
Title Measuring non-polyaminated lipocalin-2 for cardiometabolic risk
assessment

Author(s)
YANG, K; Deng, H; MAN, WC; SONG, E; Zhang, J; Luo, C;
Cheung, BMY; Yuen, KY; Jensen, PS; Irmukhamedov, A; Elie,
A.G.I.M; Vanhoutte, PMGR; Xu, A; De Mey, JGR; Wang, Y

Citation ESC Heart Failure, 2017

Issued Date 2017

URL http://hdl.handle.net/10722/242221

Rights This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/84930602?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Measuring non-polyaminated lipocalin-2 for
cardiometabolic risk assessment

Kangmin Yang1,2, Han-Bing Deng1,2†, Andy W.C. Man1,2, Erfei Song1,2, Jialiang Zhang3, Cuiting Luo1,2,
Bernard M.Y. Cheung3, Kwok-Yung Yuen4, Pia Søndergaard Jensen5, Akhmadjon Irmukhamedov6,
Atlanta G.I.M. Elie7, Paul M. Vanhoutte1,2, Aimin Xu1,3, Jo G.R. De Mey6,7 and Yu Wang1,2*

1State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; 2Department of Pharmacology and Pharmacy, The University of
Hong Kong, Hong Kong, China; 3Department of Medicine, The University of Hong Kong, Hong Kong, China; 4Department of Microbiology, The University of Hong Kong,
Hong Kong, China; 5Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark; 6Department of Cardiac, Thoracic and Vascular
Surgery, Odense University Hospital, Odense, Denmark; 7Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern
Denmark, Odense, Denmark

Abstract

Aims Lipocalin-2 is a pro-inflammatory molecule characterized by a highly diversified pattern of expression and structure–
functional relationships. In vivo, this molecule exists as multiple variants due to post-translational modifications and/or
protein–protein interactions. Lipocalin-2 is modified by polyamination, which enhances the clearance of this protein from
the circulation and prevents its excessive accumulation in tissues. On the other hand, animal studies suggest that non-
polyaminated lipocalin-2 (npLcn2) plays a causal role in the pathogenesis of obesity-associated medical complications. The
present study examined the presence of npLcn2 in samples from healthy volunteers or patients with cardiac abnormalities
and evaluated npLcn2 as a biomarker for cardiometabolic risk assessment.
Methods and results Immunoassays were developed to quantify npLcn2 in blood and urine samples collected from 100
volunteers (59 men and 41 women), or venous plasma and pericardial fluid samples obtained from 37 cardiothoracic surgery
patients. In healthy volunteers, npLcn2 levels in serum are significantly higher in obese and overweight than in lean subjects.
After adjustment for age, gender, smoking, and body mass index (BMI), serum npLcn2 levels are positively correlated with
heart rate, circulating triglycerides, high-sensitivity C-reactive protein (hsCRP), and creatinine in plasma. The npLcn2 levels
in urine are significantly increased in subjects with metabolic syndrome and positively correlated with BMI, heart rate,
circulating triglycerides, and urinary aldosterone. In cardiothoracic surgery patients, the circulating concentrations of npLcn2
are higher (more than two-fold) than those of healthy volunteers and positively correlated with the accumulation of this
protein in the pericardial fluid. Heart failure patients exhibit excessive expression and distribution of npLcn2 in mesothelial
cells and adipocytes of the parietal pericardium, which are significantly correlated with the elevated plasma levels of npLcn2,
total cholesterol, and creatinine.
Conclusions Quantitative and qualitative evaluation of npLcn2 in human biofluid samples and tissue samples can be applied
for risk assessment of healthy individuals and disease management of patients with obesity-related cardiometabolic and renal
complications.
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Introduction

Lipocalin-2 (also known as neutrophil gelatinase-associated
lipocalin, neu-related lipocalin, uterocalin, siderocalin, or

24p3) is an adipokine circulating in the bloodstream and
belongs to the lipocalin family, which functions as transporters
of lipophilic substances.1,2 Lipocalin-2 possesses unique
bacteriostatic properties by sequestering enterobactin3 and is
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implicated in cardiometabolic abnormalities associated with
obesity, including hypertension, type 2 diabetes, renal
injury, and heart failure.4–11 Circulating lipocalin-2 levels are
augmented in obese human subjects and positively correlated
with anthropometric metabolic variables including insulin
resistance index, hyperlipidaemia, hyperglycaemia, and
inflammation.11Micewithout lipocalin-2 are protected against
dietary or genetic obesity-induced endothelial dysfunction,
hypertension, insulin resistance, and elevation of circulating
lipid and glucose levels.4,9,10,12 Despite this information,
the pathophysiological role of lipocalin-2 remains largely
uncharacterized. In particular, there are disputes on the precise
type of cells in which the protein is expressed under both
physiological and pathological conditions.

Lipocalin-2 is post-translationally modified by
polyamination, which promotes the clearance of this protein
from the circulation.9 In animals fed with high-fat diet,
circulating levels of non-polyaminated lipocalin-2 (npLcn2)
are significantly increased and contribute to the development
of obesity-associated pathologies.9 Although pharmacological
interventions in mice suggest that treatment with npLcn2
causes vascular inflammation, endothelial dysfunction, and
hypertension, there lacks evidence from human studies to
support such a pathophysiological role in clinical settings. In
the present study, the antibodies and immunoassays
specifically recognizing npLcn2 were developed to analyse
its expression in different human samples and association
with various cardiometabolic risk factors.

