated perturbations in

DNA methylation could be validated (at p < 0.05 in the replication stage and p < 10−7 in

a combined meta-analysis) (Table 4.4, Figure 4.8). The strongest effects were observed for

cg06500161 (ABCG1 locus, z-score = 18.4, p = 2.0 ·10−75), cg00574958 (CPT1A locus, z-

score = -15.4, p = 1.2 ·10−53), cg11024682 (SREBF1 locus, z-score = 15.0, p = 1.3 ·10−50),

cg17501210 (RPS6KA2 locus, z-score = -13.4, p = 6.5 · 10−41), and cg18181703 (SOCS3

locus, z-score = -12.9, p = 3.6 · 10−38).

4.2.2 Cross-tissue patterns of DNA methylation

To address the question of whether the observed whole blood methylation signatures are

representative of methylation in metabolically relevant tissues, correlation of methylation

across different tissues was studied. To this end, publicly available data from the Gene

Expression Omnibus (GEO) database (accession number GSE48472, Slieker et al. (2013))

were used, comprising genome-wide methylation data for 41 samples from blood and six

metabolically relevant tissues. Correlation analysis of the 187 BMI-related CpG sites

revealed high correlation of blood methylation with that in spleen as well as omental and

subcutaneous fat (Figure 4.9), whereas correlation with liver, pancreas and muscle was

lower but still significant.

4.2.3 Association with gene expression

Next, cis-associations between DNA methylation at the 187 validated methylation markers

and gene expression were analyzed in a subgroup of 1785 subjects from KORA F4 (n =

703) and EpiMigrant (907 South Asians, 175 Europeans, partial overlap with discovery
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Figure 4.7: Investigation of ge-
netic confounding by SNP located
in Infinium 450k probe sequence.
Adjustment for the SNP had no ma-
terial impact on the p-values for asso-
ciation between BMI and methylation.
SNPs were included in the models as
dosages, i.e. expected allele counts of
the non-reference allele. Linear mod-
els were adjusted for the discovery co-
variates and results were combined by
inverse-variance weighted fixed-effects
meta-analysis. See Appendix Table A.4
for details on the SNP data.
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Table 4.3: CpGs with associated SNP in the probe sequence.

p-values

CpG ID Chr. Position SNP MAF Dist. B
M

I∼
C

pG

B
M

I∼
C

pG
|S

N
P

C
pG
∼

SN
P

B
M

I∼
SN

P

n

cg22700686 1 153538764 rs2478147 0.006 1 4.6E-15 1.8E-15 8.9E-11 5.6E-01 3959
cg07202479 1 159174162 rs3027012 0.161 39 5.3E-11 1.1E-10 1.3E-17 2.5E-01 3943
cg09222732 6 466893 rs73374982 0.105 14 2.4E-09 2.4E-09 4.5E-04 7.0E-01 3958
cg10975897 6 15504844 rs56186721 0.049 31 1.5E-07 2.8E-07 5.0E-24 2.9E-01 3932
cg09697999 7 733198 rs73047920 0.276 23 2.1E-07 9.6E-09 3.5E-133 7.3E-01 3959
cg21037180 8 82276987 rs11784442 0.064 41 3.0E-09 1.3E-09 6.1E-59 8.5E-01 3821
cg16611584 17 19809078 rs56403226 0.010 0 9.7E-15 1.7E-14 7.1E-55 2.5E-01 3955
cg04524040 19 4153364 rs350880 0.243 36 1.0E-10 1.9E-10 5.6E-21 3.7E-01 3957
cg26836479 19 42706353 rs16975684 0.141 43 2.0E-07 1.6E-07 4.5E-09 9.8E-01 3956
cg02711608 19 47287964 rs76693964 0.005 0 5.3E-13 2.1E-13 3.5E-17 7.6E-01 3959
cg06500161 21 43656587 rs9982016 0.042 7 1.7E-46 8.8E-46 5.5E-31 6.2E-02 3960

SNPs were included in the models in an additive genetic mode (dosage format). Linear models were
adjusted for the discovery covariates and results were combined by inverse-variance weighted fixed-effects
meta-analyses. See Appendix Table A.4 for details on the SNP data. Chr., chromosome; Dist., distance
between CpG and SNP position; MAF, minor allele frequency.

cohort). Models were adjusted for the discovery covariates and technical covariates relevant

for gene expression data (see Section 3.1.3). Associations were determined in each of the

three studies separately, followed by inverse-variance weighted fixed-effects meta-analysis.

A total of 5569 transcripts were located in cis (±500 Mb) to the 187 CpG sites. Of

these, 44 transcripts of 38 genes associated with DNA methylation at 31 CpGs without

adjustment for BMI (Table 4.5), with minor changes after adjustment for BMI (not shown).

The majority of the observed associations were negative. The strongest cis-signals were

observed for cg09315878 with TNFRSF4 expression (p = 7.2 × 10−86), cg09152259 with

MAP3K2 expression (p = 1.6 × 10−67) and cg14476101 with PHGDH expression (p =

1.0× 10−64).
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Table 4.4: EWAS of BMI – Discovery and replication results. Results are shown for the
187 CpG sites that were validated in the replication step (p < 0.05 in the replication step and
p < 10−7 in the joint meta-analysis).

p-values
CpG ID Chr. Position Nearest gene # CpGs Dir. Discovery Replication Joint n
cg09315878 1 1152580 SDF4 1 - 3.2E-08 3.9E-04 5.7E-12 8843
cg11832534 1 3563998 WRAP73 1 + 1.3E-08 1.6E-06 7.2E-15 9587
cg08648047 1 11028561 C1orf127 0 + 7.2E-10 1.3E-03 1.1E-12 9593
cg03885055 1 16723232 SPATA21 0 - 1.3E-09 3.8E-03 1.4E-11 10260
cg12484113 1 27898757 AHDC1 0 + 1.2E-14 2.2E-09 1.8E-24 9565
cg16815882 1 35908609 KIAA0319L 0 + 6.0E-08 1.8E-02 2.6E-09 9593
cg17971578 1 36852463 STK40 0 - 4.6E-08 4.4E-04 1.4E-11 9511
cg27547344 1 43765617 TIE1 0 + 6.2E-08 3.7E-03 2.7E-10 9555
cg17901584 1 55353706 DHCR24 0 - 1.4E-10 4.2E-10 9.8E-21 9595
cg16594806 1 59473943 PHBP3 0 - 2.3E-18 1.3E-02 2.7E-18 9579
cg25001190 1 61668835 NFIA 0 - 8.1E-08 4.6E-05 1.8E-12 9509
cg03050965 1 101705237 S1PR1 0 - 3.0E-08 2.4E-02 3.6E-09 10260
cg03725309 1 109757585 SARS 0 - 3.8E-13 1.8E-07 1.6E-20 10251
cg14476101 1 120255992 PHGDH 1 - 2.1E-17 9.4E-13 3.7E-31 9554
cg10505902 1 144892111 PDE4DIP 0 - 1.4E-08 3.2E-06 1.4E-14 8073
cg22700686 1 153538764 S100A2 3 - 3.2E-12 1.4E-04 1.4E-16 8832
cg12593793 1 156074135 LMNA 1 - 2.9E-27 3.9E-09 9.3E-37 9582
cg25217710 1 156609523 BCAN 0 + 4.4E-13 3.4E-03 1.4E-14 10261
cg07202479 1 159174162 DARC 1 - 2.2E-09 4.0E-08 2.3E-17 10243
cg09554443 1 167487762 CD247 0 - 2.5E-10 2.5E-04 4.1E-14 9593
cg22534374 1 201511610 RPS10P7 0 - 1.6E-08 2.4E-05 2.1E-13 10254
cg10717869 1 205780912 SLC41A1 0 + 1.8E-10 9.1E-08 3.0E-18 9586
cg15323828 1 226053673 TMEM63A 0 - 4.0E-10 8.5E-03 9.7E-12 9577
cg01101459 1 234871477 LINC00184 1 + 3.1E-10 1.3E-05 2.1E-15 10258
cg02560388 2 11969958 LPIN1 0 - 4.7E-08 1.3E-04 4.3E-12 10260
cg04011474 2 28904455 RNA5SP89 0 - 3.7E-09 2.7E-06 4.0E-15 10257
ch.2.30415474F 2 30561970 LBH 0 - 7.7E-09 2.3E-04 6.9E-13 8824
cg16163382 2 37938640 CDC42EP3 0 - 5.8E-13 1.2E-03 1.5E-15 9579
cg26253134 2 70751721 TGFA 0 - 3.2E-12 2.3E-07 1.7E-19 10258
cg25570328 2 108903952 SULT1C2 0 - 6.0E-09 5.6E-03 9.8E-11 10260
cg09152259 2 128156114 MAP3K2 0 - 4.7E-08 4.1E-15 6.0E-22 9590
cg15357118 2 128927972 UGGT1 0 + 1.6E-08 1.3E-08 6.7E-17 9593
cg03327570 2 145304883 ZEB2 0 - 1.0E-11 1.5E-08 2.6E-20 10258
cg17178175 2 178109973 NFE2L2 0 - 5.1E-10 2.9E-06 4.0E-16 9587
cg09613192 2 181388538 FTH1P20 0 + 7.3E-09 2.9E-05 8.7E-14 9567
cg19373099 2 210008092 CRYGFP 0 + 5.7E-10 1.1E-05 3.4E-15 10118
cg00634542 2 219254588 SLC11A1 0 + 2.1E-08 5.8E-03 3.2E-10 10225
cg00144180 2 240294362 HDAC4 0 + 1.5E-08 1.5E-08 7.4E-17 10190
cg23032421 3 3152038 IL5RA 0 - 1.3E-08 1.4E-04 1.5E-12 10249
cg15681239 3 38080203 DLEC1 0 - 5.5E-08 3.3E-04 1.2E-11 9596
cg00138407 3 47386505 KLHL18 0 + 4.4E-08 8.4E-03 1.0E-09 10261
cg00108715 3 52565015 NT5DC2 0 + 4.0E-10 2.4E-04 1.0E-13 10259
cg22012981 3 58522689 ACOX2 0 + 3.4E-10 5.8E-04 3.1E-13 10250
cg10549088 3 64277154 PRICKLE2 0 + 7.7E-08 4.1E-02 3.1E-09 8077
cg12992827 3 101901234 ZPLD1 0 - 2.9E-10 2.2E-06 1.6E-16 9595
cg23232188 3 121556543 EAF2 0 + 4.0E-12 1.9E-05 5.0E-17 10255
cg16846518 3 128062608 EEFSEC 0 - 6.7E-08 1.8E-03 1.1E-10 9588
cg25197194 3 128758787 EFCC1 0 - 3.1E-08 4.4E-03 2.9E-10 10259
cg00673344 3 156807691 LINC00880 0 - 5.3E-08 1.5E-03 1.1E-10 10259
cg18098839 3 167742700 GOLIM4 0 - 2.7E-11 1.7E-09 6.0E-21 9581
cg15721584 3 181326755 SOX2-OT 2 + 4.9E-14 1.6E-08 6.9E-23 9541
cg10513161 3 183705727 ABCC5 0 + 1.5E-08 1.2E-03 1.7E-11 9581
cg06164260 3 187454439 BCL6 0 - 8.1E-18 4.9E-09 4.6E-27 10253
cg18513344 3 195531298 MUC4 0 - 6.0E-12 1.1E-07 1.4E-19 10252
cg10438589 4 14531493 LINC00504 0 + 6.5E-08 2.4E-04 9.5E-12 9585
cg26542660 4 56813860 CEP135 0 - 8.5E-08 4.4E-03 7.2E-10 10228
cg06690548 4 139162808 SLC7A11 0 - 3.0E-10 1.0E-12 6.7E-23 10247
cg11080651 5 10445523 ROPN1L 3 - 2.9E-09 9.1E-03 6.2E-11 9591
cg10179300 5 14147618 TRIO 0 + 9.1E-10 4.4E-07 9.7E-17 9593
cg04232128 5 138861241 TMEM173 0 - 3.0E-08 5.0E-05 9.6E-13 10257
cg26403843 5 158634085 RNF145 0 + 2.9E-15 5.0E-14 5.3E-30 10218
cg11927233 5 170816542 NPM1 0 + 1.3E-09 4.3E-06 1.7E-15 9577
cg02286155 5 176826262 SLC34A1 0 + 1.2E-10 9.3E-05 9.9E-15 10257
cg22590032 5 180050565 FLT4 0 + 2.5E-09 1.1E-04 2.1E-13 10258
cg09222732 6 466893 EXOC2 0 - 5.0E-08 2.1E-05 3.8E-13 8841
cg10975897 6 15504844 JARID2 0 - 8.2E-09 1.1E-04 4.5E-13 9566
cg00094412 6 29592854 GABBR1 0 - 1.1E-08 3.0E-06 1.0E-14 9513
cg13123009 6 31681882 LY6G6F 1 + 3.4E-09 1.2E-05 1.4E-14 9590
cg03957124 6 37016869 COX6A1P2 0 - 1.6E-09 8.5E-03 5.9E-11 10252
cg18120259 6 43894639 C6orf223 1 - 1.6E-09 3.2E-09 1.2E-18 10254
cg06012428 6 157477204 ARID1B 0 - 3.7E-09 2.1E-02 5.2E-10 10258
cg03940776 6 158490013 SYNJ2 0 - 3.0E-09 2.0E-08 1.7E-17 10253
cg17501210 6 166970252 RPS6KA2 0 - 8.2E-19 6.4E-21 6.5E-41 9594
cg05095590 7 2139259 MAD1L1 1 + 9.6E-10 4.1E-04 7.0E-14 6933
cg26804423 7 8201134 ICA1 0 + 2.4E-10 2.6E-03 2.0E-12 10261
cg24469729 7 27160520 HOXA-AS2 0 + 2.3E-08 8.6E-05 1.3E-12 10256
cg21429551 7 30635762 GARS 1 - 6.2E-10 2.8E-07 4.8E-17 10258
cg04577162 7 73667397 RFC2 0 + 2.6E-09 2.7E-04 7.1E-13 10260
cg19566658 7 100466241 TRIP6 0 + 5.9E-09 3.0E-03 3.8E-11 10254
cg22103219 7 101934892 SH2B2 1 - 7.0E-12 2.0E-04 2.1E-15 10256
cg05720226 7 116786597 ST7 0 + 1.4E-08 2.1E-04 2.5E-12 10261
cg27269962 7 127540997 SND1 0 + 1.5E-09 4.0E-03 9.8E-12 9532
cg25435714 7 157083381 RN7SL142P 0 + 5.3E-10 1.5E-02 6.0E-11 10255
cg24531955 8 23154691 LOXL2 0 - 3.2E-10 9.1E-09 6.0E-19 10260
cg19589396 8 103937374 RPL5P24 0 - 2.3E-10 2.2E-07 1.3E-17 10214
cg07471614 8 125855152 LINC00964 0 + 9.4E-09 3.2E-03 6.6E-11 10256
cg26952928 8 142230233 SLC45A4 2 + 3.6E-09 2.1E-02 4.9E-10 10257
cg26361535 8 144576604 ZC3H3 0 + 1.4E-10 8.7E-06 5.6E-16 10257
cg02716826 9 33447032 AQP3 0 - 1.6E-12 3.5E-10 5.9E-23 10248
cg13591783 9 75768868 ANXA1 0 - 9.0E-08 2.3E-05 9.5E-13 9592
cg14264316 9 134280803 PRRC2B 0 + 1.1E-08 3.9E-04 3.0E-12 9587
cg13781414 9 138951648 NACC2 1 - 4.2E-08 5.5E-04 1.7E-11 9570
cg19695507 10 13526193 BEND7 0 + 7.8E-10 9.3E-03 3.8E-11 10254
cg26033520 10 74004071 ANAPC16 0 + 1.6E-10 2.9E-09 8.3E-20 10191
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Table 6.2 continued.

p-values
CpG ID Chr. Position Nearest gene # CpGs Dir. Discovery Replication Joint n
cg04126866 10 85932763 C10orf99 0 + 3.0E-08 1.3E-03 5.3E-11 10220
cg16578636 10 92987457 PCGF5 0 - 8.8E-08 3.9E-02 1.2E-08 9589
cg07504977 10 102131012 LINC00263 0 + 4.5E-09 1.7E-10 2.2E-19 10257
cg00431050 10 103985730 ELOVL3 1 - 1.1E-10 2.9E-03 1.1E-12 10257
cg26878209 10 112375475 SMC3 0 + 4.3E-08 8.0E-04 4.0E-11 10251
cg00244001 10 126336805 FAM53B 0 - 2.0E-12 3.4E-04 1.4E-15 10259
cg00238353 10 129785537 PTPRE 0 + 9.2E-08 2.4E-03 3.5E-10 10234
cg10927968 11 1807333 CTSD 0 + 3.9E-11 6.0E-06 6.7E-17 9590
cg06603309 11 2724144 KCNQ1 1 - 1.3E-11 5.3E-03 5.1E-13 10253
cg07136133 11 36422377 PRR5L 1 - 6.5E-11 2.3E-07 3.8E-18 10261
cg21108085 11 44591098 CD82 0 - 5.0E-08 2.3E-04 9.4E-12 10253
cg05648472 11 45232364 PRDM11 1 + 6.1E-11 3.4E-04 3.0E-14 10254
cg11376147 11 57261198 SLC43A1 0 - 5.8E-15 1.6E-04 1.0E-18 9591
cg03433986 11 62477624 BSCL2 0 - 4.5E-09 2.0E-04 8.2E-13 10260
cg00574958 11 68607622 CPT1A 1 - 3.3E-33 2.7E-18 1.2E-53 10252
cg09777883 11 112093696 BCO2 0 + 1.3E-08 1.1E-02 3.2E-10 9593
cg17260706 11 118782879 BCL9L 0 - 1.2E-15 4.7E-06 1.7E-21 9590
cg26894079 11 122954435 CLMP 0 - 2.2E-09 3.8E-10 2.2E-19 10254
cg22488164 12 14716910 PLBD1 0 + 2.5E-10 5.2E-06 5.7E-16 10238
cg06898549 12 41083590 CNTN1 0 + 1.8E-08 7.0E-06 5.9E-14 10241
cg06559575 12 53490352 IGFBP6 0 - 2.5E-08 2.0E-07 1.8E-15 10249
cg05845030 12 91573247 DCN 0 - 1.1E-09 5.9E-05 4.3E-14 10254
cg27117792 12 102330180 DRAM1 0 - 4.5E-08 5.1E-06 1.1E-13 10261
cg01511901 13 31004719 UBE2L5P 0 - 7.9E-08 3.3E-04 2.4E-11 10251
cg19750657 13 38935967 UFM1 0 + 2.2E-16 4.7E-11 5.2E-28 10258
cg26687842 13 41055491 LINC00598 0 + 2.6E-08 3.5E-05 5.3E-13 10260
cg11650298 13 44690989 SMIM2-AS1 0 - 1.7E-10 1.3E-04 1.2E-14 9584
cg19881557 14 20967426 RNASE10 0 + 3.7E-08 9.4E-07 1.4E-14 10250
cg03523676 14 24540235 CPNE6 0 + 3.5E-13 1.7E-03 3.8E-15 10261
cg13097800 14 47104140 RPL10L 0 - 1.4E-08 1.3E-02 4.3E-10 9592
cg26357885 14 65006204 HSPA2 0 - 5.7E-10 2.4E-02 1.5E-10 10251
cg10919522 14 74227441 ELMSAN1 0 - 7.5E-10 1.4E-06 2.7E-16 9584
cg19998073 14 89078443 ZC3H14 1 + 1.3E-09 9.2E-03 5.9E-11 10259
cg10814005 14 91711041 GPR68 0 - 5.1E-08 5.4E-03 3.9E-10 9584
cg25096107 14 106037781 IGHA2 0 - 7.0E-10 2.5E-03 6.5E-13 8077
cg10734665 15 26107410 ATP10A 0 - 1.3E-08 2.3E-03 3.2E-11 9594
cg27184903 15 29285727 APBA2 0 + 6.8E-08 8.0E-04 2.9E-11 8724
cg06192883 15 52554171 MYO5C 0 + 3.9E-09 8.7E-11 1.0E-19 10258
cg07037944 15 64290807 DAPK2 0 - 4.9E-11 1.3E-07 1.5E-18 10220
cg02119938 15 78505051 ACSBG1 0 - 2.9E-11 1.1E-09 4.9E-21 10251
cg07728579 15 83475013 FSD2 0 + 1.7E-09 2.0E-06 9.5E-16 9593
cg11183227 15 91455407 MAN2A2 0 + 8.0E-10 1.7E-03 1.6E-12 9587
cg27614723 15 92399897 SLCO3A1 0 + 2.7E-10 2.1E-02 2.9E-11 9559
cg00973118 16 374570 AXIN1 1 + 2.3E-08 1.6E-05 1.9E-13 10256
cg05063895 16 2073518 SLC9A3R2 0 - 6.2E-09 5.8E-03 1.1E-10 10258
cg06946797 16 11422409 RMI2 0 - 1.5E-13 6.0E-07 2.7E-20 10249
cg26663590 16 28959310 NFATC2IP 0 + 1.3E-11 3.3E-05 3.2E-16 10248
cg00711896 16 30410051 ZNF48 1 + 3.1E-09 2.0E-04 5.8E-13 10255
cg01243823 16 50732212 NOD2 2 - 1.7E-12 2.2E-12 3.3E-25 10259
cg00863378 16 56549757 BBS2 0 + 2.4E-08 5.7E-03 3.4E-10 10257
cg10922280 16 68034227 DUS2L 0 + 6.1E-13 4.2E-05 1.2E-17 9583
cg08305942 16 79692354 MAF 0 - 3.3E-08 1.3E-11 3.1E-19 9594
cg03159676 16 85600536 GSE1 0 + 3.5E-08 4.4E-07 6.0E-15 10261
cg07021906 16 87866833 SLC7A5 1 + 3.2E-10 4.4E-04 2.0E-13 10260
cg08443038 16 89006877 CBFA2T3 0 - 4.2E-08 3.2E-02 4.5E-09 9592
cg08726900 16 89550474 ANKRD11 1 - 2.0E-09 3.0E-02 3.2E-10 9476
cg09664445 17 2612406 CLUH 1 + 2.4E-16 1.2E-04 3.9E-20 9594
cg01798813 17 3906674 ZZEF1 0 + 6.1E-09 8.7E-06 2.5E-14 10251
cg19217955 17 7123994 ACADVL 0 - 4.3E-08 2.4E-04 8.8E-12 10258
cg22695339 17 7791630 CHD3 0 - 6.3E-08 2.0E-04 1.0E-11 10254
cg11024682 17 17730094 SREBF1 0 + 1.9E-23 3.0E-25 1.3E-50 9592
cg16611584 17 19809078 AKAP10 0 + 1.0E-11 6.3E-04 7.4E-15 9588
cg25649826 17 20938740 USP22 0 + 8.9E-09 4.2E-04 4.0E-12 10260
cg13274938 17 38493822 RARA 0 + 9.1E-09 6.1E-06 2.0E-14 9567
cg08857797 17 40927699 VPS25 3 + 3.3E-14 2.3E-03 3.3E-16 9556
cg18219562 17 41773643 MEOX1 1 + 5.7E-09 3.5E-04 2.1E-12 10260
cg27050612 17 46133198 NFE2L1 0 - 4.3E-09 3.3E-04 1.4E-12 10254
cg02650017 17 47301614 PHOSPHO1 0 - 1.9E-16 2.0E-08 5.7E-25 10250
cg24174557 17 57903544 VMP1 0 - 2.4E-12 3.0E-08 1.3E-20 10217
cg08813944 17 71258589 CPSF4L 0 + 7.6E-08 2.4E-03 8.1E-11 8043
cg14020176 17 72764985 SLC9A3R1 0 + 4.6E-08 3.7E-03 2.1E-10 9593
cg21486834 17 74477542 RHBDF2 0 + 6.4E-12 6.2E-03 3.5E-13 10259
cg18181703 17 76354621 SOCS3 3 - 2.8E-20 1.6E-16 3.6E-38 10258
cg11202345 17 76976057 LGALS3BP 4 + 2.3E-11 1.9E-06 9.6E-18 9586
cg11969813 17 79816559 P4HB 5 + 1.6E-11 2.6E-05 1.7E-16 9580
cg18608055 19 1130866 SBNO2 5 - 5.9E-13 4.7E-06 1.4E-18 10231
cg04524040 19 4153364 CREB3L3 0 - 4.1E-08 7.4E-03 4.6E-10 9505
cg07769588 19 10655622 ATG4D 2 + 1.3E-12 2.2E-05 1.2E-17 9566
cg13922488 19 14545201 PKN1 0 + 4.8E-08 2.5E-06 4.5E-14 9591
cg24679890 19 17246356 MYO9B 0 + 8.3E-11 1.0E-04 7.9E-15 10260
cg07682160 19 18959935 UPF1 0 + 1.5E-09 1.0E-03 1.5E-12 9575
cg26836479 19 42706353 DEDD2 0 - 1.5E-08 6.5E-03 1.5E-10 9504
cg27087650 19 45255796 BCL3 1 - 2.1E-09 3.2E-02 6.8E-10 10243
cg02711608 19 47287964 SLC1A5 1 - 5.6E-11 6.0E-09 5.9E-20 10258
cg11614585 20 897050 ANGPT4 0 + 8.9E-08 1.1E-02 1.8E-09 9586
cg18217136 20 36157651 PPIAP3 0 + 3.8E-08 1.1E-03 5.0E-11 10259
cg24403644 20 42574624 TOX2 0 + 5.9E-08 2.7E-10 7.9E-18 10260
cg08309687 21 35320596 LINC00649 1 - 1.1E-13 2.9E-05 1.5E-18 9595
cg06500161 21 43656587 ABCG1 4 + 6.0E-46 1.1E-25 2.0E-75 10260
cg08548559 22 31686097 PIK3IP1 0 - 3.4E-09 4.9E-07 4.6E-16 9570
cg27115863 22 37921640 CARD10 0 - 1.1E-08 7.6E-10 2.8E-18 10260
cg03318904 22 39801522 TAB1 2 + 2.2E-12 2.6E-08 9.5E-21 10254
cg09349128 22 50327986 CRELD2 1 - 1.7E-20 7.3E-13 1.2E-34 9594

