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Abstract In this paper. the extended layerwise method (XLWM), which was
developed for laminated composite beams with multiple delaminations and
transverse cracks [1], is extended to laminated composite plates. The strong
and weak discontinuous functions along the thickness direction are adopted
to simulate multiple delaminations and interlaminar interfaces, respectively,
whilst transverse cracks are modeled by the extended finite element method
(XFEM). The interaction integral method and maximum circumferential ten-
sile criterion arc used to calculate the stress intensity factor (SIF) and crack
growth angle, respectively. The XLWM for laminated composite plates can ac-
curately predicts the displacement and stress fields near the crack tips and de-
lamination fronts. The thickness distribution of SIF and thus the crack growth
angles in different layers can be obtained. These information cannot be predict-
ed by using other existing shell elements enriched by XFEM. Several numerical
examples are studied to demonstrate the capabilities of the XLWM in static
response analyses, SIF calculations and crack growth predictions.
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Highlight:

1. XLWM can accurately predict the displacement and stress fields of the
crack tip and delamination front in laminated composite plates;

2. The thickness distribution of the SIF can bhe calculated and the predicted
crack growth angles are different for each mathematic layer;

3. When these nodes are very close to the crack surface as the crack grows,
the present local remeshing scheme can shift these nodes without scarifying
the mesh quality.

1 Introduction

Due to the outstanding designability, high strength/stiffness-to-weight ratio
and excellent resistance to fatigue and corrosion, carbon fiber reinforced poly-
mer matrix composites have been increasingly applied in various fields. Under
different loading conditions, the layered and orthotropic characteristics would
result in different failure modes in the composites. In general, failure modes
of composites include delamination, matrix cracking, fibre breakage and fi-
bre/matrix debonding whilst the first two modes are dominating due to the
high tensile strength of the fiber. For instance, fiber breakage is generally very
limited and confined to the region under and near the contact area between
the impactor and composite laminates in low velocity impact of laminated
composite structures [2]. To model matrix cracks and dclaminations, damage
mechanics and fracture mechanics were usually used [3-10]. Although there
are a lot of investigations on the static response, free vibration and buckling
of laminated composite structures with delaminations or matrix cracks, only
a few of them consider multiple delaminations and matrix cracks [11-15].

For problems with material and geometric discontinuities, the extended fi-
nite element method (XFEM) was developed based on the conventional FEM
and the concept of partition of unity [16-20]. This method was generalized to
model transverse cracks and crack growth in plates and shell [21-24]. Later on,
it was extended to the delamination and in-planc crack of composite structures.
Remmers [25] presented a new finite element method for simulating delami-
nation growth in thin-layered composite structures based on a solid-like shell
element and the partition-of-unity property of the element shape function-
s. For the problem of interfacial cracks between dissimilar materials, XFEM
was cxtended by using the orthotropic enrichment functions [26]. Hettich and
Ramm [27] carried out a detailed geometric modeling of multi-phase materials
and a local mechanical modeling of material interfaces and interfacial failure
for multi-phase materials. The mechanical modeling of material interfaces and
interfacial cracks is accomplished by XFEM without any crack tip enrichment.
Nagashima and Suemasu [28] applied XFEM to stress analysis of delaminated
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composite plate. To model the delamination, nodes on above and below the de-
lamination were cnriched. Curicl Sosa and Karapurath [29] applicd the XFEM
to simulating delamination in the fibre metal laminates. Their study considered
a double cantilever plate with mode I crack. Development of the orthotropic
crack-tip enrichment functions for the composite materials are reported in a
series of works [30-32]. Motamedi and Mohammadi [33,34] studied the dynam-
ic crack stability and propagation in composites based on static and dynamic
orthotropic crack-tip enrichment functions. Although, remarkable progress on
the application of XFEM in composite damages analysis has been achieved in
the last decade, two important aspects should be improved. Firstly, existing
shell elements methods enriched by XFEM can only deal with the through-
thickness cracks yet many the matrix cracks are restricted to the single layers
around the impact contact zonc[2]. Sccondly, the existing shell clements cn-
riched by XFEM were applied to model either cracks or delaminations. No
work has been reported for the typical damage pattern which include matrix
cracks and delaminations simultaneously. In particular, the damage zone in-
duced by low velocity impact contains complex three-dimensional cracks with
layered characteristics. Since it is very difficult to apply XFEM dircctly to dcal
with complex three-dimensional crack, one cannot just rely on XFEM to solve
this complex problem.

Recently, the Heaviside step-function was introduced into the displacement
field along the thickness direction for modeling the delamination [35-40]. In
those methods, the delaminations were modeled by jump discontinuous condi-
tions across the interlaminar interfaces. Thus, the displacements on adjacent
layers remain independent, allowing for separation and slippage.

Therefore,if the transverse cracks are perpendicular to each layer, one can
convert the complex three-dimensional damage with layered characteristics to
two two-dimensional cracks (delaminations and transverse cracks) by using
an appropriate displacement assumption along thickness direction. Hence, the
multiple delaminations can be simulated by the jump discontinuous functions
in the thickness direction and the in-plane transverse cracks inside each ply
can be modcled independently by XFEM.

The displacement field employed in Layerwise theories can be used to cal-
culate the three-dimensional stresses and strains of each mathematical layer.
Particularly, the finite element model of the displacement-based full layerwise
theory of Reddy is equivalent to the displaccment-based 3D continuum finite
element model [41]. Thus, it would be suitable to simulate the complex three-
dimensional crack with layered characteristics by combining with XFEM. In
our previous work [1], an extended layerwise method (XLWM) was develope-
d by using the layerwise theory and XFEM for laminated composite beams
with multiple dclaminations and transverse cracks. In the displacement ficld
of XLWM, the nodes in the thickness direction are located at the mid-surface
of each layer. top surface and bottom surface of whole composite beams. The
displacement field contains the linear Lagrange interpolation functions, the
one-dimensional weak discontinuous function and strong discontinuous func-
tion. The strong and weak discontinuous functions are applied to model the
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displacement discontinuity induced by delaminations and the strain disconti-
nuity induced by the interlaminar interface, respectively. Because the nodes in
the thickness direction are located at the mid-surface of each layer, the XLWM
can be conveniently employed to deal with the transverse cracks.