Materials and methods

Human participants

The study was approved by the Institutional Review Board of
the University of Hong Kong/Hospital Authority Hong Kong
West Cluster (reference number UW 14-044) and performed
in accordance with the International Conference on
Harmonisation’s Guideline for Good Clinical Practice (ICH GCP)
guidelines, local regulations, and Hospital Authority and the
University policies to comply with the Declaration of Helsinki.
One hundred volunteers including 59 men and 41 women were
recruited fromHong Kong community inhabitants fromOctober
to December 2015. Informed written consent was obtained
from all subjects prior to their participation in the study. Criteria
of exclusion were pregnancy or lactation; alcohol intake within
the past 24 h; long-term drug treatment or medications taken
within 1 week prior to the study; and any known diagnoses
of hypertension, diabetes, dyslipidaemia, anaemia, coronary
heart disease, chronic obstructive pulmonary disease, asthma,
hepatitis, primary hyperaldosteronism, renal dysfunction, and
eczema. Anthropometric parameters [including age, body
mass index (BMI), waist circumference, heart rate, and systolic

and diastolic arterial blood pressures] were assessed by
standardized procedures. The healthy volunteer cohort
included 37 lean (BMI < 23 kg/m2), 27 overweight (BMI =
23–24.9 kg/m2), and 36 obese (BMI ≥ 25 kg/m2) individuals,
according to the Asia-Pacific guidelines of obesity
classification.13 In addition, 37 patients who underwent elective
coronary artery bypass grafting (26 subjects), valve replacement
surgery (six subjects), or both (five subjects) were recruited at
the Odense University Hospital for a study approved by the
Medical Ethics Committee of the Region of Southern Denmark
(S-20100044).14 The demographic and clinical characteristics
of all study subjects are summarized in Table 1.

Laboratory analyses

After overnight (10–12 h) fasting, serum, plasma, and urine
samples were collected between 8:00 a.m. and 10:00 a.m. for
theHongKongparticipants.Plasmasampleswerecollected from
Danish participants the day before surgery. Pericardial fluid and
biopsy from the parietal pericardium of the patients were
collected during the elective coronary artery bypass grafting or
cardiac valve replacement surgeries. Tissue biopsies were fixed
in neutral-buffered formalin for 48 h. All biofluid samples were
stored at �80°C. Fasting blood glucose was analysed using
Accu-Chek Advantage II Glucometer (Roche Diagnostics,
Mannheim, Germany). Triglycerides, total cholesterol (TC), high
density lipoprotein (HDL), and low density lipoprotein (LDL)
cholesterol levels in serum samples were analysed using
respective LiquiColor test kits from Stanbio Laboratory (Boerne,
TX,USA).Circulating lipid andhaemoglobinA1c (HbA1c) levels in
plasmacollected fromtheDanishpatientsweremeasuredat the
Odense University Hospital.14

Immunoassays

Serum or plasma concentrations of adiponectin, lipocalin-2,
high-sensitivityC-reactiveprotein (hsCRP),andfibroblastgrowth
factor 21 (FGF21) weremeasured using in-house enzyme-linked
immunosorbent assay (ELISA) kits (http://www.pharma.hku.hk/
sweb/antibody/ELISA.php) as described.15–22 Plasma and
urinary creatinine were measured using a commercial kit
according to the manufacturer’s instructions (ABCAM,
Cambridge, UK). The concentrations of haptoglobin and kidney
injury molecule-1 (KIM-1) in urine samples were determined by
ELISA kits purchased from Biovendor (Candler, NC, USA) and
R&DSystems (Minneapolis,MN,USA), respectively.Aldosterone
levels were determined in serum and urine samples using the
DetectX Aldosterone Enzyme Immunoassay kit (Cayman
Chemical, Ann Arbor, MI, USA). In brief, steroids were extracted
from 60 μL of serum with ethyl acetate, dried, and dissolved in
140 μL assay buffer, whereas 28 μL urine samples were diluted
five-fold with assay buffer. For measurement, 100 μL of serum
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extracts or urine dilutions was incubated with 50 μL solutions
containing DetectX aldosterone conjugate and antibodies in
coated 96 well plates overnight at 4°C. After washing with
phosphate-buffered saline (PBS) and adding the substrates for
30min, the reactions were terminated and the absorbance was
read at 450 nm using a plate reader (BioTek Instruments Inc.,
Winooski,VT, USA).

Antibody production and validation

Wild-type human lipocalin-2 is polyaminated.9 Replacing the
cysteine 87 residue by alanine (C87A) in human lipocalin-2
significantly reduces the amount of polyamines bound to the
protein.9 C87A exhibits a longer plasma half-life than did wild-
type human lipocalin-2 and induces vascular inflammation.9

Here, wild-type human lipocalin-2 and the C87A mutant were
expressed as His-tagged recombinant proteins and purified as
described.9,11 After the removal of endotoxin, the protein purity
was confirmed by sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE) and mass spectrometry analysis.
Polyclonal antibodies against human lipocalin-2 or C87A were
producedasdescribed.9,11The two typesofantibodies exhibited
different affinities topurifiedhuman lipocalin-2orC87Aprotein.
The antibody against C87A could barely recognize wild-type
human lipocalin-2 during immunoprecipitation (Figure S1). The
antibodies were subsequently purified by affinity
chromatography for testing in human urine samples. In brief,
after removing the sediments by centrifugation at 2000 g for
5 min, 100 mL urine samples were concentrated to 1 mL using
acentrifugalfilterconcentrator (Millipore®UFC900308Amicon®
Ultra-15 with 3000 Da nominal molecular weight limit). Fifteen
microlitres of the concentrated urine samples was separated
by SDS-PAGE, transferred to polyvinylidene difluoride

membranes, and incubated with antibodies against either
human lipocalin-2 or C87A. The immune-complexes were
detectedwith chemiluminescence reagents fromGEHealthcare
(Uppsala, Sweden). Both antibodies are able to detect lipocalin-
2, however, with different patterns of migration and abundance
(Figure S2). For immunoprecipitation, the concentrated urine
samples containing 500 μg proteins were diluted in 500 μL PBS,
pre-cleared with 50 μL protein A agarose beads slurry (Thermo
Fisher Scientific, Waltham, MA, USA), and then incubated
overnight with 2.5 μg of antibodies against either human
lipocalin-2 or C87A at 4°C under gentle agitation. Samples were
then incubated with 100 μL of 50% protein A agarose beads
slurry at room temperature for 2 h under rotary agitation. After
washing three times with PBS, the immune-complexes were
eluted with SDS-PAGE loading buffer for western blotting to
detect the amount of polyamines attached to the precipitated
lipocalin-2 using a specific antibody against spermidine
(ABCAM). Compared with the proteins precipitated by
antibodies against wild-type human lipocalin-2, the protein
precipitated by the antibodies against C87A contained a barely
detectable amount of polyamines (Figure S2B). Thus, the two
antibodies recognize polyaminated lipocalin-2 (pLcn2) and
npLcn2, respectively.