Linear models were adjusted for age, sex, physical activity, smoking status, alcohol intake, estimated white blood cell
proportions as well as the first 20 control probe PCs, and meta-analyzed using z-score based fixed-effects meta-analysis. #
CpGs, number of further significant CpGs in locus; Chr., chromosome; Dir., effect direction.



4.2 Methylome-wide association study of body mass index 89

1

SD
F4

W
R

A
P7

3
C

1o
rf

12
7

SP
A

TA
21

A
H

D
C

1

ST
K

40
TI

E
1

D
H

C
R

24
PH

B
P3

N
FI

A

S1
PR

1
SA

R
S

PH
G

D
H

PD
E

4D
IP

S1
00

A
2

LM
N

A
B

C
A

N
D

A
R

C
C

D
24

7

R
PS

10
P7

SL
C

41
A

1

TM
E

M
63

A
LI

N
C

00
18

4

2

LP
IN

1

R
N

A
5S

P8
9

LB
H

C
D

C
42

E
P3

TG
FA

SU
LT

1C
2

M
A

P3
K

2
U

G
G

T1

ZE
B

2

N
FE

2L
2

FT
H

1P
20

C
R

YG
FP

SL
C

11
A

1

H
D

A
C

IL
5R

A

D
LE

C
1

K
LH

L1
8

N
T5

D
C

2
A

C
O

X
2

PR
IC

K
LE

2

ZP
LD

1

E
A

F2
E

E
FS

E
C

E
FC

C
1

LI
N

C
00

88
0

G
O

LI
M

4

3

4

SO
X

2-
O

T
A

B
C

C
5

B
C

L6
M

U
C

4

C
E

P1
35

4

LI
N

C
00

50
4

SL
C

7A
11

R
O

PN
1L

TR
IO

5

TM
E

M
17

3

R
N

F1
45

N
PM

1
SL

C
34

A
1

FL
T4

6

E
X

O
C

2

JA
R

ID
2

G
A

B
B

R
1

LY
6G

6F
C

O
X

6A
1P

2
C

6o
rf

22
3

R
PS

6K
A

2

7

H
O

X
A

-A
S2

M
A

D
1L

1
IC

A
1

G
A

R
S

R
FC

2

TR
IP

6
SH

2B
2

ST
7

8

LO
X

L2

R
PL

5P
24

LI
N

C
00

96
4

10
9

A
Q

P3

A
N

X
A

PR
R

C
2B

N
A

C
C

21

11

12

PL
B

D
1

C
N

TN
1

C
TS

D
K

C
N

Q
1

PR
R

5L
C

D
82

PR
D

M
11

SL
C

43
A

B
SC

L2
C

PT
1A

B
C

O
2

B
C

L9
L

C
LM

P

1

IG
FB

P6

D
C

N

D
R

A
M

1

C

13

U
B

E
2L

5P
U

FM
1

LI
N

00
59

8
SM

IM
2-

A
S1

16

A
X

IN
1

SL
C

9A
3R

2

R
M

I2

N
FA

TC
2I

P
ZN

F4
8

N
O

D
2

B
B

S2

15

A
TP

10
A

M
YO

5C

D
A

PK
2

14

R
N

A
SE

10
C

PN
E

6

R
PL

10
L

E
LM

SA
N

1

G
PR

68

IG
H

A
2

FS
D

2
M

A
N

2A
2

SL
C

O
3A

1

A
C

SB
G

1
D

U
S2

L
M

A
F

G
SE

1
SL

C
7A

5

17

C
LU

H
ZZ

E
F1

A
C

A
D

V
L

C
H

D
3

SR
E

B
F1

A
K

A
P1

0
U

SP
22

R
A

R
A

V
PS

25
M

E
O

X
1

N
FE

2L
1

PH
O

SP
H

O
1

V
M

P1
C

PS
F4

L
SL

C
9A

3R
1

SO
C

S3

LG
A

LS
3B

P
19

SB
N

O
2

A
TG

4D
PK

N
1

M
YO

9B
U

PF
1

SL
C

1A
5

20

A
N

G
PT

4

PP
IA

P3
TO

X
2

21

LI
N

C
00

64
9

A
B

C
G

1

22

PI
K

3I
P1

C
A

R
D

10
TA

B
1

18

C
R

E
LD

2

P
4H

B

C
B

FA
2T

3
A

N
K

R
D

11

K
IA

A
03

19
L

A
R

ID
1B

SY
N

J2

SN
D

1

N
7S

L1
42

P
SL

C
45

A
4

ZC
3H

3

B
E

N
D

7

A
N

A
PC

16

C
10

or
f9

9

LI
N

C
00

26
3

E
LO

V
L3

S
M

C
3

F
A

M
3B

PT
PR

E5

PC
G

F5

H
SP

A
2

ZC
3H

14

R
H

B
D

F2

C
R

E
B

3L
3

B
C

L3
D

E
D

D
2

R

A
PB

A
2

Figure 4.8: Karyogram visualizing the genomic positions of the 187 validated CpGs
associated with BMI.

4.2.4 Functional genomics

The identified markers were studied with regard to (1) their location in relation to func-

tional genomic features, (2) gene sets defining known pathways, and (3) published GWAS
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Figure 4.9: Cross-tissue correlation of DNA methylation. Matrix of scatter plots (lower
triangle) and Pearson’s correlation (upper triangle; with permutation p-value using 10,000 permu-
tations, see Section 3.3.3) of DNA methylation at the 187 validated BMI-associated CpGs between
different tissues (diagonal). Tissue type is denoted in the diagonal.

loci. Enrichment analysis (see Section 3.5.1) for functional genomic features included re-

lationship to regulatory genomic sites (retrieved from the UCSC database, Ram et al.

(2011)), and to CpG islands and location in/near genes (retrieved from Bibikova et al.

(2011)).

The 187 loci were significantly enriched with respect to open chromatin sites (Figure

4.10A), including DNase hypersensitive sites (p = 7.1×10−8), enhancers (p = 2.2×10−10)

and the histone modifications histone H3 lysine 4 monomethylation (h3k4me1) (p = 2.6×
10−19) and histone H3 lysine 27 acetylation (h3k27ac) (p = 2.3 × 10−5), which mark

open chromatin at active promoters and enhancers (Ram et al., 2011). Only a trend of



4.2 Methylome-wide association study of body mass index 91

enrichment was observed for the activating histone mark h3k4me3 (p = 0.015). The CpGs

were also enriched in “open sea” locations (p = 4.3×10−10) but markedly depleted in CpG

islands (p = 5.6× 10−26) (Figure 4.10B). In addition, a significant enrichment within gene

bodies (p = 1.0×10−8 and depletion at transcriptional start sites (TSS200, p = 2.2×10−9;

Table 4.5: Significant cis-associations with gene expression. Significance level was 9.0 ×
10−6, corresponding to Bonferroni correction for 5569 transcripts in cis (± 500 Mb) to the 187
BMI-associated CpGs. Only the strongest association per CpG-gene pair is shown.

CpG ID Chr. Position Nearest gene Transcript ID Gene Dir. p-value Relation of
CpG to gene**

cg09315878 1 1152580 SDF4 ILMN 2112256 TNFRSF4 - 7.2E-86 downstream
cg09315878 1 1152580 SDF4 ILMN 2349633 TNFRSF18 - 7.2E-15 downstream
cg17901584 1 55353706 DHCR24 ILMN 1725510 DHCR24 - 2.7E-09 promoters
cg14476101 1 120255992 PHGDH ILMN 1704537 PHGDH - 1.0E-64 introns
cg09152259 2 128156114 MAP3K2 ILMN 1765122 MAP3K2 - 1.6E-67 downstream
cg09613192 2 181388538 FTH1P20 ILMN 2390338 UBE2E3 - 5.3E-12 upstream
cg23032421 3 3152038 IL5RA ILMN 1756455 IL5RA - 1.1E-18 exons/promoters
cg04232128 5 138861241 TMEM173 ILMN 1745256 CXXC5 + 1.4E-09 upstream
cg00094412 6 29592854 GABBR1 ILMN 2395375 GABBR1 - 7.5E-06 introns
cg13123009 6 31681882 LY6G6F ILMN 1654566 HSPA1L - 5.4E-06 upstream
cg03957124 6 37016869 COX6A1P2 ILMN 2123450 FLJ43093 + 1.4E-06 downstream
cg24469729 7 27160520 HOXA-AS2 ILMN 1657129 SKAP2 - 1.3E-10 downstream
cg24469729 7 27160520 HOXA-AS2 ILMN 1753613 HOXA5 - 7.4E-18 upstream
cg19589396 8 103937374 RPL5P24 ILMN 1656682 AZIN1 + 2.4E-06 downstream
cg13591783 9 75768868 ANXA1 ILMN 2184184 ANXA1 - 1.4E-08 introns
cg07136133 11 36422377 PRR5L ILMN 1697491 PRR5L - 9.2E-07 introns/promoters
cg21108085 11 44591098 CD82 ILMN 1699980 TSPAN18 - 7.8E-06 upstream
cg25096107 14 106037781 IGHA2 ILMN 1707491 KIAA0125 - 7.0E-06 upstream
cg25096107 14 106037781 IGHA2 ILMN 3239445 ZBTB42 + 4.0E-06 downstream
cg07037944 15 64290807 DAPK2 ILMN 1791847 DAPK2 + 3.5E-07 introns
cg11183227 15 91455407 MAN2A2 ILMN 1693650 FES - 3.8E-06 downstream
cg00973118 16 374570 AXIN1 ILMN 1741371 TMEM8A + 2.5E-10 upstream
cg00711896 16 30410051 ZNF48 ILMN 2125747 LOC606724 - 4.4E-06 downstream
cg00711896 16 30410051 ZNF48 ILMN 2179726 C16ORF93 - 1.8E-11 upstream
cg00863378 16 56549757 BBS2 ILMN 2230035 BBS2 - 2.5E-27 introns
cg10922280 16 68034227 DUS2L ILMN 1689160 DPEP2 - 1.7E-15 promoters
cg10922280 16 68034227 DUS2L ILMN 1741736 DDX28 - 6.8E-06 upstream
cg10922280 16 68034227 DUS2L ILMN 1811650 DUS2L - 2.2E-11 upstream
cg01798813 17 3906674 ZZEF1 ILMN 1668984 SPNS3 - 2.0E-30 upstream
cg01798813 17 3906674 ZZEF1 ILMN 1807719 CTNS - 5.2E-08 downstream
cg11024682 17 17730094 SREBF1 ILMN 1663035 SREBF1 - 6.0E-07 introns
cg16611584 17 19809078 AKAP10 ILMN 1718808 AKAP10 - 2.2E-07 exons
cg08813944 17 71258589 CPSF4L ILMN 1745223 CDC42EP4 - 8.0E-07 upstream
cg14020176 17 72764985 SLC9A3R1 ILMN 2112357 CD300LF - 1.1E-09 downstream
cg11202345 17 76976057 LGALS3BP ILMN 1659688 LGALS3BP - 8.6E-17 exons/promoters
cg07769588 19 10655622 ATG4D ILMN 2073184 S1PR5 - 4.1E-06 downstream
cg06500161 21 43656587 ABCG1 ILMN 1794782 ABCG1 - 1.2E-18 introns
cg08548559 22 31686097 PIK3IP1 ILMN 1651429 SELM - 9.1E-07 downstream

*Nearest gene according to ensembl annotation. **Genomic features according to RefSeq annotation
retrieved from the UCSC database. Overlaps with the CpG site positions were determined using the R
package GenomicRanges, version 1.14.4. Pairwise association testing of a transcript and a CpG site was
performed using linear models with gene expression as response variable, and DNA methylation as well
as discovery covariates and technical factors as independent variables (see Section 3.1.3). Results were
combined using inverse-variance weighted fixed-effects meta-analysis.



92 4 Results and Discussion

TSS1500, p = 7.2× 10−3) was observed (Figure 4.10B).

C

BA

Figure 4.10: Enrichment of the BMI-associated CpGs within functional genomic sites.
Enrichment was determined using Fisher’s exact test (see Section 3.5). Left and right bars repre-
sent sites not associated and associated with BMI, respectively. DHS, DNase hypersentive sites;
h3k4me1, histone H3 lysine 4 monomethylation; h3k4me3, histone H3 lysine 4 trimethylation;
h3k27ac, histone H3 lysine 27 acytylation; TSS, transcription start site; UTR, untranslated region.

4.2.5 Candidate genes at the identified loci

Genes were prioritized as likely candidates underlying the observed methylation-BMI as-

sociations at the 187 loci using the following criteria: (1) distance ≤ 40 kb to the CpG

position, since associations of methylation with expression have been reported to typically

range about ± 40 kb distance between gene and CpG position (Liu et al., 2013), and (2)

distance ≤ 500 kb to the CpG position with expression associated with methylation (see

Section 4.2.3 above). This yielded a combined list of 546 unique genes.

The gene set enrichment analysis (GSEA) MSigDB platform (see Section 3.5.1) was used

to explore enrichment of these genes against a set of curated pathway sets, including Bio-
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Carta, KEGG, Pathway Interaction Database, Reactome, SigmaAldrich, Signaling Gate-

way, Signal Transduction KE and SuperArray. This revealed significant enrichment for

genes involved in metabolic signaling (lipid metabolism, insulin signaling) and transmem-

brane transport (solute carrier protein, binding cassettes) as well as hemostasis and au-

tophagy (Table 4.6).

Table 4.6: Enrichment of the BMI-associated CpGs for biological pathways.

Pathway Origin p-value FDR-corrected p-value

Transmembrane transport of small
molecules

REACTOME 1.9E-06 2.5E-03

Direct p53 effectors PID 4.4E-05 2.0E-02
Metabolism of lipids and lipoproteins REACTOME 4.6E-05 2.0E-02
GPCR ligand binding REACTOME 1.3E-04 3.4E-02
Hemostasis REACTOME 1.3E-04 3.4E-02
Amino acid transport across the plasma
membrane

REACTOME 1.8E-04 3.7E-02

Transport of inorganic cations, anions and
amino acids/oligopeptides

REACTOME 2.4E-04 3.7E-02

Fc-epsilon receptor I signaling in mast cells PID 2.7E-04 3.7E-02
Insulin signaling pathway KEGG 3.0E-04 3.7E-02
Regulation of autophagy KEGG 3.0E-04 3.7E-02

Enrichment analysis was conducted using the gene set enrichment analysis (GSEA) MSigDB platform.
p-values were derived from Fisher’s exact test (Section 3.5.1). KEGG, Kyoto Encyclopedia of Genes and
Genomes; PID, pathway interaction database.

A separate enrichment analysis was conducted for genes related to clinical traits in pub-

lished GWAS using Meta-Analysis Gene-set Enrichment of variaNT Associations (MA-

GENTA, Segrè et al. (2010), see Section 3.5.1). This revealed a significant enrichment for

genes related to LDL cholesterol (p = 3.0× 10−3) and waist-hip ratio (WHR) adjusted for

BMI (p = 8.6× 10−3) but not for genes related to BMI (p = 0.678) (Table 4.7).

4.2.6 DNA methylation is influenced by DNA sequence variation

Using genome-wide SNP data imputed to the 1000G reference panel from a subset of

3961 individuals from the EpiMigrant and KORA F3 as well as F4 cohorts (see Appendix

Table A.4), a search for cis-located (±1 Mb) genetic variants influencing methylation at

the identified CpG sites was performed. Associations between SNPs and methylation

were determined using linear models with methylation as response and SNP, discovery

covariates and the first 5 PCs derived from the genomic data in EpiMigrant to correct

for population stratification as independent variables. Results were combined by inverse-

variance weighted fixed-effects meta-analysis. BMI as a covariate did not affect the results

and was therefore omitted. A total number of 867,921 CpG-SNP pairs, corresponding to

175 CpGs and 825,286 SNPs, was retrieved after QC (see Section 3.1 and Appendix Table

A.4; 9 CpGs were excluded due to associated SNPs in the probe-binding area, and 3 due

to lack of common cis-SNPs in the cohorts), of which 29,807 pairs, corresponding to 125
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Table 4.7: Enrichment of the BMI-associated CpGs for previously published GWAS
loci.

GWAS (Consortium) p-value FDR-corrected p-value Expected Observed

BMI (GIANT) 6.8E-01 1 12 11
T2D (DIAGRAM) 6.6E-02 7.3E-01 12 17
Fasting Glucose (MAGIC) 3.7E-01 1 12 13
Fasting Insulin (MAGIC) 3.7E-01 1 12 13
HDL (LIPIDS) 4.7E-01 1 13 13
HOMA B (MAGIC) 4.3E-01 1 11 12
HOMA IR (MAGIC) 9.4E-01 1 11 7
LDL (LIPIDS) 3.0E-04 3.3E-03 12 25
Total Cholesterol (LIPIDS) 2.5E-01 1 12 14
Triglycerides (LIPIDS) 8.6E-01 1 12 9
WHR adjusted for BMI (GIANT) 8.6E-03 9.5E-02 12 21

Enrichment analysis was conducted using Meta-Analysis Gene-set Enrichment of variaNT Associations
(MAGENTA, Segrè et al. (2010)). p-values were determined by comparing the number of top 5% genes of
the ranked list in the gene set (“observed”) vs. the respective number in permuted gene sets of the same
size (“expected”). The permutation test was based on 10,000 permutations.

Figure 4.11: cis-associations of
genetic variants with methylation.
Genomic distance (in kb) between SNP
and CpG is plotted against -log10(p-
value) of the respective association.
Only SNPs with a minor allele fre-
quency of ≥ 1% were considered. See
Appendix Table A.4 for additional qual-
ity criteria.

CpGs, showed significant association at p < 5.8×10−8 (with non-significant p-value of the

heterogeneity test). Strength of association tended to relate to the physical proximity of

a SNP to a CpG (Figure 4.11).

4.2.7 Causality and direction of the observed methylation-BMI associ-

ations

Three approaches were employed towards deciphering the causality and direction of the

observed associations. First, an ad hoc Mendelian randomization (MR) approach was

applied (see Section 3.5.2), second, longitudinal associations between DNA methylation

and change in BMI were studied, and third, for selected CpGs, a formal MR experiment

was conducted (see Section 3.5.2).
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Methylation causal to BMI

The chosen ad hoc MR approach relies on the assumption that given methylation at a CpG

causally affects BMI, a SNP that strongly associates with the CpG should show an associ-

ation with BMI (“observed”) similarly as strong as the effect predicted from the product of

the effect sizes between SNP and CpG, and between CpG and BMI. To compare observed

and predicted effects, observed SNP-BMI associations were retrieved from a previously

published large GWAS of the GIANT consortium (n ≈ 100, 000, Speliotes et al. (2010)),

whereas predicted effects were determined from the available data, using the cis-SNP with

the strongest association with the respective CpG (cis-SNPs identified for the 175 eligable

CpGs, see Section 4.2.6 above), and meta-analyzing results from different cohorts using

inverse-variance weighted fixed-effects meta-analysis. To determine significance, p-values

were first multiplied by the number of SNPs allocated to the CpG, followed by Bonfer-

roni correction for the number of CpGs. Using this approach, a single CpG (cg26663590,

upstream of NFATC2IP) showed evidence of being causal to BMI (Figure 4.12A).