In the present work, the XLWNM is extended to the laminated composite
plates for static responses analysis, SIF calculation and transverse crack ar-
bitrary growth prediction. The rest of this paper is organized as follows. In
the next section, the displacement field for the laminated composite plates is
introduced. The in-plane displacement approximation used to model the lam-
inated composite plate with multiple delaminations and/or transverse cracks
as well as the level set function and the crack-tip enrichment functions used
to represent the transverse cracks are described. In Sections 3 and 4, the
Hamilton’s principle, Euler-Lagrange equations and constitutive equations are
established for the XLWM of laminated composite plates. The governing e-
quations for laminated plates with multiple delaminations and/or transverse
cracks are developed in Section 5. The SIF calculation method and transverse
crack propagation criterion are presented in Section 6. As the transverse crack
grows, some nodes would be very close to the crack surface. In this light, a
local remeshing scheme will be presented in Section 7. In Section 8, several
numerical examples for demonstrating the capability of the XLWM in static
responses analysis, SIF calculation and crack arbitrary growth predication arc
presented. Conclusions are drawn in Section 9.

2 Displacements field and in-plane displacements discretization
2.1 Displacements field

In our previous work [1], in order to model the displacement discontinuity
of delaminations based on the strong discontinuous functions, nodes along
the thickness direction are placed at the top surface, bottom surface and mid-
surface of each layer. This node distribution is also necessary for the simulation
of transverse cracks. However, the weak discontinuous function is needed in
this displacement field to model the strain discontinuity resulted from the
interlaminar interfaces.

For plate with multiple delaminations, the displacements field is similar to
that in our previous work [1], see Figure 1. In the Figure, hy is the thickness of
the k-th layer and zj is the thickness coordinate of the interface between k-th
layer and (k — 1)-th layer, the numbers on the left side denote the nodes along
the thickness direction, the numbers on the right side denote the interfaces
between the N layers in the plate.

The present layerwise concept is very general in the sense that the number
of mathematical layers can be greater than, equal to or less than the number
of the material layers. Within a mathematical layer, the material is homoge-
neous. Adjacent material layers of the same fiber angle may be more efficiently
modelled as a single mathematical layer. On the other hand, a material lay-
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er can be modelled by multiple mathematical layers for higher resolution, if
nccessary. Figure 1 shows that the numbers of the nodal frecedoms and the
nodeless freedoms for interfaces are N + 2 and N, respectively.
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z Interface, top and bottom enrich freedoms of interfaces and
------ Delamination enrich freedoms of delaminations

Fig. 1 A N-ply composite plates with multiple delaminations

The displacements at point (z, y, 2z) in the composite laminated plate with
multiple delaminations can be expressed as

N+2 Np N+1
'U,O,(.'L‘, Y, z, t) - Z 78 (z)uaik(wa Y, t) + Z Ek(z)ualk(w: Y, t) + Z @k(z)umrk(wa Y, t)
k=1 k=1 k=2

(1)
where Np is the number of nodes to be enriched for modelling the delamina-
tions; @ = 1, 2, 3 denotes the components in the z, y and z directions; wek,
Uaik and g arc the nodal freedom, the additional nodal freedom to model
displacements discontinuity induced by delaminations and the additional nodal
freedom to model strains discontinuity induced by interface between the layers,
respectively; the subscripts ¢, [ and r denote the standard nodal freedom, the
additional nodal freedom for delaminations and the additional nodal freedom
for interfaces, respectively; ¢y is the lincar Lagrange interpolation functions
along the thickness direction of the laminated composite plate, see Figure 2(a):
O = ¢r(2)xr(2) is the weak discontinuous shape function used to model the
strains discontinuity in the interface between the layers (see Figure 2(b)) and
Xk (2) is the one-dimensional signed distance function; Sy = ¢ (2)Hi(2) is the
shape function used to model delaminations and Hy(z) is the one-dimensional
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Heaviside function, see Figure 2(c). The detailed expressions of ¢y, O and
Z}% can be found in the Appendix A. Therefore, in the proposed XLWM, the
nodal freedoms are located at the top surface, bottom surface and mid-surface
of each mathematical layer. The additional nodal freedoms to model strains
discontinuity are located at the mid-surface of each mathematical layer. The
additional nodal freedoms to model displacements discontinuity induced by
delaminations are located at the mid-surface of the mathematical layers near-
by the delamination. The location of the freedoms also can be found in Figure
1.

1.0 0.5 1.0

——node £
0.8 0.4 0.5 —=---node k-1
0.6 0.3 !
0.4 0.2 node k-1 ! ,/node k
0.2 0.1 05{ //
e

nodc k-1 node & node k+1 node k-1 node k nodek+1 10 v

(a) (®) (c)

Fig. 2 Shape functions in the displacement field. (a) ¢x; (b) O = dx(2)xx(2) ; (c) Zf =

Let
Dit, = dr(2), Pu. = Zk(2), Pri = Ok(2) (2)
Using the Einstein summation convention for repeated indexes, Eq.(1) can be
expressed as

ua(w,y,z,t) - Qi(k(z)/ua(k(waytt)a C - ia la r (3)

where k € [1, N + 2],[1, Np] and [2, N + 1] for { = ¢,1 and 7, respectively.
If there is no delaminations, the displacement field can be simplified to

ua(2,y,2,1) = Pep(2)uack(z. y,t), (=1, 7 (4)

In the displacement-based full layerwise theory of Reddy [41], the layer-
wise continuous functions, such as the one-dimensional Lagrange interpolation
functions along the thickness direction, are used to develop the displacement
field of the laminated composite structures. In the present displacement field,
the nodes along the thickness direction arc located at the upper surface and
bottom surface and mid-surfaces of each layer. The displacement components
are continuous along the thickness direction but the derivatives of the displace-
ments (strains) are discontinuous at the interfaces. Therefore, the displacement
field present here is an improvement and extension to the Reddy’s theory.