Development of sandwich ELISA

The sandwich ELISA for measurement of human lipocalin-2 or
pLcn2 has been reported.11,15,19 In addition, a sandwich ELISA
for npLcn2 measurement was established using unlabeled
and biotinylated C87A antibodies for coating and detection,
respectively. Biotinylation was performed with a kit from
Thermo Scientific™ Pierce™, and free biotin removed by
dialysis. The microtitre plate was pre-coated with 100 μL

Table 1 Characteristics of the study subjectsa

Parameters Hong Kong healthy volunteers Danish patients

Age (years) 48 ± 7 69 ± 9
Current/former/never smokers 9/9/82 5/7/25
BMI (kg/m2) 23.8 ± 2.7 28.7 ± 5.5
Waist circumference (cm) 82 ± 7 —

Heart rate 65 ± 8 —

SBP (mmHg) 117 ± 14 135 ± 21
DBP (mmHg) 74 ± 11 73 ± 13
FBG (mmol/L) 5.8 ± 0.7 —

Triglycerides (mmol/L) 1.7 ± 0.8 1.4 ± 0.6
TC (mmol/L) 5.4 ± 0.9 3.8 ± 0.9
HDL (mmol/L) 1.6 ± 0.2 1.1 ± 0.4
LDL (mmol/L) 3.5 ± 0.9 2.1 ± 0.9
Plasma creatinine (μmol/L) 52.5 ± 9.6 94.6 ± 30.1
Plasma hsCRP (mg/L) 2.1 (1.0–7.5) 3.9 (1.8–8.4)
Plasma FGF21 (ng/L) 81.7 (30.4–138.6) 134.2 (52.9–225.9)
Anti-hypertensive drugs — 78.3%
Statins — 56.7%
Anti-diabetic drugs — 29.7%
Left ventricular ejection fraction — 53 ± 8%

DBP, diastolic blood pressure; FBG, fasting blood glucose; FGF21, fibroblast growth factor 21.
aData are shown as means ± SD or median (interquartile range) when not normally distributed.
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unlabeled antibodies (2 μg/mL) overnight at 4°C and then
blocked with 100 μL of PBS containing 1% bovine serum
albumin (BSA) and 0.05% Tween-20 for 2 h at room
temperature. For measurement, 100 μL diluted (25-fold)
serum or non-diluted urine, or recombinant protein
standards was applied into each well of the coated ELISA
plates for 1 h incubation at room temperature, followed by
three washings and another hour of incubation with
biotinylated antibodies. The bound immunocomplexes were
detected with streptavidin-conjugated horseradish
peroxidase and substrates. The reactions were stopped
before measurement of the absorbance at 450 nm with a
plate reader (BioTek Instruments Inc.). The inter-assay and
intra-assay coefficients of variance were determined by
measuring six plasma samples from healthy subjects in a total
of five independent assays with duplicate determinations.

Immunohistochemistry

Formalin-fixed, paraffin-embedded tissue sections (5 μm of
thickness) were preheated at 60°C, deparaffinized, hydrated,
and then subjected for antigen retrieval in 0.01 M citrate
buffer (pH 6.0). The endogenous peroxidase activity was
quenched with 0.3% H2O2 for 15 min at room temperature.
After blocking with 5% BSA in PBS for 30 min at room
temperature, the tissue sections were incubated with anti-
human lipocalin-2 (5 μg/mL in PBS containing 5% BSA) or
anti-C87A (5 μg/mL in PBS containing 5% BSA) antibodies
overnight at 4°C. Anti-rabbit secondary antibodies (1:1000,
P0448; Dako, Glostrup, Denmark) were applied for 45 min
at room temperature, followed by colorimetric detection
with 3.30-diaminobenzidine. All sections were counterstained
with Mayer’s haematoxylin prior to analysis under a
microscope (BX51; Olympus, Tokyo, Japan) and with the
Olympus cellSens Entry imaging software, version 1.7.

Targeted disruption of murine Lcn2 gene

The flippase recognition target (FRT)-Neo-FRT-loxP (1898 bp)
was inserted in intron 1 and the loxP site located downstream
of exon 2 of LCN2 (ENSMUSG00000026822, http://www.
ensembl.org/index.html). Following selection, positive
embryonic stem clones were introduced into C57BL/6
blastocysts to produce chimeric mice, which were cross-bred
with C57BL/6J mice. The Lcn2-floxed mice were obtained and
subsequently crossed with the LysCre B6.129P2-Lyz2tm1(cre)
Ifo/Jmice from Jackson Laboratory (BarHarbor,ME,USA),which
expressed a Cre recombinase from the lysozyme M-encoding
locus. The myeloid lineage-specific lipocalin-2 knockout mice
(Lys-LKO) were produced and maintained on a C57BL/6J
background. Three sets of primers were used for genotyping.
Primer 1 (forward 50-AAATGCTTCTGTCCGTTTGC-30 and reverse

50-CGGCATCAACGTTTTCTTTT-30) was used for amplifying a
128 bp fragment of the Cre recombinase sequence. Primer 2
(forward 50-TGAATGAACTGCAGGACGAG-30 and reverse 50-
TGATGCTCTTCGTCCAGATCAT-30) and Primer 3 (forward 50-
GAGCGATCAGGTAGGACCCT-30 and reverse 50-CCTGCCCCGGA
ACTGCAAGA-30) were used for amplifying a 319 bp fragment of
the floxed LCN2 and a 437 bp fragment of wild-type LCN2,
respectively.