Figure 4.12: Causality of the BMI-methylation associations. Ad hoc MR approach. A
CpG causal to BMI: Plot of predicted versus observed effect sizes for SNP-BMI associations, where
the SNP from the cis-area of the respective CpG was chosen that associated most strongly with
the CpG. Grey, SNP-CpG association not significant; blue, SNP-CpG association significant. For
a single CpG (cg26663590), a significant SNP-BMI association was also observed; 95% confidence
intervals of predicted and observed effects are shown. B CpG consequential to BMI: Plot of
predicted versus observed effect sizes for genomics risk score (GRS)-CpG association. Two SNPs
(cg00138407 and cg06500161) were significantly associated with the GRS; 95% confidence intervals
of predicted and observed effects are shown.

Next, association of methylation with subsequent annual percentage change in BMI over

a 7-year follow-up period was assessed in a subset of 2948 participants from EpiMigrant

(n = 1513) and KORA F4 (n = 1435), using linear models adjusted for the discovery

covariates and baseline BMI, followed by inverse-variance weighted fixed-effects meta-
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analysis. Methylation at none of the 187 CpGs showed statistically significant evidence

of causing change in BMI. However, the direction of effect was confirmed for cg26663590

(NFATC2IP locus, p = 0.018) (Table 4.8). In addition, two further CpG sites showed nom-

inal significance in both MR and the longitudinal approach, namely cg00634542 (SLC11A1

locus) and cg00711896 (ZHF48 locus).

Table 4.8: Causality of the methylation-BMI associations. Shown are CpGs with sig-
nificant evidence for being causal or consequential to BMI from either ad hoc MR approach or
longitudinal analysis, or nominal significance in both. Results from formal MR are also shown,
where available. Note that for the consequential direction, consistency of effect sizes between the
ad hoc MR approach (predicted/observed GRS-CpG association) and the longitudinal analysis
(∆BMI-CpG association) is required for results to support each other, since GRS was formed such
that is relates positively with BMI. A similar consistency is not required for the causal direction.

Predicted Observed Disc. Longitudinal MR
CpG ID Chr. Pos. Nearest

gene
Dir. p-value Dir. p-value Dir. Dir. p-value Dir. p-value

Causal direction
cg00634542 2 219254588 SLC11A1 + 1.7E-05 + 1.1E-02 + + 1.6E-02 + 2.5E-01
cg26663590 16 28959310 NFATC2IP - 1.3E-09 - 9.6E-07* + + 1.8E-02
cg00711896 16 30410051 ZNF48 + 2.4E-03 + 7.7E-03 + + 4.5E-03

Consequential direction
cg08648047 1 11028561 C1orf127 + 9.7E-06 + 4.1E-03 + + 7.6E-03 + 7.2E-01
cg16815882 1 35908609 KIAA0319L + 3.2E-05 + 2.6E-02 + + 1.7E-03
cg17901584 1 55353706 DHCR24 - 1.2E-08 - 8.6E-03 - - 1.9E-02 + 7.5E-01
cg00138407 3 47386505 KLHL18 + 6.3E-07 + 8.0E-05* + + 1.4E-03 + 4.4E-01
cg10549088 3 64277154 PRICKLE2 + 2.5E-06 + 1.3E-02 + + 1.7E-02 + 3.2E-01
cg16846518 3 128062608 EEFSEC - 6.1E-05 - 3.7E-02 - - 2.3E-03 - 1.1E-01
cg10438589 4 14531493 LINC00504 + 1.1E-05 + 1.2E-01 + + 1.1E-04* + 8.6E-02
cg06690548 4 139162808 SLC7A11 - 3.0E-08 - 2.0E-01 - - 4.6E-05*
cg27269962 7 127540997 SND1 + 3.7E-05 + 2.2E-02 + + 1.9E-02
cg04126866 10 85932763 C10orf99 + 1.5E-05 + 6.4E-03 + + 1.6E-02
cg16578636 10 92987457 PCGF5 - 1.2E-06 - 6.2E-01 - - 7.0E-05* - 3.8E-01
cg06603309 11 2724144 KCNQ1 - 4.2E-07 - 5.4E-01 - - 3.5E-05* - 4.0E-01
cg09777883 11 112093696 BCO2 + 3.2E-06 + 8.7E-03 + + 3.6E-02 + 1.3E-01
cg26687842 13 41055491 LINC00598 + 1.2E-05 + 9.8E-03 + + 3.8E-02 + 3.2E-01
cg25096107 14 106037781 IGHA2 - 1.1E-06 - 2.5E-02 - - 1.2E-04* - 9.4E-01
cg06192883 15 52554171 MYO5C + 3.3E-08 + 4.5E-02 + + 7.1E-04
cg09664445 17 2612406 CLUH + 6.2E-08 + 1.8E-02 + + 5.8E-04 + 6.4E-02
cg11024682 17 17730094 SREBF1 + 5.7E-09 + 2.1E-02 + + 9.6E-06* + 3.0E-01
cg08857797 17 40927699 VPS25 + 1.0E-08 + 3.1E-02 + + 1.1E-02 + 5.1E-01
cg27087650 19 45255796 BCL3 - 2.2E-05 - 7.8E-03 - - 1.3E-03
cg18217136 20 36157651 PPIAP3 + 7.9E-06 + 9.0E-03 + + 6.3E-03 + 1.8E-01
cg24403644 20 42574624 TOX2 + 3.4E-05 + 2.4E-02 + + 2.3E-02
cg08309687 21 35320596 LINC00649 - 1.1E-07 - 3.8E-02 - - 1.9E-02
cg06500161 21 43656587 ABCG1 + 7.1E-10 + 1.1E-04* + + 4.2E-08* + 6.8E-02

* Significant after Bonferroni correction. Chr., chromosome; Disc., discovery study; Dir., effect direction;
MR, Mendelian randomization; Pos., genomic position.

Finally, the three mentioned CpGs with either nominal significance in both approaches

or Bonferroni significance in either approach were further examined in a formal MR ex-

periment based on an instrumental variable two-stage least squares (TSLS) approach (see

Section 3.5.2). As a prerequisite for TSLS, absence of an independent effect of the re-
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spective cis-SNP with BMI was tested. If the hypothesis of an association could not be

significantly rejected, the respective CpG was excluded from further steps. Furthermore,

to avoid weak instrument bias, single cohorts were only included in meta-analysis of TSLS

results if the F statistic of the SNP-CpG association was at least 10 (see Section 3.5.2

for details). Causality was not confirmed for cg00634542 (SLC11A1 locus, p = 0.25);

however, when the weak instrument requirement F ≥ 10 was relaxed to F ≥ 5, p-value

became significant (p = 2.7 × 10−3). cg26663590 (NFATC2IP locus) was excluded from

MR analysis since absence of an independent association of the SNP with BMI could not

be excluded (p = 0.083). cg00711896 (ZHF48 locus) was excluded from TSLS due to weak

instrument (F < 10) in all cohorts. At F ≥ 5, the effect was not significant (p = 0.85).

Together, little evidence for CpGs being causal to BMI was obtained, although power for

a formal MR approach seemed to be insufficient.

Methylation consequential to BMI

For the ad hoc MR approach, a genomic risk score (GRS) was defined as the sum of

expected risk alleles from the SNPs previously reported to associate with BMI (Speliotes

et al., 2010) (less one SNP, rs7359397, significantly associated with one of the 187 CpGs

independent of BMI, see Section 3.5.2 for instrument requirements) weighted with the

effect sizes derived from the same publication. In accordance to the description above for

the causal direction, observed GRS-CpG associations were then compared with predicted

associations derived as the product of the GRS-BMI and BMI-CpG associations (with

BMI inverse normal transformed to match Speliotes et al. (2010)). Across all CpGs,

observed versus predicted GRS-CpG associations were strongly correlated (Pearson’s ρ =

0.79, p = 6.4×10−42), suggesting that altered methylation is a consequence of BMI at the

majority of the identified CpGs (Figure 4.12B). Specifically, after correction for multiple

comparisons, methylation at two CpGs, cg00138407 (KLHL18 locus, p = 8.0 × 10−5)

and cg06500161 (ABCG1 locus, p = 1.1 × 10−4), showed significant evidence for being

consequential to BMI.

When association of CpGs with previous change in BMI was investigated in a subgroup of

n = 1698 KORA S4/F4 subjects, adjusted for the discovery covariates as well as baseline

BMI, and changes in behavioral factors and white blood cell proportions during follow-up,

seven CpGs showed significant association (Table 4.8). An additional trend for association

was observed for 76 CpGs (p < 0.05), corresponding to a strong enrichment of nominally

significant p-values (permutation p < 1× 10−5).

All significant CpGs in the two approaches showed consistency of effect direction in the

respective other approach. In addition, a strong correlation of effects between both ap-

proaches was observed (Pearson’s ρ = 0.67, p = 3.4× 10−26), which was not observed for

the causal direction (ρ = -0.08, p = 0.287).
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When formal MR was applied to the 24 CpGs showing Bonferroni significance in either

approach or nominal significance in both approaches, requirements for MR were met for

16 CpGs, for none of which the consequential direction was confirmed. However, when the

weak instrument requirement was relaxed to F ≥ 5, nominal significance was observed for

four CpGs. These included cg06500161 (ABCG1 locus, p = 0.002), cg11024682 (SREBF1

locus, p = 0.042), cg09664445 (CLUH locus, p = 0.048), and cg18217136 (PPIAP3 locus,

p = 0.024).

Together, these results provide evidence for methylation being consequential to BMI at

selected loci, while this is also suggested for the majority of loci at a lower level of statistical

evidence.

4.2.8 Relation to clinical traits and incident disease

To evaluate the potential clinical relevance of these findings, associations of the 187 methy-

lation markers with obesity-related clinical traits were studied in a subgroup of 4159 sub-

jects of the KORA F4 (n = 1697) and EpiMigrant (n = 2462) cohorts with data on clinical

traits and fasting blood samples available. 92 of the 187 CpGs were significantly associ-

ated with HDL, LDL and total cholesterol, triglycerides (TGs), systolic blood pressure,

C-reactive protein (CRP), glucose, insulin, HbA1c and WHR after adjustmend for BMI

(Figure 4.13), suggesting that these associations are not (fully) mediated by BMI. The

strongest independent associations were observed for TGs (e.g., p = 5.6 × 10−65 with

ABCG1 locus), HDL cholesterol (e.g., p = 3.8 × 10−45 with ABCG1 locus), CRP (e.g.,

p = 6.5×10−36 with CRELD2 locus) and HbA1c (e.g., p = 1.6×10−12 with ABCG1 locus).

No independent signals were observed for weight, height and diastolic blood pressure.

Furthermore, association of the 187 CpGs with incident type 2 diabetes (T2D) was studied

in 3064 subjects from EpiMigrant (with T2D defined as HbA1c > 6.5% or physician diag-

nosis). Using logistic regression including the discovery covariates, 61 CpGs were identified

that showed a significant association with incident T2D after Bonferroni correction, with

16 remaining significant after additional adjustment for BMI.

In the available data, BMI was associated with all traits associated with CpGs, except

LDL and total cholesterol. In order to get some indication of whether the identified CpGs

account for a part of these associations of BMI with clinical traits, direct (remaining after

adjustment for CpGs) and indirect parts of the BMI-trait association were determined

using linear and logistic regression for continuous traits and incident T2D, respectively,

and tested using a bootstrap procedure as described in Section 3.3.3, followed by inverse-

variance weighted fixed-effects meta-analysis. For all traits including incident T2D, a

significant part of the association with BMI was indirect, i.e. not independent of the 187

BMI-related CpG sites, suggesting that methylation at these CpGs is intermediate between

BMI and trait in terms of either being a confounder, a mediator, or associated with another

variable that confounds or mediates the association (Figure 4.14). The proportion of
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Figure 4.13: Associations between methylation at the BMI-associated CpG sites and
clinical traits. Heatmap including the 92 CpGs showing significant association with at least
one of the traits independent of BMI at p < 2.1 × 10−5 (significance denoted by black stars).
Colors represent association strengths without conditioning on BMI, to allow for comparison with
BMI effect. Associations were derived from linear models with clinical trait as response and CpG,
(BMI) and discovery covariates as independent variables. Results were combined using inverse-
variance weighted fixed-effects meta-analysis. BMI, body mass index; Chol, total cholesterol; CRP,
C-reactive protein; Glc, fasting glucose; HDL, high density lipoprotein cholesterol; Ins, fasting
insulin; LDL, low density lipoprotein cholesterol; SBP, systolic blood pressure; TG, triglycerides;
WHR, waist-hip ratio
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indirect effect by total effect ranged from 19.7% (insulin, pindirect = 5.7× 10−4) to 81.7%

(TGs, pindirect = 2.4×10−22), when all 187 CpGs were included. When the contribution of

single CpGs to the BMI-trait associations was studied, 23 CpGs were shown to significantly

contribute to the association of BMI with at least one of the traits (Figure 4.14). These

findings raise the possibility that these methylation markers contribute to the development

of metabolic and cardiovascular complications as a consequence of obesity.

4.2.9 Discussion

To explore the role of site-specific DNA methylation in the development of obesity and

related metabolic disturbances, a large multi-ethnic EWAS of BMI was conducted based

on more than 10,000 subjects from 13 studies. As a result, 187 methylation sites were

identified that showed stable association with BMI.

BMI-related methylation is involved in lipid and glucose metabolism

Methylation at 92 of the 187 identified loci was also significantly associated with obesity-

related clinical traits or incident T2D. Together with the finding that the 187 loci were

enriched for biological pathways related to lipid metabolism and insulin signaling as well as

for previously published lipid GWAS loci, this provides evidence for a role of the identified

CpG sites in lipid and glucose metabolism. In addition, for a substantial number of CpG

sites, a significant part of the BMI-trait association was diminished after adjustment for

methylation. This might be explained by either a confounding or a mediating effect of

methylation, or by methylation being associated with a variable that confounds or mediates

the association. Mediation seems more likely at the majority of CpG sites where Mendelian

randomization experiments and longitudinal analyses provide evidence for methylation

being consequential rather than causal to BMI.

Few CpG sites deserve mentioning for which evidence is provided that first, methylation

is consequential to BMI, and second, methylation significantly accounts for BMI-clinical

trait associations. These include cg06500161 (ABCG1 locus), which was the top marker

showing a strong positive association with BMI and a negative association with ABCG1

gene expression, and accounted for a significant part of the BMI association with TGs

(27.6%), HDL cholesterol (16.9%), glucose (11.6%), HbA1c (10.9%), incident T2D (8.8%)

and WHR (4.4%). ABCG1 encodes ATP binding cassette transporter subfamily G mem-

ber 1 (ABCG1), which is involved in reverse cholesterol transport by promoting cellular

cholesterol efflux from macrophages to HDL (Ye et al., 2011). Cholesterol efflux capacity

from macrophages is thought to play a role in atheroprotection. Accordingly, an inverse

association with carotid intima-media thickness and coronary artery disease was recently

reported (Khera et al., 2011). In addition, genetic variants in ABCG1 associated with re-

duced ABCG1 gene expression were recently shown to increase cardiovascular disease risk

(Schou et al., 2012). In vivo, ABCG1 knockout had a stage-dependent influence on the
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Figure 4.14: Contribution of CpG sites to BMI-trait associations. Barplots represent total
BMI-trait association (red bars, positive; blue bars, negative) and “indirect” part of the association
that is accounted for by single CpGs or all 187 CpGs (grey bars). Only CpG sites with a significant
indirect effect (Bonferroni correction, p < 3.0× 10−5) are shown. Proportion of indirect effect and
bootstrap p-value is given. Total and direct effect were derived from linear models with clinical
trait as response and BMI as well as discovery covariates as independent variables, without and
with additional adjustment for methylation at one or several CpGs, respectively. Indirect effect was
determined as difference between total and direct effect and significance tested using a bootstrap
procedure (Section 3.3.3), with 10,000 bootstrap samples. For incident T2D, β coefficient was
derived from logistic regression and is thus on a different scale than for the continuous traits where
it was derived from linear regression. CRP, C-reactive protein; HDL, high density lipoprotein;
SBP, systolic blood pressure; T2D, type 2 diabetes; WHR, waist-hip ratio.
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atherosclerotic process, with a diminished lesion formation in early stages (Meurs et al.,

2012). Interestingly, body weight loss upon intervention has previously been reported

to upregulate ABCG1 gene expression in adipose tissue (Johansson et al., 2012), and

bariatric surgery increased cellular cholesterol efflux via ABCG1 (Aron-Wisnewsky et al.,

2011). These results support the finding that body mass affects methylation at ABCG1

rather than the opposite way. They are also consistent with the strong correlation of blood

and adipose tissue ABCG1 methylation. In this thesis, for the first time DNA methylation

is reported as mechanism of body weight effect on ABCG1 expression. Besides a putative

role of ABCG1 in lipid metabolism, the results of the present study suggest a role in the

development of T2D. The same CpG site, cg06500161, was recently found to associate

with fasting insulin and homeostasis model assessment of insulin resistance (HOMA-IR)

in a cross-sectional EWAS (Hidalgo et al., 2014). Besides a role for cellular cholesterol

efflux, evidence is emerging that ABCG1 is involved in intracellular cholesterol distribu-

tion (Tarling and Edwards, 2011). In pancreatic β-cells, cholesterol homeostasis plays a

role for normal insulin secretion (Sturek et al., 2010). Accordingly, ABCG1 deficiency was

associated with reduced insulin secretion and β-cell function in mice (Sturek et al., 2010,

Kruit et al., 2012).

Another CpG site with good evidence for methylation being consequential to BMI and

accounting for BMI-trait associations was cg11024682 (SREBF1 locus). For this CpG

site, a positive association with BMI (third strongest among all sites), and a negative

association with SREBF1 gene expression was observed. In addition, methylation puta-

tively accounted for a significant part of the BMI association with TGs (17.8%), glucose

(8.9%), systolic blood pressure (8.4%), HbA1c (5.9%), incident T2D (5.5%), HDL choles-

terol (5.5%) as well as WHR (3.3%). SREBF1 encodes the isoforms Sterol regulatory

element-binding transcription factor 1a (SREBP1a) and c (SREBP1c). These are tran-

scriptional regulators of genes involved in lipogenesis, fatty acid desaturation, cholesterol

uptake and synthesis (Shimano, 2001) as well as gluconeogenesis and glycogen synthesis

(Ruiz et al., 2014). Methylation at SREBF1 has been found to decrease in rats after

changing high-fat, high-sucrose diet to control diet (Uriarte et al., 2013). Together with

evidence for substantial increase in SREBP1 protein after repeated fasting-refeeding cycles

(Kochan, 2003), this suggests a role of SREBP1 in the lipogenic potential of adipose tissue

after repeated dieting. Of note, the intronic microRNA 33b (miR33b) is co-transcribed

with SREBF1 (Rotllan and Fernández-Hernando, 2012) and might explain a part of the

presented findings. miR33a and b are negative regulators of genes involved in cellular

cholesterol efflux (including ABCG1 ), fatty acid oxidation (including CPT1, which showed

a strong negative association with BMI in the present study), and insulin signaling (Rotllan

and Fernández-Hernando, 2012).

For three further CpG sites, results suggest that methylation is consequential to BMI

and that these CpG sites partly account for BMI-clinical trait associations: cg17901584
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(DHCR24 locus, negative association with BMI, negative association with DHCR24

gene expression), cg08309687 (LINC00649 locus, negative association with BMI) as

well as cg08857797 (VPS25 locus, positive association with BMI). DHCR24 encodes

24-dehydrocholesterol reductase, which is involved in cholesterol biosynthesis (Waterham

et al., 2001). It was among the genes with significantly decreased expression following

bariatric surgery in obesity subjects with T2D, showing also association with improvement

in HbA1c and fasting glucose (Berisha et al., 2011). In addition, genetic variation in

DHCR24 was shown to associate with T2D in an isolated population, although without

replication in larger populations (Rampersaud et al., 2007). Besides its role in sterol

synthesis, DHCR24 binds tumor suppressor p53 upon oxidative stress and protects it

from degradation (Wu et al., 2004). p53 has been shown to be involved in the devel-

opment of insulin resistance in mice with excessive calorie intake through induction of

proinflammatory cytokines in adipose tissue (Minamino et al., 2009). Less is known about

the LINC00649 and VPS25 loci, which mediated a part of the BMI association with

glycemic traits, and no strong association with expression of nearby genes could be shown.

VPS25 showed a weak positive association with G6PC transcription, a gene coding

glucose-6-phosphatase, the key enzyme of hepatic gluconeogenesis, the upregulation of

which is a characteristic of T2D (Gautier-Stein et al., 2012).

It remains to be determined how increased body mass might influence DNA methylation at

these loci. A recent study demonstrated strong effects of the fatty acid palmitate on DNA

methylation and gene expression in pancreatic islets in vivo (Hall et al., 2014). This raises

the possibility that the effect of body mass on methylation might be explained by increased

non-esterified fatty acid (NEFA) concentrations (Section 1.1.4, de Ferranti and Mozaffarian

(2008)). Few genes regulated by palmitate in islets Hall et al. (2014) were also (at least

nominally) associated with BMI-related CpG sites in the present study, including SCD,

UBE2E3 and GPX4. Of note, moderate correlation of blood and pancreatic methylation

of the 187 CpG sites was shown.

Methylation and the pathogenesis of obesity

Methylation at the majority of CpG sites was consequential to BMI in this study, whereas

evidence for a causal effect was obtained only at three loci. Previous longitudinal stud-

ies have shown association of cord blood methylation with childhood body composition

(Relton et al., 2012, Godfrey et al., 2011), suggesting that methylation is either causally

involved in weight regulation or might otherwise be a non-causal marker. In addition, a

previous cross-sectional EWAS of 96 obese and lean adolescents showed an enrichment for

obesity risk genes and thereby provide evidence that a part of the identified loci might

be causal rather than consequential to BMI (Xu et al., 2013). The main difference to the

present study is that these were studies on children and adolescents, whereas the present

study was based on adults. Age shows a strong relationship with site-specific DNA methy-
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lation (Bell et al., 2012), and interaction of age with BMI in relation to DNA methylation

has been observed (Almén et al., 2014). During ageing, environmental and behavioral

effects on DNA methylation might accumulate, thereby possibly reverting methylation at

early markers of weight regulation, or increasing methylation variability. Consequently,

the power for identifying methylation effects on BMI might be reduced. Diverging effects

of the FTO risk locus with childhood versus adult obesity have been reported recently

(Sovio et al., 2011). In addition, the study by Xu et al. (2013) focused on extreme groups

of obese and lean subjects, and on a different ethnicity, i.e. African-Americans. Of note,

ethnicity did not cause a lot of heterogeneity in BMI effect in the present study based on

Europeans and South Asians. Together, age differences seem to be a likely reason for the

observed differences between the present investigation and earlier studies. Age can also

be the reason underlying the small overlap of significant CpG sites between the present

study and previous EWAS of BMI (Xu et al., 2013, Wang et al., 2010, Almén et al., 2012).

The only available large EWAS in adults found one association of BMI with methylation

at HIF3A (Dick et al., 2014), which is replicated in the discovery meta-analysis of the

present study (p = 8.8× 10−3).

