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A B S T R A C T

Neurofeedback studies using real-time functional magnetic resonance imaging (rt-fMRI) have recently
incorporated the multi-voxel pattern decoding approach, allowing for fMRI to serve as a tool to manipulate
fine-grained neural activity embedded in voxel patterns. Because of its tremendous potential for clinical
applications, certain questions regarding decoded neurofeedback (DecNef) must be addressed. Specifically, can
the same participants learn to induce neural patterns in opposite directions in different sessions? If so, how does
previous learning affect subsequent induction effectiveness? These questions are critical because neurofeedback
effects can last for months, but the short- to mid-term dynamics of such effects are unknown. Here we employed
a within-subjects design, where participants underwent two DecNef training sessions to induce behavioural
changes of opposing directionality (up or down regulation of perceptual confidence in a visual discrimination
task), with the order of training counterbalanced across participants. Behavioral results indicated that the
manipulation was strongly influenced by the order and the directionality of neurofeedback training. We applied
nonlinear mathematical modeling to parametrize four main consequences of DecNef: main effect of change in
confidence, strength of down-regulation of confidence relative to up-regulation, maintenance of learning effects,
and anterograde learning interference. Modeling results revealed that DecNef successfully induced bidirectional
confidence changes in different sessions within single participants. Furthermore, the effect of up- compared to
down-regulation was more prominent, and confidence changes (regardless of the direction) were largely
preserved even after a week-long interval. Lastly, the effect of the second session was markedly diminished as
compared to the effect of the first session, indicating strong anterograde learning interference. These results are
interpreted in the framework of reinforcement learning and provide important implications for its application to
basic neuroscience, to occupational and sports training, and to therapy.

Introduction

Real-time functional magnetic resonance imaging (rt-fMRI) neuro-
feedback has enjoyed a considerable rise in interest in recent years,
both as a tool for addressing basic neurobiological questions as well as
for potential clinical applications (deCharms, 2008; Sulzer et al., 2013;
Kim and Birbaumer, 2014; Sitaram et al., 2016). Whereas most
previous studies have mainly focused on participants’ learning to
self-regulate a univariate blood-oxygen-dependent-level (BOLD) signal
in specific brain areas (Weiskopf et al., 2003; deCharms et al., 2004;
Birbaumer et al., 2013; Sulzer et al., 2013), recently rt-fMRI neurofeed-
back has incorporated connectivity-based approaches (Sulzer et al.,

2013; Koush et al., 2013, 2015; Megumi et al., 2015) and multi-voxel
pattern analysis (MVPA) [or decoding analysis, (Kamitani and Tong,
2005)], opening a new range of possibilities (LaConte et al., 2007;
LaConte, 2011; Shibata et al., 2011; deBettencourt et al., 2015). Here
we investigate some properties of the relatively new procedure called
decoded neurofeedback (DecNef), specifically focusing on: bidirec-
tional behavioral changes, the magnitude of each training direction,
and the effects of order of training, such as the maintenance of training
effects over time and interference between training sessions.

Previously, up-and-down regulation of univariate BOLD signal
within a single participant in interleaved block designs of rt-fMRI
neurofeedback has been shown to be possible (Weiskopf et al., 2004;
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deCharms, 2008). Subsequently, functional connectivity between re-
gions, as well as univariate activity within specific areas, was shown to
be increased or decreased upon training (Scheinost et al., 2013; Veit
et al., 2012). Using a multivariate neurofeedback approach Shibata and
colleagues (Shibata et al., 2016) similarly trained participants to
activate or deactivate multi-voxel patterns associated with facial
attractiveness. In a between-subjects design, different groups of
participants learned to activate or deactivate the relevant neural
representation, and these led to subsequent increases or decreases in
facial-preference ratings (Shibata et al., 2016).

In many of these previous studies participants were given explicit
strategies for neural induction (e.g., which neural loci to manipulate)
through verbal instructions. In contrast, some other rt-fMRI neuro-
feedback studies succeeded in training subjects to activate or deactivate
(patterns of) neural activity or connectivity covertly without explicit
instruction about the target of induction or the purpose of the training
(Bray et al., 2007; Megumi et al., 2015; Shibata et al., 2016; Ramot
et al., 2016). In these studies participants were simply told to focus
somehow on their mental activity in each trial, after which a feedback
signal was given that indicated the extent of the reward. Although both
approaches have previously been used, there is currently an open
debate in the field on which strategy - explicit vs. implicit instruction -
is preferable and is most effective (Sulzer et al., 2013; Sitaram et al.,
2016).

Nevertheless, since explicit instructions do not seem to be neces-
sary, fMRI neurofeedback can be treated as a neural operant con-
ditioning or reinforcement learning process (Birbaumer et al., 2013;
Koralek et al., 2012). From this perspective it is worth noting that so
far, to the best of our knowledge, no study has successfully demon-
strated opposing behavioral changes for different neurofeedback
manipulations within single participants. This open question is im-
portant for both practical as well as scientific reasons. Scientifically, as
in optogenetics studies in rodents (Deisseroth, 2010, 2015) and brain
stimulation approaches in humans (Wagner et al., 2007), to rigorously
prove the causal relationships between brain activity and behaviors it is
desirable to be able to induce and suppress the same pattern of brain
activities. Importantly, it is necessary to confirm that these indeed lead
to opposite behavioral effects within the same participants. Practically,
these considerations are also very important for future studies in basic
neuroscience, for therapy and clinical applications of DecNef, as well as
if this is to be used for occupational and sport training.

Considering neurofeedback from the perspective of reinforcement
learning highlights why manipulating activity in both directions within
the same participants may pose specific challenges. Interference of
learning across training sessions is expected when we attempt opposite
behavioral manipulations in succession. These effects of interference
have been studied extensively in motor and visuomotor learning, with
various elegant studies showing that previous learning can hinder or
interfere with the subsequent practice of a second task (Brashers-Krug
et al., 1996; Krakauer et al., 1999; Osu et al., 2004). Interference can be
retrograde or anterograde depending on the direction in time of the
learning/memory effects. In a classic A1BA2 paradigm, participants are
instructed to sequentially learn Task A, Task B, and then Task A again.
Retrograde effects reflect how learning of Task B affects the memory
maintenance of Task A1, while anterograde effects reflect how the
memory of Task A1 affects the learning of Task B (Sing and Smith,
2010). Anterograde interference has received less attention in the
literature (Sing and Smith, 2010). Interference effects have also been
shown to be present in perceptual learning (Seitz et al., 2005;
Yotsumoto et al., 2009). Hence, anterograde interference of learning
resulting from the bidirectional use of DecNef manipulations within
participants may prove two aspects: (1) behavioral changes are the
result of a true learning process and, (2) behavioral effects should be
long lasting.

We therefore aimed to address the following three questions in this
research. First, if some behavioral change is induced by a neurofeed-

back manipulation, is it possible to develop another neurofeedback
manipulation to cancel out the first behavioral change? Second, how
long is the behavioral change maintained after neurofeedback manip-
ulation? Third, how much interference occurs when two different
neurofeedback manipulations are conducted in single participants?
The first question is important because it is desirable to have the ability
to cancel out negative side effects, should these occur. The second
question is related to the efficiency of neurofeedback as a therapeutic
method. Megumi et al. (2015) showed that 4 days of functional
connectivity neurofeedback (FCNef) changed resting-state functional
connectivity, and these effects lasted more than two months. Amano
et al. (2016) showed that 3 days of DecNef induced associative learning
between color and orientation lasting for 3–5 months. However, there
is no quantitative study examining mid-term effects; for example, to
what extent are neurofeedback effects maintained one week after
manipulation? The third point is ethically important in considering
cross-over designs as candidate paradigms for randomized control
trials to show statistical effectiveness of neurofeedback therapy. If two
different neurofeedback manipulations interfere severely within single
patients, a cross-over design is not a suitable option.

To address these questions, here we used DecNef to manipulate a
specific cognitive representation - perceptual confidence - bidirection-
ally, i.e., up (increase confidence), and down (decrease confidence).

Perceptual confidence can be best interpreted as the degree of
certainty in one's own perceptual decisions. Several studies have linked
frontoparietal areas with the computation of perceptual confidence, in
humans (Huettel et al., 2005; Fleming et al., 2010; Rounis et al., 2010;
Simons et al., 2010; De Martino et al., 2012; Zizlsperger et al., 2014;
Rahnev et al., 2016) as well as in primates (Kiani and Shadlen, 2009;
Fetsch et al., 2014) and rats (Kepecs et al., 2008; Lak et al., 2014).
Specifically, dorsolateral prefrontal cortex (dlPFC) as well as inferior
parietal cortex seem to play a crucial role. For example, gray matter
thickness in the dlPFC correlated with metacognitive abilities of
participants (Fleming et al., 2010), and transcranial magnetic stimula-
tions (TMS) applied over loci within the dlPFC have been shown to
selectively disrupt confidence judgements (Rounis et al., 2010). A
recent study has highlighted the temporal structure of confidence
processing in cortical areas, demonstrating that electrophysiological
correlates of decision confidence can be detected in the left parietal
cortex (Zizlsperger et al., 2014).