2.2 In-plane displacements discretization

The basic idea of the XLWM is to convert a complex 3D fracture problem to
two 2D fracture problem (two 1D fracture problem for composite beams [1]).
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For the laminated composite plate with multiple delaminations and transverse
cracks, the nodal displacements (uq;x) and the addition freedoms (wak, Uark)
are expressed over each element as a linear combination of the Lagrange inter-
polation, the discontinuous enrichment and the crack-tip enrichment functions
as
Ualk (iE, Y, t) = ’(/Jm(fB, y)UaCk7n(t) + A (:I?, y)UOé§ks (t) + I, (CC, y>U0lehb (t)( )
5

where m = 1,--- , Ng: and Ng is the number of the in-plane finite element
nodes; s = 1,-++ , NZ, and N is the number of in-planc nodes which arc
enriched by the discontinuity of in-plane transverse cracks; hy = 1,--- ,N}i—?;

and Ng is the number of in-plane nodes which are enriched by the in-plane
transverse crack tips; b= 1,--- , N¥; and N is the number of the crack-tip
enrichment functions; Ua@m is the freedoms of the standard nodes; Ua(ks
is the addition freedoms introduced by the transverse cracks; and Uag‘kh}, is
the addition freedoms introduced by the transverse crack tips; ¥, (z,y) is the
two-dimensional Lagrange interpolation function; A, = 1, (z, y) FH (z,y) is the
shape function used to model in-plane cracks and F(z,y) is the Heaviside
function; Iy, = ¥n(x,y)Fy, (z,y) is the shape function used to model trans-
verse crack tips and the enrichment function Fj, (x,y) will be introduced in
Section 2.4.

Becausc of the nodes along the thickness dircction arc located at the mid-
surface of each ply, the tip of mathematic transverse crack is located at the
mid-surface, instead of the interface, as shown in our previous investigations
[1]. To truly simulate the tip of real crack, we had presented a scheme based
on the concept of sublaminates.

For the laminated composite plate without transverse cracks, the nodal
displacements and the addition freedoms in the XLWM can be expressed over
each element as a linear combination of the Lagrange interpolation function
Y, as follows

Uocgk(x:yvt) = ¢m(xvy)UOéCkm(t) (6)

2.3 Level set representation of cracks

The level set method (LSM) [42,43], which is a numcrical technique for track-
ing the motion of discontinuous interfaces, is employed here to track the in-
terfaces resulted from the transverse cracks. The crack faces are represented
by level curve ¥(a,t) = 0. The crack tips are represented by the intersection
of ¢(x,t) = 0 and ¢;(x,t) = 0 where ¢; are also level set functions, and each
i denotes a different crack tip.

The initial conditions of the level curve v can be defined as the signed-
distance to the crack face

Y@ t=0)=% min oo 7

~
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where 7(t) represents the crack face.
Similarly, the the level curve ¢; can be constructed by the signed-distance
of the line orthogonal to crack at its tips, namely

Oi(@,t) = (z — ;) - (8)

where @; is the location of the i-th crack tip. ¢ is the unit vector tangent to
the crack at its tip.
Therefore, the crack can be represented by multiple level set functions as

{z: ¢(x,t) = 0and ¢;(x, t) <0} (9)

where the level sets 9» = 0 and ¢; = 0 are forced to be orthogonal at their
intersection point.

2.4 Enrichment functions

The enrichment function used to model in-plane cracks is constructed by the
Heaviside function
1, oY(x,t)>0

H _
Fo(w) = {1, G(m,t) <0 1o

All laminae are orthotropic, so the near-tip functions Fj, must span from
the displacement fields derived for orthotropic materials. According to Asad-
poure and Mohammadi [30,32], Fj, can be taken as [32,31,30,44]

0 09
Iy = \/rcos 51\/91 (0), F» = ﬁCOS§vgz (6),
Fy = Jrsin 2 \/ar (0). By = rsin 2/0, 0)

where

g; (0) = \/(cose + 87 sin 6)* + (s, 8i16)
Sjysind ) g =12 (12)

0; = arctan | ———————
! <0089 + 8jzsiné

sj» and sj, are the real and imaginary components of the roots of the char-
acteristic equation derived by substituting the Airy stress function into the
compatibility cquation of anisotropic solids free of body force[44].

For the isotropic plates, F}, should be taken as

6 6
F = \/77(:055, F = \/?sinecosi,
5 0 (13)
Fy = \/Fsini, F, = \/?sinesin§
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3 Hamilton’s principle and Euler-Lagrange equations

Substituting the displacements in Eq.(3) into the strain-displacement relatiou-
ship results in

Euw = PekUickw  Ewy = PerUick,y + Pektack,«
yy = PerUack,y  Eyz = Pek,zUack + Pertisck,y (14)

€zz = Prk Usck  Epz = Pk zUick + Pcktack,o

Thus, the virtual strain energy is given by

H/2
oU = / / (Ogr0€an + Oyydeyy + 0-20€., + Opydeay + 0y=0ey. + 0420, ) dzdady
H/2

= / (Ngk(mrl(k,x + Ngg(SUl(hy + ng}iéul(k + Néjk(SUQCk,y + Ngg(SuQ(k?er
2

Qlpousck + N duscr,y + N Ouscr, + Qipouscr)dady

(15)
where the stress resultants are
H/2
(NgkaCkag]ngg]jaN ) /H/2 (Uzzzo-yyyo-wy:o'yzyo'zz)djﬁkd37

(16)

H/2
(nga Qyz Q%]z) = / (0-7.27 Oyzy O—x,‘:) ¢Ck,zdz

—H/2

The virtual work done by the external forces is given by
H H
W = | lan(y, t)dus(y, = 1) + a(y, t)dus(y, 7 1)) dedy+
Q

H/2
/ / (Grn Oty + GpsOtts + Gnrous) dzdl
H/2

:/ (qb()‘ué\r+2 + qtéué) dzdy + / ( CRroutey + N”Séum + Q§A5U3§k) dr
Q

(17)
where g, and g; are the distributed force at the bottom surface (z = —H/2) and
top surface (z = H/2) of the laminated plate, respectively; H is the thickness
of the composite laminated plates. &,,.,, 0.5 and &,,, are the stresses at the
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boundary I'. NMoreover,
B H/2
Ngkn 2/ 5’nn¢(kd2’,
—_H/2

_ H/2
N:]; = / 6’!L5¢dez7 (18)
—H/2

B H/2
QZ}; - / 5—n,z¢(kdz
H/2

are the boundary stress resultants and
Uy = U1ckTa + UackNy )
“igk = —ULCkTLy T UockMy

are the normal and tangential displacements at boundary.
The virtual kinetic energy is given by

H/2
SM = / / po (i1 + 128z + igSits) d=drdy
2J_m/2
(20)