Neutrophil–mesothelial cell interactions

The human mesothelial cell line MeT-5A (ATCC® CRL-9444™)
was purchased from American Type Culture Collection (ATCC,
Manassas, VA, USA) and cultured in M199 medium. The
human primary mesothelial cells were purchased from Zen-
Bio (Zen-Bio Inc., Research Triangle Park, NC, USA) and
cultured in MSO-1 (Zen-Bio Inc.). After 48 h, the conditioned
media were collected for neutrophil cell incubation.
Neutrophils were harvested from lipocalin-2 general
knockout mice.9,10 In brief, bone marrow cells were flushed
out from femurs and tibias with Ca2+/Mg2+-free Hank’s
buffered saline solution supplemented with 20 mM Na-HEPES
(pH 7.4). The cell suspension was filtered with a 70 μm cell
strainer (Falcon #352350) and re-suspended for Percoll
density gradient separations. After centrifuging at 1600 g
for 30 min, neutrophils were collected between the layers
of 78%, 69%, and 52% Percoll and incubated with the
conditioned media for 4 h at 37°C prior to analyses.

Statistical analysis

All statistical calculations were performed with the IBM
(Chicago, IL, USA) SPSS version 21.0 software. Data were
expressed as means ± SD or medians with interquartile range,
as appropriate. The Kolmogorov–Smirnov test was used to
analyse the distribution of different variables. Natural
logarithmic transformation was applied for data with non-
normal distribution. The independent t-test was used for
comparison of continuous variables between two groups.
Partial Pearson correlations were used to establish the
relationship between variables of interest, with adjustment
for age and gender. A P value of less than 0.05 was used to
indicate a significant difference in all statistical comparisons.

Results

Gender differences

The levels of pLcn2 and npLcn2 in serum and urine samples
collected from the healthy volunteer cohort were analysed
using in-house ELISA kits (Table 2). The average concentrations
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of pLcn2 in serum were comparable with those in urine
samples, whereas the average concentrations of serum npLcn2
were higher (more than 25-fold) than those of urine npLcn2.
Consequently, the ratio pLcn2/npLcn2 was significantly lower
in serum than in urine samples. Both pLcn2 and npLcn2
concentrations were significantly lower in serum samples of
female participants than those of male subjects. However,
pLcn2 and npLcn2 levels in urine samples from female
subjects were higher (about five-fold and about two-fold,
respectively) than those from male subjects (Table 2). The
gender differences of pLcn2 and npLcn2 in serum and urine
samples remained significant after adjustment for BMI, waist
circumference, and smoking (data not shown). The
pLcn2/npLcn2 ratios were not significantly different between
men and women. There were no significant associations

between serum or urine concentrations of lipocalin-2 and
age, for both pLcn2 (P = 0.303 and 0.875, respectively) and
npLcn2 (P = 0.315 and 0.555, respectively). The 75th
percentile cut-off for serum and urinary lipocalin-2 levels in
the healthy volunteers were 121.4 and 106.0 ng/mL for
pLcn2, and 125.8 and 9.1 ng/mL for npLcn2, respectively
(Figure S3).

Obese subjects (27 men and 9 women) had significantly
higher serum pLcn2 (121.5 vs. 57.8 ng/mL) and npLcn2 (124.2
vs. 67.6 ng/mL) levels than lean subjects (Figure 1A). The
overweight subjects also showed significantly higher serum
npLcn2 levels (89.6 ng/mL) than did lean subjects. According
to the National Cholesterol Education Program criteria,23 the
subjects were grouped into those with zero, one, two, or three
risk factors of metabolic syndrome. Urinary npLcn2 levels were

Table 2 Lipocalin-2 concentrations in samples collected from male and female subjects of Hong Kong healthy volunteer cohorta

Total cohort (n = 100) Male (n = 59) Female (n = 41)

Age (years) — 48.2 ± 7.5 48.3 ± 7.2
BMI (kg/m2) — 24.7 ± 2.1* 22.7 ± 3.0
Waist circumference (cm) — 84.9 ± 5.4* 77.7 ± 8.0
Serum pLcn2 (ng/mL) 69.8 (42.3–126.4) 85.9 (48.0–139.7)* 54.2 (33.7–79.1)
Serum npLcn2 (ng/mL) 93.8 (63.1–143.3) 102.6 (69.6–162.0)* 81.5 (54.2–105.1)
Serum pLcn2/npLcn2 0.81 (0.6–1.0) 0.86 (0.7–1.1) 0.76 (0.6–0.9)
Urine pLcn2 (ng/mL) 60.8 (20.7–164.1) 30.6 (16.3–78.0)* 161.0 (35.4–341.4)
Urine npLcn2 (ng/mL) 3.7 (1.7–8.1) 3.0 (1.6–5.0)* 6.5 (3.0–13.5)
Urine pLcn2/npLcn2 13.76 (10.7–21.4) 13.03 (10.6–20.8) 15.5 (11.8–22.6)

BMI, body mass index; pLcn2, polyaminated lipocalin-2; npLcn2, non-polyaminated lipocalin-2.
aData are shown as means ± SD or median (interquartile range) values.
*P < 0.05 vs. female subjects.

Figure 1 Comparison of lipocalin-2 concentrations in serum and urine samples of Hong Kong healthy volunteer cohort. (A) The polyaminated lipocalin-
2 (pLcn2; left) and non-polyaminated lipocalin-2 (npLcn2; right) levels of serum (top) or urine (bottom) samples were measured and compared among
lean, overweight, and obese subjects as defined by the Asia-Pacific guidelines of obesity classification.13 (B) The pLcn2 (left) and npLcn2 (right) levels of
serum (top) or urine (bottom) samples were measured and compared among subjects with zero, one, two, and three risk factors of metabolic
syndrome. *P < 0.05 (n = 13–37).
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significantly increased in those with three risk factors
(13 subjects, five men, and eight women) (Figure 1B).