We first constructed a classifier for high vs. low confidence by
utilizing MVPA in four bilateral, anatomically defined regions of
interest (ROIs): the inferior parietal lobule (IPL), and three subregions
of the dlPFC - the inferior frontal sulcus (IFS), middle frontal sulcus
(MFS) and middle frontal gyrus (MFG). Next, with a within-subjects
design, participants learned to implicitly induce multi-voxel activation
patterns reflecting high and low confidence (Up- and Down-DecNef,
respectively) over two weeks. In both weeks, induction sessions took
place across two consecutive days, and confidence changes were
measured with a Pre- and Post-Test, immediately before and after
the fMRI induction session. Participants were randomly assigned to
one of two groups, defining the order of induction (Up- then Down-
DecNef or vice versa). The second DecNef session was carried out one
week after the first, in order to measure whether effects would survive
after a one-week interval. To best capture the differential effects of
DecNef on confidence judgements, we utilized nonlinear equation
modeling.

Materials and methods

Participants and experimental design

All experiments and data analyses were conducted at the Advanced
Telecommunications Research Institute International (ATR). The study
was approved by the Institutional Review Board of ATR. All partici-
pants gave prior written informed consent. A companion paper
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Fig. 1. Experiment timeline and design. (a) The entire experiment consisted of 6 fMRI scanning days grouped into 4 ‘sessions’. The first two days were identical for all participants: a
retinotopy session to functionally define visual areas, followed by an MVPA session, during which participants of both groups performed in a 2-forced choice discrimination task with
confidence rating. Participants were then randomly assigned to either group D-U or group U-D. For the subsequent DecNef sessions (day 3–4 and 5–6), group U-D first underwent High
Confidence followed by Low Confidence DecNef, while group D-U did the reverse sequence. In order to examine the change in confidence due to DecNef, each DecNef session was
preceded and followed by a Pre- and Post-test (on the same days), a psychophysical assessment using the same behavioral task employed in the MVPA session. (b) In the MVPA session,
and in Pre- and Post-Tests, each trial started with a fixation cross, followed by a noise random dot motion (RDM). The stimulus was then presented, consisting of a coherent RDM with
either rightward or leftward motion. After a 4 s delay, participants were required to report the direction of motion (left or right) and their confidence in their decision of direction during
a fixed time window. A trial ended with a 6 s ITI. Three TRs, starting at stimulus presentation onset, were averaged and used for the actual MVPA. (c) Bilateral frontoparietal ROIs used
for MVPA and DecNef, from a representative participant. Each ROI is depicted on an inflated cortical surface for both the right and left hemispheres. IPL: inferior parietal lobule, IFS:
inferior frontal sulcus, MFS: middle frontal sulcus, MFG: middle frontal gyrus. (d) A neurofeedback trial commenced with a visual cue indicating the induction period, during which
participants were asked to “manipulate, change their brain activity in order to maximize the size of the feedback disc and the reward.” Importantly, the disc for feedback after the
induction period equally needed to be maximized both for up- and down- regulation. Induction was followed by a rest period, then the feedback disc was presented for 2 s and a trial
ended with a 6 s ITI. Group D-U: Down- then Up-DecNef, group U-D: Up- then Down-DecNef; ITI: intertrial interval.
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(Cortese et al., 2016) was published elsewhere, which discussed
implications of the results for neural mechanisms of metacognitive
functions, especially perceptual confidence and conscious awareness.
The experimental data used here is exactly the same, but the research
objectives of the two manuscripts are different.

The entire experiment was subdivided into 4 fMRI sessions,
spanning over 6 scanning days. In the first session, participants took
part in a retinotopy scan, followed by an MVPA session, on separate
days (Fig. 1A, the retinotopy data was used to functionally define visual
areas but was not used for any of the analyses pertaining to this
manuscript, and thus not shown in the figure). During the MVPA
session participants performed a 2-alternative forced choice discrimi-
nation task with confidence judgements while in the fMRI scanner.
This allowed us to decode the activation patterns corresponding to
certain levels of perceptual confidence, which were to be manipulated
with DecNef. After MVPA, participants undergoing DecNef training
were randomly assigned to one of two groups, with different orders of
training: Down-Up group (aiming to induce Low confidence, then High
confidence, D-U throughout the manuscript) or Up-Down group
(aiming to induce High confidence, then Low confidence; U-D through-
out the manuscript). The experimenter was not blinded to group
assignment, while participant were unaware of the aims of training
nor of group assignment. The confidence change between before vs.
after DecNef, defined as changes in confidence in the psychophysical
tasks, is our primary dependent variable of interest.

Eighteen participants (23.7 ± 2.5 years old; 4 female) with normal
or corrected-to-normal vision were enrolled in the first part of the
study (MVPA session). One participant was removed due to corrupted
data. Participants were screened out either if they could not or declined
to come back for the DecNef sessions, or due to low decoding accuracy
( < 55% in more than two ROIs, based on previous work (Amano et al.,
2016)). Ten participants performed the full DecNef experiments (24.2
± 3.2 years old, 3 female). For transparency, Table 1 reports the
decoding results of the 17 subjects for which the decoding analysis
was run.

Stimuli, behavioral task and DecNef designs

Behavioral task
The behavioral task was the same for both MVPA, and Pre-/Post-

Tests. In behavioral Pre- and Post-Tests, participants performed the
task on a standard computer and gave responses with a standard
keyboard outside of the fMRI scanner. In the MVPA session, partici-
pants gave their responses via a 4-buttons pad while in the scanner.

The behavioral task was a motion discrimination task with two-
alternative forced choice of motion direction and confidence rating
using random dot motion (RDM, Fig. 1B). Participants were instructed
to indicate the perceived direction of motion (left or right) after a short
delay following stimulus presentation, and rate the level of confidence
about their perceptual decision (4-point scale). This kind of scale is
commonly used in confidence studies as it allows greater sensitivity for
participants’ trial-by-trial confidence judgements in ambiguous per-
ceptual decisions compared with a simpler two-options rating (such as
high or low) (Fleming et al., 2015). The majority of trials (62.5% of the
total number) had threshold coherence of motion, that is, motion
coherence that lead to the targeted psychological threshold, midway
between floor and ceiling performance. The rest of the trials were
divided between catch trials (no coherence, 25% of the total number of
trials) and high coherence trials (80% coherence, 12.5% of the total
number of trials). The order was randomized within and across runs.
This configuration of motion coherences was selected in order to
prevent slow drifts in bias (individual criterion in responding) across
runs. For all analyses (both behavioral and with fMRI data), only trials
at threshold motion coherence were utilized. Thus, for these trials the
motion direction was ambiguous, and performance - i.e., task accuracy
- in judging the motion direction was not significantly different from
the targeted psychological threshold level of 75% correct (76.6 ± 1.5%,
t(16)=1.475, P=0.16) during the MVPA scanning session.

Visual stimuli
All stimuli were created and presented with Matlab (Mathworks)

using the Psychophysics Toolbox extensions Psychtoolbox 3 (Brainard,
1997). Visual stimuli were presented on an LCD display (1024×768
resolution, 60 Hz refresh rate) during titration and the Pre- and Post-
Test stages, and via an LCD projector (800×600 resolution, 60 Hz
refresh rate) during fMRI measurements in a dim room. Stimuli were
shown on a black background and consisted of RDM. We used the
Movshon-Newsome (MN) RDM algorithm (Shadlen and Newsome,
2001). The stimulus was created in a square region of 20×2°, but only
the region within a circular annulus was visible (outer radius: 10°,
inner radius: 0.85°). Dot density was 0.5°−2 (contrast 100%), with a
speed of 9°/s and size of 0.12°. Signal dots all moved in the same
direction (left or right, non-cardinal directions of 20° and 200°)
whereas noise dots were randomly replotted. Dots leaving the square
region were replaced with a dot along one of the edges opposite to the
direction of motion, and dots leaving the annulus were faded out to
minimize edge effects.

Table 1
Classification of confidence (high vs. low) with permutation testing (n=1000) for statistical significance evaluation. Columns (4) represent the four ROIs of interest, chosen a priori based
on previous studies highlighting their importance in the computation of confidence judgements. Rows represent individual participant's data, with the first 10 having participated in the
full DecNef training program.