:/ (Ignkealne(sulgk + I§nkeu2ne5u2§k + Ignkeu3ne(5a3gk) dJ?d?J
N

where
H/2
Ignke :/ P()@Qk@nedz (21)
—H/2
Substituting Eq.(15), (17) and (20) into the Hamilton’s principle
(22)

T
/ (5U — 6W — 6M)dt = 0
J0

and integrating by parts lead to the following Fuler-Lagrange equations

5“1Ck :Ngk,m + Nglg,y - sz - Ignkeﬁ'lne

(5U2Ck Né}ky + Nglé},z - ZJ]; = Iﬁnkeﬂ2'r]e (23)
5u3Ck Né’]jy + gg,z - QZ}? + qb5]]€v+2 + th‘/i = I(r/keu?ﬂ/e
with the natural boundary conditions
Surer : NZ— NI =0
(24)

Suger + NZs — NI =0
6U3<k : ng — ng =0
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In Eq.(23), 69 and 6, *" are the Kronecker delta and

Ngg' = NGna + Nmy Ty
Ngg = Ngny + Niin,

e = Ny + N&ina (25)
N(k = ch Ng — N(k”y

Ngg = Ngny + N,

4 Constitutive equations

The constitutive law of the u-th layer in the composite laminate with respect
to the global z-y-z coordinate system is

Ozx w) CiCi2Cis 0 0 Cig ) Eox v

Oyy 012 ng ng 0 0 026 Eyy
Oz _ | CisCa3 Cy3 0 0 Csg Ezz (26)
Oyz 0 0 0 044 045 0 Eyz
Orz 0 0 0 045 C55 0 Erz
Oy Ci6 Co6 C36 0 0 Chg Ey

Invoking the constitutive equation in Eq.(26), the force resultants in Eq.(16)
can be expressed in terms of the displacements as

A3
11(77ke? 12§77Ae? AlSane? 16§nke Ulpe,r+

(Mg N8 Q7 NEY) =

Alsenber Absenker Aecnke Abecnke) (Uine.y + Uzne,z) +
(3
A 12¢nke> ZQC’I]]\,€7 A23§77k67 7()gnke) U2ne, y+

=

A4
3(17km 23§77k€7 A33§77k€7 36ane’ Usne

z 2
< éllz’ ng’ Ck’ ) (A 5¢nkes 40(1[ke7 A55(1[ke7 55¢nke u1775+
(A3 5(17&07A45(17kch55(17kcv 55(77kc Une,zt

)

A% L4cnke A44§7]k67 A4o§nke7 A4o§nke) Uznet
)
)

1
44(77A67 44(77A67A45(77k67 45§77Ae U3ne,y
(27)
2 3 4
where the laminate stiffness coefficients Al pacnker Angcnkes Apgcnkes qugnkn
are given in terms of modified elastic constants and the through-thickness
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interpolation polynomials as

HY:

2
Al , P O\, dz.

pgCnke =

qunkv / S’”C gp cdz.

qunke / éﬁk ne.zdz:

H/2
= / Pk, C(H)@ne,:dzr
_H/2

4
qu("/ke

5 Finite element formulation

5.1 Finite element formulation for laminated plates with multiple
delaminations

Substituting Eq.(6) into Eq.(22), the finite element formulation for the static
laminated composite plate with multiple delaminations can be expressed as

I(n,ﬁf{nkemn Uﬁr]en - F(y(km (29)

where m,n = 1,--- , Ng; The contraction of tensor is used inhere, for example,
the index pairs a, 8 in matrix K contract with the index (5, so the index «
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remain of vector F'; K,g¢ykemn is the element stiffness matrix given by

Kii¢nkenm :wm,xA%1crr/ke?/)'n,w + QL"/:L,wA%G(nkJ/’n,y + Q/JHL,!/A%G('qkeT/"n,w"i'
Uy AocareUny + UmAsscnreUn

Kio¢nkemn :1/’m,rA%2§nkpwn,y + ﬂ’m,mA%ngkpwn,m + wm,yA%(sgnknwn,ﬁ

A4
wm,yAéﬁc,]keq/)n,m + q/)mA45C1]ke¢n+

KrlSanemn :wm,mA%?,gnkeq/}n + "L"m,yAgﬁgnkeqL’n + "/)mAi5§nke'¢)n,y + '(/)mAgE;gnkewn,z

1 1 1
KQl(nkemn :wm,yAlzgnkewn,m + Q/Jm,zAl(;gnkewn,z + w7n,yA2(;<nk@wn,y+
) Al W b AL b = K
lpm,m 66¢nke Y1,y + l/)m 45¢nke¥n — 12¢{nkemn
- 1 1 1
K22(nkemn :wm,yA22Cr,]k-e¢n,y + /IL"'NL,;UA26Cr,/keq//‘n,w + /l//“IIL,:l}AQGCV]keT/J’IL,y—i_

1 4
¢m,m*’466gnkew71,z + 7/)17114440]]@@7/}11

KZS(nk,(’mn :wm,yAgi’)(nknwn =+ wm-,mAgﬁgnknwn + wm,Aixnkewmm + wmAilgnknwmy

g 3 3 2 2
KSlOlkemn :wmA13§7,keq/)n,w + 7/}'rrLA36<y,ke7/Jn,y + wm,yA45(7,keq/}n + 1/JHL,.’L‘A55C7IA;5’[/1’IL

:I\,13C7]kemn

K32<77k5m” :#}mA%Sancwnyy =+ wmA§6ancwny-T + wM,yA?M(nkcwn + w"LyEA?lS(nkcwn

:I(Z-‘S(nkemn
- 1 1 :
Ks3s¢nkemn :¢’m,yA44§nke¢n,y + ¢’m,yA45§nke¢n,w+

¢m,zA}15gnkewn,y + wm,zA.%F,gnkewn,z + wmAﬁzggnkewn
(30)

5.2 Finite element formulation for laminated plates with multiple
delaminations and transverse cracks

The finite element formulation for the static laminated composite plate with
multiple delaminations and matrix cracks is obtained by substituting Eq.(5)
into Eq.(22), as