Correlation analysis for samples from healthy
volunteers

In samples from the healthy volunteer cohort, serum pLcn2
or npLcn2 levels were positively correlated with BMI, heart
rate, diastolic blood pressure, triglycerides, plasma hsCRP,
and creatinine but negatively correlated with circulating
concentrations of adiponectin, independently of age, gender,
and smoking (Table 3). After further adjustment for BMI, the

positive correlations between npLcn2 and heart rate,
triglycerides, hsCRP, or creatinine remained significant. The
serum pLcn2/npLcn2 ratios were negatively correlated with
TC (r = �0.299, P = 0.004) or adiponectin (r = �0.253,
P = 0.015), and positively correlated with hsCRP (r = 0.338,
P = 0.001), independently of age, gender, smoking, and BMI.

The concentrations of pLcn2 (P = 0.960) or npLcn2
(P = 0.312) in the urine were not significantly correlated with
those in serum samples. After adjustment for age, gender,
and smoking, urinary npLcn2 levels were positively correlated
with BMI, heart rate, and serum triglyceride concentrations
(Table 4). The correlations between urinary lipocalin-2 levels
and serum triglycerides remained significant after further

Table 3 Correlations between serum lipocalin-2 concentrations and study variables of Hong Kong healthy volunteer cohort

Serum pLcn2a Serum npLcn2a

rb rc Pb Pc rb rc Pb Pc

BMI 0.362 — <0.001 — 0.376 — <0.001 —

Waist circumference — — — — 0.236 — 0.020 —

Heart rate 0.248 — 0.016 — 0.287 0.214 0.004 0.036
SBP — — — — — — — —

DBP 0.201 — 0.052 — 0.240 — 0.018 —

FBG — — — — — — — —

Triglycerides 0.289 0.211 0.005 0.042 0.354 0.283 <0.001 0.005
TC — — — — — — — —

HDL — — — — — — — —

LDL — — — — — — — —

FGF21 — — — — — — — —

hsCRP 0.418 0.302 0.000 0.003 0.372 0.250 0.000 0.024
Plasma creatinine 0.221 — 0.029 — 0.269 0.244 0.008 0.017
Adiponectina �0.330 0.222 0.001 0.034 �0.297 — 0.003 —

BMI, body mass index; DBP, diastolic blood pressure; FBG, fasting blood glucose; FGF21, fibroblast growth factor 21; hsCRP, high-
sensitivity C-reactive protein; npLcn2, non-polyaminated lipocalin-2; pLcn2, polyaminated lipocalin-2; TC, total cholesterol.
aLogarithmic transformed before analysis.
bAdjusted for age, gender, and smoking.
cAdjusted for age, gender, smoking, and BMI.

Table 4 Correlations between urinary lipocalin-2 concentrations and study variables of Hong Kong healthy volunteer cohort

Urine pLcn2 Urine npLcn2

ra rb Pa Pb ra rb Pa Pb

BMI — — — — 0.214 — 0.018 —

Waist circumference 0.202 0.191 0.029 0.037 — — — —

Heart rate — — — — 0.167 — 0.051 —

SBP — — — — — — — —

DBP 0.175 — 0.050 — — — — —

FBG — — — — — — — —

Triglycerides 0.214 0.199 0.021 0.031 0.228 0.184 0.012 0.043
TC — — — — — — — —

HDL — — — — — — — —

LDL — — — — — — — —

Serum aldosterone — — — — — — — —

Urine aldosteronec 0.258 0.248 0.008 0.011 0.185 0.326 0.001 0.044
Urine KIM-1 [0.15 (0.02–0.47) ng/mL] — 0.317 — 0.001 — 0.186 — 0.034
Urine haptoglobin [6.3 (6.2–17.9) ng/mL] — — — — — — — —

Urine creatinine [5.0 (2.5–12.2) mmol/L] — — — — — — — —

BMI, body mass index; DBP, diastolic blood pressure; FBG, fasting blood glucose; KIM-1, kidney injury molecule-1; npLcn2, non-
polyaminated lipocalin-2; pLcn2, polyaminated lipocalin-2; TC, total cholesterol.
aAdjusted for age, gender, and smoking.
bAdjusted for age, gender, smoking, and BMI.
cLogarithmic transformed before analysis.
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adjustment for BMI. Both pLcn2 and npLcn2 in urine were
significantly correlated with KIM-1, a specific marker for
kidney injury.24 Urine samples contained a higher level
[1009.9 (482.5–2013.6) pg/mL] of aldosterone than did
serum samples [106.0 (77.7–131.3) pg/mL]. Aldosterone
levels in the urine were positively correlated with waist
circumference (r = 0.275, P = 0.023). The urinary pLcn2
(r = 0.248, P = 0.011) and npLcn2 (r = 0.185, P = 0.044) levels
were positively correlated with the concentrations of
aldosterone in the urine, independently of age, gender,
smoking, and BMI (Table 4).

Correlation analysis for samples from
cardiothoracic surgery patients

Among the 37 patients in the Danish cohort (31 male and six
female subjects), most had been prescribed
cholesterol-lowering, renin–angiotensin system inhibitory,
anti-hypertensive, and anti-diabetic medications.14 When
compared with those of the Hong Kong healthy volunteers,
the plasma pLcn2/npLcn2 ratios were reduced more than
four-fold, owing mainly to the increased npLcn2 levels
(Table 5). Both pLcn2 and npLcn2 were present in the
pericardial fluid samples of all patients, with a median ratio of
0.47 for pLcn2/npLcn2. The pLcn2 and npLcn2 levels in the
pericardial fluid samples correlated significantly with those in
the circulation (Table 5). Compared with those with left
ventricular ejection fraction (LVEF) over 50%, patients with
LVEF equal or below 50% showed a significant elevation of
npLcn2 in both plasma and pericardial fluid samples (Table 6).