IPL IFS MFS MFG

69.5 ± 8.3, P=0.0010 80.0 ± 8.2, P=0.0010 61.5 ± 8.4, P=0.0040 66.0 ± 6.5, P=0.0010
56.4 ± 7.3, P=0.0699 58.9 ± 5.3, P=0.0190 53.2 ± 7.9, P=0.2458 58.9 ± 7.5, P=0.0320
65.0 ± 3.1, P=0.0010 68.9 ± 5.6, P=0.0010 72.3 ± 3.6, P=0.0010 71.4 ± 4.9, P=0.0010
53.2 ± 6.3, P=0.1718 58.5 ± 5.5, P=0.0070 55.0 ± 7.0, P=0.0969 64.2 ± 5.7, P=0.0010
64.4 ± 6.7, P=0.0010 61.3 ± 2.9, P=0.0020 69.4 ± 4.6, P=0.0010 61.9 ± 6.3, P=0.0020
55.0 ± 7.5, P=0.0869 53.3 ± 6.5, P=0.1518 59.4 ± 7.5, P=0.0040 61.1 ± 5.0, P=0.0060
72.6 ± 7.0, P=0.0010 75.5 ± 4.4, P=0.0010 63.1 ± 6.5, P=0.0010 85.5 ± 4.4, P=0.0010
66.0 ± 6.1, P=0.0010 69.3 ± 4.9, P=0.0010 69.7 ± 4.8, P=0.0010 64.7 ± 5.1, P=0.0010
69.3 ± 5.8, P=0.0010 63.8 ± 3.4, P=0.0010 61.0 ± 3.0, P=0.0040 69.0 ± 6.1, P=0.0010
65.0 ± 6.4, P=0.0010 63.7 ± 5.4, P=0.0010 67.5 ± 3.3, P=0.0010 75.0 ± 3.7, P=0.0010
67.9 ± 6.5, P=0.0010 68.5 ± 2.7, P=0.0010 68.5 ± 4.6, P=0.0010 74.0 ± 4.0, P=0.0010
57.5 ± 5.0, P=0.0509 62.5 ± 4.9, P=0.0070 75.0 ± 6.7, P=0.0010 67.5 ± 5.3, P=0.0010
71.4 ± 5.0, P=0.0010 59.5 ± 7.2, P=0.0100 67.6 ± 5.3, P=0.0010 68.6 ± 7.1, P=0.0010
60.2 ± 5.5, P=0.0030 51.0 ± 4.0, P=0.3626 83.8 ± 4.2, P=0.0010 68.8 ± 5.4, P=0.0010
74.8 ± 5.2, P=0.0010 56.4 ± 3.6, P=0.0739 64.0 ± 6.4, P=0.0030 62.1 ± 5.1, P=0.0040
71.7 ± 5.6, P=0.0010 67.9 ± 6.3, P=0.0010 62.9 ± 4.1, P=0.0020 77.5 ± 3.5, P=0.0010
70.0 ± 9.7, P=0.0010 65.8 ± 6.5, P=0.0020 65.0 ± 7.6, P=0.0010 57.5 ± 5.3, P=0.0899
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fMRI scans for MVPA
The purpose of the fMRI scans in the MVPA session was to obtain

the fMRI signals corresponding to high and low confidence levels.
These confidence measures would then be used as labels to compute
the parameters for the decoders used in the MVPA and DecNef sessions
(Shibata et al., 2011).

During the MVPA session, participants performed a perceptual
discrimination task with a confidence rating in the fMRI scanner (see
above, subsection “Behavioral task” and Fig. 1B). Throughout the fMRI
runs, participants were asked to fixate on a white cross (size 0.5°)
presented at the center of the display. A brief break period was
provided after each run upon participant's request. Each fMRI run
consisted of 16 task trials (1 trial=18 s; Fig. 1B), with a 20 s fixation
period before the first trial (1 run=308 s). The entire session consisted
of 12 runs. The fMRI data for the initial 20 s of each run were discarded
due to possible unsaturated T1 effects. During the response period,
participants were instructed to use their dominant hand to press the
button on a response pad. Concordance between responses and buttons
was indicated on the screen and, importantly, randomly changed across
trials to avoid motor preparation confounds (i.e., associating a given
response with a specific button press).

fMRI scans preprocessing
The fMRI signals in native space were preprocessed using custom

software (mrVista software package for MATLAB, freely available at
http://vistalab.stanford.edu/software/). The mrVista package uses
functions and algorithms from the SPM suite (freely available at
http://www.fil.ion.ucl.ac.uk/spm/). All functional images underwent
3D motion correction. Hemi-lateral ROIs were anatomically defined
through cortical reconstruction and volumetric segmentation using the
Freesurfer image analysis suite, which is documented and freely
available for download online (http://surfer.nmr.mgh.harvard.edu/).
We used the standard ‘Destrieux’ cortical atlas, based on a parcellation
scheme that divides the cortex into gyral and sulcal regions (Destrieux
et al., 2010) in each hemisphere. Bilateral ROIs were then created by
merging the corresponding single left and right hemi-lateral ROIs.
Once the ROIs were identified (see Fig. 1C), time-courses of BOLD
signal intensities were extracted from each voxel in each ROI and
shifted by 6 s to account for the hemodynamic delay using the Matlab
software. A linear trend was removed from the time-course, and the
time-course was z-score normalized for each voxel in each run to
minimize baseline differences across runs. The data samples for
computing the MVPA were created by averaging the BOLD signal
intensities of each voxel for 3 volumes, corresponding to the 6 s from
stimulus onset to response onset.

MVP Analyses

Algorithm. We used sparse logistic regression (SLR) (Yamashita et al.,
2008), which automatically selects the relevant voxels in the ROIs for
MVPA, to construct individual binary classifiers based on the main
behavioral variable of interest: confidence (high vs. low, correct trials
only to increase the S/N ratio). Although confidence was rated with a 4-
point scale, we used SLR to classify confidence, as opposed to sparse
linear regression (SLiR), because the aim was to investigate the
bidirectionality of a neurofeedback manipulation within single
participants. As such, it was desirable to have a binary classifier,
leading to two experimental training sessions, such as induction of
High- and Low-Confidence.

Datasets and cross-validation. For each participant's MVPA we
performed a k-fold cross-validation, where the entire data set is
repeatedly subdivided into a “training set” and a “test set”. The two
data sets can be seen as independent since they were used to fit the

parameters of a model (decoder) and evaluate the predictive power of
the trained (fitted) model, respectively. For each participant, the
number of folds was automatically adjusted between k=9 and k=11
in order to approximately equate the number of samples between the
data sets. Thus, the number of folds in each cross-validation procedure
was ~10, a typical value for k-fold cross-validation procedures (Tong
and Pratte, 2012). Furthermore, the classification by SLR was
optimized with an iterative approach (i-SLR of Hirose et al., 2015).
That is, in each fold of the cross-validation, the process was repeated 10
times. On each iteration, the selected features were removed from the
pattern vectors, and only the features with unassigned weights were
used for the next iteration. At the end of the k-fold cross-validation, the
test accuracy was averaged for each iteration across folds, in order to
evaluate the accuracy at each iteration. The optimal number of SLRs
(number of iterations) was then chosen and used for the final
computation of the decoder used in the neurofeedback training
procedure (Supplementary Note 1). Because confidence was rated on
a 4-point scale, we assigned the intermediate ratings (2, 3) to the low-
and high-confidence classes, respectively, in order to collapse the 4
initial confidence levels to 2, and equate the number of trials in each
class. For each participant, first we merged one intermediate level with
the high- (level 4) or low-confidence (level 1) class depending on the
total number of trials. Then, to equate the number of trials, we
randomly sampled trials from the left-out intermediate confidence
level to the class now having a lower total number of trials. This re-
balancing was based on the confidence rating response distribution,
and on the final number of trials, and was repeated n times (n=10, due
to the low number of resampled trials). In order to directly compare the
information contained in multivoxel patterns pertaining to the
confidence dimension across the four ROIs, the best sample set was
voted by k-fold cross-validation mean accuracy, given the a priori
assumption that these areas are critical for generating confidence.
Therefore, once a sample set was selected, the cross-validation mean
accuracy for that particular set was used for each ROI, thus ensuring
that exactly the same information was used. Importantly, the
calculation of weights used for DecNef was done by using the entire
data set of correct trials (without cross-validation) and the optimal
number of iterations (as described above).

To evaluate the statistical significance of decoding accuracies we
used permutation testing. For each subject and each ROI, we
performed n=1000 random permutations, where the labels of low vs.
high confidence in the previously selected sample set were each time
randomly shuffled. For each permutation the accuracy was averaged
across CV runs and SLR iterations, and we thus obtained a distribution
of n=1000 accuracies. Statistical significance was computed as
P sum D D n= ( > +1)/( +1)perm obs perm , or simply the sum of the permuted
accuracies greater than the observed accuracy divided by the number of
permutations.

ROIs and voxels for classification. We constructed four decoders in
frontoparietal areas, corresponding to the following bilateral
anatomical ROIs: inferior parietal lobule (IPL), and three subregions
generally regarded as being part of the dorsolateral prefrontal cortex
(dlPFC), namely the inferior frontal sulcus (IFS), middle frontal sulcus
(MFS), and the middle frontal gyrus (MFG) (Fig. 1C). These areas have
been previously linked to confidence judgements in perceptual
decisions (Kiani and Shadlen, 2009; Fleming et al., 2010; Rounis
et al., 2010; Simons et al., 2010; Rahnev et al., 2016). Additionally, we
also examined four ROIs in the visual processing stream (V12, V3A,
hMT and the fusiform gyrus), because we were evaluating perceptual
confidence with visual stimuli in a different study. As reported in
Cortese et al. (2016), confidence classification was at chance for these
ROIs in the visual areas. Thus, for the DecNef training, we selected only
the four frontoparietal ROIs that showed higher decoding accuracy,
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and the decoding results of these four ROIs are presented in the Results
section. Each binary decoder was trained to classify a pattern of BOLD
signals into either low or high confidence, using data samples obtained
from up to 120 trials collected in up to twelve fMRI runs. As a result,
the inputs to the decoders were the participants’ moment-to-moment
brain activations, while the outputs of the decoders represented the
calculated likelihood of each confidence measure. The mean ( ± s.e.m)
number of voxels for decoding was 1802 ± 63 for IPL, 490 ± 19 for IFS,
412 ± 6 for MFS, and 1350 ± 42 for MFG. The mean ( ± s.e.m) number
of voxels selected by i-SLR for each ROI was 62 ± 9 for IPL, 66 ± 10 for
IFS, 64 ± 8 for MFS, and 91 ± 13 for MFG. The selected voxels were
then used for the DecNef training. We opted for four separate
classifiers instead of one large ROI to account for possible individual
differences in confidence representation loci at the regional level
(Rahnev et al., 2016).