Little is known about the three loci showing a potential causal effect on BMI. The CpG

site cg26663590, located on chromosome 16 upstream of the gene NFATC2IP, showed the

strongest evidence of being causal to BMI, and was also associated with HbA1c. The

corresponding genomic locus has previously been identified in a GWAS on BMI (Speliotes

et al., 2010) and contains the candidate gene SH2B1 (SH2B adaptor protein 1 ). The

protein SH2B1 has a known role in energy and glucose homeostasis (Ren et al., 2007).

However, methylation did not show a significant association with SH2B1 gene expression

(p = 0.112).

The results on causal inference obtained in this study should be interpreted with care. Two

different MR approaches were applied to study causality of BMI-methylation associations

in a relatively large subsample of approximately 4000 subjects. Although they provide

some evidence for methylation at the majority of CpG sites being consequential rather

than causal to BMI, they are subject to certain limitations. The ad hoc MR approach

did not query model assumptions (which are, admittedly, difficult and partly impossible

to test), so results have to be interpreted with care, whereas the statistically more solid

instrumental variable approach that involved an assessment of selected model assumptions

suffered from limited power. Specifically, instrument strength (i.e., the association of the

genetic variant with the putative independent variable) of the single studies was often

too low to include them in the meta-analysis for reasons of weak instrument bias (Palmer

et al., 2012), resulting in power reduction. Importantly, meta-analyzing a large number

of small studies (with weak instruments) does not avoid weak instrument bias (Burgess

et al., 2011). Thus, meta-analyses of larger studies are needed to obtain reliable causal

estimates and possibly stronger evidence for causality.
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When investigating the direction of association between BMI and methylation, one should

not exclude a bidirectional effect, feedback mechanisms, or even more complex causal

constructs as a possibility. Interestingly, Milagro et al. (2011) found methylation at one

locus, ATP10A, to be both predictive of weight loss success during intervention, and to

be affected by weight reduction, suggesting a bidirectional effect. Methylation at ATP10A

showed a significant negative association with BMI in the present study, which is consistent

with a positive association between weight loss and methylation in the study by (Milagro

et al., 2011). However, while they discuss ATP10A as a protein with a plausible role

in body fat regulation, no association of methylation with ATP10A gene expression was

observed in the present study.

Strengths and Limitations

Important strengths of this study include its large sample size and careful validation of

the discovered associations in an independent large replication study, as well as the avail-

ability of gene expression, SNP and clinical data, including incident disease information,

for a large proportion of discovery samples. Further strengths are the stringent quality

control (e.g., close examination of SNPs in probes), the comprehensive study of pathway

and functional enrichment, and the careful examination of causality using two MR ap-

proaches and longitudinal analyses. In addition, evidence is provided that the observed

methylation signatures in whole blood might reflect methylation in metabolically relevant

tissues. Together, this is the first large EWAS of BMI which, supported by elaborated

downstream analyses, provides a comprehensive picture of the role of DNA methylation

in adult obesity.

Several limitations of this study deserve comment. To begin with, the study is cross-

sectional. Although approaches to decipher causality were applied, the difficulty to test

the underlying model assumptions, and limited power and risk for bias in the case of weak

genetic instruments require replication of MR findings in larger studies, complemented by

experimental evidence. In addition, methylation was measured in whole blood samples,

which is the only tissue available in all included cohorts. This raises two issues, namely

first, the question of whether whole blood methylation is representative of methylation in

metabolically relevant tissues, and second, the issue of cell type confounding. The first

issue was answered by showing high correlation of blood methylation with methylation in

tissues including spleen as well as omental and subcutaneous fat. Conversely, the low rep-

resentation of tissue-specific gene expression in whole blood (Emilsson et al., 2008) raises

the question of how far other tissue-specific methylation signatures are not represented in

blood. This remains to be determined. To address the second issue, proportions of six

white blood cell types were estimated using the method of Houseman et al. (2012) and

were included as covariates in the model. This might diminish a potential confounding

effect of cell proportions on the association between BMI and methylation, but might not
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completely abolish it. The quality of the estimated cell proportions depends on the quality

of the external data underlying the estimation, and only those cell types are accounted

for that were part of the external data (i.e., CD4+ T cells, CD8+ T cells, B cells, natu-

ral killer cells, monocytes and granulocytes). Subtypes of these cell types, e.g., Th1 and

Th2 subtypes of CD4+ T cells (Brand et al., 2012) might also differ in their methyla-

tion profile. The development of improved methods to deal with cell type confounding in

whole blood methylation and expression studies is an ongoing research focus (Houseman

et al., 2014, Zou et al., 2014, Jaffe and Irizarry, 2014). Of note, in the study by Xu et al.

(2013), obesity was not associated with proportions of neutrophils, eosinophils, basophils,

monocytes, lymphocytes, CD4+ T cells and CD8+ T cells, reducing the probability of

cell type confounding for these cell types. Finally, only one technique, the Infinium Hu-

manMethylation450K BeadChip, was used to determine methylation stage in all discovery

and replication cohorts. It is advisable to validate microarray results using a different

technique to improve the reliability of the reported results (Wang et al., 2006). A suitable

technology is the Sequenom MassArray EpiTyper, which was used previously to validate

results obtained with the Infinium HumanMethylation450K BeadChip (Milagro et al.,

2011, Zeilinger et al., 2013). This technique would also allow for a denser coverage of

CpGs at candidate loci.

Conclusions

In this work, the first large EWAS of BMI identified 187 methylation sites showing solid

association with BMI. These sites were comprehensively studied in downstream analyses.

This revealed an enrichment for functional genomic features, for biological pathways and

for previously published lipid GWAS loci. A large number of the identified CpG sites were

associated with gene expression at nearby genes and showed strong relation to genetic vari-

ation in cis. Cross-tissue analysis showed strong correlations with methylation in different

tissues including omental and subcutaneous fat. MR and longitudinal analyses indicate

that methylation at the majority of loci was consequential rather than causal to BMI. Fi-

nally, methylation at selected sites explained a part of the association of BMI with clinical

traits and incident T2D. Together, these findings provide new evidence for methylation as

a mechanisms linking obesity with its metabolic comorbidities. Furthermore, methylation

at selected sites explained a part of the association of BMI with clinical traits and incident

T2D, suggesting methylation as a candidate mechanism underlying the development of

obesity-related comorbidities.
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4.3 Metabolic signature of weight change: an integrative

metabolomics and transcriptomics approach

As reviewed in Sections 1.2.3 and 1.2.4, previous cross-sectional efforts suggest a rela-

tionship between obesity and the human blood metabolome and transcriptome. In addi-

tion, weight loss upon behavioral intervention was associated with changes in the blood

metabolome, suggesting that the observed obesity-related molecular signatures are at least

in part reversible.

However, the effect of long-term body weight change on the human blood metabolome

and transcriptome in the general population – rather than under clinical settings – is

less well explored. The few studies that investigate the association with weight change

in prospective cohorts are based on a small sample size and restricted to a small set

of lipoprotein subclasses (Mäntyselkä et al., 2012, Naganuma et al., 2009). In addition,

although multi-omics approaches have been fruitful in different applications in enhancing

the understanding of complex molecular pathways (Zhang et al., 2013, Zhou et al., 2012,

Acharjee et al., 2011, Inouye et al., 2010a, Dutta et al., 2012), the potential of integrating

multiple omics techniques has rarely been used in the study of weight-associated metabolic

effects in humans (Oberbach et al., 2011, Valcárcel et al., 2014).

In light of these considerations, the present study focuses on the investigation of

metabolomic and transcriptomic consequences of weight change over a 7-year follow-up

period in the general population (Figure 4.15).

This section is based on the manuscript
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U, Boeing H, Theis F, Meisinger C, Waldenberger M, Suhre K, Gieger C, Kastenmüller

G, Illig T, Linseisen J, Peters A, Prokisch H, Herder C, Thorand B#, Grallert H#.

“Metabolic signature of weight change: an integrative metabolomics and transcriptomics

approach.” under review.

4.3.1 Weighted correlation analysis reveals four metabolite and two gene

expression modules related to body weight change

In the population-based KORA S4/F4 cohort, two-platform serum metabolomics and

whole blood transcriptomics measurements were available from the follow-up examina-

tion F4 for 1631 and 689 participants, respectively (Table 4.9, see Section 2.1 for data

retrieval and Section 3.1 for data preprocessing). Previous studies have shown that clus-

ters of related genes may be more reproducibly associated with a phenotype or disease

∗,# contributed equally
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Figure 4.15: Metabolic consequences of body weight change: Study design and anal-
ysis strategy. Omics measurements are described in Section 2.1. Color coding of statistical
methods: yellow, data preprocessing and quality control (Section 3.1); orange: missing data han-
dling (Section 3.2); red, univariate data analysis (Section 3.3); violet, multivariate data analysis
(Section 3.4); blue, extraction of biological knowledge (Section 3.5). GO, gene ontology; IPA,
Ingenuity pathway analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes; NMR, nuclear
magnetic resonance; WGCNA, weighted correlation network analysis.

than single genes (Chuang et al., 2007), and that testing groups of metabolites instead

of single metabolites improved power in a genome-wide association study (Inouye et al.,

2012). Thus, the strategy in this study was to cluster metabolomics and transcriptomics

data prior to testing for association with previous weight change. This was achieved

through weighted correlation network analysis (WGCNA, see Section 3.4.1). Clustering

was jointly performed on the 411 serum metabolites (281 from the Metabolon platform

[M] and 130 from the NMR platform [N], after multiple imputation as described in Section
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Table 4.9: Characteristics of the KORA S4/F4 study population for the metabolomics
and transcriptomics study of weight change.

Variable Metabolomics data
(n = 1631)

Combined metabolomics
& transcriptomics data
(n = 689)

Mean(sd)

Body weight (kg), baseline 78.3 (14.7) 78.5 (13.2)
Body weight (kg), follow-up 79.7 (15.6) 79.3 (13.8)
∆ Body weight (%) 1.8 (6.8) 1.0 (6.5)
∆ Body weight/year (%) 0.3 (1.0) 0.1 (0.9)
BMI (kg/m2), baseline 27.7 (4.5) 28.5 (4.3)
BMI (kg/m2), follow-up 28.2 (4.7) 28.8 (4.5)
Age (years), baseline 54.2 (8.7) 61.8 (4.3)
Age (years), follow-up 61.2 (8.7) 68.8 (4.3)

Relative frequency (%)
Sex (male/female) 50.8 / 49.2 50.1 / 49.9
Weight change direction (reduction/gain) 39.3 / 60.7 45.9 / 54.1

3.2). Prior to clustering of gene transcripts, they were pre-selected based on their asso-

ciation with metabolite concentrations, to keep the focus on genes related to the blood

metabolome (see Section 3.4.1 for methodological details). 2537 “metabolite-related tran-

scripts” were identified that showed at least a suggestive association (p < 10−5) with at

least one metabolite.

WGCNA generated 8 metabolite modules (MetM) and 19 gene expression modules

(GenM). Four of the metabolite modules were significantly associated with previous

annual percentage body weight change (∆BW), as determined through association with

the respective module eigengene (ME) (see Section 3.4.1 for definition) in linear mod-

els adjusted for age, sex and baseline body weight (positive associations for MetM1,

p = 1.2× 10−24; MetM3, p = 2.2× 10−4; MetM4, p = 7.3× 10−17; negative association for

MetM5, p = 1.7× 10−14, all significant after Bonferroni correction for 27 modules, Figure

4.16, first column). Of the gene expression modules, two were significantly associated

with ∆BW (positive association for GenM6, p = 3.8 × 10−12; negative association for

GenM14, p = 1.9 × 10−4). Note that ∆BW is a variable spanning the whole weight

change range, with weight loss coded as negative ∆BW values and weight gain as positive

∆BW values. Thus, effect directions displayed in Figure 4.16 have to be interpreted as

the average linear effect across the weight change range, and effect directions have to be

inverted to construe the effect of weight reduction. Using the example of MetM1, the

positive association of ∆BW with MetM1 can be interpreted as increase in the ME with

increasing weight gain, and as decrease in the ME with increasing weight loss. Stratified

models were conducted as a sensitivity analysis (Figure 4.16, columns 2-11) and are the

subject of Section 4.3.4 below.

To investigate the interrelatedness of the identified ∆BW-related metabolite and gene

expression modules conditional on all other modules and the above-mentioned covariates, a
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partial correlation network was constructed from the MEs (Figure 4.17; see Section 3.5.3 for

methodological details). The six ∆BW-related modules were interrelated. The strongest

positive partial correlation was observed between MetM1 and MetM3 (p = 2.3 × 10−54).

In addition, MetM1 showed a strong negative correlation with MetM5 (p = 1.8× 10−72),

as well as with GenM14 (p = 6.8× 10−29).
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Figure 4.16: Association of annual percentage body weight change (∆BW) with omics
modules in the overall study population and in subpopulations. Bubbles represent effect
strengths and significance, as described in the legend. Models were adjusted for age, sex and
baseline body weight. Significance threshold p < 1.9× 10−3 corresponds to Bonferroni correction
for 27 modules. For subgroup analyses (columns 2-11), interaction models were fitted, to obtain
main ∆BW effect in the respective subgroups, and ∆BW:subgroup interaction effect indicating
difference in effect between the subgroups (see Section 3.3.1 for details). Gene expression analysis
was restricted to a subgroup of 689 subjects aged >55 years at baseline. No effect estimates are
available for the younger subgroup in this population (indicated as grey crosses). Central obesity
was defined as waist-hip ratio (WHR) > 1 in males and > 0.85 in females. GenM, gene expression
module; MetM, metabolite module.
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Figure 4.17: Multi-omic partial correlation network comprising the 8 metabolite and
the 19 gene expression modules. Nodes represent omics modules (circle, metabolite module
(MetM); rectangle, gene expression module (GenM)), colored according to their association with
∆BW (red, significant positive association; blue, significant negative association; bright color,
significant p < 1.9× 10−4; light color, p < 0.05). Edges represent partial correlations (ζ) between
pairs of modules (represented by their module eigengenes (MEs)), conditional on all other presented
modules and the covariates age, sex, and ∆BW (solid black line, ζ > 0.1; dotted black line, ζ <
−0.1; solid grey line, 0.05 < ζ < 0.1; dotted grey line, −0.1 < ζ < −0.05). Background color reflects
metabolite (yellow) vs. gene expression (green) modules. See Section 3.5.3 for methodological
details.

4.3.2 The four ∆BW-related metabolite modules cover major branches

of metabolism

Metabolites were assigned to super- and sub-pathways in accordance with the Metabolon

classification (Appendix Table A.5). The four ∆BW-related metabolite modules com-

prised a total of 147 metabolites. Together, these metabolites covered major branches of

metabolism captured by the metabolomics platforms, including lipid metabolism, amino

acids and peptides, carbohydrate metabolism, cofactors and vitamins, nucleotides and en-

ergy metabolism (Figure 4.18). This suggests a global impact of body weight change on

the serum metabolome.

For each MetM, metabolites were ranked by their contribution to the module defined

as the correlation with the respective ME (see Section 3.4.1). MetM1 (comprising 60
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Figure 4.18: Coverage of the serum metabolome by the metabolite modules (MetM)
related to annual percentage body weight change (∆BW). Pie chart with color indicating
super-/sub-pathway as described in the legend, and size of wedges representing the number of
metabolites in the data set corresponding to the respective sub-pathway. Sorted by pathway size.
Black wedges represent number of metabolites from the respective module significantly associated
with ∆BW in the respective sub-pathway.
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metabolites) was strongly determined by constituents of all very low density lipoprotein

(VLDL) subclasses, total serum triglycerides (TGs), TGs in small high density lipoprotein

(S-HDL) and measures of primarily saturated and monounsaturated fatty acids, which all

showed a module membership strength of above 0.8 (Figure 4.19). Together with isoleucine

[N], glycoprotein, glutamate, urate, lactate, phenylalanine and pyruvate, these most con-

nected metabolites were also most strongly associated with ∆BW in single metabolite

models (Figure 4.19). When a formal enrichment analysis was performed (see Section

3.5.1), MetM1 was significantly enriched for metabolites belonging to the super-pathway

“Lipids” and the sub-pathways “VLDL” and “Triglycerides” (all p < 10−5), confirming the

pre-dominant role of these metabolite classes for MetM1.

MetM3 (comprising 39 metabolites) was mainly driven by constituents of low density

lipoprotein (LDL) and intermediate density lipoprotein (IDL) subclasses and XS-VLDL,

measures of serum cholesterol as well as apolipoprotein B (module membership strengths

> 0.8, Figures 4.18 and 4.19). In addition, a significant enrichment for the super-

pathway “Lipids” and the sub-pathways “LDL” and “IDL” was observed (p < 10−5).

The most contributing metabolites of MetM4 (comprising 26 metabolites) were the

branched-chain amino acids (BCAAs) valine, leucine and isoleucine, and the peptide

gamma-glutamylleucine, with an enrichment for the super-pathway “Amino acids” and

the sub-pathway “Valine, leucine and isoleucine metabolism” (p < 10−5). Finally, MetM5

comprised 22 metabolites and was mostly driven by constituents of L- and XL-HDL as

well as apolipoprotein A1, with a significant enrichment for the super-pathway “Lipids”

(p = 1.6× 10−4) and the sub-pathway “HDL” (p < 10−5).

These results demonstrate that ∆BW strongly associates with lipoprotein constituents,

amino acids and peptides, as well as metabolites of energy metabolism, and that clustering

helped to reveal pathways jointly and strongly associated with ∆BW. Of note, metabolites

reflecting biological pathways that are less well covered by the metabolomics platforms are

less likely to cluster in modules sharing association with ∆BW. These include the posi-

tive association of ∆BW with the tryptophane metabolites hydroxytryptophane [M] and

kynurenine [M], which are successors of tryptophan in the serotonin and niacin biosynthe-

sis pathways, respectively, and negative association with serotonine (5HT) [M]. They also

include the positive association with the xenobiotics caffeine [M] and piperine [M], an alka-

loid found in pepper, and negative association with quinate [M] and catechol sulfate [M],

the positive association with bradykinine, des-arg(9) [M], the active metabolite of the va-

sodilating peptide hormone bradykinine, and the positive association with the metabolites

N1-methyl-3-pyridon-4-carboxamide [M] and N1-methyladenosine [M] from the nucleotide

super-pathway.
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Figure 4.19: Association of annual percentage body weight change (∆BW) with mem-
bers of associated metabolite modules (MetM). Bubbles represent effect strengths and sig-
nificance, see legend of Figure 4.16. Models were adjusted for age, sex and baseline body weight.
For single metabolites, the significance threshold was chosen as p < 1.2 × 10−4 corresponding to
Bonferroni correction for 441 tests. Metabolites are sorted by their module membership strength,
as determined by the correlation of metabolite concentration with the module eigengene (ME) (see
Section 3.4.1). Background colors correspond to super- and sub-pathway annotation, see legend of
Figure 4.18.
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Lipoprotein subclasses

The associations of ∆BW with lipoprotein subclasses (positive association with VLDL,

LDL and S-HDL subclasses, and negative association with larger HDL particles as well

as with HDL and LDL particle size; Figure 4.19) are in agreement with the observations

of two smaller prospective studies that analyzed the effect of weight change over similar

time periods (9 and 6.5 years, respectively) on lipoprotein subclasses (Mäntyselkä et al.,

2012, Naganuma et al., 2009). Specifically, ∆BW was positively associated with increases

in VLDL and LDL subclasses, and with decreases in L-HDL, whereas S-HDL behaved

oppositely (Mäntyselkä et al., 2012). ∆BW was also negatively related to LDL and HDL

particle sizes (Mäntyselkä et al., 2012, Naganuma et al., 2009). The clustering of S-HDL-

TG within the VLDL module in the present study is also in agreement to their close

correlation in Inouye et al. (2010a), where S-HDL behaved differently from larger HDL

subclasses with regard to metabolite-transcript associations.

Mechanisms by which body weight increase gives rise to the described changes may include

an increased release of non-esterified fatty acids (NEFAs) from adipose tissue, triggering

hepatic TG and VLDL production (Klop et al., 2013) and increasing the activity of hepatic

lipase (Brunzell and Hokanson, 1999). Hepatic lipase is involved in the exchange of TGs

from VLDL against cholesterol esters from HDL, thereby promoting the production of

small dense LDL. Together with phospholipid transfer protein (PLTP) and cholesterol ester

transfer protein (CETP), which also show increased levels upon obesity (Tzotzas et al.,

2009), hepatic lipase is centrally involved in regulating HDL particle size. Interestingly,

this was reflected in oppositional associations of genetic variants in the respective genes

LIPC, PLTP and CETP with small versus large HDL subclasses (Tukiainen et al., 2012).

Together, the lipoprotein signature related to positive ∆BW (i.e., weight gain) largely

corresponds to an unfavorable, atherogenic lipid profile. For instance, large VLDL and

small HDL particles were found to be positively, larger HDL particles to be negatively

associated with coronary artery disease severity (Freedman et al., 1998). A role of smaller

HDL particle size in cardiovascular disease risk has also been reported by Arsenault et al.

(2009). In a large prospective cohort of 4,594 initially healthy adults, a lipoprotein pattern

characterized by decreased L-HDL, increased S-/M-LDL, and increased TGs was associ-

ated with an increased cardiovascular disease incidence after a mean follow-up of 12 years

(Musunuru et al., 2009). Furthermore, VLDL particle size, which was positively associ-

ated with ∆BW in this study, predicted type 2 diabetes (T2D) incidence over a 13-year

follow-up of 26,836 initially healthy women (Mora et al., 2010). In line with these find-

ings, a strong positive association of MetM1 (representing VLDL subclasses) and a strong

negative association of MetM5 (representing HDL subclasses) with markers of insulin re-

sistance was observed (HbA1c: p = 1.9× 10−5 and 7.0× 10−7; oral glucose tolerance test

(OGTT) 2-hours glucose: p = 2.1× 10−9 and 5.1× 10−8, respectively) (Figure 4.20).
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Amino acid metabolism

∆BW was strongly associated with amino acid concentrations, most prominently BCAAs,

phenylalanine, tyrosine and glutamate. The increase of these amino acids in obesity is

long known (Felig et al., 1969), and has also been observed in more recent studies (e.g.,

Newgard et al. (2009)). The underlying mechanism might be an impaired catabolism of

BCAA in adipose tissue upon obesity (Pietiläinen et al., 2008). Experimental studies show

that BCAAs inhibit the insulin receptor substrate via the mTOR/p70S6K/S6K pathway

(Lu et al., 2013). Accordingly, in the study by Newgard et al. (2009), addition of BCAAs to

a high-fat diet in rats promoted the development of insulin resistance. Recently, BCAAs,

phenylalanine and tyrosine were shown to associate with future insulin resistance (Würtz

et al., 2012), future T2D (Wang et al., 2011), and prevalent metabolic syndrome (Wiklund

et al., 2014). In this study, MetM4 (representing BCAA metabolites) associated positively

with markers of insulin resistance (HbA1c: p = 7.2 × 10−10; OGTT 2-hours glucose:

p = 9.0× 10−9) and metabolic syndrome prevalence (p = 3.8× 10−5) (Figure 4.20).