KY(,Y,GC’I]]S'GH/LUBT]GL = LacCkr (31)
where kK = m,s,hy; ¢t = n,g, fp; myn = 1.2,--- Ng; s,g = 1,--- JVE;
hp, fo =1, - ,Ng; b =1,2,3,4. The submatrices in Eq.(31) have the same
form with the element stiffness matrix of the XLWM for the laminated com-
posite plates Eq.(29). In Eq.(31), the index pairs (m,n), (s,g) and (hy, f5)
correspond to the shape functions ¢, A and II, respectively. So, the entries
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of Kugenkere can be obtained by replacing the shape functions ) in Eq.(30)
with the shape functions corresponding to the index pairs (m,n), (s,g) and
(ha, f»), for example

Kiignkemg = "Z’m,mAh(nkeAg,m + "/’mwA%egnkeAg,y + ’¢m,yA16ancAg,m
1 A4
+w7”-yA66Cr]keA9-y + wmA55C7/k‘eA9
Kuiecnkem sy, = Ymae Alicnpe Ly + Umoa Alscre Ly + YmyArecnke I f, o

+1/’m7yA1156<nkeru7y + q/)mAnggnkerb

(32)

For the laminated composite plate with multiple delaminations and trans-

verse cracks, it can be scen from Eqs.(31) that the clement stiffness matrix

is composed of nine submatrixes. Kogcnkemn is the submatrix of the nodal

freedoms whilst Kapgcnkesg and Kagenkeh, f, are the submatrices of the addi-

tional nodal freedoms for delaminations and transverse cracks, respectively.

On the other hand, Kqog¢nkemgs Kapenkems, and Kogenkes s, are the coupling
submatrixcs.

6 SIF calculation and crack propagation criterion of the isotropic
and orthotropic plates

6.1 SIF calculation

SIF is one of the most important parameters characterizing the crack tip stress
field. In XFEM, SIF is usually computed by using the interaction integral
method. Kim and Paulino[45] presented a domain integral method for the
mix SIF of orthotropic materials. The method has been applied to the SIF
calculation of composite structures in many researches [30,32,46-48,34]. In the
present work, the method is employed to calculate the SIFs associated with
the delaminations and transverse cracks, The method is introduced briefly as
follows.

The interaction integral method is carried out by using actual and auxiliary
displacement /stress/strain fields. The actual field describes the physical prob-
lem and satisfies the equilibrium and compatibility equations in each point of
a general inhomogeneous domain. In contrast, auxiliary fields do not satisfy
all governing equations (e.g. equilibrium, compatibility and constitutive equa-
tions) and arc cmployed to cstablished the relationship between mix SIF and
the interaction integral.

For the isotropic materials, the SIF K7 and K are related to the J-integral
My of the auxiliary field as

2

M = v (KT Ko+ K™ Kin) (33)
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where K{"* and K{{™ are the SIF of the auxiliary field. Detailed expression
of M' can be found in reference [44].

E plane stress
B =

[ o2 plane strain
E is the elastic modulus of isotropic materials.
For the anisotropic materials, one can obtain the modes I and II SIF K
and K11 by solving the linear algebraic equations
M{ = 2611[(1 + 6121&711 (I(Iaux = 1, I(Ialux = 0) (34)
Mé = c19 K1 + 2c00 K11 (Klaux =0, I(Iaqu = 1)

where M} and M denote the J-integral for the case I (K2™ = 1, Ki" = 0)
and case IT (K™ = 0, K™ = 1). JW{, j\fé, c11, ¢12 and co2 can be found in
Reference [44].

Thus SIF K} and K7j; of each mathematical layer in the XLWM can be
calculated.

6.2 Crack propagation criterion

The maximum circumferential tensile stress criterion [49] assumes that a crack
starts to propagate when the maximum circumferential STF exceed the critical
SIF at the direction perpendicular to the maximum circumferential stress-
direction. For isotropic materials. the propagation criterion is

K 0 3K 0
Komax = KIIC cos350 —5 KE cos Eosin% = Kyo (35)
and the propagation direction is given by
KISi1190 — I(H (3 COS 90 — 1) =0 (36)

0 0
Kjcos EO (1 —3cosbpy) + Knsinio (9coshy+5) <0

where Kyc is the fracture toughness.

In 1987, Saouma el at.[50] extended the maximum circumferential tensile
stress criterion of isotropic materials to the crack growth problem of anisotrop-
ic materials. The crack growth angle, global coordinates and the crack tip
coordinates for the anisotropic materials are shown in Figure 3.

For the anisotropic materials, the crack growth angle 6y need to meet

g9 _ KIRG [A (/,LlBQ — IUQBl)] + I{HRG [A (Bz — Bl)]

- )
Ofmax KIlcr COS2 6 =+ I\,IZCFSIII 6

=1 (37)

where oy is the circumferential tensile stress: ggmax i the maximum circum-
ferential tensile stress; 3 = 6y + w and w is the angle between the crack and
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ve

Fig. 3 The crack growth angle, global and local coordinates of the crack tip for the
anisotropic materials

1 5
the material direction; A = ————, B; = (cosf + p;sin6)"°; Kl and K2 _
1 — pa
arc the critical SIF for cracks along dircction z; and xs, respectively. The

coeflicients p; and pg can be found in reference[44].

There are two fronts of the transverse crack in the proposed XLWM: the
front in the thickness direction and the front in in-plane. In the proposed study,
only the front in in-plane is considered. For the front in the thickness direction,
if the virtual crack closure technique (VCCT) is employed to calculate the
strain cnergy rclease rate (SERR) along the transverse crack front, and the
transverse crack growth in the thickness direction can be predicted by the
mixed-mode fracture criterion.

7 Local remesh for crack arbitrary growth

As the crack grows, some nodes such as node O in Figure 4 may become very
close to the crack surface. When one part of an element divided by a crack
is far smaller than another part, Guass integral cannot accurately obtain the
stiffness matrix of the element and would result in significant error. Because the
level sct function cannot be accurately calculated ncarby the turning point of a
crack, the whole calculation process may be terminated. In order to overcome
this problem, a local remesh is undergone near the crack by moving the node
O to O', as shown in Figure 4. Let l,,, denote the minimum distance between
node O and the intersection point of the element edge and the crack. As
the crack grows, lya, determines whether one needs to move the node (local
remesh). To restrict excess element distortion, the node is moved by

Az = fl.n (38)

where [. is the length of the element edge; f is the coeflicient that limits
the distance of move and excess element distortion; n is the outward normal
vector of crack surface. As an illustration, there are nodes very close to the
crack surface in Figure 5(a), After the local remeshing with f = 0.2, nodes are
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shifted away from the crack surface while the mesh quality is reserved as shown
in Figurc 5(b). The large valuc of f would result into the grid distortion and
the small value cannot make the nodes away from the crack surface adequately,
so the value of f = 0.2 is determine by a number of examples.

ll /gap |
-‘\.:"/-- - ONM _--- 7
< ,O' ,//
N 1 -
S o 1 _- i
~. K -
R [
1
1
1
Fig. 4 Scheme of local remesh.
|
N
N
N
N
N
N
N
1
(a) (b)

Fig. 5 Local remesh. (a) Before local remesh; (b) After local remesh.