DecNef training and testing
Once individual confidence classifiers were constructed, ten se-

lected participants completed a two-day DecNef training in each
session (aiming to up- or down-regulate confidence level), and each
session was separated by at least one week (see Fig. 1A). Each
participant went through both Up- and Down DecNef training, and
the order was counterbalanced across participants (i.e., Up then Down
vs. Down then Up). The neurofeedback task itself is illustrated in
Fig. 1D: participants were asked to “manipulate, modulate or change
their brain activity in order to make the feedback disc presented at the
end of each trial as large as possible”. The experimenters provided no
further instructions nor strategies. Importantly, the disc for feedback
after the induction period was maximized both for inducing the
activation patterns for high confidence and for low confidence, in the
up- and down- regulation sessions, respectively. Participants received
monetary reward proportional to their induction success (ability to
induce the selected activation pattern). Only the experimenter knew
which session took place on a certain day, while participants were
unaware. After each training day, participants were asked to describe
their strategies in making the disc size larger. Answers varied from “I
was counting” to “I was focusing on the disc itself” to “I was thinking
about food”. When participants were asked to report which group they
thought they were assigned to at the end of the experiments (n=5, 2
months later, and n=4, 5 months later – 1 participant could not be
reached), their answers were at chance at the group level (57% correct,
Chi-square test, χ 2=0.225, P=0.64).

On each day of a given DecNef session, participants were trained in
up to 11 fMRI runs. The mean ( ± s.e.m) number of runs per day was
10 ± 0.1 across days and participants. Each fMRI run consisted of 16
trials (1 trial=20 s) preceded by a 30-s fixation period (1 run=350 s).
The fMRI data for the initial 10 s were discarded to avoid unsaturated
T1 effects.

Each trial started with a visual cue (three concentric disks, white,
gray and green) signaling the induction period (Fig. 1D). The induction
period lasted for 6 s, and was followed by a 6 s rest period. The rest
period was followed by the neurofeedback disk (a white ring) presented
on the gray screen for up to 2 s. Finally, a trial ended with a 6 s
intertrial interval (ITI). Either during the induction period, or at the
beginning of the rest period (pseudo-random onsets: 2, 4, 6, or 8 s from
trial start) a 2 s noise RDM was also presented. Pseudo-random onsets
were designed in order to minimize potential interference of the RDM
onset on the induction of brain activity.

During the rest period, participants were asked to simply fixate on
the central point and rest. This period was inserted between the
induction and the feedback periods to account for the hemodynamic
delay, assumed to last 6 s. The size of the disc represented how much
the BOLD signal patterns obtained from the induction period corre-
sponded to activation patterns of the target confidence level (high or

low). The white disc was always enclosed in a larger white concentric
circle (5° radius), which indicated the disc's maximum possible size.

The size of the disc presented during the feedback period was
computed at the end of the rest period according to the following steps.
First, measured functional images during the induction period under-
went 3D motion correction using Turbo BrainVoyager (Brain
Innovation). The subsequent steps were performed using the Matlab
software. Second, time-courses of BOLD signal intensities were ex-
tracted from each of the voxels identified in the MVPA session, for each
of the four frontoparietal ROIs used (IPL, IFS, MFS, and MFG), and
were shifted by 6 s to account for the hemodynamic delay. Third, a
linear trend was removed from the time-course, and the BOLD signal
time-course was z-score normalized for each voxel using BOLD signal
intensities measured for 20 s starting from 10 s after the onset of each
fMRI run. Fourth, the data sample to calculate the size of the disc was
created by averaging the BOLD signal intensities of each voxel for 6 s in
the induction period. Finally, the likelihood of each confidence state
was calculated from the data sample using the confidence decoder
computed in the MVPA session. The size of the disc was proportional to
the averaged likelihood from the four different frontoparietal ROIs
(ranging from 0 to 100%) of the target confidence assigned to each
participant on a given DecNef block. Importantly, participants were
unaware of the relationship between their activation patterns induction
and the size of the disk itself. The target confidence was the same
throughout a DecNef block. In addition to a fixed compensation for
participation in the experiment, a bonus of up to 3000 JPY was paid to
the participants based on the mean size of the disc on each day.

Mathematical modeling and model comparison

Nonlinear global model
We constructed a mathematical model to objectively examine the

effects of Up and Down DecNef, a decay of learning (of DecNef effect)
due to one-weak lapse, and an anterograde interference of learning
from the first to second week. The model was fit to 4 confidence
measurements at the 4 time points for each participant and possesses 4
model parameters. Xj

i are the experimentally measured confidence

values, while X̂j
i
are the estimated confidence values for each partici-

pant (with i = 1 : 10) (i.e., confidence outcome of DecNef effects), at
each time point (with j = 1 : 4; we derived n = 30 : 3 points of
measurement at n=10 subjects, as the first time point was assumed
to be fixed for the global model). The main 4-parameter nonlinear
model to describe DecNef effects is formally outlined as follows.

X Bˆ =i
1 (1)

for i= 1 : 5, group D − U

X B ε Δˆ = + ⋅ Post−downi
2 (2)

X B ε Δ αˆ = + ⋅ ⋅ Pre − Upi
3 (3)

X B ε Δ α γ Δˆ = + ⋅ ⋅ + ⋅ Post − Upi
4 (4)

for i= 6 : 10, group U − D

X B Δˆ = + Post − Upi
2 (5)

X B Δ αˆ = + ⋅ Pre − Downi
3 (6)

X B Δ α ε γ Δˆ = + ⋅ + ⋅ ⋅ Post − Downi
4 (7)

FError Σ Σ X X α ε Δ= ( − ˆ ) = ( , ,ɣ, )i j
j
i

j
i 2

(8)

Where B is the initial baseline on the first day of the DecNef procedure
in the first week (0 - after realignment to a common level for each
group). Δ, the confidence change by Up-DecNef in the first week which
putatively is the only true result. A Δ value of 0 would indicate no
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DecNef effects on confidence, while a Δ value of 1 would indicate a
100% confidence increase. ɛ, the ratio of Down-DecNef effect normal-
ized by Up-DecNef effect, explained as the fact that Down-DecNef effect
is of reduced magnitude compared to Up-DecNef in both instances -
week 1 for group D-U and week 2 for group U-D. A ɛ value of 0 would
indicate no down effects, while a ɛ value of −1 would indicate
maximum effects (identical magnitude to Up-DecNef effects). ɣ, the
anterograde learning interference resulting in a reduced second week
DecNef effect, namely the fact that in the second week there is only
limited DecNef effect. A ɣ value of 0 would indicate that there was full
anterograde learning interference thus there existed no learning effect
in the second week, while a ɣ value of 1 would indicate absence of
anterograde learning interference. Last, ɑ, the learning persistence (1 -
[decay of learning]) across the one-week interval, the remarkable result
that the confidence level attained at the end of the first week is
preserved at least until the beginning of the next session. An ɑ value of
0 would indicate no learning persistence, while an ɑ value of 1 would
indicate perfect memory maintenance, i.e. no memory loss.

Submodels and alternative simpler models
Submodels are defined by setting different parameters to zero or

one, one at a time or concomitantly, following the rationale of
prioritizing against model complexity. This gives rise to a hierarchical
group of models, from simpler to most complex (capturing single or
increasingly more aspects of DecNef effects on the confidence mea-
sure). The first model is the simplest and only estimates Δ, with the
other parameters setting as ɛ=0, ɣ=1, ɑ=1. The second model, by
complexity order, assumes Up and Down-DecNef effects, estimates Δ
and ɛ, while ɣ=1, ɑ=1. The third model estimates Δ, ɛ and ɣ, with ɑ=1.
Further DecNef-based models estimate Δ, ɛ and ɑ, with ɣ=1; or
estimate Δ, ɛ and ɑ, with ɣ=0; or estimate Δ, ɛ and ɣ, with ɑ=0; or
finally, estimate Δ, ɣ, and ɑ, with ɛ=0.

We considered alternative models that do not take into account
DecNef direction assumptions or a priori conceptions. These are a 1-
parameter constant confidence model (the confidence measure does
not change, is constant throughout the experiment), with two versions:
k X= ,i1 or k mean X X X= ( , , ).i i i

2 3 4 Other free models are a within-week
constant confidence, and within-week fit by first and second degree
polynomial.

Model comparison
For model comparison, we used the second-order or corrected

Akaike Information Criterion (AICc) (Burnham and Anderson, 2002),
which is a corrected version of the Akaike Information Criterion (AIC)
(Akaike, 1974).