Energy metabolism

∆BW was positively associated with pyruvate, lactate, and alanine in this study. Concen-

trations of these metabolites have been shown to be elevated in obesity (Newgard et al.,

2009). Elevated levels of the three metabolites are markers of mitochondrial dysfunction

(Haas et al., 2008). Mitochondria, the cells’ power plants, produce adenosine triphosphate

(ATP) from carbohydrates, fats, and proteins via tricarboxylic acid cycle and β-oxidation

(Rogge, 2009). In states of insufficient oxygen supply or mitochondrial dysfunction, pyru-

vate from glycolysis is converted to lactate via lactic acid fermentation and to alanine via

transamination. Obesity is associated with decreased fatty acid β-oxidation, rendering

obese individuals more dependent on the glycolytic pathway for ATP production (Rogge,

2009). At the same time, mitochondrial size is reduced, and respiratory chain activity

diminished in obesity (Kelley et al., 2002), explaining the accumulation of pyruvate and

the formation of lactate and alanine. The results of the present study suggest that weight

change, even in non-obese subjects, gives rise to alterations in mitochondrial function.

Pyruvate, lactate and alanine clustered together with VLDL in MetM1 in this study.

Aluminum-induced mitochondrial dysfunction was found to promote VLDL secretion in

human hepatocytes (Mailloux et al., 2007), suggesting a role of mitochondrial dysfunction

as a further link between ∆BW and dyslipidemia as well as cardiometabolic disease. In

addition, levels of pyruvate, lactate and alanine were predictive of future glucose intoler-

ance, independent of body mass (Würtz et al., 2012). For lactate, a predictive role for

future diabetes independent of traditional risk factors such as fasting glucose and insulin

was reported (Juraschek et al., 2013). It is also associated with carotid atherosclerosis

(Shantha et al., 2013) and predictive for heat failure and all-cause mortality (Matsushita

et al., 2013).
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Figure 4.20: Association of the identified omics modules with clinical traits. Results
are derived from linear (continuous traits, log-transformed) and logistic (binary traits) regression
models adjusted for age, sex, body weight, lipid-lowering medication (overall, statins, fibrates),
antihypertensive medication, antidiabetic medication as well as corticoid intake. Significant asso-
ciations (p < 6.9× 10−4 corresponding to Bonferroni correction for 72 tests) are denoted as black
stars. 2hGlc, oral glucose tolerance test (OGTT) 2-hours glucose; CRP, C-reactive protein; DBP,
diastolic blood pressure; FGlc, fasting glucose; GenM, gene expression module; HDL, high density
lipoprotein cholesterol; LDL, low density lipoprotein cholesterol; MetM, metabolite module; metS,
metabolic syndrome, defined according to the ATP III criteria (Adult Treatment Panel III, 2002),
see legend of Table 4.10; MI, myocardial infarction; SBP, systolic blood pressure; TG, triglycerides.
See Table 4.10 for descriptives of clinical traits.

Table 4.10: Description of clinical traits in the KORA F4 study.

Trait Mean (sd) Median (range)

HDL cholesterol (mg/dl) 56.2 (14.5) 54.0 (21.0, 123.0)
LDL cholesterol (mg/dl) 140.0 (34.6) 138.0 (44.0, 291.0)
Triglycerides (mg/dl) 132.7 (90.1) 111.0 (26.0, 1627.0)
Fasting glucose (mg/dl) 101.1 (20.0) 97.0 (67.0, 341.0)
OGTT 2-hours glucose (mg/dl) 118.6 (39.9) 111.0 (35.0, 465.0)
HbA1c (%) 5.6 (0.6) 5.5 (4.4, 12.1)
Systolic blood pressure (mmHg) 125.2 (18.6) 124.0 (57.5, 223.5)
Diastolic blood pressure (mmHg) 76.1 (9.9) 75.5 (38.5, 120.5)
C-reactive protein (mg/L) 2.9 (6.5) 1.5 (0.2, 145.0)

Trait Frequency Relative frequency (%)
Metabolic syndrome (ATP III) (yes/no) 385 / 1246 23.6 / 76.4
Myocardial infarction (yes/no) 60 / 1570 3.7 / 96.3
Stroke (yes/no) 45 / 1585 2.8 / 97.2

ATP III, Adult Treatment Panel III criteria (Adult Treatment Panel III, 2002), according to which
metabolic syndrome prevalence is defined as three of (1) abdominal obesity (waist circumference > 102
cm in males and > 88 cm in females), (2) high TG (≥ 150 mg/dl), (3) low HDL cholesterol (< 40 mg/dl
in males and < 50 mg/dl in females), (4) hypertension (systolic blood pressure ≥ 130 mmHg or diastolic
blood pressure ≥ 85 mmHg) and (5) high fasting glucose (≥ 110 mg/dl); HDL, high density lipoprotein;
LDL, low density lipoprotein; OGTT, oral glucose tolerance test.
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4.3.3 ∆BW associates with the lipid-leukocyte module and a novel gene

expression module

Two of the 19 modules of metabolite-related transcripts showed association with ∆BW.

GenM14, which comprised 17 transcripts (Figure 4.21) and was negatively associated with

∆BW, contained all of the 11 transcripts of the “lipid-leukocyte (LL) module” previously

described as a leukocyte gene expression module strongly related to blood lipids (Inouye

et al., 2010b) and a large number of serum metabolites including lipoprotein subclasses,

lipids, glycoproteins and amino acids (Inouye et al., 2010a). The authors discussed this

module as being involved in basophil and mast cell-related immune response and allergy.

For instance, the core gene HDC codes for a protein converting histidine to histamine,

which is secreted by basophils and mast cells in response to IgE sensitization. Accordingly,

when Ingenuity pathway analysis was applied (see Section 3.5.1),“FC Epsilon RI Signaling”

(p = 1.1× 10−4), “Histamin Biosynthesis” (p = 9.1× 10−4) and “Airway Inflammation in

Asthma” (p = 3.7 × 10−3) were the top three canonical pathways (Table 4.11), although

results are based on only one gene per pathway. To address the question of whether the

association of ∆BW with GenM14 reflects merely a shift in the proportion of basophil/mast

cells upon weight change, the model was adjusted for the transcripts associated with

basophil proportions in the publication by Whitney et al. (2003) through the top 25

principal components (explaining 84.6% of variance in the data) (see Section 3.3.2 for

cell type confounding correction and Section 3.4.1 for PCA). Association of GenM14 with

∆BW remained stable (p = 7.7× 10−4). Still, residual confounding cannot be completely

excluded.

As mentioned above, GenM14 showed strong partial correlation with the VLDL-related

MetM1. Including MetM1 as covariate in the model of GenM14 on ∆BW abolished the

association (p = 0.284), suggesting that MetM1 accounts for the association between

∆BW and GenM14. In agreement with this, causal inference provided evidence that the

LL module was mainly responsive to serum metabolites rather than showing a causal effect

on them (Inouye et al., 2010a).

The core of GenM14 (module membership strength > 0.8) comprised the LL genes HDC,

GATA2, SLC45A3, MS4A2, and SPRYD5. Six further transcripts, IL4, TRIM49L1,

TEX101, EPAS1/HIF2-α, CCNA1 and CAV2, were co-expressed with the LL module

genes, although with weaker module membership (ranging from 0.48 to 0.54), suggesting

that they might share functionality with the LL module genes. Indeed, IL4 codes for

the cytokine interleukin 4 which has long been known to induce differentiation of näıve T

cells to Th2 cells that play a role in allergen response. The co-expression of IL4 within

the basophil-related gene cluster confirms the identification of basophils as cells reacting

to allergens by IL4 secretion (Sokol et al., 2008). EPAS1/HIF2-α encodes a component

of the hypoxia inducible transcription factor (HIF), which regulates responses to reduced

oxygen and for which also a role in regulating inflammation (Imtiyaz et al., 2010) and
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Figure 4.21: Association of annual
percentage body weight change
(∆BW) with members of associated
gene expression modules (GenM).
Bubbles represent effect strengths and
significance, see legend of Figure 4.16.
Models were adjusted for age, sex and
baseline body weight. For single transcripts,
the significance threshold was chosen as
p < 2.0 × 10−5 corresponding to Bonferroni
correction for 2537 metabolite-related tran-
scripts. Genes are sorted by their module
membership strength, as determined by
the correlation of transcript level with the
module eigengene (ME) (see Section 3.4.1).
Gene annotations where derived from the
UCSC database.
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Table 4.11: Ingenuity pathway analysis. Top 5 canonical pathways enriched in gene expression
modules (GenM) 6 and 14.

Canonical pathway Ratio p-value Molecules

GenM6
Xanthine and Xanthosine Salvage 1/1 3.4E-03 PNP
Guanine and Guanosine Salvage I 1/2 6.7E-03 PNP
Adenine and Adenosine Salvage I 1/2 6.7E-03 PNP
Trehalose Degradation II (Trehalase) 1/3 1.0E-02 HK1
Heme Biosynthesis from Uroporphyrinogen-III I 1/3 1.0E-02 FECH
GenM14
Fc Epsilon RI Signaling 3/106 1.1E-04 MS4A2,FCER1A,IL4
Histamine Biosynthesis 1/1 9.1E-04 HDC
Airway Inflammation in Asthma 1/4 3.7E-03 IL4
Tec Kinase Signaling 2/148 7.9E-03 MS4A2,FCER1A
Role of NFAT in Regulation of the Immune Response 2/160 9.1E-03 MS4A2,FCER1A

Ratio, number of genes that are member of the respective module and pathway divided by the total number
of genes in the pathway. p-value is derived from Fisher’s exact test (Section 3.5.1).

energy balance (Zhang et al., 2011) has been reported. Also for TRIM proteins, a role

within innate immune defense has been reported (Ozato et al., 2008), although little is

known about the specific member TRIM49L1.

Of note, the association between GenM14 and ∆BW as well as the VLDL-related MetM1

is negative, suggesting a reduced expression of these genes with weight gain and subse-

quent VLDL increase. Although these findings are in line with the negative association

between the LL module and VLDL metabolites reported by Inouye et al. (2010a), they are

contradictory to an analysis by Gonen et al. (1987), in which VLDL was found to trigger

the release of histamine from human basophils. Furthermore, obesity is a risk factor for

asthma, and weight gain was found to increase the risk of developing airway hyperrespon-

siveness (Shore, 2010). A postulated mechanism is the increase of number and function

of viable basophils through action of leptin (Suzukawa et al., 2011). It remains to be de-

termined how these results fit to the observation of decreased gene expression associated

with basophil/mast cell level or function upon weight gain in the present study.

Besides GenM14, a larger gene expression module (GenM6, comprising 71 transcripts)

was identified as being strongly positively related to ∆BW. In contrast to GenM14, ∆BW

association with GenM6 was largely stable towards adjustment for the metabolite MEs,

suggesting independent effects (p = 2.2 × 10−8). The core of GenM6 (module member-

ship strength > 0.8) comprised CA1, IFIT1L, BPGM, FAM46C, GYPB, AHSP, XK,

HMGXB4, FECH, GYPE, HBD and GLRX5. A manual literature search revealed at

least 9 of these 12 genes as red blood cell-related genes. For instance, HBD encodes the

hemoglobin delta subunit, AHSP encodes α-hemoglobin stabilizing protein, BPGM regu-

lates oxygen affinity of hemoglobin, and FECH codes for the enzyme ferrochelatase/heme

synthase which is involved in heme synthesis. A formal enrichment analysis for gene

ontology (GO) terms (see Section 3.5.1) revealed “hemoglobin metabolic process” and
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“hemoglobin complex”among the top three enriched biological pathways (all p = 8.4×10−4,

not significant after multiple testing correction, Table 4.12). In Ingenuity pathway analy-

sis, “heme biosynthesis from uroporphyrinogen-III I” was among the top five upregulated

canonical pathways (p = 9.9×10−3, not significant after multiple testing correction) (Table

4.11).

Table 4.12: Gene ontology enrichment analysis. Top 5 pathways enriched in gene expression
modules (GenM) 6 and 14.

Term name Term ID Term
Ontology

Ratio p-value

GenM6
bicarbonate transport GO:0015701 BP 2/2 8.4E-04
hemoglobin metabolic process GO:0020027 BP 2/2 8.4E-04
hemoglobin complex GO:0005833 CC 2/2 8.4E-04
organic anion transport GO:0015711 BP 5/30 1.5E-03
anion transport GO:0006820 BP 5/32 2.0E-03
GenM14
catecholamine metabolic process GO:0006584 BP 2/5 4.6E-04
phenol-containing compound metabolic
process

GO:0018958 BP 2/6 6.8E-04

negative regulation of myeloid leukocyte
differentiation

GO:0002762 BP 2/7 9.5E-04

RNA polymerase II core promoter prox-
imal region sequence-specific DNA bind-
ing transcription factor activity involved in
positive regulation of transcription

GO:0001077 MF 2/7 9.5E-04

RNA polymerase II transcription regula-
tory region sequence-specific DNA bind-
ing transcription factor activity involved in
positive regulation of transcription

GO:0001228 MF 2/8 1.3E-03

Ratio, number of genes that are member of the respective module and pathway divided by the total number
of genes in the pathway. p-value is derived from Fisher’s exact test (Section 3.5.1).

Consequently, it was hypothesized that the transcripts in GenM6 are reflective of red

blood cell development, since immature red blood cells, reticulocytes, contain remnant

mRNA (Goh et al., 2007) which is depleted during erythrocyte maturation. An increased

hematopoiesis upon diet-induced obesity in rats has been observed, putatively through ac-

tion of leptin in the bone marrow (Trottier et al., 2012), whereas glycosylated hemoglobin

shows an inverse relationship with erythrocyte survival (Virtue et al., 2004). A shift

towards a larger proportion of immature red blood cells upon weight gain would be con-

sistent with these observations. Accordingly, adjustment of the model for total red blood

cell count, hemoglobin concentration, hematocrit, mean corpuscular haemoglobin (MCH),

mean corpuscular haemoglobin concentration (MCHC) as well as mean cell volume of ery-

throcytes (MCV) did not abolish the association (p = 2.2 × 10−12), whereas adjustment

for the first 5 principal components of the red blood cell distribution width (RDW)-related

transcripts reported by Whitney et al. (2003) did (p = 0.340), whereby RDW is propor-

tional to reticulocyte count (Roberts and El Badawi, 1985).
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Neither of both ∆BW-related GenM’s seemed to comprise genes with a well-established re-

lationship to lipid metabolism, as might be expected after preselecting metabolite-related

transcripts. Examplarily, the genes LIPC, CETP and PLTP discussed above within the

context of lipoprotein metabolism were looked up, as well as ABCG1 which has been

discussed together with CETP as strongly upregulated transcript in adipose tissue in re-

sponse to diet-induced weight loss (Johansson et al., 2012). Whereas ABCG1 transcripts

tended to show a negative association with ∆BW (best p = 6.7 × 10−5 for transcript

ILMN 2329927, which clustered in GenM1), transcripts of the other three genes were not

related to either ∆BW or metabolites. These results could have been expected considering

the tissue origin of these proteins. In line with these findings, the strong obesity-related

changes in adipose tissue gene expression were weakly represented by blood cell transcrip-

tomics in the study by Emilsson et al. (2008).

4.3.4 Stability of the multi-omic associations

Next, different analyses were performed to assess the stability of the multi-omic network

and its relation to ∆BW. First, it was argued that metabolic effects of weight loss (negative

∆BW) and weight gain (positive ∆BW) might not be strictly opposing, and that diverging

effects might remain unexplored when linear models are used. Therefore, stratified analyses

(see Section 3.3.1) were performed in the group of subjects with weight loss (n = 641; 316

with gene expression data) and in the group of subjects with weight gain (n = 990; 373

with gene expression data) (Figure 4.16, second and third column). Overall, weight loss

and weight gain tended to show opposing associations with the modules (Figure 4.16: same

color of circles denoting association). By trend, associations of MetM1, 3, 4 and 5, and

GenM14 were stronger in subjects with weight loss than with weight gain. In contrast,

GenM6 showed by trend a stronger association in the group with weight gain. However,

none of these differences were significant (Figure 4.16: black arrows).

In addition, the effect of ∆BW on inter- and intra-module connectivity of the network

elements was investigated, since previous studies suggested sensitivity of metabolic network

topology towards external factors (Inouye et al., 2010a, Valcárcel et al., 2014) (see Section

3.4.1 for statistical methodology). No significant differences in network connectivity were

observed between the groups with weight gain and weight loss (all p > 0.01).

The generally opposing associations of weight loss and weight gain with the blood

metabolome are in line with the studies by Mäntyselkä et al. (2012) and Naganuma

et al. (2009), where the majority of ∆BW associations with lipoprotein measures were

linear across the weight change range, and weight loss and weight gain showed opposite

effects. Interestingly, the effect of weight loss (≥ 5% across 6.5 years) versus stable

weight on VLDL subclasses and L-HDL was stronger in absolute terms than the effect

of weight gain (≥ 5%) versus stable weight (Mäntyselkä et al., 2012). These findings

are in accordance with the stronger associations for MetME1 and MetME5 observed
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for weight loss in this study. Although larger studies in subjects with a larger range of

weight change might have more power to differentially investigate the effects of weight

loss versus weight gain, the presented results suggest that differences are not large and

that in general, weight loss is capable of reverting the effects of weight gain on the blood

metabolome and transcriptome. Accordingly, it was shown in a randomized controlled

trial that normalization of obesity led to a reversal of an unfavorable LDL subfraction

pattern (Siri-Tarino et al., 2009).

Further subgroup analyses were performed, assuming that weight change effect might de-

pend on (central) obesity, on sex and on age (Figure 4.16). Again, no significant subgroup-

specific effects were observed.

Body weight change over a period of 7 years might be due to several reasons, includ-

ing changes in lifestyle, the occurrence of diseases, and changes in medication. For these

reasons, the sensitivity of the observed associations with ∆BW towards adjustment for

changes in lifestyle factors, for the occurrence of diseases, and finally for changes in medi-

cation was investigated in three separate models (Figure 4.22). None of the three models

showed a change in effect sizes across the modules, indicating that the observed associa-

tions were primarily due to the change in body weight per se rather than the mechanisms

that might have facilitated weight change. Note, however, that the majority of the vari-

ables reflecting changes in lifestyle, disease and medication were obtained from interviews

and might therefore have insufficient accuracy. Also, nutrition was only obtained from the

baseline timepoint, so the effect of changes could not be investigated.

Together, these results suggest that the metabolite-gene network and its relation to weight

change reflect a largely stable system.

Several extensions of this study seem worthwhile. First, it would be interesting to ob-

tain a higher resolution of body weight measurements during follow-up, as well as of

metabolomics and gene expression measurements, to decipher the longitudinal sequence of

metabolic changes and to study the metabolic processes related to weight cycling. In addi-

tion, extending whole blood transcriptomics to different tissues seems extremely promising,

considering that blood might only weakly reflect weight-related transcriptional changes in

tissues (Emilsson et al., 2008), and that blood metabolites originate from different tissues.

In addition, the issue of cell type confounding in whole blood transcriptomics has to be

mentioned, which is discussed in the context of epigenomics in Section 4.2.9. Similar to

the approach applied in Section 4.2, the adjustment for transcripts previously reported

to relate to certain cell types, as it was done in this section, is subject to the quality of

the initial data and analysis strategy (i.e., Whitney et al. (2003)), and limited to the cell

types selected. Nevertheless, gene expression signatures identified in blood will be of large

practical relevance since blood is most easily accessible also in a clinical setting. Also, in

the context of weight change and its metabolic consequences, integrating metabolomics

and blood cell transcriptomics data is relevant from the perspective that blood cells may
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Figure 4.22: Association of annual percentage body weight change (∆BW) with omics
modules adjusting for factors driving weight change. Bubbles represent effect strengths
and significance, as described in the legend. Models were adjusted for age, sex and baseline
body weight. Significance threshold p < 1.9 × 10−3 corresponds to Bonferroni correction for 27
models. Lifestyle-adjusted: changes in physical activity, baseline nutritional score, changes in
sleeping behavior, smoking and alcohol drinking were included as covariates in the model. Disease-
adjusted: incident diabetes, cancer, myocardial infarction and stroke were included as covariates
in the model. Medication-adjusted: change in the intake of beta-blockers, antidiabetic drugs,
systemic corticoids, oral contraceptives and antidepressants were included as covariates in the
models. GenM, gene expression module; MetM, metabolite module.

interact with blood substances in the etiology of atherosclerotic events (Inouye et al.,

2010a).
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4.3.5 Conclusions

Through the integration of two-platform serum metabolomic and whole blood transcrip-

tomic data and the formation of modules of closely connected molecules, a comprehensive

characterization of metabolic effects of body weight change over a 7-year period in a large

population-based cohort was obtained. Weight gain and weight loss were strongly and

opposingly associated with the blood metabolome, with VLDL, LDL, large HDL sub-

classes, TGs, BCAAs and markers of energy metabolism as core molecules of the four

metabolite modules. These associations point towards the development of dyslipidemia,

disturbed amino acid metabolism as well as mitochondrial dysfunction upon weight gain.

Two weight change-related gene expression modules pinpoint immune cells (mast cells,

basophils) and reticulocytes as blood cell types putatively playing a role in weight change-

related blood metabolism. Metabolite and gene expression modules were associated with

clinical phenotypes, suggesting a role in linking excess body weight with metabolic and

cardiovascular comorbidities. The findings of this study also support the hypothesis that

clustering omics data prior to analyzing associations with a phenotype has increased power

for identifying biologically relevant pathways (Chuang et al., 2007, Inouye et al., 2012).

GenM14 (“LL module”) was found to be associated with weight change, although none

of the contributing genes showed a univariate association with weight change that would

have passed significance after correction for multiple comparisons.

Together, this study provides evidence for a largely reversible effect of long-term weight

gain in the general population on an integrated blood metabolomic and transcriptomic

network. This improves the knowledge on molecular processes elicited by weight change

and potentially linking it to comorbidities.

4.4 Metabolomic determinants of weight loss during lifestyle

intervention in obese children

Childhood obesity is primarily treated with lifestyle intervention approaches based on

physical activity and nutritional as well as behavior modification (Han et al., 2010). The

degree of overweight reduction during such intervention programs differs largely between

participants, and not all children achieve sufficient overweight reduction (Reinehr et al.,

2004, Sabin et al., 2007, Ford et al., 2010).