The intcgration scheme for clements enriched by strong discontinuous func-
tion is based on subdomains (sub-triangle), its details can be found in Refs.
[44,51]. In this approach, the enriched elements are to subdivide into sub-
triangles at both sides of the crack whose edges are adapted to crack faces.
For the crack tip elements, more sub-triangles are required in front of the crack
tip because of the existence of a highly nonlinear and singular stress field.
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8 Numerical examples
8.1 Static responses analysis

The XLWM is used to model the plates with multiple delaminations and/or
transverse crack. Figure 6 shows the geometry and FE mesh for a rectangular
plate with a semi-elliptic delamination and a transverse crack. The major axis
of the delamination coincides with the y-axes. The transverse crack is along the
minor axis of the cllipse. Three kinds of boundary conditions arc investigated:
1) @ = 6 is clamped and other edges are free (CFFF); 2) y = 10 and y = 0 are
clamped and other edges are {ree (CCFF); 3) = 0 is free and other edge are
clamped (CCCF). The plate is subjected to a unit transverse pressure on the
delaminated region in top surface.

The plate of overall thickness H=0.4 m is cevenly divided into cight lay-
ers. For comparison purpose, these problems are also analyzed by using M-
SC.Nastran with Hex8 solid elements. Nodes pairs along the delamination in-
terface and through-thickness crack are employed to model the displacement
discontinuity. Meanwhile, the discretization scheme of the XLWNI is the same
with that used in the finite clement analysis.

¥

Delaminated region

Tip location: (4,4)

Matrix crack

2.5981

(a) (b)

Fig. 6 Composite laminated plate with elliptic delamination and transverse crack. (a)
Schematic diagram; (b) FE mesh. (The length dimension is in m.)

Firstly, the isotropic plates with delamination and/or transverse crack are
employed to validate the proposed XLWM. The material properties are taken
as B = 52GPa, v = 0.3.
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Table 1 and Table 2 compare the maximum displacements obtained by the
proposcd XLWM and MSC.Nastran for the isotropic platcs with delamination
or through crack, respectively. In the damage zone, the delamination can be
denoted as [0/0/0/0/1/0/60/0/6], which means that the delamination is located
at the interface between 4-th layer and 5-th layer (4-th interface). It can be seen
from the table that the proposed method is accurate and reliable for the plates
with delamination or through crack. In Table 1, the maximum displacements
u1 and ug occur at the central point of the delamination region (z = 0, y = 5),
and the maximum displacement us occurs at the point (x = 0, y = 2.8) and
(x =0,y = 7.2). In Table 2, the maximum displacement u; occurs at the
central point of the delamination region (z = 0, y = 5) for CFFF, point
(x =29, y = 5.0) for CCFF and point (z = 2.6, y = 5.0) for CCCF. The
maximum displacement us occurs at the point (z = 0, y = 0) and (z = 0,
y = 10.0) for CFFF, point (z = 0, y = 3.4) and (z = 0, y = 6.6) for CCFF
and CCCF. The maximum displacements ug occurs at the central point of the
delamination region.

Table 1 Maximum displacement of the isotropic plates with elliptic delamination.

U1 10~ °m ug 10~ %m uz 10~ %m

BC  Num. of nodes MSC( XL\)NM MSC( XL\)NM MSC( XL\%VM
2090 1.35393 3.35562 2.09266

CFFF 5140 1.45269 3.30989 3.04532
6286 1.49643 1.45888 3.44315 3.33837 3.28209  3.20157

2090 0.34896 3.26685 0.70077

CCCF 5140 0.36917 3.41381 0.72090
6286 0.38195 0.37177 3.52243  3.44705 0.74457 0.72615

2090 0.34402 3.31871 0.70862

CCFF 5140 0.36395 3.47041 0.72944
6286 0.37653 0.36651 3.58173 3.50424 0.75339  0.73473

Table 2 Maximum displacement of the isotropic plates with transverse crack.

. w1 (107%m uz (10~ %m uz (107 °m

BC  Num. of nodes MSC ( XL%/VM MSC( XL\)VM MSC ( XL\)NM
2090 12.19856 2.41575 26.85609

CFFF 5140 12.86313 2.40270 28.49373
6286 13.22468  12.90100 2.49105 2.42031 29.3749  28.63100

2090 2.04472 2.85328 1.74006

CCCF 5140 2.13233 2.96655 4.94175
6286 218307  2.14423  3.02683 297985  5.08927  5.00548

2090 1.92158 3.11804 5.12707

CCFF 5140 1.99643 3.24751 5.34512
6286 2.03693  2.00772  3.31632 3.26068 5.51124  5.41431

For the isotropic plates with delamination and non-thick-through crack,
the maximum displacements calculated by XLWM and MSC.Nastran are com-
pared in Table 3. In the damage region, the delamination and crack can be
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denoted as [0/0/0/0/ N /6/60/6/8]. which means that the delamination is lo-
cated at the interface between 4-th layer and 5-th layer and the crack cuts
though the last four layers. It can be seen from Table 3 that the proposed
method is accurate and reliable for the isotropic plates with both delamina-

tion and crack. The locations of maximum displacements are same with those
in Table 2.

Table 3 Maximum displacement of the isotropic plates with delamination and transverse
crack.

BC u1 (10~ %m) us (10~%m) uz (10~ %m)
MSC XLWM MSC XLWM MSC XLWM
CFFF  14.58864 14.24940 5.42915 5.25124 3.51073  3.42605
CCCF 4.35420 4.28484 4.46578 4.37015 1.04054 1.02144
CCFF 4.20282 4.14198  4.65572  4.54863 1.06545  1.04501

The XLWM is also employed to modcl the cross-ply laminated plate with
multiple delaminations and/or transverse cracks in this example. The material
properties of the single layer are taken as Fy; = 181GPa, Foy = FEy3 =
103GPR, G12 = G13 = 717GP&, G23 = 621GP3, V19 = 0.28, Vi3 = 0.02, and
Vo3 = 0.40.