Raw AIC is computed according to the following equation:

AIC nlog σ k= ( ˆ ) + 22 (9)

where σ̂ = Residual Sum of Squares
n

2 , n is the sample size and k the number of
parameters in the model. In our set of global models, n = 30, and k
varied from 1 to 4. In the modeling reported for small sample sizes (i.e.,
k/ ≾40), the second-order or corrected Akaike Information Criterion
(AICc) should be used instead. Although the AICc formula assumes a
fixed-effects linear model with normal errors and constant residual
variances, while our model is nonlinear, the standard AICc formulation
is recommended unless a more exact small-sample correction to AIC is
known (Burnham and Anderson, 2002):

AICc AIC k k
n k

= + 2⋅ ⋅( +1)
( − −1) (10)

For model comparison, two useful metrics are ΔAICc and Akaike
weights (wi). ΔAICc

i is a measure of the distance of each model relative to
the best model (the model with the most negative, or lowest, AIC
value), and is calculated as:

Δ AICc min AICc= − ( )AICc
i

i (11)

As indicated in Burnham and Anderson (2002), Δ <2AICc
i suggests

substantial evidence for the ith model, while Δ >10AICc
i indicates that the

model is very unlikely (implausible).
Akaike weights (wi) provide a second measure of the strength of

evidence for each model, is directly related to ΔAICc
i , and is computed as:

w
exp Δ

exp Δ
=

(− /2)
∑ (− /2)

i
AICc
i

i
R

AICc
i

=1 (12)

AICc, ΔAICc, and wi are reported in Table 2.

Model averaging and cross-validation
In cases such as ours, where a high degree of model selection

uncertainty exists (the best AIC model is not strongly weighted), a
formal solution is to compute parameter estimates through model-
averaging. For this approach, two procedures may be used, depending
on the results. The first approach makes use of only a limited subset of
models that are closest to the current best model (ΔAICc < 2), while the
second approach will consider all models (in fact, this accounts to
consider all models with w ≠0i ). We adopted the first approach,
selecting only models with high likelihood to keep the parameter
estimates within the same scale as the original single models.
Parameters are estimated according to the equation:

β
w β

w
ˆ =

∑ ˆ

∑
i
R

i i

i
R

i

=1

=1 (13)

where β̂i is the estimate for the predictor in a given model i, and wi is
the Akaike weight of that model.

Unconditional error, necessary to compute the unconditional con-
fidence interval for a model-averaged estimate, can be calculated
according to the following equation:

∑se β w var β β βˆ ( ˆ ) = ˆ ( ˆ ) + ( ˆ − ˆ )
i

R
i i i=1

2
(14)

where var βˆ ( ˆ )i is the variance of the parameter estimate in model i, and

β̂i and β̂ are as defined above. The confidence interval is then simply
given by the end points:

β z se βˆ± ˆ ( ˆ)α1− /2 (15)

For a 95% confidence interval (CI), z α1− /2=1.96.
Note that the unconditional variance comprises two terms, the first

one local (internal variance of model i), while the second one global, in
that it represents the variance between the common estimated para-
meter and the true value in model i.

In order to assess the internal variance of the models, as well as the

Table 2
AICc analysis. The most negative AICc value indicates the best model fit. ΔAICc < 2
indicate that the current model has a high likelihood of being the best model under
different circumstances, i.e., a new dataset.

Model (est. parms) Fixed
parms

AICc Δi wi

Const. Confidence mean X( )i1 k −70.6447 24.3397 0

Const. Confidence [mean

X X X( , , )i i i
2 3 4 ]

k −72.1602 22.8242 0

Within-week const. confidence k1 k2 −71.7531 23.2313 0
Polynomial 1st deg. (α 1, α2) k −70.5479 24.4365 0
Polynomial 2nd deg. (α 1, β1, α2,

β2)
k1 k2 −61.8877 33.0967 0

Sub-model (Δ) α=1 ε=0 ɣ=1 −81.6244 13.3600 0.0005
Sub-model (Δ, ε) α=1 ɣ=1 −91.5062 3.4782 0.0637
Sub-model (Δ, ε, α) ɣ=1 −89.0275 5.9569 0.0185
Sub-model (Δ, ε, ɣ) α=0 −77.3589 17.6255 0.0001
Sub-model (Δ, ɣ, α) ε=0 −91.4285 3.5559 0.0613
Sub-model (Δ, ε, ɣ) α=1 −94.9402 0.0442 0.3549
Sub-model (Δ, ε, ɣ, α) −93.0529 1.9315 0.1381
Sub-model (Δ, ε, α) ɣ=0 −94.9844 0 0.3629
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generalizability and to prevent overfitting, we run a leave-two-out (one for
each group, D-U and U-D) cross-validation (CV) model averaging
procedure. The procedure was repeated for each CV test-pair: with 10
participants, divided into 2 groups, we thus obtained 25 CV runs (all
possible combinations of test pairs). For each CV run, the left-out
participant data acted as test set, while the training data set was hence
composed of the remaining participants (four in each group). In each CV
run, the three best models previously selected by AICc (indicated in bold
in Table 2) were fitted on the training data, Akaike weights were
calculated, and finally model averaging was performed. After model-
averaging, as a measure of the goodness of fit, the predicted confidences
were correlated with the observed confidences from the current CV test
run. In the main text we report the mean± std value of correlation values.
Furthermore, we also run a correlation of estimated vs. observed
confidence changes by pooling all test sets together, to assess significance
at the group level. To do so, for each participant we averaged the
estimated values from the CV runs (5) in which that specific participant
acted as test data. Lastly, the final parameter estimates were computed as
follows. First, for each parameter we took the average across the 25 CV
runs. As mentioned above, the unconditional error is composed of two
terms. The variance of the parameter estimate in model i was taken as the
variance in the 25 CV runs model estimation processes. The global
variance is computed between the mean final estimate and the mean
estimate in each single model. Given the two sources of variance we then
evaluated the 95% CI. See Supplementary Fig. 1 for a graphical account of
the entire process.

Nonlinear mixed (global - local) model
In the second part of the modeling approach, we consider all data

points, and model population's individual fits with nonlinear equations
with global and local parameters (we thus fit the model to all n = 40 : 4
points of measurement at n=10 subjects, as all time points were
considered for the mixture model). The equations determining the
model are thus very similar to those given above:

X Bˆ =i
i1 (16)

for i=1 : 5, group D-U

X B ε Δˆ = + ⋅ Post − Downi
i i2 (17)

X B ε Δ αˆ = + ⋅ ⋅ Pre − Upi
i i3 (18)

X B ε Δ α γ Δˆ = + ⋅ ⋅ + ⋅ Post − Upi
i i i4 (19)

for i= 6 : 10, group U-D

X B Δˆ = + Post − Upi
i i2 (20)

X B Δ αˆ = + ⋅ Pre − Downi
i i3 (21)

X B Δ α ε γ Δˆ = + ⋅ + ⋅ ⋅ Post − Downi
i i i4 (22)

FError Σ Σ X X α ε Δ B= ( − ˆ ) = ( , ,ɣ, , )i j
j
i

j
i

i i
2

(23)

Compared with the global-parameter model (Eqs. (1)–(8)), in this
individualized model B (the initial starting point) is now optimized
individually, as well as Δ, the confidence change induced by DecNef.
For this model, n=40 (data points), and k=23 (parameters).

To avoid overfitting and evaluate the internal variance of the model,
this final model was estimated with a leave-two-out CV, with a similar
approach as for the global model. For each CV run, the model
parameters were estimated with the training set, and then evaluated
on the left-out test set by correlating observed confidences (two
participants’ data in the test data) and predicted confidences. The final
parameter estimates are reported as the cross-validated mean ± 95%
CI. Results at the group level are reported by correlating all observed
confidences with individual predicted confidences. Importantly, be-

cause each participant on a given group was tested in 5 different CV
runs (due to it being paired once with all other participants in the
opposing group), its final estimated change was computed as the mean
of the 5 CV runs. See Supplementary Fig. 2 for a graphical account of
the process.

Analysis, statistics and model-solving routines

All analyses were performed with Matlab (Mathworks) versions
2011b and 2014a with custom made scripts. Additional statistical
analysis such as ANOVA were performed with SPSS 22 (IBM statistics).
We employed Matlab optimization routines to solve the systems of
nonlinear equations with a nonlinear programming solver, under least-
square minimization. The Matlab solver was fmincon, with the follow-
ing optimization options. A sequential quadratic problem (SQP)
method was used; specifically, the ‘SQP’ algorithm. This algorithm is
a medium-scale method, which internally creates full matrices and uses
dense linear algebra, thus allowing additional constraint types and
better performance for the nonlinear problems outlined in the previous
section. As compared with the default fmincon ‘interior-point’ algo-
rithm, the ‘SQP’ algorithm also has the advantage of taking every
iterative step in the region constrained by bounds, which are not strict
(a step can exist exactly on a boundary). Furthermore, the ‘SQP’
algorithm can attempt to take steps that fail, in which case it will take a
smaller step in the next iteration, allowing greater flexibility. We set
bounded constraints to allow only certain values in the parameter space
to be taken by the estimates, reflecting the biological dimension they
were explaining. As such, boundaries were set as: Δ∈[0 1], ɛ∈[−1 0],
ɣ∈[0 1], and ɑ∈[0 1], and for the mixed model B ∈ [1 4]. The function
tolerance was set at10−20, the maximum number of iterations at106 and
the maximum number of function evaluations at 105.

Statistical results involving multiple comparisons are reported in
both the corrected and uncorrected forms. The rationale behind this
decision is that these comparisons can be interpreted as multiple
comparisons of one hypothesis across different mediums, or simply as
different hypothesis, in which case no multiple comparisons should be
considered. For multiple comparisons, we used the Holm-Bonferroni
procedure, where the P-values of interest are ranked from the smallest
to the largest, and the significance level α is sequentially adjusted based
on the formula α

n i( − + 1)
for the ith smallest P-values.