Hence, the search for factors predicting a child’s response to a lifestyle intervention is of

great interest. With knowledge of such factors, lifestyle based therapeutic options could

be focused on the children that are likely to benefit most, reducing the psychosocial and fi-

nancial burden of unsuccessful participation (Reinehr et al., 2003). In addition, a thorough

understanding of the metabolic processes underlying the large inter-individual variability

in weight loss is essential for the development of personalized intervention strategies.
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Figure 4.23: Prediction of
weight loss in the Obeldicks
study: Study design and
analysis strategy. The
Obeldicks study is described
in Section 2.3. Color coding
of statistical methods: yellow,
data preprocessing and quality
control (Section 3.1); red, uni-
variate data analysis (Section
3.3); violet, multivariate data
analysis (Section 3.4). BMI-
SDS, body mass index standard
deviation score; LASSO, least
absolute shrinkage and selection
operator.
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Recently, metabolomics has become an attractive tool in exploring metabolic determinants

of weight loss success (Pathmasiri et al., 2012). The aim of the present study was to

identify serum metabolites and anthropometric as well as clinical variables associated

with weight loss of obese children during the intervention program Obeldicks, and to build

a multivariate predictive model for BMI-SDS change during intervention.

This section was published as

� Wahl S, Holzapfel C, Yu Z, Breier M, Kondofersky I, Fuchs C, Singmann P, Prehn

C, Adamski J, Grallert H, Illig T, Wang-Sattler R, Reinehr T (2013). “Metabolomics

reveals determinants of overweight reduction during lifestyle intervention in obese chil-

dren.” Metabolomics, 9(6), 1157-1167.

4.4.1 Study characteristics at baseline and changes upon lifestyle inter-

vention

The overall study design and analysis strategy is visualized in Figure 4.23. By design,

baseline age, sex and pubertal stage, but also weight, BMI and BMI-SDS distribution did

not differ significantly between the 40 children who substantially reduced their BMI-SDS

(∆BMI-SDS ≤ -0.5) and the 40 children who did not (∆BMI-SDS > -0.1) (Table 4.13).

During the intervention, ∆BMI-SDS ranged from -1.49 to +0.49 and differed significantly

between children with and without substantial BMI-SDS reduction, with a mean (sd)

∆BMI-SDS of -0.68 (0.27) and +0.07 (0.15), respectively (p = 1.4 × 10−14). Children



4.4 Metabolomic determinants of weight loss during lifestyle intervention 127

with substantial BMI-SDS reduction significantly improved their waist circumference (-

6.0 (15.2) cm, p = 5.8× 10−3) as well as their metabolic risk profile (fasting insulin: -5.3

(9.3) mU/l, p = 2.2 × 10−4; homeostasis model assessment of insulin resistance (HOMA-

IR): -0.5 (4.9), p = 4.8 × 10−4; HDL: +3.9 (10.2) mg/dl,p = 4.8 × 10−2; triglycerides

(TGs): -17.9 (34.4) mg/dl, p = 5.3 × 10−3; systolic blood pressure: -7.6 (19.5) mmHg,

p = 2.3× 10−3). In contrast, children without substantial BMI-SDS reduction mostly did

not (see Supplementary Table 2 of the original publication (Wahl et al., 2013a)).

Table 4.13: Baseline characteristics of the Obeldicks study population.

Variable Children with
substantial BMI-SDS
reduction (n = 40)

Children without
substantial BMI-SDS
reduction (n = 40)

p-value

Age (years) 10.9 (2.3) 10.9 (2) 0.969
Sex (% male) 50 55 0.751
Pubertal stage (% prepu-
bertal)

52.5 50 1.000

Weight (kg) 64.1 (16.3) 66.3 (18.8) 0.641
BMI (kg/m2) 27.3 (3.3) 28 (4.6) 0.749
BMI-SDS 2.35 (0.43) 2.37 (0.45) 0.837
Waist circumference (cm) 83.8 (10.5) 92.4 (12.7) 0.009

Data are shown as mean (standard deviation) if not indicated otherwise. p-values were derived from
Wilcoxon rank-sum test and χ2 tests for continuous and dichotomous variables, respectively. BMI, body
mass index; BMI-SDS, BMI standard deviation score.

4.4.2 Pre-intervention variables associated with BMI-SDS reduction

In total, 144 pre-intervention variables, including 130 metabolites and 14 anthropometric

or clinical traits, were subjected to univariate logistic regression with the binary out-

come “substantial BMI-SDS reduction”, adjusted for sex, baseline age, pubertal stage and

BMI-SDS. None of the variables reached significance after correction for multiple testing

(Benjamini-Hochberg, see Section 3.3.4).

Assuming an increased power when replacing dichotomized by continuous ∆BMI-SDS as

response variable, linear regression models were fitted to the continuous outcome ∆BMI-

SDS. 18 variables showed a significant positive association with ∆BMI-SDS after correction

for multiple testing (permutation p-values ranging from 5.3 × 10−3 to 1.0 × 10−4, Figure

4.24, see Section 3.3.3 for permutation test). These variables included waist circumfer-

ence, arginine and lysophosphatidylcholine (LPC) a C18:0 serum concentrations, as well

as serum concentrations of 13 diacyl phosphatidylcholines (PCs) and two acyl-alkyl PCs,

which were all long-chained and unsaturated. Most of these variables were also nomi-

nally associated with substantial BMI-SDS reduction (Figure 4.24). By trend, a positive

association was observed for all measured diacyl PCs (see detailed association results in

Supplementary Table 2 of the original publication (Wahl et al., 2013a)). None of the

baseline clinical traits (blood pressure, blood lipid and insulin resistance parameters) were



128 4 Results and Discussion

●
●
●

●
●
●
●
●
●
●
●

●
●

●
●

●

●

●

0.0 0.5 1.0 1.5

Substantial BMI−SDS reduction

OR (95% CI)

9.5E−03
7.0E−03
1.0E−02
3.1E−03
1.0E−02
7.8E−03
6.8E−03
5.6E−03
7.9E−03
7.9E−03
1.2E−02
3.4E−03
5.5E−03

1.1E−02
1.7E−02

1.1E−02

3.3E−02

2.2E−03

p−valueParameter

PC aa C40:6
PC aa C40:5
PC aa C38:5
PC aa C38:3
PC aa C36:6
PC aa C36:5
PC aa C36:3
PC aa C36:2
PC aa C36:1
PC aa C34:3
PC aa C34:2
PC aa C34:1
PC aa C32:1

PC ae C36:2
PC ae C34:1

LPC a C18:0

Arginine

Waist circumference (cm)

A

●
●
●
●
●

●
●
●
●
●

●
●

●

●
●

●

●

●

−0.1 0.0 0.1 0.2 0.3 0.4 0.5

∆ BMI−SDS

β (95% CI)

4.5E−03*
1.5E−03*
9.0E−04*
1.5E−03*
2.1E−03*
1.0E−04*
3.6E−03*
2.9E−03*
1.2E−03*
2.6E−03*
5.3E−03*
1.0E−03*
3.9E−03*

2.3E−03*
1.6E−03*

5.1E−03*

5.2E−03*

4.8E−03*

p−value

B

Figure 4.24: Baseline parameters associated with overweight reduction during the
intervention. Associations with A the binary response “substantial BMI-SDS reduction” (∆BMI-
SDS ≤ -0.5 vs. ∆BMI-SDS > -0.1, odds ratios (OR) with 95% confidence interval (CI)) and B
the continuous response ∆BMI-SDS (β estimates with 95% CI, permutation p-values, see Section
3.3.3) are shown for the 18 variables significantly associated with ∆BMI-SDS after correction for
multiple testing. Results are based on univariate regression models adjusted for sex and baseline
age, pubertal stage and BMI-SDS. The unit of variables is µmol/L, if not indicated otherwise.
*Significant after correction for multiple testing. BMI-SDS, body mass index standard deviation
score; Cx:y, acyl-group with chain length x and y double bonds; LPC a, lysophosphatidylcholine
with acyl chain; PC aa, diacyl phosphatidylcholine; PC ae, acyl-alkyl phosphatidylcholine.

significantly associated with ∆BMI-SDS after correction for multiple testing.

4.4.3 Prediction of overweight reduction

∆BMI-SDS was further investigated using a multivariate approach, least absolute shrink-

age and selection operator LASSO (see Section 3.4.2), in order to identify markers that

represent groups of highly correlated baseline variables playing a role in the determination

of successful overweight reduction, and to assess their predictive potential. Three out of

the 144 variables were selected into the predictive model, namely waist circumference, PC

aa C36:5, and PC aa C32:2. Figure 4.25 shows coefficient paths and variable stability for

these variables. The strongest effect and highest stability, that is, the highest selection fre-

quency across the cross-validation (CV) folds, was observed for PC aa C36:5 (β = 0.0152,

selection frequency 100%). Of note, LASSO coefficients are not comparable with the coef-

ficients of the univariate linear regression models due to the shrinkage behavior of LASSO



4.4 Metabolomic determinants of weight loss during lifestyle intervention 129

(see Section 3.4.2).

In terms of prediction accuracy, the model had R2 and Q2 values of 0.267 and 0.116,

respectively (Figure 4.26). The significance of the prediction was assessed using a permu-

tation test with the null hypothesis stating that a Q2 value of 0.116 would be observed

by chance (see Section 3.3.3). The corresponding p-value was 4.6× 10−3, so this hypoth-

esis was rejected. Thus, it could be shown that the predictive model comprising three

metabolic variables explains a significant part of ∆BMI-SDS in obese children during

one-year lifestyle intervention.

The three variables selected into the LASSO model were also univariately associated with

∆BMI-SDS (Figure 4.24), with the exception of PC aa C32:2, for which a univariate

association was observed only by trend. The selected variables represented groups of

correlated variables significantly associated with ∆BMI-SDS in the univariate regression

analysis, as can be seen from the correlation and clustering results (Figure 4.27).
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Figure 4.25: LASSO regression results. Pre-intervention variables selected as predictors for
∆BMI-SDS. A Coefficient paths truncated at the chosen penalization parameter λopt = 0.0875
(vertical dashed line). β estimates are plotted against a sequence of the penalization parameter
λ ranging from the λ threshold beyond which no variables were retained in the model, to λopt.
β estimates are displayed for λopt. B Variable stability, defined as the frequency with which a
variable was selected by the LASSO approach across the 100 outer cross-validation (CV) loops,
for the chosen variables. Cx:y, acyl-group with chain length x and y double bonds; PC aa, diacyl
phosphatidylcholine.

4.4.4 Discussion

In this study, pre-intervention factors determining response to lifestyle intervention in

obese children were investigated using a targeted metabolomics approach combined with

clinical and anthropometric measurements, followed by univariate and multivariate statis-

tical analysis. The factors that showed the strongest association as well as the most stable

predictive potential for weight loss were serum concentrations of diacyl phosphatidyl-

cholines (PCs), and waist circumference.
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Figure 4.26: Permutation test results for the LASSO approach. Data for the first 1,000
permutations are shown. R2 values (green squares) and Q2 values (black crosses) are plotted
against the Pearson’s correlation between original and permuted outcome vector. R2 is limited to
≥ 0, whereas Q2 is not. At correlation = 1, R2 and Q2 values of the original data are plotted.
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Phosphatidylcholines and weight loss

Children with substantial BMI-SDS reduction had lower pre-intervention serum concentra-

tions in several PC species compared to children without substantial BMI-SDS reduction.

PCs are produced in most mammalian cells via the cytidine diphosphate (CDP)-choline

pathway (DeLong et al., 1999). In the liver, 30% of PC synthesis occurs via the phos-

phatidylethanolamine methyltransferase (PEMT) pathway (Li and Vance, 2008). The

enzyme PEMT methylates phosphatidylethanolamine to produce PCs, which constitutes

the only endogenous pathway of choline synthesis. The PC species derived from both

pathways differ in chain length and degree of saturation (DeLong et al., 1999).

The long-chain unsaturated PCs C34:1, C34:3, C36:2, C36:3, C36:5, C38:5 and C40.6 were

negatively associated with BMI-SDS reduction in this study and have recently been shown

to be down-regulated in livers of PEMT-/- mice (Jacobs et al., 2010). Also, total serum

PC concentration was reduced in PEMT-/- mice. Most interestingly, PEMT-/- mice were

protected from high-fat diet-induced obesity, having an increased energy expenditure and

normal peripheral insulin sensitivity. These effects were prevented by choline supplementa-

tion. Thus, they are attributable to reduced choline availability upon diminished choline
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Figure 4.27: Correlation among parameters associated with overweight reduction.
Heatmap of the matrix of pairwise Pearson’s correlation coefficients and hierarchical clustering
dendrogram are shown (see Section 3.4.1). Variables selected in the LASSO model are written in
bold font. Dendrogram was cut vertically at correlation = 0.4, the resulting clusters are framed.
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de novo production via PEMT, and an increased consumption of choline by increased

compensatory PC production via the CDP-choline pathway (Jacobs et al., 2010). A pro-

tective effect of low plasma choline levels on body mass has also been observed in a human

population-based study (Konstantinova et al., 2008). Low choline levels could increase

energy expenditure via several mechanisms, one being the attenuation of acetylcholine

signaling in the brain (Gautam et al., 2006, Jacobs et al., 2010).

It might therefore be hypothesized that the observed PC signature in children with sub-

stantial weight loss may reflect a reduced PEMT activity. Once these children change

their nutritional habits, and thereby reduce the dietary intake of choline, they might have

a greater potential to reduce their weight. This assumption is supported by a dietary

intervention study in overweight adults, where a PC species that is likely PEMT-derived

was negatively associated with body fat reduction (Smilowitz et al., 2009).
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Abdominal adipose tissue and weight loss

Waist circumference is an established marker of abdominal obesity in children (Taylor

et al., 2000, Schwandt et al., 2008). In this study, a higher waist circumference at baseline

was inversely associated with BMI-SDS reduction during intervention. This observation is

consistent with the negative link between markers of abdominal fat mass and weight loss

success as well as improvement in insulin sensitivity observed upon lifestyle intervention

in adults (Teixeira et al., 2004, Thamer et al., 2007). However, the opposite association

has been reported (Wabitsch et al., 1992, Carmichael et al., 1998).

There is biological evidence for a role of abdominal adipose tissue in weight regulation.

It is well recognized that abdominal adipose tissue is an endocrine organ that contributes

to the subclinical inflammation associated with obesity by secreting a range of bioactive

molecules called adipokines (Wajchenberg, 2000). Of note, an increasing number of studies

in both children (Fleisch et al., 2007, Reinehr et al., 2009b, Murer et al., 2011) and adults

(Verdich et al., 2001, Shih et al., 2006) showed higher serum levels of the adipokine leptin to

be associated with weight gain or poor response to lifestyle intervention. Although leptin

exerts anorexigenic functions, suppressing food intake and increasing energy expenditure,

these negative associations might be explained by the presence of leptin resistance or

central leptin insufficiency (Kalra, 2008, Reinehr et al., 2009b).

In addition, high baseline levels of the adipokine adiponectin predicted weight gain over

4 years in adults (Hivert et al., 2011) and promoter methylation of the tumor necrosis

factor-α (TNF-α) gene, which positively regulated circulating TNF-α concentration, was

negatively associated with weight loss success (Campión et al., 2009). A further line of

evidence connects abdominal obesity with resistance to weight loss during lifestyle inter-

vention via the central action of insulin. Abdominal adipose tissue has been reported to

associate with cerebral insulin resistance (Tschritter et al., 2009), which was related to

impaired body fat loss during lifestyle intervention (Tschritter et al., 2012).

Together, these findings corroborate a complex role of abdominal fat in weight regulation

and might contribute to the explanation why higher waist circumference is associated with

poorer weight loss success during lifestyle intervention in the present study. Adipokine

measurement was not subject of this study, so it could not be investigated whether the

observed association was mediated by these factors.

Predictive potential of the LASSO model and comparison to other studies

Widely used multivariate approaches in metabolomics data analysis are partial least

squares (PLS)-related methods. However, classical PLS regression has the disadvantage

that variable effect strengths are not readily obtained and sparse models containing only

a few important predictor variables for assessment in future studies cannot be derived

easily. We therefore chose to use a LASSO regression approach, which provides, besides
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measures of prediction accuracy for the whole model, measures of effect strength and vari-

able stability for the selected variables. Using this approach, a model was obtained that

comprised three pre-intervention variables that explained a significant part of ∆BMI-SDS.

Although no hard cut-offs exist for R2 and Q2 values in this regularized regression setting,

the prediction accuracy of the presented model seemed rather moderate (R2 = 0.267, Q2

= 0.116). A recent investigation of urinary metabolite traits predictive of substantial BMI

change in a 3-week treatment camp for adolescents reported higher values of prediction

accuracy (Pathmasiri et al., 2012). A direct comparison is difficult since their study

differed from the present study in terms of statistical methods, length and characteristics

of intervention as well as metabolomics technique and investigated biofluids. Overweight

change over the course of one year in an outpatient intervention program might be

more strongly influenced by environmental and psychosocial factors and therefore be less

predictable by the here investigated metabolic variables. Also, Pathmasiri et al. included

post-intervention metabolite levels in their prediction model, unlike in the present study,

were the aim was to obtain a model with prognostic applicability. Results of both studies

require external validation in larger independent data sets. Other studies searching for

metabolic predictors of weight loss success investigated single parameters and found

better insulin sensitivity (i.e., lower HOMA-IR, lower fasting insulin or absence of type 2

diabetes (T2D)) (Harden et al., 2007, Madsen et al., 2009, Ford et al., 2010) as well as

lower serum TG levels (Harden et al., 2007, Madsen et al., 2009) as predictors of weight

loss. In the present study, these parameters were not identified as significant predictors.

However, HOMA-IR and serum TGs showed a borderline significant negative association

with ∆BMI-SDS.

Strengths and limitations

This is one of the first studies applying a metabolomics approach to identify metabolic pre-

dictors of overweight reduction in obese children upon lifestyle intervention. In addition

to the univariate identification of pre-intervention variables associated with overweight

reduction, a carefully validated LASSO approach was used to build a predictive model

for BMI-SDS change. As a limitation of this study, only a small group of children was

investigated. Larger studies might allow for the development of sex-, age- and maturity-

specific predictive models. The underlying study population did not represent a random

group of obese children. Therefore, the predictive potential of the variables on which the

children were matched (sex, age, and pubertal stage) could not be assessed (Sabin et al.,

2007, Danielsson et al., 2012). Moreover, weight loss success is not only determined by

compliance regarding participation at meetings, but also by implementation of the rec-

ommendations into daily life. This might be strongly influenced by environmental and

psychosocial factors, which were not ascertained in this study. Furthermore, the present

analysis was limited to changes in BMI-SDS as outcome. Further investigations should be

aimed at identifying predictors for secondary outcomes such as changes in body fat distri-
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bution and insulin sensitivity. In addition, studies investigating metabolite changes during

lifestyle intervention might give additional information about the mechanisms underlying

weight change.

Conclusions

The obtained results confirm a role of phosphatidylcholine metabolism in human energy

regulation and success in overweight reduction as has previously been observed in animal

studies. They further corroborate the connection between abdominal obesity and impaired

overweight reduction. These are both important aspects for understanding the large inter-

individual variation in response to lifestyle interventions, which is a prerequisite for the

development of individualized intervention programs.
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Advances in the field of high-throughput omics technologies offer the opportunity to si-

multaneously measure hundreds or thousands of molecules. In post-genomic obesity re-

search, they provide valuable tools for the molecular characterization of obesity-related

pathomechanisms on different system levels. In this thesis, four studies were conducted

that employed combinations of omics data to address different aspects of obesity research.

Four central goals of post-genomic obesity research were addressed: (1) Defining the mech-

anisms linking selected risk loci to obesity and type 2 diabetes (T2D), (2) explaining part

of the missing heritability through the study of DNA methylation, (3) understanding the

etiology and consequences of obesity and weight change using different omics data, and

(4) identifying metabolomic determinants of weight loss response to lifestyle intervention.

In the following, the core findings and scientific contributions of the thesis are summarized

and future perspectives are given, in view of the addressed objectives.

5.1 Key findings

First, an extensive characterization and comparison of metabolomic responses to differ-

ent oral and intravenous challenges was provided. This revealed in particular previously

unreported changes in different phospholipid metabolites, as well as diverging metabolite

changes in response to intravenous as compared to oral glucose challenge. In addition, the

concept of metabolomics measurements during challenge tests was successfully applied

in studying genotype-challenge interactions. Specifically, new insights into a putative

role of sphingomyelin and phospholipid metabolism in TCF7L2 -conferred T2D risk were

obtained. These perturbations could only be detected through the challenge tests, demon-

strating the utility of the approach in revealing early metabolic abnormalities prior to a

change in conventional parameters of glucose homeostasis.

Second, the first large EWAS of BMI was conducted. It comprised more than 10,000 sub-

jects of European and South Asian origin from 13 studies, and revealed stable methylation-

BMI association for 187 loci. Downstream analyses provide solid evidence for an enrich-

ment of these loci in regions of open chromatin, an enrichment for relevant biological

pathways and for loci previously reported in lipid GWAS. They further show that a large

number of the identified CpG sites were associated with gene expression at nearby genes
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and with genetic variation. Three different approaches were introduced to decipher di-

rection and causality of the observed associations, two Mendelian randomization (MR)

approaches and a longitudinal regression approach. From these, evidence was obtained

that change in methylation at the majority of loci was consequential to change in BMI.

Furthermore, methylation at selected sites explained a part of the association of BMI

with clinical traits and incident T2D, suggesting methylation as a candidate mechanism

underlying the development of obesity-related comorbidities.

Third, a comprehensive investigation of the metabolomic and transcriptomic signature

associated with previous body weight change over a 7-year period is provided. Applying a

weighted correlation network analysis (WGCNA) approach to aggregate metabolites and

transcripts to modules of closely connected molecules prior to association testing allowed

the identification of modules of metabolites or transcripts jointly related to weight change.

Together, these modules indicate a global effect of weight change on major branches of

metabolism, including lipoprotein and lipid metabolism, amino acid metabolism, energy

metabolism/mitochondrial function, basophil/mast cell function and red blood cell devel-

opment. Weight gain and weight loss showed largely opposing effects on the modules,

which were also cross-sectionally related to insulin resistance traits.

In the last study, combined serum metabolomic, anthropometric and clinical data were

used to build a predictive model of weight loss success for obese children during the 1-

year lifestyle intervention study “Obeldicks”. In a careful model building and validation

strategy using the regularized regression approach LASSO, a sparse model that contained

waist circumference as well as two phosphatidylcholines and predicted a significant part

of weight loss success was identified. These results point towards a role of abdominal

fat as well as phospholipid metabolism in weight regulation, thereby contributing to the

understanding of inter-individual variation in weight loss response.

Throughout the thesis, new insights were obtained through the integration of multiple

omics levels. For instance, metabolomics was successfully used as a tool to more deeply

characterize results from genomic approaches. The integration of epigenomic data with

genomic and transcriptomic data helped to understand genetic regulation of DNA methyla-

tion and its effect on gene expression. In addition, genomics data were an essential element

of MR approaches. Finally, metabolomics data from two platforms and transcriptomics

data provided complementary information on the effects of body weight change.