Based on National Cholesterol Education Program
criteria,23 eight patients of the Danish cohort with two or
more components of metabolic syndrome had significantly
higher concentrations of npLcn2 levels, in both the plasma
(241.9 ± 54.2 ng/mL) and pericardial fluid samples
(56.3 ± 25.4 ng/mL), than the 15 subjects exhibiting none of
these components (180.8 ± 35.6 and 37.0 ± 9.6 ng/mL for
plasma and pericardial fluid, respectively); the npLcn2 levels
in other patients (n = 14) were 213.0 ± 51.6 and
49.5 ± 21.6 ng/mL, respectively (Figure 2). Positive
associations were found between plasma levels of npLcn2
and hsCRP (r = 0.359, P = 0.017) or FGF21 (r = 0.382,
P = 0.017). There were significant positive correlations of
plasma creatinine levels with pLcn2 (r = 0.404, P = 0.023) or
npLcn2 (r = 0.630, P ≤ 0.001) in pericardial fluid samples.

The presence and distribution of pLcn2 and npLcn2 were
analysed by immunohistochemical staining of the pericardial
tissue biopsies (Figure S4). While both pLcn2 and npLcn2
were detected in cells (referred to as leucocytes) located
within or close to blood or lymph vessels, their patterns of
distribution were significantly different when comparing the
staining images from adjacent sections. The number of
leucocytes containing pLcn2 was significantly less than that Ta
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with npLcn2. Moreover, no positive staining for pLcn2 was
found in cells of the paracardial adipose tissue and the
mesothelial cell layer.

Based on the distribution of npLcn2 protein, samples were
sorted into those with no or less than five positively stained
cells (Group I, n = 9), or more than five positively stained cells
(mainly leucocytes) (Group II, n = 11), and those with the
positive staining widely distributed in leucocytes, adipocytes,
and mesothelial cells (Group III, n = 12). Compared with those
in Groups I and II, patients in Group III exhibited the highest
npLcn2 levels in both plasma and pericardial fluid samples.
Among the 10 subjects with LVEF equal or below 50%, seven
were from Group III and showed massive expression and
distribution of npLcn2 in the pericardium. Compared with

Group I, plasma TC and creatinine concentrations were
significantly elevated in patients from both Groups II and III
(Figure 3). From Group I to Group III, the plasma HDL and
adiponectin levels progressively decreased, whereas the
circulating LDL and HbA1c levels gradually increased (Figure S5).
The pericardial fluid contents of hsCRP were the highest in
samples from Group III (1.7 mg/mL) when compared with
those in patients of the other two groups (0.9 and 1.1 mg/mL
in Groups I and II, respectively).

Protein uptake of lipocalin-2 by neutrophils

As shown in Figure 3, npLcn2 staining was not found in the
mesothelial cells or adipocytes of the pericardium in patient
samples of Groups I and II but mainly present in cells within
blood or lymphatic vessels. When patients exhibited two or
more components of the metabolic syndrome, npLcn2 was
detected in leucocytes of samples derived from both Groups
II and III. In addition, the latter group displayed excessive
expression and accumulation of npLcn2 in the mesothelial
cells and adipocytes of the pericardium (Figure 3 and Figure S5).
The results indicated a scavenger role of certain leucocytes in
eliminating the locally produced npLcn2.

To test the above hypothesis, cellular experiment was
performed to investigate the interactions between mesothelial

Table 6 Comparison of lipocalin-2 levels in plasma and pericardial
fluid samples of Danish patients according to cardiac function as
indicated by left ventricular ejection fractiona

LVEF > 50%
(n = 27)

LVEF ≤ 50%
(n = 10) P

Plasma pLcn2 32.2 (24.4–40.4) 48.8 (33.3–67.4) 0.090
Plasma npLcn2 176.1 (138.9–219.2) 214.1 (181.6–280.9) 0.038
Fluid pLcn2 16.7 (13.5–24.0) 25.1 (14.2–39.8) 0.138
Fluid npLcn2 36.2 (26.9–38.8) 56.3 (31.3–68.7) 0.029

LVEF, left ventricular ejection fraction; npLcn2, non-polyaminated
lipocalin-2; pLcn2, polyaminated lipocalin-2.
aData are shown as median (interquartile range) values.

Figure 2 Comparison of lipocalin-2 concentrations in plasma and pericardial fluid samples from Danish patients stratified by the number of the
components of metabolic syndrome. Both polyaminated lipocalin-2 (pLcn2; left) and non-polyaminated lipocalin-2 (npLcn2; right) levels were
measured and compared for the plasma (top) and pericardial fluid (bottom) samples of Danish patients. *P < 0.05 vs. the group with zero component
of metabolic syndrome (n = 8–15).

F3

8 K. Yang et al.

ESC Heart Failure (2017)
DOI: 10.1002/ehf2.12183



cells and neutrophils. Human lipocalin-2 protein was present
in the mesothelial Met-5A cells (Figure S6A). When cultured
in the control media, no positive signals for lipocalin-2 were
detected in neutrophils isolated from the bone marrow of
mice without lipocalin-2. However, positive staining of
lipocalin-2 was detected in ~20% neutrophils cultured in the
conditioned media from human primary mesothelial cells
(Figure S6B). To further confirm that neutrophils were
able to take up exogenous lipocalin-2, mice with selective
depletion of LCN2 gene in the myeloid lineage (Lys-LKO) were
established (Figure S6C). The mRNA expression of LCN2 was
absent in neutrophils isolated from Lys-LKO. However, the
protein presence of lipocalin-2 was readily detectable in
neutrophils isolated from both Lys-LKO and the control
Lcn2-floxed mice (Figure S6D).