MRI parameters

The participants were scanned in a 3T MR scanner (Siemens, Trio)
with a head coil in the ATR Brain Activation Imaging Center.
Functional MR images for retinotopy, the MVPA session, and DecNef
stages were acquired using gradient EPI sequences for measurement of
BOLD signals. In all fMRI experiments, 33 contiguous slices (TR=2 s,
TE=26 ms, flip angle=80°, voxel size=3×3×3.5 mm3, 0 mm slice gap)
oriented parallel to the AC-PC plane were acquired, covering the entire
brain. For an inflated format of the cortex used for retinotopic mapping
and an automated parcellation method (Freesurfer), T1-weighted MR
images (MP-RAGE; 256 slices, TR=2 s, TE=26 ms, flip angle=80°,
voxel size=1×1×1 mm3, 0 mm slice gap) were also acquired during the
fMRI scans for the MVPA.

Results

MVPA for confidence was performed with the data from all initial
17 subjects, as reported in Table 1. Significance was assessed through
permutation testing (randomly shuffling the labels of high and low
confidence). Results were consistent with our a priori hypothesis and
previous work that confidence representations are found in frontopar-
ietal cortices (Kiani and Shadlen, 2009; Fleming et al., 2010; Rounis
et al., 2010; Simons et al., 2010; Rahnev et al., 2016). Furthermore, as
reported here, individual differences in confidence decodability were
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also apparent. Indeed, for many participants one ROI (different across
participants) had much lower decoding ability. This outcome illustrates
our rationale for using 4 separate ROIs for the DecNef training, instead
of selecting a single best one (which would have been different across
participants) or a single large unified one.

DecNef can be essentially assumed as a neural operant conditioning
and/or reinforcement learning paradigm, with which a multi-voxel
pattern corresponding to a specific piece of brain information can be
induced without explicit knowledge from the participants. Throughout
the manuscript we refer to Up-DecNef for High-Confidence DecNef and
Down-DecNef for Low-Confidence DecNef. Since there were two
groups (for DecNef order counterbalancing), we will often refer to
these as D-U (first session is Down-DecNef while the second is Up-
DecNef) and U-D (the reverse, Up-DecNef first, Down-DecNef then)
throughout the results section.

The ROIs selected for this study, aside from being important for
metacognition, are also part of large-scale functional brain networks
associated, for example, with attention and especially top-down modula-
tion of visual attention (Fox et al., 2005; Bressler and Menon, 2010;
Rosenberg et al., 2016). Previous work showed that rTMS to the DLPFC
resulted in lower levels of visibility for stimuli which was pronounced for
correct trials (Rounis et al., 2010). We have addressed these crucial
concerns in a companion manuscript, which aimed at elucidating the
relationship between confidence and perceptual evidence (Cortese et al.,
2016). We reported that DecNef effects on confidence were specific and
unlikely to result from criterion shifts, mood changes or an attentional
modulation (Cortese et al., 2016), thus supporting the view that con-
fidence alone was manipulated. Indeed, task accuracy did not change
between Pre- and Post-Tests: two-way repeated measures ANOVA, factors
of neurofeedback (Down - Up) and time (Pre - Post), showed non-
significant interaction (F1,9=0.030, P=0.867) as well as non-significant
main effects of time (F1,9=0, P=0.994) and neurofeedback (F1,9=1.854,
P=0.206). Furthermore, similarly as in Scharnowski et al. (2015), any
unspecific effects that are related to task demands should only allow to
either increase or decrease the confidence level, but it would be difficult to
allow bidirectional control (Scharnowski et al., 2015). The current paper
aims at exploring and explaining the dynamics of DecNef neurofeedback
training on confidence, therefore we will focus on these dynamical aspects.

Before exploring the DecNef effects on confidence, it is also

important to analyze the ability of participants to induce the target
activation patterns in the selected brain regions. The overall induction
performance, measured as the ratio of successful trials (trials with
induction likelihood > .5 over total trials), for all ROIs averaged did not
show a marked learning curve over runs or days of training (Fig. 2A, C).
During the DecNef training itself, the feedback signal was also given as
the average across all four ROIs. Given the complicated nature of such
induction, it is perhaps unsurprising that, overall, there was a mixed
success rate in the induction likelihood at the group level (although
individual variability seemed to be sizeable). Nevertheless, when
looking at the best performing ROI (that is, the single best performing
ROI in each trial, that also had induction likelihood > .5), all subjects
showed very high success rates (Fig. 2B, D). This in turn indicates that
on any given trial, at least one ROI was successfully inducing the target
pattern. Although the monetary signal fed back to participants was
based on the average of the four ROIs, because the underlying pattern
activation was very successful in at least one of the ROIs, probably this
had a much larger effect in the learning and therefore on the final
measurable confidence changes.

Behavioral data from the Pre- and Post-Tests show that confidence
was differentially manipulated by DecNef (Fig. 3). Importantly, the
resulting changes in confidence could not be attributed to a simple
week order effect (two-way ANOVA with repeated measures, non-
significant effects of neurofeedback, F1,9=0.370, P=0.558, and time,
F1,9=2.834, P=0.127, and non-significant interaction, F1,9=0.844,
P=0.382, Fig. 4A bottom part - week average).

As displayed in Fig. 3A, the confidence change was larger for Up-
DecNef than Down-DecNef, but importantly, the level attained at the end
of the first week was almost entirely preserved until the beginning of the
second week, in the second session. Lastly, the second week effect seemed
present but reduced as compared to the first week effect. Thus, order of
DecNef (Up then Down, or Down then Up) had a large influence on how
confidence was manipulated. A mixed-effects ANOVA with repeated
measures, with within-subjects factor time, and between-subjects factors
neurofeedback and order, clarified this finding, as it resulted in a
significant interaction between the three factors (F1,16=4.769, P=0.044).
Furthermore, the factor time (F1,16=4.623, P=0.047) and the interaction
between time and neurofeedback (F1,16=18.050, P=0.001) both had
significant effect on the dependent variable, confidence.
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The results at the group level (Fig. 3A) were mirrored at the
individual level (Fig. 3B, C). Fig. 3B shows that the initial confidence
level (t1) varied across participants, but also that the group average was
the same for both D-U and U-D groups (group D-U, confidence at t1:
C=2.011 ± 0.132; group U-D, confidence at t1: C=2.006 ± 0.130;
paired t-test t4=0.023, P=0.98). Moreover, changes had a clear
common trend across participants. Thus, in Fig. 3C, data were
realigned to the same starting point, centered on zero. In more detail,
Fig. 3C suggests that 7/10 cases in the Down-DecNef and 9/10 cases in
the Up-DecNef showed confidence changes in the expected directions.
Supposing, as a null hypothesis, that the direction of each confidence
change occurs at random, the associated probability is then 1/2.
Assuming that each DecNef session is independent, the cumulative
binomial probability to obtain 16/20 matches is P(X≥16)=0.0059. The
null hypothesis that increase or decrease in confidence after DecNef
training occurred at random is thus statistically implausible; confi-
dence increased in Up-DecNef weeks, and decreased in Down-DecNef
weeks. A mixed-effects ANOVA with repeated measures (between-
subjects factor of group [D-U and U-D] and within-subjects factor of
timing [Fig. 3B, t1–t4]) resulted in a strongly significant interaction,
F3,24=8.650, P < 0.001 (univariate effect). Main effects of factors
timing, F3,24=2.555, P=0.079, and group, F1,8=3.674, P=0.092, were
close to significance.

A concept that has been extensively studied in motor learning and,
to a lesser extent, in perceptual learning, is learning interference. In a

classic motor learning interference paradigm, Krakauer et al. (1999)
showed that learning of another kinematic or dynamic model with
conflicting sensorimotor mappings interfered with the consolidation of
previously learned models of the same type. Similarly, in this study, we
propose that DecNef training also induced an anterograde interference
effect, where learning of task B is partly prevented by the previous
learning of task A. This effect will be more rigorously examined later.

To effectively analyze the confidence changes, the two DecNef
sessions for the two groups, D-U1, D-U2, and U-D1, U-D2, respec-
tively, are presented as differences (Δconfidence, Fig. 4A). For clarity,
D-U1 and D-U2 are the same group (resp. U-D1 and U-D2), and the
number indicates if the session was D or U (first or second session). As
expected, average changes were positive for Up- and negative for
Down-DecNef: U-D1 data was significantly different from zero (one-
tailed t-test, t4=4.253, P=0.0067 uncorrected; P=0.026 corrected for
multiple comparisons), as well as D-U2 (before multiple comparisons
correction, see Supplementary Note 1). Both D-U1 and U-D2 were not
statistically different from zero (see Supplementary Note 1). The
contrast between D-U1 and U-D1 yielded a statistically significant
difference (one-tailed t-test, t4=−3.822, P=0.0094 uncorrected;
P=0.0468 corrected). This result is of great importance, because in
the two instances only the neurofeedback sign was different, while all
other behavioral schemes were the same, and yet different results were
obtained. Thus, DecNef purely induced bidirectional confidence
changes, and these changes were not caused by general effects of
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monetary rewards or repeated exposure to random dot stimuli, which
are common experimental components of both up and down DecNef.
Furthermore, mean differences between U-D1 and U-D2 (one-tailed t-
test, t4=4.228, P=0.0067 uncorrected; P=0.0402 corrected), D-U2 and
U-D1 (one-tailed t-test, t4=−3.661, P=0.0108 uncorrected; P=0.0431
corrected) yielded statistically significant results before and after
multiple comparisons correction. It should be noted that, although
they did not survive a multiple comparisons correction, even the
differences between D-U1 and D-U2, and D-U2 and U-D2 were initially
significant (see Supplementary Note 1). Since one could argue that the
conditions between each comparison are different, because they entail
different DecNef directions and therefore assumptions, it is noteworthy
to see that most of the confidence differences were significantly
distinct.