5.2 Future perspectives

The growing field of multi-omics entails several challenges. In the human body, the dif-

ferent system levels act on different time scales and in different cellular compartments

(Somvanshi and Venkatesh, 2014). With the exception of genomics, omics measurements

constitute a snapshot of the state of a system at a specific time point in a specific tis-
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sue. To be able to fully understand the dynamics of physiological processes, multiple

measurements in optimally many different tissues have to be conducted. Measurements

in epidemiological studies, including most of the studies that are part of this thesis, are

frequently restricted to one time point and to easily accessible biofluids such as blood,

which for instance only weakly reflects obesity-related transcriptional processes in adipose

tissue (Emilsson et al., 2008). Studies integrating omics data from different timepoints

and tissues will help to understand the interplay of the system levels.

The frequent use of blood samples to study epigenomics and transcriptomics poses a

further challenge. Whole blood represents a mixture of different cell types that are char-

acterized by highly specific epigenomic and transcriptomic signatures (Houseman et al.,

2012, Reinius et al., 2012, Zhu et al., 2012). Since BMI associates with a shift in blood

cell proportions (Bellows et al., 2011, Trottier et al., 2012), cell type proportions represent

potential confounders of methylation/gene expression - BMI associations. This issue is ad-

dressed by two different statistical approaches in this thesis that both rely on previously

published cell-specific methylation or expression signatures. Although these approaches

diminish cell type confounding, they are limited by the quality of the external data, and

with regard to the specific cell types considered (see detailed discussion in Sections 4.2.9

and 4.3.5). The development of improved methods to deal with cell type confounding in

whole blood methylation and expression studies merits further efforts and is already an

ongoing research focus (Houseman et al., 2014, Zou et al., 2014, Jaffe and Irizarry, 2014).

Another issue of future relevance is the inference of causality in systems epidemiology.

With the exception of genomics, the system levels do not act in a unidirectional way

(Schnabel et al., 2012). For instance, the dogma of unidirectional negative regulation of

gene expression by DNA methylation has been refuted (Portela and Esteller, 2010, Zil-

berman et al., 2007). Instead, dynamic interactions and feedback loops between system

levels challenge the integrated analysis. Thus, in observational studies, one cannot con-

clude causality from associations between omics levels, or between omics and phenotype

data. Specific statistical methodology has been developed to infer causality from obser-

vational data. An example is the concept of Mendelian randomization (MR), which was

applied in this thesis. In MR, genetic variants play an important role as instrumental

variables (Section 3.5.2). Although the two MR approaches applied in this thesis provide

evidence for causality, they rely on several model assumptions that are difficult and partly

impossible to test (see discussion in Section 4.2.9), so the obtained results should be in-

terpreted with care. In addition, the formal MR approach requires that the individual

studies have substantial power, in order to prevent weak instrument bias. In the future,

meta-analyses of larger studies should be performed to obtain more reliable evidence for

causality. In addition, the epidemiological findings obtained in this thesis should be fol-

lowed up in controlled weight change intervention studies as well as in in vitro and in vivo

experiments.
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An increasing number of multi-omic data resources are becoming available, and novel

omics technologies – such as glycomics, i.e. the study of sugar species in a biosample

(Zhang et al., 2014), and metagenomics, i.e. the study of the genomes of microorganisms

e.g. in the human gut – provide additional information (Norheim et al., 2012). In addition,

the Encyclopedia Of DNA Elements (ENCODE) consortium is creating a comprehensive

catalogue of functional elements in the human genome sequence (Rosenbloom et al., 2012).

The development and adoption of statistical methods to meet the specific characteristics of

novel omics data is already being worked on (e.g., Wahl et al. (2014)) and remains a chal-

lenging task at the interface of biology and statistics. In addition, the integrated analysis

of multiple data types requires considerable computational capacities and bioinformatic

tools. Databases linking omics features with biological pathways can support the interpre-

tation of multi-omics data (Connor et al., 2010, Dutta et al., 2012). However, maintaining

databases with good coverage and specificity for features from different omics layers will

become more and more challenging as the complexity of available data increases.

A particular post-genomic concern is tackling the missing heritability of obesity. In this

thesis, DNA methylation as a possible mechanisms underlying the missing heritability was

explored. Animal studies suggest that environmentally aquired epigenetic modifications

can be inherited to subsequent generations (Guerrero-Bosagna and Skinner, 2012), raising

the possibility that they might contribute to the heritability of obesity independent of

genetic variations. In the presented study, evidence for a causal role of methylation in the

etiology of obesity was obtained only for few CpG sites. Further work should focus on

other promising strategies of addressing the missing heritability. This includes the study

of other epigenetic mechanisms such as histone modification, chromatin remodeling and

RNA inference (Portela and Esteller, 2010, Rakyan et al., 2011). In addition, gene-gene

and gene-environment interactions deserve further investigation, as well as imprinted loci

and disease-associated haplotypes, which might be explored through family studies. Fur-

thermore, even larger GWAS efforts will have a chance to detect rare and low-penetrance

genetic variants as well as previously untagged structural variants.

5.3 Conclusion

This thesis demonstrates the enormous value and potential of multi-omics strategies for

post-genomic obesity research, while also acknowledging and providing solutions to the

challenges arising from omics data integration. The obtained insights provide a basis for

understanding the complex molecular processes underlying obesity and weight change,

and linking them to metabolic derangements such as insulin resistance and dyslipidemia.

Thereby, they present a promising starting point for the development of individualized

treatment, early detection and prevention strategies for obesity and comorbidities such as

T2D and cardiovascular diseases.
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A Appendix

A.1 Appendix statistical methods

A.1.1 Quantile normalization (QN)

Let X be a data matrix with dimension p × n, where p corresponds to the number of

features, and n to the number of observations. Then, QN is achieved by the following

algorithm (Bolstad et al., 2003):

1. Sort each column of X to get Xsort, and save the original ordering

2. Compute the vector of row means of Xsort

3. Assign this mean to each element in the respective row to get X′sort

4. Rearrange each column of X′sort to have the same ordering as the original matrix X.

A.1.2 Missing data handling

Multiple imputation by chained equations (MICE)

Multiple imputation by chained equations (MICE), also referred to as sequential regres-

sion multivariate imputation and fully conditional specification is based on the following

algorithm (van Buuren et al., 1999, Raghunathan et al., 2001, van Buuren, 2007):

(1) Fill all missing values with arbitrary start values.

(2) Repeat the following steps for the incomplete variable vectors xk, k = 1, . . . ,K for

a pre-specified number of iterations (b = 1, . . . , B):

(a) Regress xk on all other variables X̃ =
{

Xobs,x
(b)
1,mis, ...,x

(b)
k−1,mis,x

(b−1)
k+1,mis, ...,x

(b−1)
K,mis

}
using an appropriate regression model (e.g., linear, logistic or multinomial re-

gression if xk is continuous, dichotomous or categorical, respectively) to obtain

estimates θ̂ (e.g., β̂ and σ̂2 in the case of linear regression). Potentially,

transform skewed continuous variables xk first to ensure normality.

(b) Draw from the conditional posterior distribution of the parameters given X̃:

θ
(b)
k ∼ p

(
θk

∣∣∣X̃) .
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In Bayesian linear regression (Rubin, 1987, Yuan, 2011), this corresponds to:

σ
2(b)
k

∣∣∣ X̃ ∼ Scale-inv-χ2
(
n− p, σ̂2

)
, and

β
(b)
k

∣∣∣ X̃, σ2(b)k ∼ MVN

(
β̂, σ

2(b)
k

(
X̃T X̃

)−1)
,

with the standard estimates β̂ and σ̂2 (see Section A.1.3).

(c) Draw from the full conditional posterior distribution of the missing values given

the updated parameters:

x
(b)
k,mis ∼ p

(
xk,mis

∣∣∣X̃,θ(b)k ) .
In Bayesian linear regression, this corresponds to:

x
(b)
k,mis

∣∣∣ X̃,β(b)
k , σ

2(b)
k ∼ MVN

(
X̃Tβ

(b)
k , σ

2(b)
k

)
.

(3) Use x
(b)
mis as imputed values for the missings. A robust extension of Bayesian linear

regression imputation is predictive mean matching (PMM), where an observed value

with a similar predicted value is used as imputed value (Little and Rubin, 2002),

thereby ensuring that the imputed values are within a plausible range.

(4) Repeat steps (1) to (3) M times, to obtain M imputed data sets.

Although it does not necessarily converge (Raghunathan et al., 2001, van Buuren et al.,

2006), this procedure has proven to provide unbiased and valid inference in numerous

applications (Raghunathan et al., 2001, van Buuren et al., 1999, 2006, van Buuren, 2007,

Lee and Carlin, 2010, Marshall et al., 2010, Drechsler, 2011). It is however important to

monitor convergence and performance of the imputation models. Abayomi et al. (2008),

Drechsler (2011) and van Buuren and Groothuis-Oudshoorn (2011) introduce a number of

diagnostic techniques.

The algorithm can be made more flexible. For instance, it can be extended to consider

variables that are defined for a subpopulation only, such as the variable “intake of oral

contraceptives” which is defined for females only (van Buuren, 2007). It can also be

extended to consider logical bounds and constraints, e.g. a minimum of zero for metabolite

concentrations. Important to the quality of MICE is the appropriate choice of covariates

in the imputation models. Generally, an “inclusive” strategy should be preferred to avoid

bias (van Buuren et al., 1999, Collins et al., 2001). Specifically, the models should include

(van Buuren and Groothuis-Oudshoorn, 2011):

(i) variables that are to be included in the subsequent statistical models (including

interactions when stratified or interaction models are planned, and including the

response variable), to preserve correlations among the variables.
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(ii) “auxiliary” variables that are correlated with the incomplete variable in question,

since they contribute information for its imputation;

(iii) “auxiliary” variables that are correlated with the missingness of the incomplete vari-

able in question, making the MAR assumption more plausible.

If the number of such variables is too large, additional criteria might be used to restrict

their number, e.g. stricter thresholds for correlation, or a required number of joint obser-

vations with the incomplete variable. Auxiliary variables for auxiliary variables might also

be included to a certain level.

Combination of results from multiply imputed data sets

Having generated M imputed data sets and analyzed them with standard methods, the

obtained estimates Q̂ can be combined using combination rules by Rubin (1987). These

are applicable for estimates with an approximate complete-data normal distribution, and

shown here for scalar estimates Q̂:

Let Q̂(m) be the estimate if interest obtained from imputation m, m = 1, . . . ,M , and

ˆV ar(Q̂(m)) its variance. Then a combined estimate can be obtained as the average of the

estimates θ̂(m) obtained from of the M imputed data sets:

Q̄ =
1

M

M∑
m=1

Q̂(m).

Two variance components need to be combined: the within-imputation variance W

W =
1

M

M∑
m=1

ˆV ar(Q̂(m))

and the between-imputation variance B, which is introduced as a result of uncertainty

about the missing values:

B =
1

M − 1

M∑
m=1

(
Q̂(m) − Q̄

)2
.

Total variance T can be summarized by

T = W + (1 +
1

M
) ·B.

Rubin (1987) derived the following asymptotic reference distribution:

(Q− Q̄) · T−1/2 ∼ tνM ,
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with associated degrees of freedom

νM =
M − 1

γ̂2
,

where

γ̂ =
(1 + 1

M ) ·B
T

defines the fraction of information about Q missing due to missing data. γ̂ does not

necessarily correlate with the fraction of missing values in the model variables, but is also

influenced by the degree of correlation of these variables with auxiliary variables in the

data set. For instance, a variable with a large number of missing values might potentially

be imputed with a very high accuracy if it is highly correlated with other variables in the

data set, resulting in a low value of γ̂. Furthermore, the relative efficiency (RE), defined

as

RE =
T∞
TM
≈ 1

1 + γ̂
M

,

describes the proportion of T that could not have been avoided by using an infinite number

of imputations (Rubin, 1987). RE increases with increasing M . It should optimally be

close to 1 and can provide some indication of how many imputations should be used.

Although according to Rubin (1987), 5-10 imputations should be sufficient even when the

fraction of missing information is moderate, a larger number of imputations M might be

advisable in the case of a large amount of missing information (Bodner, 2008, Graham

et al., 2007).

A.1.3 Linear regression

Model

Let y = (y1, y2, . . . , yn) be an n × 1 continuous response vector corresponding to n inde-

pendent observations, and X the n× (p+ 1) covariate matrix. Then the linear regression

model is defined as

y = Xβ + ε = η + ε, ε ∼
(
0, σ2In

)
,

where β = (β0, β1, . . . , βp) represents the (p+ 1)× 1 vector of unknown regression coeffi-

cients (including the intercept), η the linear predictor, and ε an n×1 vector of uncorrelated

error terms with the common variance σ2 (Fahrmeir et al., 2013, Faraway, 2002). That

is, one assumes that the response is a linear function of the covariates (subject to random

noise, represented by ε), with the regression coefficients βj , j = 1, . . . , p, representing the

linear association of each covariate xj with the response vector y. More precisely, βj can

be intepreted as change in y per one unit increase in xj .

X might contain dummies I(xj = c) of a categorical covariate with C categories c =

1, . . . C (corresponding to C−1 dummies), in which case the respective entries in β specify
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Figure A.1.1: Least squares estimation in
the p = 1 situation.
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the change in the response when comparing the respective category c with the reference

category. Also, the linear predictor can be extended to contain interaction effects of two

variables. That would be reasonable when one variable is assumed to modify the effect of

another variable on the response. Technically, for each interaction included in the model,

a column of X would represent the product of the two variables in question, and the

corresponding entry in β would specify the effect modification between the variables.

Estimation

The least squares estimate β is obtained by minimizing the sum of squared errors:

β̂ = arg min
β

n∑
i=1

ε2i = arg min
β

εT ε = arg min
β

(y −Xβ)T (y −Xβ). (A.1)

In the p = 1 case, this resembles finding the linear line through the “cloud of dots” which

minimizes the sum of the squared distances of the dots to the line (Figure A.1.1). The

solution to this minimization task is:

β̂ = (XTX)−1XTy (A.2)

σ̂2 =
εT ε

n− p− 1

(Fahrmeir et al., 2013, Faraway, 2002).

Hypothesis testing

To allow for hypothesis tests on the effect estimates β̂j , it is commonly assumed that the

error terms (approximately) follow a normal distribution: ε ∼ Nn(0, σ2In). Given this
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assumption, β̂ also follows a normal distribution (Fahrmeir et al., 2013):

β̂ ∼ Np(β, σ
2(XTX)−1), and

β̂j − βj√
σ̂2(XTX)−1[j,j]

∼ tn−p−1.

Thus, one can e.g. construct a test statistic tj for the hypothesis test with the null hypoth-

esis H0: βj = 0 (“no association between the response and covariate j”) vs. the alternative

hypothesis H1: βj 6= 0 (“response and covariate j are associated”):

tj =
β̂j

ŝe
(
β̂j

) =
β̂j√

σ̂2(XTX)−1[j,j]

.

Given H0 is true, tj should be a draw from a t distribution with n − p − 1 degrees of

freedom. Accordingly, a p-value can be computed as the probability of observing a test

statistic at least as extreme as the observed one given H0 is true:

p-value = P (|T |≥ |tj |) ,

where T is a random tn−p−1 distributed variable.

A.1.4 Logistic regression

The logistic regression model is given as

P (yi = 1) = πi = h(ηi) = h(xTi β)

g(πi) = h−1(πi) = ηi = xTi β,

whereby h(·) denotes a response function that maps the linear predictor ηi defined on

the real space into [0, 1]. Often, h(·) is chosen as the logistic function h(ηi) = exp(ηi)
1+exp(ηi)

(corresponding to the logit link g(πi) = log
(

πi
1−πi

)
). For parameter estimation and tests,

see Fahrmeir et al. (2013). Effect estimates obtained from logistic regression are often

transformed to odds ratios for reasons of interpretability:

ORj =
Odds(xij = x+ 1)

Odds(xij = x+ 1)
=

P (yi=1|xij=x+1)
1−P (yi=1|xij=x+1)

P (yi=1|xij=x)
1−P (yi=1|xij=x)

=
exp(β0 + . . .+ βj(x+ 1) + . . .+ βpxp)

exp(β0 + . . .+ βjx+ . . .+ βpxp)
= exp(βj).

ORj can be interpreted as the multiplicative change in the odds (chance) of observing

y = 1 (e.g., the disease) per one unit increase in covariate j.
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A.1.5 Multiple testing procedures

The two largest classes of available procedures control either the probability of any false

rejection, referred to as family-wise error rate (FWER), or – which is less strict – the

expected proportion of false rejections among the rejections, referred to as false discovery

rate (FDR) (Benjamini and Hochberg, 1995, Dudoit et al., 2003). Using the terminology

from Table A.1.1, they can be written as:

FWER = P (V > 0), and

FDR = E(V/R).

Table A.1.1: Test outcome when testing p null hypotheses (adopted from Benjamini and
Hochberg (1995)).

# H0 not rejected # H0 rejected Total

# true H0 U V p0
# non-true H0 T S p− p0
Total p−R R p

To correct for multiple testin, a widely used approach is the Bonferroni procedure, accord-

ing to which a null hypothesis Hj is rejected, if the corresponding p-value meets pj ≤ α
p ,

where p denotes the number of variables and α the chosen significance level, α = 0.05

in this thesis. Alternatively, one can compute adjusted p-values p∗j = pj · p and reject if

p∗j < α. It can be shown that this procedure controls the FWER at α (Dudoit et al.,

2003):

FWER = P (V > 0) = P (∪p0j=1pj ≤
α

p
) ≤

p0∑
j=1

P (pj ≤
α

p
) =

p0∑
j=1

α

p
=
p0
p
α ≤ α.

Another frequently applied approach is the Benjamini-Hochberg procedure (Benjamini and

Hochberg, 1995), according to which the null hypotheses H(1), . . . ,H(r) are rejected with

r the rank of the largest p-value for which p(r) ≤ r
pα, if existent. Adjusted p-values can be

expressed as

p∗(j) = min
r=j,...,p

{
min

(p
r
p(r)

)}
.

The procedure controls the FDR at α under independence, and under certain dependence

structures (positive regression dependency), which might be assumed to hold in many

practical situations (Benjamini and Yekutieli, 2001).
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A.1.6 Meta-analysis

Fixed-effects meta-analysis

Let θ̂k, k = 1, . . . ,K, be estimates derived from K independent studies to be combined, for

instance β coefficients from linear models. Then, the fixed-effects model postulates that

a common true parameter θ underlies all studies, and that the θ̂k are realizations from

a distribution with mean θ and estimation error variance σ2k (Normand, 1999). Given

moderately large sample sizes (central limit theorem), the θ̂k asymptotically follow

θ̂k ∼ N
(
θ, σ2k

)
, k = 1, . . . ,K.

The corresponding maximum likelihood estimator for θ is:

θ̂ =

∑K
k=1wkθ̂k∑K
k=1wk

with wk =
1

σ2k
,

referred to as inverse-variance weighting of the study estimates. Because of θ̂ ∼
N
(
θ, 1∑K

k=1 wk

)
, standard hypothesis tests can be performed on θ̂.

An alternative fixed-effects method is to combine z statistics zk from the single studies as

z =
∑K

k=1 wkzk√∑K
k=1 w

2
k

with wk =
√
nk.

Random-effects meta-analysis

The assumption that a θ underlies every study might be unrealistic in scenarios where sub-

stantial heterogeneity is present between the studies, e.g. due to differences in phenotypic

and technical study characteristics (Borenstein et al., 2010). In that case, the random-

effects model might be more appropriate. It assumes that the θ̂k are realizations from a

distribution with study-specific means θk, which again are realizations from a distribution

with mean θ and variance τ2:

θ̂k|θk, σ2k ∼ N
(
θk, σ

2
k

)
θk|θ, τ2 ∼ N

(
θ, τ2

)
.

Similarly as described above, θ̂ can be obtained as weighted mean of the individual θ̂k,

this time using the weights wk(τ) = 1
σ2
k+τ̂

2 , where different estimation strategies for τ2

have been proposed (Normand, 1999).

The decision for fixed- versus random-effects meta-analysis can be guided by the estimated

heterogeneity between the studies. A commonly used test statistic is Cochran’s Q :

Q =

K∑
k=1

wk

(
θ̂k − θ̂

)2
∼ χ2

K−1.
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If the null hypothesis of homogeneity between the studies is rejected, random-effects meta-

analysis might be more sensible. However, the power of tests on Q is low when K is small

(Hardy and Thompson, 1998). Therefore, an alternative measure I2 = Q−(K−1)
Q · 100%

has been proposed (Higgins and Thompson, 2002).

A.1.7 Principal component analysis

Let X be the n × p feature matrix with covariance matrix Σ. Then, PCs pj = Xaj ,

j = 1, . . . , q ≤ p are subsequently defined such that aj = arg maxV ar(pj) under the

restrictions aTj aj = 1 and aTj al = 0, l = 1, . . . , j − 1. This optimization task can be for-

malized through spectral decomposition of the covariance matrix: Σ = AΛAT , where A =

(a1, . . . ,aq) is the orthonormal p× q matrix of eigenvectors aj , and Λ = diag (λ1, . . . , λq)

the q × q diagonal matrix of sorted eigenvalues. Then, the n× q matrix of PCs is

P =
(
p1, . . . ,pq

)
= XA.

That the resulting PCs are orthogonal and variance declines with the number of compo-

nents is evident from

Cov(P) = Cov(XA) = ATCov(X)A = ATΣA = ATAΛATA = Λ.

A.1.8 Cluster analysis

K-means clustering

Cluster assignment of the feature vectors xj , j = 1, . . . , p, is achieved by an iterative

approach (Hastie et al., 2009):

(1) Start with random choice of K cluster centers µk, k = 1, . . . ,K.

(2) Determine the distance d(xj ,µk) between each feature xj and each cluster center

µk (see Section 3.4.1 for distance definitions).

(3) Assign each feature to the nearest cluster with regard to the smallest distance

d(xj ,µk):

C(j) = arg min
1≤k≤K

d(xj ,µk).

(4) Compute the new cluster means µk = 1
|Ck|

∑
r,C(r)=k xr where |Ck| represents the

number of features in cluster k.

(5) Iterate steps (2) to (4) until convergence.

To choose the optimal number of clusters K, Genolini et al. (2013) recommend to run the

algorithm for different K, and then to select the optimal number of clusters according to
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some quality criterion. Different quality criteria have been proposed, all of which put the

variability, or distance, between clusters in relation to that within clusters. They include

the Calinski & Harabasz criterion:

tr(B)(p−K)

tr(W )(k − 1)
,

where tr(B) and tr(W ) represent the traces of the between- and within-cluster variance

matrices (see Calinski and Harabasz (1974) for details). Furthermore, the Ray & Turi

criterion has been proposed as the ratio of the average within-cluster distances DW (k)

and the minimum between-cluster distance DB(k, l):

1
K

∑K
k=1DW (k)

mink,l∈1,...,KDB(k, l)
,

where DW (k) = 1
|Ck|

∑
r,C(r)=k d (xr··,µk) and DB(k, l) = d (µk,µl) (Ray and Turi, 1999).