Discussion

Human and murine lipocalin-2 are modified by
polyamination.9 The amount of polyamines attached to
lipocalin-2 determines its circulating half-life and biological
activity. Using antibodies specifically recognizing pLcn2 and
npLcn2, respectively, the present study demonstrated that
endogenous lipocalin-2 exists as both the polyaminated and
non-polyaminated forms in human samples including serum,

plasma, urine, pericardial fluid, and the parietal pericardium.
Compared with those of pLcn2, the expression and
distribution of npLcn2 are more sensitively correlated with
the risk factors for cardio-renal metabolic syndrome and
highly up-regulated in the parietal pericardium of patients
with heart failure. The study provided the first evidence to
support the existence of npLcn2 in human biofluid and tissue
samples. Compared with pLcn2, npLcn2 exhibited different
patterns of expression and distribution and was more
sensitively correlated with various anthropometric and
clinical parameters of cardiometabolic renal syndrome. The
levels of npLcn2 and the ratio of npLcn2 vs. pLcn2 could be
applied to stratify obese subjects with or without metabolic
syndrome, or human patients having or not a severe
condition of heart/renal failure. The study also supported
npLcn2 as a promising drug target for therapeutic
development in obesity-associated medical complications.

Under physiological conditions, lipocalin-2 is undetectable
or present at very low levels in the heart and kidney. In
response to injury, infection, or other pathological conditions,
increased lipocalin-2 expression is found in kidney, heart, liver,
colon, and breast tissues.25 The rapid rise of urinary lipocalin-2
is an early biomarker for acute renal failure, which occurs in
up to 40% of adults after cardiac surgery and complicates up
to 10% of cardiac surgical procedures in infants and children
with congenital heart disease.26,27 Only a few studies have
reported reference ranges of circulating and urinary

Figure 3 Expression and distribution of non-polyaminated lipocalin-2 (npLcn2) protein in the pericardium tissue biopsies collected from Danish
patients during cardiothoracic surgery. (A) Immunohistochemical staining was performed for pericardium tissue sections using polyclonal antibodies
against npLcn2. (B) Samples were stratified by the pattern of npLcn2 expression and distribution in pericardium tissue sections. Note that the average
left ventricular ejection fraction (LVEF) of patients in Group III was significantly lower than that of Groups I and II. Arrows indicate the positive staining
of npLcn2. A = adipocytes, M = mesothelial cells, and L = leucocytes. Magnification, ×200. (C) Based on the number of positively stained cells and the
distribution pattern, samples were separated into three groups for comparison of their lipocalin-2, total cholesterol, and plasma creatinine levels.
*P < 0.05 (n = 9–12).
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lipocalin-2 levels in normal subjects.27–29 To the best of the
authors’ knowledge, the present study is the first to report
urinary lipocalin-2 levels in a healthy cohort of subjects and
a non-hospitalized Chinese population. Urinary npLcn2 levels
are significantly augmented in subjects with metabolic
syndrome. The results also demonstrate a significantly
increased urinary lipocalin-2 but decreased circulating
lipocalin-2 in female subjects, when compared with male
subjects. It is not known whether or not the source of
lipocalin-2 production contributes to the gender differences.

Circulating lipocalin-2 is filtered in the kidney by the
glomeruli, while the protein is captured by the proximal
tubular epithelial cells.30,31 Thus, when injected into the
circulation, exogenous lipocalin-2 is enriched in the proximal
tubule but does not appear in the urine in large quantities.26

This is in line with the present findings that serum and
urinary lipocalin-2 levels are not significantly correlated with
each other in healthy human subjects. Lipocalin-2 in urine
represents a collection of different pools of the protein,
including those freely filtered into the tubular space, released
from injured tubular cells, and locally expressed and
excreted.32,33 In response to ischemic or nephrotoxic injury,
lipocalin-2 mRNA is expressed in the loop of Henle and the
collecting ducts.34 This locally synthesized lipocalin-2 is
unlikely to be introduced back into the circulation but
rather excreted into the urine.35 The plasma lipocalin-2
concentration increases progressively with the reduction of
glomerular filtration rate (GFR).27 Owing to impaired removal
of lipocalin-2 from the circulation, urinary lipocalin-2 may
represent mainly protein that is expressed/produced
locally.36 Thus, measurements of lipocalin-2 from different
sources have important clinical implications regarding disease
progression and treatment strategies. It would be interesting
to test whether or not npLcn2 in urine is produced mainly by
the injured tubular/ductal cells, whereas pLcn2 is derived
from the circulation via glomerular filtration, or vice versa.

Lipocalin-2 represents an important link between renal and
cardiovascular dysfunctions.37,38 It is a stronger predictor for
mortality than GFR and cystatin C in patients with heart
failure.39–41 Urinary lipocalin-2 in patients without kidney injury
decreases rapidly after cardiac surgery.42 Both urinary and
plasma lipocalin-2 levels are increased in patients with cardio-
renal syndrome types 1 and 2.6,43–46 These data collectively
suggest that high lipocalin-2 levels do not merely reflect
impaired renal function but may be related to the cardiac
abnormality per se. In fact, urinary and plasma lipocalin-2 levels
are positively associated with increased N-terminal pro-brain
natriuretic peptide, the New York Heart Association class, and
the left ventricular internal end-diastolic dimension in patients
with chronic heart failure.36,47 Plasma lipocalin-2 levels
correlate with heart failure severity and predict major adverse
cardiovascular events in critically ill patients.48 The present
study demonstrates that npLcn2 represents a more specific
marker for cardio-renal metabolic syndrome. In healthy

subjects, plasma npLcn2 levels are positively correlated with
heart rate, independent of age, gender, smoking, and BMI. In
cardiothoracic surgery patients, plasma and pericardial fluid
npLcn2 are elevated to a much higher level than pLcn2 and
positively correlated with the risk biomarkers such as hsCRP.
Importantly, npLcn2 is overexpressed in the pericardium of
patients with reduced LVEF, an indicator of heart failure. This
group (III) of patients have higher plasma levels of LDL, TC,
HbA1c, and creatinine and lower plasma levels of HDL and
adiponectin than Groups I and II.