Fig. 4B plots the ratios of the above differences U-D2/D-U1, D-U2/
U-D1 and the average of the two. Because these values are positive and
less than 1, the second week effect was in the same direction but
smaller in magnitude than the first week effect, an outcome that is
likely due to anterograde learning interference. The first two values
being relatively similar, the interference effect did not seem to be
dependent upon Up-Down or Down-Up sequence.

Therefore, considering that differences in the first and second week

of DecNef are quantifiable and can be ascribed to a specific hypothesis,
the true Up and Down effects can be computed by applying a simple
correction. Reduced Up and Down-DecNef effects in the second week
can be corrected for the first week effect by dividing them by the
average ratio (Fig. 4C). Both Up and Down effects were statistically
significantly different from zero (one-tailed t-test, Up-DecNef t9=4.390,
P=0.0009; Down-DecNef t9=−1.876, P=0.0467), and they were differ-
ent from each other (one-tailed t-test, t9=4.315, P=0.001), suggesting a
specific DecNef effect to neurofeedback signs.

In order to best capture the different components of DecNef effects
while accounting for both Up- and Down neurofeedback, we fitted a
system of nonlinear parametric equations with four global parameters
(explained in greater detail in the mathematical modeling part of the
Materials and methods section). The four global parameters were
selected in light of the summary statistics results displayed in Fig. 5.
Global parameters hence were the initial (first week) absolute con-
fidence change by Up-DecNef effect (Δ), the ratio of the weaker Down-
DecNef effect compared with that of stronger Up-DecNef effect (ε),
anterograde learning interference (ɣ), and the learning persistence
between DecNef sessions (ɑ). Importantly, we fitted various alternative
models, where some of the parameters had fixed values (such as =1 or
=0) to account for full effects, or the lack of effects, in order to compare
and infer which aspects of DecNef were likely to play a significant role
in determining the resulting confidence changes. Simpler models, that
did not assume directionality in confidence changes, or other inter-
pretations, included a constant-confidence model, constant-within-
week model, and first-grade polynomial models. In order to compare
the various models, we used the corrected (second-order) Akaike
Information Criterion (AICc), which allocates more importance to the
principle of parsimony, and gives higher penalty to more complex
models (i.e., with larger number of parameters). Indeed, since the
dataset is finite, and the ratio n/k (number of samples/number of
parameters) < 40, AICc is strongly recommended to avoid model
selection bias (Burnham and Anderson, 2002)).

When using AIC (and, by extension, AICc), the best model has the
most negative (or lowest) score. Absolute values of AICs are not really
informative per se, and to effectively compare models we use the
distance from the best model (ΔAICc), and the likelihood of each model
being the best model, computed as Akaike weights. Normally, a ΔAICc

i <
2 means the ith model cannot be ruled out and has a conspicuous
likelihood of being the best model with a different dataset.

Accordingly, we computed AICc scores, ΔAICc
i , and wi (reported in

Table 2). As shown in the table, there are three models that can be
considered essentially as good as the best model, since the distance
between two of them and the most negative AICc is < 2. Furthermore,
three more models had ΔAICc < 6, indicating these had a very low
likelihood, but nevertheless marginal validity. All other models had
distances greater than 10 from the best model, and importantly, among
them simpler models such as constant-confidence, within-week con-
stant confidence, and first-grade polynomial models all performed very
poorly in fitting the data. These models with ΔAICc > 10 are sufficiently
poorer than the best AIC model as to be considered implausible
(Burnham and Anderson, 2002).

Since model selection uncertainty exists, with very similar AICc
values (ΔAICc < 2 compared to the most negative AICc), a formal
solution is to apply model-averaging, where each parameter present
in the selected models is estimated according to a weighted average
based on their corresponding Akaike weights. For model averaging, we
used all models for which ΔAICc < 2, keeping the estimated parameters
in the same initial scale and focusing the averaging process on the
subset of highly likely models.

Fig. 5A reports individual data, as well as fits of the three best
models (ΔAICc < 2, full model with 4 global parameters - ɑ, ε, ɣ, Δ;
submodel with ɣ=0, submodel with ɑ=1), and the simplest model,
where confidence does not change and is akin to a 1-k model, with the
only parameter being the confidence group average. As can be deduced
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from the figure, each model provides a good fit, and therefore a high
likelihood of being the best one at describing the empirical data.
Conversely, a simpler model, where confidence is assumed to be
constant, provides a very poor fit to the data, showing that DecNef
was indeed successful in inducing confidence changes, and that the no-
change model is implausible.

Model-averaged estimates of the 4 parameters, obtained through a
cross-validation procedure, suggest that all of them are different from
zero or one (Fig. 5B), and thus impact the effects of DecNef. The delta
parameter was 0.37 ([0.25 0.48], 95% confidence interval [CI]); thus
Up-DecNef on the first week increased confidence by 0.37, or a ~20%
absolute change in confidence. Because the standard deviation of

confidence ratings in the first day of DecNef (day 1, Pre-Test) was
0.89, a change in confidence of 0.37 would mean a change of ~40% in
relative terms. Epsilon was −0.36 ([−0.63 −0.08], 95% CI), thus the
Down-DecNef effect was opposite in its sign and close to 40% of the
magnitude of Up-DecNef. Furthermore, it is important to note that the
CI for ε did not include 0 and that all three best models allowed non-
zero ε, meaning that nonlinear modeling formally proved the existence
of non-zero down effects. Alpha was 0.83 ([0.53 1.13], 95% CI), hence
on average less than 20% of the first week effect was lost during the
one-week interval due to memory decay. More importantly, CI for α did
not include 0 but included 1, indicating that the preservation of effects
was almost perfect after a one-week delay. Gamma was 0.19 ([−0.16
0.54], 95% CI), and thus, due to anterograde learning interference, the
second week effect was only ~20% of that of the first week. CI for ɣ did
not include 1, meaning degraded effects were present in the second
week, but included 0, indicating the possibility that due to very strong
learning interference, no learning occurred in the second week. Our
nonlinear modeling robustly indicates that there exist both Up- and
Down-DecNef effects, almost perfect preservation of learning effects
between sessions one-week apart, and strong anterograde learning
interference. This was further supported by plotting observed con-
fidence changes and model-based estimated changes (Fig. 5C). The two
data sets were obtained by computing the confidence changes between
time points (t2-t1, t3-t2, t4-t3), for each participant (10 participants
with 3 confidence changes each, 30 data points in total). The estimated
changes were computed with a leave-two-out cross-validation process
(one participant per group). The observed and estimated confidence
measures indeed correlated well (n=30, Pearson's r=0.646, P < 10−3,
[0.372 0.816] 95% CI), which supports the validity of the parameter
estimates. The cross-validated average of the correlation coefficients
(Rho) ± std in the test runs was 0.705 ± 0.172.

In the second part of the modeling analysis, we considered all data
points, and modeled individual fits with nonlinear equations with global
and local parameters (mixture model). This approach is warranted by the
results from the global model-averaging, where all four parameters have
high likelihood of being different from zero or one. This aspect, albeit not
entirely backed by the confidence intervals (CIs for ɣ include 0 and CI for ɑ
included 1), is nevertheless supported by the internal variance of the
models: these variances are low, indicating high stability within a model's
parameter space. Furthermore, if the models are robust and explain the
same phenomena in DecNef, parameter estimates should converge to
similar solutions.

In the mixture model, global parameters were the weaker Down-
DecNef effect (ε), the learning persistence between DecNef sessions (ɑ),
and anterograde learning interference (ɣ), while local parameters were
the individual initial absolute confidence change for Up-DecNef effect
(Δi), and the individual initial point of confidence (bi). The model was
estimated through a cross-validated approach, where each test run was
evaluated separately. Final estimates are cross-validation averages.
Fig. 6A shows the 23 parameter model fit to the raw data, and provides
further support for Fig. 4 conclusions. Parameter estimate values
(Fig. 6B) are in good agreement in both modeling instances (Figs. 5B
and 6B), underscoring the presence and generality of the effects they
represent, as well as supporting the robustness of the model analyses.
As expected, the linear relationship between observed and estimated
confidence changes was also significant (Fig. 6C, same approach as in
Fig. 4C; n=30, Pearson's r=0.629, P < 10−3, [0.347 0.806] 95% CI). The
average correlation value (Rho) ± std across all cross-validation test
runs was 0.595 ± 0.388. It is important to notice that both modeling
approaches yielded almost identical correlation coefficients. This result
corroborates the idea that DecNef had bidirectional effects, and that the
mixed-modelling (global - local parameters) approach could also well
describe the various DecNef dynamic effects, building upon the results
introduced in the previous figure related to the global parameters
model.