Finally, Davies and Bouldin (1979) proposed to use the average proximity between any

two clusters, i.e.
1

K(K − 1)/2

∑
k,l∈1,...,K

DW (k) +DW (l)

DB(k, l)

as a quality criterion. Whereas the Calinski & Harabasz criterion is to be maximized, the

latter two criteria are to be minimized.

Hierarchical clustering

Hierarchical clustering (in the agglomerative mode) is achieved by the following recursive

procedure (Hastie et al., 2009):

(1) Assign each feature to one cluster.

(2) Determine the distance matrix D = (djl) of the features, where the entries resemble

the pairwise dissimilarity of the features djl = d(xj ,xl), j, l = 1, . . . , p.

(3) Define distance D(Cr, Cs) between two clusters Cr and Cs. Typical definitions in-

clude

D(Cr, Cs) = max
xj∈Cr,xl∈Cs

d(xj ,xl) (Complete linkage)

D(Cr, Cs) =
1

|Cr||Cs|
∑
xj∈Cr

∑
xl∈Cs

d(xj ,xl) (Average linkage).

Complete linkage defines cluster distance as the distance of the most distant pair

of features within the clusters, whereas average linkage defines cluster distance as
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the average dissimilarity observed between features of both clusters. According to

Hastie et al. (2009), average linkage might have more desirable statistical properties.

(4) Fuse the two clusters with the smallest distance.

(5) Compute the new cluster distance matrix.

(6) Iterate steps (4) and (5) until all features are element of one cluster.

Hierarchical clustering solutions are typically visualized as trees with the leaves represent-

ing the features, branches the clusters, and merging heights the distance of the merged

clusters.

A.2 Appendix Tables
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Table A.2: Subject characteristics of the EWAS discovery cohorts. Included are the four
discovery studies of the epigenome-wide association study (EWAS) in Section 4.2.

EpiMigrant KORA F4 EPICOR KORA F3

N 2680 1709 514 484
Country UK Germany Italy Germany
Ethnicity South Asian European European European
Study Design Prospective T2D

Case/Control
Population
based cohort

Myocardial Infarc-
tion Case/Control

Population
based cohort

Age (yrs) 51.0 (10.1) 61.0 (8.9) 51.9 (7.5) 53.2 (9.6)
Sex (M) 67.7% 48.9% 65.8% 52.1%

Fasting glucose
(mmol/L)

5.2 (0.6) 5.6 (1.1) 5.6 (1.5)* 5.8 (1.4)*

HbA1c (%) 5.5 (0.5) 5.6 (0.6) - 5.3 (0.5)
Fasting insulin (IU/L) 12.6 (10.2) 8.9 (24.9) 10.7 (8.5) —
% Fasting 100.0% 100.0% 62.8% 9.5%

Weight (kg) 76.2 (13.8) 79.2 (15.3) 73.9 (12.3) 78.0 (15.1)
Height (cm) 166.1 (9.2) 167.8 (9.2) 166.0 (9.0) 169.1 (9.3)
Body mass index
(kg/m2)

27.6 (4.4) 28.1 (4.7) 26.8 (3.8) 27.2 (4.6)

Waist circumference
(cm)

97.3 (11.2) — 91.2 (11.4) —

Waist-hip ratio 0.95 (0.07) 0.89 (0.09) 0.90 (0.08) 0.89 (0.09)

Alcohol (g/d) 5.6 (12.5) 15.6 (20.4) 18.2 (19.6) 16.1 (19.7)
LDL cholesterol
(mmol/L)

3.4 (0.9) 3.6 (0.9) 3.9 (1.0) 3.4 (0.9)

HDL cholesterol
(mmol/L)

1.3 (0.3) 1.5 (0.4) 1.5 (0.4) 1.5 (0.5)

Total cholesterol
(mmol/L)

5.4 (1.0) 5.7 (1.0) 6.1 (1.2) 5.7 (1.0)

Triglycerides (mmol/L) 1.7 (1.1) 1.5 (1.1) 1.7 (1.1) 1.9 (1.4)
C-reactive protein
(mg/L)

4.2 (7.2) 2.5 (5.1) 2.1 (2.7) 3.5 (4.3)

Systolic BP (mmHg) 131.6 (18.9) 124.8 (18.7) 138.0 (18.9) 128.7 (18.2)
Diastolic BP (mmHg) 81.8 (10.7) 76.1 (10.0) 85.4 (9.5) 82.8 (10.6)

HT** 33.5% 48.4% 72.0% 45.0%
Treated HT 24.4% 37.3% 18.0% 22.7%
CHD*** 7.8% — 31.0% —
T2D**** 0.0% 9.0% 0.0% 6.0%

Physically active 28.7% 57.4% 79.0% 49.8%

Smoking
Never smoked 82.7% 43.8% 34.5% 50.2%
Ex-smoker 8.5% 42.8% 30.8% 0.0%
Current smoker 8.8% 14.5% 34.9% 49.8%

*both fasting/non-fasting subjects; **HT (Hypertension): SBP ≥ 140mmHg, or DBP ≥ 90mmHg, or who
were taking anti-hypertensive or blood pressure-lowering medication for any reason (the indication for each
medication was typically not recorded); ***CHD: Revascularisation by PCI or CABG; Angiographically
severe coronary disease; Documented acute coronary syndrome (ACS; symptoms, ECG change and/or
biochemistry); ****T2D (Type 2 Diabetes): physician diagnosis or HbA1c>6.5%.
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LVIII A Appendix

Table A.5: Annotation of Metabolon [M] and NMR [N] metabolites to super- and sub-
pathways. According to the Metabolon annotation, based on Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways.

Sub-pathway Metabolite name

1 Lipid

1 VLDL L VLDL C [N], L VLDL CE [N], L VLDL FC [N], L VLDL L [N], L VLDL P [N],
L VLDL PL [N], L VLDL TG [N], M VLDL C [N], M VLDL CE [N], M VLDL FC [N],
M VLDL L [N], M VLDL P [N], M VLDL PL [N], M VLDL TG [N], S VLDL C [N],
S VLDL FC [N], S VLDL L [N], S VLDL P [N], S VLDL PL [N], S VLDL TG [N],
VLDL D [N], VLDL TG [N], XL VLDL L [N], XL VLDL P [N], XL VLDL PL [N],
XL VLDL TG [N], XS VLDL L [N], XS VLDL P [N], XS VLDL PL [N], XS VLDL TG [N],
XXL VLDL L [N], XXL VLDL P [N], XXL VLDL PL [N], XXL VLDL TG [N]

2 HDL HDL C [N], HDL D [N], HDL2 C [N], HDL3 C [N], L HDL C [N], L HDL CE [N],
L HDL FC [N], L HDL L [N], L HDL P [N], L HDL PL [N], M HDL C [N], M HDL CE [N],
M HDL FC [N], M HDL L [N], M HDL P [N], M HDL PL [N], S HDL L [N], S HDL P [N],
S HDL TG [N], XL HDL C [N], XL HDL CE [N], XL HDL FC [N], XL HDL L [N],
XL HDL P [N], XL HDL PL [N], XL HDL TG [N]

3 Lysolipid 1-stearoylglycerophosphoinositol [M], 1-linoleoylglycerophosphoethanolamine* [M], 1-
arachidonoylglycerophosphocholine* [M], 1-palmitoleoylglycerophosphocholine* [M],
1-eicosatrienoylglycerophosphocholine* [M], 1-docosahexaenoylglycerophosphocholine* [M],
1-eicosadienoylglycerophosphocholine* [M], 1-palmitoylglycerophosphocholine [M],
1-heptadecanoylglycerophosphocholine [M], 1-oleoylglycerophosphocholine [M], 1-
stearoylglycerophosphocholine [M], 1-arachidonoylglycerophosphoinositol* [M], 1-
stearoylglycerophosphoethanolamine [M], 1-linoleoylglycerophosphocholine [M], 1-
arachidonoylglycerophosphoethanolamine* [M], 2-palmitoylglycerophosphocholine* [M],
2-oleoylglycerophosphocholine* [M], 2-stearoylglycerophosphocholine* [M], 2-
linoleoylglycerophosphocholine* [M], 1-palmitoylglycerophosphoinositol* [M], 1-
myristoylglycerophosphocholine [M], 1-oleoylglycerophosphoethanolamine [M], 1-
palmitoylglycerophosphoethanolamine [M], 2-linoleoylglycerophosphoethanolamine* [M]

4 Long chain fatty acid arachidonate (20:4n6) [M], margarate (17:0) [M], palmitate (16:0) [M], nonade-
canoate (19:0) [M], stearate (18:0) [M], oleate (18:1n9) [M], pentadecanoate (15:0) [M],
myristate (14:0) [M], dihomo-linoleate (20:2n6) [M], myristoleate (14:1n5) [M],
adrenate (22:4n6) [M], palmitoleate (16:1n7) [M], eicosenoate (20:1n9 or 11) [M],
5,8-tetradecadienoate [M], stearidonate (18:4n3) [M], 10-heptadecenoate (17:1n7) [M],
10-nonadecenoate (19:1n9) [M]

5 LDL L LDL C [N], L LDL CE [N], L LDL FC [N], L LDL L [N], L LDL P [N], L LDL PL [N],
LDL C [N], LDL D [N], M LDL C [N], M LDL CE [N], M LDL L [N], M LDL P [N],
M LDL PL [N], S LDL C [N], S LDL L [N], S LDL P [N]

6 Sterol/Steroid Est C [N], Free C [N], Serum C [M], cortisol [M], cortisone [M], androsterone sulfate [M],
dehydroisoandrosterone sulfate (DHEA-S) [M], 5alpha-androstan-3beta,17beta-diol disul-
fate [M], epiandrosterone sulfate [M], 7-alpha-hydroxy-3-oxo-4-cholestenoate (7-Hoca) [M],
5alpha-androstan-3beta,17beta-diol disulfate (2) [M], 4-androsten-3beta,17beta-diol disul-
fate 1* (2) [M], 4-androsten-3beta,17beta-diol disulfate 2* (2) [M], Serum C [N]

7 Carnitine metabolism carnitine [M], palmitoylcarnitine [M], acetylcarnitine [M], hexanoylcarnitine [M],
3-dehydrocarnitine* [M], octanoylcarnitine [M], decanoylcarnitine [M], stearoyl-
carnitine [M], laurylcarnitine [M], oleoylcarnitine [M], nonanoylcarnitine* [M], 2-
tetradecenoylcarnitine [M], cis-4-decenoylcarnitine (2) [M]

8 Fatty acid, summary mea-
sure

Bis DB ratio [N], Bis FA ratio [N], CH2 DB ratio [N], CH2 in FA [N], DB in FA [N],
FALen [N], FAw3 [N], FAw6 [N], FAw79S [N], MUFA [N], otPUFA [N], Tot FA [N]

9 Bile acid metabolism deoxycholate [M], ursodeoxycholate [M], taurodeoxycholate [M], glycocholate [M], taurochen-
odeoxycholate [M], cholate [M], hyodeoxycholate [M], glycochenodeoxycholate [M], tau-
rolithocholate 3-sulfate [M]

10 Essential fatty acid docosahexaenoate (DHA, 22:6n3) [N], linoleate (18:2n6) [N], linoleate (18:2n6) [M],
eicosapentaenoate (EPA, 20:5n3) [M], docosahexaenoate (DHA, 22:6n3) [M], docosapen-
taenoate (n3 DPA, 22:5n3) [M], linolenate [alpha or gamma, (18:3n3 or 6)] [M], docosapen-
taenoic acid (n6-DPA) [M], dihomo-linolenate (20:3n3 or n6) [M]

11 Medium chain fatty acid caprate (10:0) [M], heptanoate (7:0) [M], laurate (12:0) [M], pelargonate (9:0) [M], unde-
canoate (11:0) [M], caproate (6:0) [M], caprylate (8:0) [M], 10-undecenoate (11:1n1) [M],
5-dodecenoate (12:1n7) [M]

12 IDL IDL C [N], IDL FC [N], IDL L [N], IDL P [N], IDL PL [N], IDL TG [N]

13 Fatty acid, dicarboxylate 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF) [M], dodecanedioate [M], hexade-
canedioate [M], octadecanedioate [M], 2-hydroxyglutarate (2) [M]

14 Glycerolipid metabolism glycerol [N], glycerol [M], glycerol 3-phosphate (G3P) [M], choline [M], glycerophosphoryl-
choline (GPC) [M]

15 Monoacylglycerol 1-palmitoylglycerol (1-monopalmitin) [M], 1-oleoylglycerol (1-monoolein) [M], 1-
stearoylglycerol (1-monostearin) [M], 1-linoleoylglycerol (1-monolinolein) [M]

16 Composition of mobile
lipids

MobCH [N], MobCH2 [N], MobCH3 [N]

17 Glycerophospholipids PC [N], TG PG [N], TotPG [N]

18 Inositol metabolism inositol 1-phosphate (I1P) [M], myo-inositol [M], scyllo-inositol [M]
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Table A.5 continued.

Sub-pathway Metabolite name

1 Lipid

19 Ketone bodies acetoacetate [N], 3-hydroxybutyrate (BHBA) [N], 3-hydroxybutyrate (BHBA) [M]

20 Fatty acid metabolism (also
BCAA metabolism)

butyrylcarnitine [M], propionylcarnitine [M]

21 Fatty acid, amide linoleamide (18:2n6) [M], oleamide [M]

22 Fatty acid, monohydroxy 2-hydroxystearate [M], 2-hydroxypalmitate [M]

23 Sphingolipid palmitoyl sphingomyelin (2) [M], SM [N]

24 Eicosanoid 12-hydroxyeicosatetraenoate (12-HETE) [M]

25 Fatty acid amide stearamide [M]

26 Fatty acid metabolism isovalerate [M]

27 Fatty acid, branched 15-methylpalmitate (isobar with 2-methylpalmitate) (2) [M]

28 Fatty acid, ester n-butyl oleate [M]

29 Short chain fatty acid valerate [M]

30 Triacylglycerol Serum TG [N]

2 Amino acid

1 Valine, leucine and isoleucine
metabolism

isoleucine [N], leucine [N], leucine [M], isoleucine [M], valine [M], beta-hydroxyisovalerate [M],
3-methyl-2-oxovalerate [M], 3-methyl-2-oxobutyrate [M], 2-hydroxyisobutyrate [M],
4-methyl-2-oxopentanoate [M], levulinate (4-oxovalerate) [M], 3-hydroxy-2-
ethylpropionate [M], isobutyrylcarnitine [M], alpha-hydroxyisovalerate [M], isovalerylcarni-
tine [M], tiglylcarnitine [M], 2-methylbutyroylcarnitine [M], hydroxyisovaleroylcarnitine [M],
valine [N]

2 Phenylalanine & tyrosine
metabolism

phenylalanine [M], tyrosine [M], 3-methoxytyrosine [M], 3-phenylpropionate (hydrocinna-
mate) [M], phenyllactate (PLA) [M], 3-(4-hydroxyphenyl)lactate [M], phenol sulfate [M],
phenylacetylglutamine [M], p-cresol sulfate [M], phenylalanine [N], tyrosine [N]

3 Tryptophan metabolism tryptophan [M], serotonin (5HT) [M], kynurenine [M], indolelactate [M], indoleacetate [M],
3-indoxyl sulfate [M], indolepropionate [M], C-glycosyltryptophan* [M], hydroxytrypto-
phane* [M], tryptophan betaine (2) [M]

4 Urea cycle, arginine-,
proline-, metabolism

ornithine [M], arginine [M], urea [M], proline [M], citrulline [M], N-acetylornithine [M],
homocitrulline [M], trans-4-hydroxyproline [M], dimethylarginine (SDMA + ADMA) [M],
urea [N]

5 Glycine, serine and threonine
metabolism

glycine [N], threonine [M], betaine [M], N-acetylglycine [M], serine [M], glycine [M], N-
acetylthreonine [M]

6 Alanine and aspartate
metabolism

alanine [N], N-acetylalanine [M], aspartate [M], alanine [M], asparagine [M]

7 Cysteine, methionine, SAM,
taurine metabolism

methionine [M], 2-hydroxybutyrate (AHB) [M], cysteine [M], cystine [M], methylcysteine [M]

8 Glutamate metabolism glutamine [N], glutamine [M], glutamate [M], pyroglutamine* [M]

9 Creatine metabolism creatinine [N], creatinine [M], creatine [M]

10 Lysine metabolism lysine [M], pipecolate [M], glutaroylcarnitine [M]

11 Butanoate metabolism 3,4-dihydroxybutyrate* [M], 2-aminobutyrate [M]

12 Glutathione metabolism 5-oxoproline [M], cysteine-glutathione disulfide [M]

13 Histidine metabolism histidine [N], histidine [M]

14 Guanidino and acetamido
metabolism

4-acetamidobutanoate [M]

15 Polyamine metabolism N-[3-(2-Oxopyrrolidin-1-yl)propyl]acetamide [M]

3 Peptide

1 Dipeptide glycylvaline [M], aspartylphenylalanine [M], pro-hydroxy-pro [M], leucylalanine [M], alpha-
glutamyltyrosine [M], phenylalanylserine [M], phenylalanylleucine [M], leucylleucine [M],
phenylalanylphenylalanine (2) [M]

2 gamma-glutamyl gamma-glutamylglutamine [M], gamma-glutamyltyrosine [M], gamma-glutamylleucine [M],
gamma-glutamylvaline [M], gamma-glutamylmethionine* [M], gamma-
glutamylthreonine* [M], gamma-glutamylphenylalanine [M], gamma-glutamylisoleucine* [M]

3 Fibrinogen cleavage peptide DSGEGDFXAEGGGVR* [M], ADSGEGDFXAEGGGVR* [M], ADpSGEGDFX-
AEGGGVR* [M]

4 Apolipoprotein ApoA1 [N], ApoB [N]

5 Polypeptide HWESASXX* [M], bradykinin, des-arg(9) [M]

6 Glycoprotein Gp [N]

7 Protein Alb [N]
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Table A.5 continued.

Sub-pathway Metabolite name

4 Xenobiotics
1 Xanthine metabolism caffeine [M], paraxanthine [M], theobromine [M], theophylline [M], 3-methylxanthine [M],

1-methylxanthine [M], 7-methylxanthine [M], 1-methylurate [M], 1,7-dimethylurate [M]
2 Food component/Plant quinate [M], homostachydrine* [M], piperine [M], stachydrine [M], thymol sulfate [M],

vanillin [M], ergothioneine (2) [M]
3 Benzoate metabolism hippurate [M], benzoate [M], catechol sulfate [M], 4-vinylphenol sulfate [M], 4-

ethylphenylsulfate [M]
4 Chemical glycerol 2-phosphate [M]
5 Sugar, sugar substitute,
starch

erythritol [M]

5 Carbohydrate
1 Glycolysis, gluconeogenesis,
pyruvate metabolism

glucose [N], lactate [N], lactate [M], pyruvate [M], glycerate [M], glucose [M], 1,5-
anhydroglucitol (1,5-AG) [M], pyruvate [N]

2 Fructose, mannose, galac-
tose, starch, and sucrose
metabolism

fructose [M], mannose [M], mannitol [M], erythrose [M]

3 Nucleotide sugars, pentose
metabolism

arabinose [M], arabitol [M], threitol [M]

4 Aminosugars metabolism erythronate* [M]

6 Cofactors and vitamins
1 Hemoglobin and porphyrin
metabolism

biliverdin [M], bilirubin (Z,Z) [M], bilirubin (E,E)* [M], oxidized bilirubin* [M], biliru-
bin (E,Z or Z,E)* [M]

2 Ascorbate and aldarate
metabolism

ascorbate (Vitamin C) [M], threonate [M], O-methylascorbate* [M]

3 Tocopherol metabolism alpha-tocopherol [M], gamma-tocopherol [M]
4 Hemoglobin and porphyrin heme* [M]
5 Pantothenate and CoA
metabolism

pantothenate [M]

6 Vitamin B6 metabolism pyridoxate [M]

7 Nucleotide
1 Purine metabolism,
(hypo)xanthine/inosine con-
taining

inosine [M], hypoxanthine [M], xanthine (2) [M]

2 Purine metabolism, guanine
containing

guanosine [M], 7-methylguanine [M]

3 Pyrimidine metabolism,
uracil containing

uridine [M], pseudouridine [M]

4 NAD metabolism N1-methyl-3-pyridone-4-carboxamide [M]
5 Purine metabolism, adenine
containing

N1-methyladenosine [M]

6 Purine metabolism, urate
metabolism

urate [M]

8 Energy
1 Krebs cycle acetate [N], citrate [N], malate [M], citrate [M], alpha-ketoglutarate [M], succinylcarnitine [M]
2 Oxidative phosphorylation phosphate [M], acetylphosphate [M]



Acknowledgements

I would like to thank a number of people who supported my work as a doctoral student

at the Research Unit of Molecular Epidemiology of the Helmholtz Zentrum München.

First of all, I am deeply thankful to my doctorate supervisor Prof. Dr. Thomas Illig, for his

great confidence in my work, for setting up the topic of the thesis, for invaluable scientific

advice, and for continuous support and availability even after he took the position in

Hannover. Moreover, I wish to express my sincere gratitute to my group leader Dr. Harald

Grallert, for his continuous trust and encouragement, and for ensuring pleasant working

conditions. Both their support made it possible for me to study Biostatistics during my

time as a doctoral student, which provided a major contribution to my scientific and

personal development.

Furthermore, I am thankful to Prof. Dr. Dr. H.-Erich Wichmann, formaly head of the

Institute of Epidemiolgy, Prof. Dr. Annette Peters, the head of the Institute of Epidemi-

ology II, and Dr. Christian Gieger, the new head of the Research Unit, for providing the

institutional basis for my scientific work, and for being available and supportive. Chris-

tian Gieger also receives special thanks for having facilitated research cooperations, and

for valuable scientific advice.

Through different projects and cooperations, I had the pleasure to become acquainted

with many inspiring scientists both inside and outside the center. In particular, I would

like to say special thanks to Melanie Waldenberger, Gabi Kastenmüller and Karsten Suhre

for their continuous helpfulness and excellent scientific advice, to Helmut Laumen for his

contagious enthusiasm on research and his confidence in my limited statistical experience

in the beginning, to the group around John Chambers at the Imperial College London, in-

cluding Benjamin Lehne, Alexander Drong and Marie Loh, for a very fruitful and inspiring

collaboration, to Susanne Vogt, Barbara Thorand and Thomas Reinehr for straightforward

and enjoyable cooperations, to Zhonghao Yu and Rui Wang-Sattler for intensive support

and valuable lessons learned in the beginnings of my work, and Tommaso Panni and Lena

Riess for some delightful hours on advanced statistics. I further thank Jan Krumsiek,

Janina Ried, Hans-Jörg Baurecht, Jerzy Adamski, Gabriele Möller, Cornelia Prehn, Tao
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