For the three stacking sequences [0]g, [0/90/0/90]s and [90/0/90/0]s, Ta-
ble 4 compares the maximum displacements calculated by XLWM and M-
SC.Nastran for the plates with delamination [0/6/0/6/ 1 /0/0/0/0]. It can be
seen from Table 4 that the proposed method is also accurate and reliable for
the plates with transverse crack.

Table 4 Maximum displacement of the laminated composite plates with transverse crack.

BC u1 (10~ %m) us (10~°m) uz (10~ %m)
MSC XLWM MSC XLWM MSC XLWM
[0]s CFFF 5.01844 4.99346  0.38525 0.38156 1.19114  1.18586

CCCF  3.88164 3.84104  0.57331 0.56740 0.96525  0.95664
CCFF 6.15848 6.06648 1.32631 1.29033 2.21315  2.15968

[0/90/0/90]s CFFF 6.75187 6.71632  0.38373 0.38006 1.58868  1.58058
CCCF  2.45285 2.43959  0.34860 0.34687 0.59886  0.59565
CCFF 2.75320 2.73721  0.42823  0.42560 0.72470  0.72024

[90/0/90/0]s CFFF 12.33980 12.24270 4.35336 4.28203 2.84058  2.81729
CCCF 1.82850 1.82283  2.42813  2.41897 0.42132  0.41972
CCFF 1.83708 1.83281 2.53723  2.52786  0.43750  0.43596

For the laminated composite plate [0/90/0/90]s with multiple dclamina-
tions and tramsverse cracks, the boundary condition is CCCF. In the dam-
age region, the delaminations and non-thick-though transverse cracks can be
denoted as [8/0/ N /0/6/6/6/ N /6/6] which means that delaminations are
located at the 2-th and 6-th interfaces and the cracks cut though the first two
and the last two layers. Deformations and stresses of the laminated composite
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plate with multiple elliptic delaminations and transverse cracks are plotted in
Figures 7 and 8.

oy u, U,

Fig. 7 Deformation of the composite laminated plate with multiple elliptic delaminations
and transverse crack.
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Fig. 8 Stresses of the composite laminated plate with multiple elliptic delaminations and
transverse crack.

8.2 SIF calculation

The rectangular isotropic and composite plates with an edge through crack are
used to examine the performance of the present method for the SIF calculation.
The results obtained by the present method are compared with those given by



22 D. H. Li et al.

the analytical solutions and the available numerical results. In addition, the
cffects of the crack size and the orthotropic angle on the distribution of SIF
along the thickness direction are investigated.

8.2.1 Rectangular isotropic plates with a through-thickness edge crack

The rectangular isotropic plate with a through-thickness crack (see Figure
9(a)) is employed to validate the present method for the calculation of SIF. As
shown in Figurc 9(a), the plate is subjected to a unit tensile stress o at two
ends and the crack angle ¢ is the angle between the crack and the direction
transverse to the tensile stress. The square region around the crack tip is the
domain used for computing the J-integral. The length of the rectangular plate
is twice the width. The material parameters are £ = 1.0 GPa, and v = 0.3.
Two diffcrent meshes shown in Figure 9(b) and (c) arc used. When the crack
angle o = 0, SIF Ky = 0 and the analytical solution of K7 is given by

K — {1.12 —0.23 (%) £10.56 (%)2 — 92174 (%)3 +30.42 (Z)j ooV/Ta
(39)

(a) (b) (©

Fig. 9 Rectangular isotropic plates with an edge through crack. (a) Geometric size and
crack size; (b) 20 x 40 elements; (c) 40 x 80 elements

For different crack lengths, the values of K7 of the rectangular isotropic
plates with an edge through crack calculated by the present method, Moham-
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madi [44] and the analytical method are compared in Table 5. The present
predictions agree well with those of the others.

Table 5 Kj of the rectangular isotropic plates with an edge through crack.

. 20 x 40 40 x 80 50 x 100 70 x 140 80 x 160
a/b Analytical —p TN ReE[#4]  XIWM — XLWM — XLDWM — XLWM
0.30 1.660 1.630  1.478  1.646  1.586 1.608 1.633 1.650
0.45 2.420 2.362 2155 2396  2.325 2.437 2.451 2.465
0.60 4.027 3876  3.549  3.961  3.828 3.884 3.951 3.992

Because the XLWM is quasi three dimensional and the transverse cracks
of each single layer are independently described, the distribution of the SIF
along the thickness direction can be obtained by the present method. It is
an important advantage compared with the existing shell elements enriched
by XFEM. For different crack sizes, distributions of Ki of the rectangular
isotropic plates with an edge through crack are plotted in Figure 10, which
shows that the crack size has significant influence on the distribution of K
along the thickness dircection. In general, the SIF at top and bottom surfaccs
is larger than that at the mid-plane. If the ratio of crack size to the width
of plate is approaches 0.5, Kj decreases from the surface to the mid-plane.
If the ratio of crack size to the width of plate is greater or less than 0.5, K
first decreases and then increases from the top/bottom surfaces to mid-plane.
Because the boundary condition and the loads are symmetrical with respect to
the mid-plane in the present numerical example, the distribution of Ky along
the thickness direction is symmetrical as well.
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Fig. 10 Distribution of K7 of the rectangular isotropic plates with an edge through crack.

The influence of the angle between the crack and the transverse direction
of plate ¢ on SIF is investigated in this numerical example and plotted in
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Figure 11, where the values of SIF is the average along the thickness direction.
It can be scen that K1 decrcases as angle ¢ incrcases, while Ky first incrcascs
and then decreases with turning point at ¢ = 30°.
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Fig. 11 Influence of angle ¢ on SIF.

For different angles ¢, distributions of SIF K7 and Kip along the thickness
direction after normalized by their respective thickness averages are shown
in Figure 12. As angle ¢ increases, the change in amplitude of K} along the
thickness direction first decreases and then increases. If angle ¢ ~ 18°, Kj
does not change along the thickness direction. If angle ¢ is less than 18°, K
decrcases from the top/bottom surface to the mid-planc. If angle ¢ is greater
than 18°, K increases from the top/bottom surface and attains it maximum
at the mid-plane, while K7 at the upper/bottm surface is maximum when
angle ¢ is less than 18°. As angle ¢ increases, the change in amplitude of K7j
along the thickness direction first decreases and then become almost zero when
angle ¢ ~ 45°. K decreases from the top/bottom surface to the mid-plane,
namcly, K1 at top/bottom surface is maximum. K7 and Kj; arc symmetrical
along the thickness direction with respect to the mid-plane, and always equal
to their respective average values at z/H = 0.2 and z/H =~ 0.8.