To conclude on the behavioral effects, we present the net DecNef

Fig. 5. Confidence changes modeled with nonlinear functions with global parameters.
(a) Individual and group-modeled data are presented, 0-aligned, with the same color-
codes and presentation rules as in Fig. 4. Thick black lines represent the three best model
fits as selected by AICc model comparison. These are, respectively, the model with the
most negative AICc value, and models having a ΔAICc < 2 from the best model. Empirical

data from each participant is shown as colored dots. (b) Global parameters estimates
resulting from model averaging. For each model, based on the ΔAICc, Akaike weights were

computed (the likelihood of the ith model being the best model). Each parameter was
then evaluated as the weighted average of single models estimates. Error bars represent
the 95% confidence intervals, computed from the unconditional standard error. (c) Plot
of observed confidence changes vs. global model based estimated confidence changes for
the test sets in a leave-two-out cross-validation (CV) process. Each CV run sees two
participants (one for each group), left out as test set. The process is repeated in order for
each pair of participants to be tested (tot. 25 CV runs). In total, there are 30 time points
(change between t2 and t1, t3 and t2, t4 and t3), 3 for each of the 10 participants, divided
between order groups D-U and U-D. The correlation between the two measures was
significant, supporting the validity of the estimated parameters. D-U: Down-Up DecNef
order, U-D: Up-Down DecNef order.
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effects, computed by averaging, for each manipulation Up- and Down-
DecNef separately, the overall mean change in confidence as measured
in Pre- and Post-test in week-1 and week-2. By utilizing the gamma
parameter, representing anterograde learning interference, and com-
puted with increasingly stringent methods (ratio of week-2/week-1,
global model parameter, and mixed model parameter estimate), we
show that DecNef was effective in both directions (Fig. 7). That is,
simply discounting the weaker second week effect by correcting
(dividing) the individual pre- post- confidence change from the second
week by the gamma parameter indeed leads to a significance level that

is statistically relevant for both increase and decrease of confidence.
Furthermore, the direct relationship between raw data, the method
used to estimate gamma, and the final estimate of the net DecNef
effects can be directly appreciated in Fig. 7.

Discussion

We hypothesized that DecNef could be successfully used to induce
changes in a meta-cognitive state (confidence) for two opposing
directions and within the same participants. Furthermore, if DecNef
were based on a learning process in the behavioral dimension probed,
we expected anterograde learning interference. To directly examine
these hypotheses, we constructed individual decoders based on multi-
voxel pattern activity associated with confidence judgements in a visual
discrimination task, and participants then induced via neurofeedback
such multi-voxel activation patterns in two DecNef sessions, i.e., one
for High Confidence and one for Low Confidence induction.
Importantly, each session was separated by at least one week, which
maximized our chance to capture possible learning-maintenance effects
relevant for the time-scale in the context of studies about this type of
training.

Our analyses and modeling results support the idea that confidence
changed due to DecNef according to the following specific pattern. (1)
DecNef was successful bidirectionally, and the Up-DecNef effect was
more pronounced than Down-DecNef, (2) the acquired confidence level
at the end of the first week was subjected to only small degradation, (3)
there existed a strong anterograde interference onto the second week
DecNef session by the first week DecNef. The consequence was a
stronger effect of neurofeedback in the first week as compared to the
second week.

The anterograde interference in learning that emerges when train-
ing participants to induce activation patterns that correspond to
different (opposite) behavioral variables sequentially is important.
This effect is remarkable, because it implies that any manipulation
through DecNef is likely relying on long term changes akin to
sensorimotor learning or perceptual learning, thus providing additional
support to previously reported empirical findings in rt-fMRI (Shibata
et al., 2011; Megumi et al., 2015; Amano et al., 2016). Specifically,
these behavioral changes may be deeply ingrained due to the neural
operant conditioning that is subtending such learning processes.

In sensorimotor and visuomotor learning, a conspicuous literature

Fig. 6. Mixture global and local parameters modeling. The model is based on the
parameters obtained from the previous model-averaging step using global models. This
full model accounts for all four major effects of DecNef: Δi, individual differences in Up-
DecNef confidence change; ɛ, reduced Down-DecNef effect; ɑ, learning persistence ([1 -
memory decay] in the week-long interval); ɣ, anterograde learning interference resulting

in reduced second week DecNef effect. (a) Thick lines are individual fits, while dots are
empirical data. Color-codes and presentation rules are the same as in Figs. 2 and 4. (b)
Model estimates. Error bars are standard deviation for Δi, and 95% CI for ɛ, ɑ, and ɣ. (c)
Plot of observed confidence changes vs. mixture model based estimated confidence
changes for the test sets in a leave-two-out cross-validation (CV) process. Each CV run
sees two participants (one for each group), left out as test set. The process is repeated in
order for each pair of participants to be tested (tot. 25 CV runs). There are 30 time points
(change between t2 and t1, t3 and t2, t4 and t3), 3 for each of the 10 participants, divided
between order groups. The correlation between the two variables was significant,
supporting the high fidelity of the estimated parameters in the model with global and
local parameters. D-U: Down-Up DecNef order, U-D: Up-Down DecNef order.
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has explored the effect of opposing tasks on the dynamics and
modalities of the learning processes (Brashers-Krug et al., 1996;
Krakauer et al., 1999; Tong et al., 2002; Osu et al., 2004). Both
retrograde and anterograde mechanisms have been suggested to
mediate interference in visuomotor learning (Tong et al., 2002; Miall
et al., 2004; Krakauer et al., 2005). The vast majority of previous
studies have addressed interference in learning within short delays
(typically, between a few minutes and up to 24–48h), but consistent
with our results several studies have reported interference effects even
after 1 week (Caithness et al., 2004; Krakauer et al., 2005).
Furthermore, anterograde interference is thought to have substantially
larger effects as compared to retrograde interference (Sing and Smith,
2010). It is therefore not surprising that the interference found in this
study resulted in a second week effect of only ~20% of the size of the
first week, a very significant decrease.

An important point to be considered regards how implicit vs.
explicit strategies allow participants to modulate activation patterns
in a specific brain region and in specific directions. To the layman, it
would seem crucial that knowledge of the manipulation by the
participant is necessary. Yet, this does not seem to be the case, as
reported by recent relevant rt-fMRI neurofeedback studies (Shibata
et al., 2011; Yoo et al., 2012; Ramot et al., 2016). Indeed, because
successful induction would always lead to monetary reward, implicit
strategies may be building upon simpler but deeper mechanisms of
reinforcement learning, akin to subliminal instrumental conditioning
for which awareness does not seem to be necessary (Pessiglione et al.,
2008) (see also discussion in Bray et al. (2007)). In a recent study,
Scharnowski et al. (2015) showed that learned voluntary control over
brain activation levels in two distinct areas caused characteristic
behavioral effects that were related to the specific function of each
brain region. Although bidirectional brain activation manipulation was
performed, behavioral changes were reported only in one dimension,
rather than the bidirectional change reported here. Furthermore,
strategies were explicitly suggested while successful changes in activa-
tion were not rewarded. Thus, these aspects indicate that the mechan-
ism in place may be substantially different. It may be possible that
explicit strategies initially facilitate learning but only lead to behavioral
effects with a shorter life-time; conversely, reinforcement learning type
of approaches, such as ours, may be initially more difficult - perhaps
due to less resources being allocated. However, as a result of the
conditioning and available neural resources this type of approach may
prove more ingrained in the long term memory circuitry and thus show
long-term effects (with long-term effects in the scale of months
reported in Megumi et al. (2015), Amano et al. (2016).

Lastly, the possibility that the effects reported, analyzed and
discussed may be accounted for by alternative explanations may never
be fully discounted. Given the initial generally low decoding accuracy,
the ability of the reward signal to accurately reflect the likelihood of
inducing a given activation pattern may be partly impaired. This,
together with overlapping functions in the selected ROIs (confidence,
but also attention, memory), means that the results could be simply
interpreted as, for example, a result of increased attention. However,
this explanation does not seem compatible with the behavioral results
that nothing except confidence changed. Furthermore, it can be partly
refuted by the results of a recent study that showed that increased
attention counterintuitively led to more conservative biases of con-
fidence judgements in visual perception (Rahnev et al., 2011). If
attention were responsible for the effects on confidence, the pattern
of changes would have likely been opposite: larger decrease than
increase in confidence following Up-DecNef training.

Because it is now known that neurofeedback training goes beyond
the simple ROI level and affects the connectivity between distant
regions (Scheinost et al., 2013; Scharnowski et al., 2014; Yuan et al.,
2014; Ramot et al., 2016), in the future we plan to run further analyses
of the current dataset. For example, it would be of great interest to
investigate the temporal changes in connectivity between various brain

regions including those involved in the training as well as visual areas
and reward centers. Considering the confidence dimension, exploring
what was driving the multivoxel patterns or what was different in terms
of connectivity and information transmission across areas between Up-
and Down-DecNef could advance our understanding of these brain
processes.

To conclude, we established the causal nature of DecNef. Because
bidirectional brain manipulation led to bidirectional behavioral change,
our results showed that DecNef was effective in both increasing and
decreasing perceptual confidence. Up and down modulations were
asymmetrical, suggesting some differential basic neural mechanisms
for confidence encoding. Once acquired, cancelling out DecNef effects
was difficult (only 20% cancellation); this possibly requires more days
of induction. With such strong anterograde interference in the beha-
vioral results, the effects of DecNef may be best understood in terms of
reinforcement learning, likely akin to sensorimotor learning and
perceptual learning. These considerations may be particularly relevant
from a translational viewpoint and indicate that DecNef has great
potential for clinical applications, considering only two days of training
were sufficient for more than 80% of the learned change to be
maintained after a delay of one week.
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