The pericardium is a fibrous-serosal cavity surrounding the
heart that contains a small amount of fluid. A monolayer of
flattened, squamous-like mesothelial cells lines the inner
surface of the pericardial cavity and plays a role in absorbing
the pericardial fluid for drainage through the lymphatic
capillary bed. In addition to anatomic isolation and
lubrication of the moving surfaces of the heart, the normal
pericardium prevents cardiac hypertrophy in pressure
overload conditions and preserves the negative endothoracic
pressure for atrial filling.49 A significant amount of npLcn2 is
present in the pericardial fluid of patients with heart failure.
Histological studies confirmed the expression of npLcn2
protein in the mesothelial cells and the paracardial
adipocytes of these patients’ biopsies. In addition, about
two-thirds of the tissue sections contained npLcn2-positive
blood cells (leucocytes), which are mainly located within
venules or lymphatic vessels but not arterioles. Although
pLcn2 and npLcn2 were both detectable in the leucocytes,
their patterns of distribution differed significantly as judged
from the staining of adjacent tissue sections. The findings
suggest that leucocytes such as neutrophils or macrophages
act as scavengers to clear npLcn2 protein from the
pericardium. During this process, npLcn2 is polyaminated
inside the leucocytes and stored in the form of pLcn2 for
subsequent drainage and elimination. Thus, excessive
production and accumulation of npLcn2 in the pericardium
not only determine systemic lipocalin-2 levels but also play
a pathogenic role in the development of cardiac diseases.
Measurement of different forms of lipocalin-2, especially
npLcn2, could be clinically important for early detection, risk
stratification, and outcome prediction of patients with cardio-
renal abnormalities.

The present study has some limitations, including a
relatively low subject number, different pathophysiological
mechanisms, lack of longitudinal assessment, absence of
information concerning leucocyte counts or renal function
in the studied patients, and its observational nature. As a
retrospective single-centre analysis, selection bias may not
be excluded entirely. Additional research is needed in larger
and more diverse patient populations to further evaluate
and validate the present findings. Despite these limitations,
the present findings suggest that npLcn2 is a novel and
sensitive biomarker for cardiometabolic risk and cardio-renal
function assessment. Assays used in the present study are
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able to differentiate the pathophysiological expression of
pLcn2 and npLcn2 in human samples.
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Figure S1. Polyclonal antibodies against wild type human
lipocalin-2 or C87A selectively recognize different species
of lipocalin-2. Equal amount of purified wild type human
lipocalin-2 and C87A mutant were mixed in one test tube and
then incubated with 2 μg anti-human lipocalin-2 or anti-C87A
antibody for 6 hours at 4°C. Subsequently, 70 μL of protein A
sepharose bead slurry was added for immunoprecipitation. The
precipitated proteins were separated in 15% SDS-PAGE and
detected with anti-pLcn2 antibody.
Figure S2. Detection of polyaminated and non-polyaminated
lipocalin-2 in human urine samples. A, The concentrated urine
samples were separated by SDS-PAGE (15 μL/lane) and then
subjected toWestern blotting detection by polyclonal antibodies
against pLcn2 (anti-pLcn2) or npLcn2 (anti-npLcn2). B,
Immunoprecipitation (ip) was performed in two of the nine urine
samples using anti-pLcn2 and anti-npLcn2, respectively.

Polyamines attached to the precipitated lipocalin-2 protein were
detected using antibodies recognizing spermidine.
Figure S3. Frequency distribution of serum (top) and urine
(bottom) lipocalin-2 concentrations for samples of the Hong
Kong healthy volunteer cohort. The 95th and 75th percentile
values are indicated for both pLcn2 (left) and npLcn2 (right)
levels.
Figure S4. Representative images of tissue sections stained by
polyclonal antibodies against pLcn2 (left) or npLcn2 (right). The
parietal pericardium tissue biopsies were collected from Danish
patients during cardiothoracic surgery and subsequently
processed for immunohistological analyses. Arrows indicate the
different types of cells with pLcn2 or npLcn2 positive staining
(brown color). A=Adipocytes, M=Mesothelial cells,
L=Leukocytes.
Figure S5. Comparison of cardiometabolic parameters among
the three groups of samples. Based on the number of
positively stained cells and the distribution pattern of npLcn2
(Figure 3), samples from Danish patient cohort were separated
into three groups for comparison of their HDL, LDL, HbA1c and
plasma adiponectin levels. (n = 9–12).
Figure S6. Neutrophil uptake of lipocalin-2 protein. A, Protein
expression of human lipocalin-2 (arrow head) was detected by
Western blotting in the cell lysates (10 μg total protein) collected
from Met-5A cultures. Purified pLcn2 protein (2 μg/lane) was
loaded at the left for comparison. B, Neutrophils isolated from
mice without lipocalin-2 were incubated with the control (top)
or conditioned (bottom) media collected from human primary
mesothelial cell cultures. Immunofluorescence was performed
to detect the protein content of human lipocalin-2 (red) inside
the neutrophils. Nuclei were counterstained by DAPI (blue).
Magnification, 400×. C, Genotyping was performed using the
three sets of primers to identify Lcn2-floxed and Lys-LKO mice.
Mice with a positive product of Primer 1 and 2 were selected
as Lys-LKO mice. The control Lys-floxed mice had only the
positive band of 319 bp amplified by Primer 2. D, Neutrophils
isolated from Lcn2-floxed and Lys-KO mice were subjected to
quantitative PCR analysis to detect mRNA expression of
lipocalin-2 (top) or Western blotting (bottom) to detect the
presence of lipocalin-2 protein.
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