8.2.2 Rectangular composite plates with an edge through crack

The rectangular composite plate with an edge though crack to be consid-
ered has the same geometric size, boundary condition, loads and mesh with
the isotropic plate in above subsection. The material properties are Fi1 =
114.8 GPa, E22 = E33 = 11.7GP&, G12 = G13 = 9.66 GPa, G23 =6.21 GPa,
Vig = U13 — 021, and Vg3 — 0.40.

For five fibre angles (0°, 30°, 45°, 60° and 90°), Figure 13 compares the
normalized K7 and Kir obtained by the presented method with those obtained
by XFEM [32,52], BEM [53] and XEFG [54]. The SIF results obtained by the
XLWM agree well with those obtained by other methods.
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Fig. 12 Distributions of SIF along the thickness dircction for different angles ¢
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Fig. 13 Comparison of SIF for rectangular composite plates with an edge crack

Figure 14 shows the distributions of SIF along the thickness direction.
When fibre angle § = 45°, the change in amplitude of Kj along the thickness
direction is maximum. When fibre angle § = 90°, the change in amplitude is
minimum. The change in amplitude of SIF Ki; along the thickness direction
decreases as the fibre angle increasing. Similar to the isotropic plate with an
edge crack, K1 and K7 are symmetrical along the thickness direction with
respect to the mid-plane, and K7 and K1 always equal to their respective
average values near the points z/H =~ 0.2 and z/H ~ 0.8.

The influence of the crack angle ¢ on SIF for the rectangular composite
plate with an edge crack is also examined. Figure 15 shows the influence of
@ on SIF for five fibre angles. K1 and its change in amplitude decrease as ¢
increases. On the other hand, the decrease in amplitude of SIF reduces as the
fibre angle increasing. Ky increases as angle ¢ increases, and the increase in
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Fig. 14 Distribution of SIF along the thickness direction for the rectangular composite
plates with an edge crack

amplitude of Ki; for § = 0° is significantly higher than that for other fibre
angles.
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Fig. 15 Influence of angle ¢ on SIF of the composite plate
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Figures 16-20 show the distributions of SIF along the thickness direction for
the five fibre angles 0 and different crack angles ¢. K1 and Ky are symmetrical
along the thickness direction with respect to the mid-plane and always equal
to their respective average values near the points z = 0.2 and z = 0.8. When
# = 0°, thc change in amplitude of the SIF K| and K, along thc thickncss
direction first decreases and then increases as ¢ increases. When angle ¢ ~ 26°,
the change in amplitude is minimum. When 6 = 30°,45° and 60°, the change
in amplitude of K7 and Kjy; along the thickness direction decreases as the
angle ¢ increases. 8 = 90°, the change in amplitude of K7 along the thickness
direction increases for increasing . That of Ky is just the opposite.
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Fig. 16 Distribution of SIF along the thickness direction for the composite plate with an
edge crack (6 = 0°)
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Fig. 17 Distribution of SIF along the thickness direction for the composite plate with an
cdge crack (6 = 30°)

8.3 Transverse crack arbitrary growth

Crack growth predictions are carried out in this section for plates with an edge
through crack and for plates with both an edge through crack and an semi-
elliptical delamination. Both isotropic and composite plates are considered.
The effects of the fibre angle on the growth angle are investigated.

8.3.1 Rectangular composite plates with edge through cracks

The isotropic plate employed in Section 8.1, see Figure 5, is first considered.
The initial crack length is 1.5 m and the crack angle ¢ is zero. The average
crack growth angle is used to update the location of crack tip. Figure 21
shows the effect of the crack size on the Kj. The predicted growth angle is
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Fig. 18 Distribution of SIF along the thickness direction for the composite plate with an
cdge crack (0 = 45°)
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Fig. 19 Distribution of SIF along the thickness direction for the composite plate with an
cdge crack (6 = 60°)

zero, which agrees with the analytical solution. As the crack grows, K7 first
increases slowly and then quickly. Moreover, the predicted SIF in all layers are
graphically indistinguishable as noted in the figure.

The composite plate employed in Section 8.1, see Figure 6, is then consid-
ered. The initial crack length is 3.5 m and the crack angle ¢ is zero. Again,
the average crack growth angle is used to update the location of crack tip.
The predicted K1 and K7 versus the crack size are shown in Figure 22. Figure
23 shows the growth paths for different fibre angle. As the crack grows, K|
increases whilst Ky first increases and then decreases. If the fibre angle 6 = 0°
and 90°, the crack growth angle predicted by the present method is zero. From
the existing solution [55], the crack growth angle varies approximately sin(26)
with the maximum and minimum growth angles occurring at 6§ = 35° and
0 = 135°, respectively. For the fibre angles considered in this numerical exam-
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Fig. 20 Distribution of SIF along the thickness direction for the composite plate with an
edge crack (6 = 90°)
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Fig. 21 Effect of the crack size on the SIF for the rectangular isotropic plates with an
edge through crack

ple, the maximum value of growth angle occurs when § = 30°, which somehow
agrees with the existing solution.

8.3.2 Rectangular composite plates with semi-elliptical delaminations

SIF and crack growth prediction arc conducted for the rectangular composite
plate with an elliptic delamination and an edge through crack shown in Figure
6. The initial crack length is 3.02 mm, and the delamination is located at the
mid-plane. A unit uniform load is imposed on the top and bottom surfaces of
the delaminated region, and a unit tensile stress is applied to the upper and
lower edges of the plate.
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Fig. 22 Variation of SIF versus the crack size in different fibre angle for the rectangular
composite plates with an edge crack

T

Fig. 23 The crack growth path for different fibre angles

The crack growth problem of the isotropic plate with delamination and
crack is first considered. The material properties are £ = 52GPa, and v = 0.3.
Figures 24 and 25 portray how the predicted SIF varies with the crack length
and along the thickness direction. Figure 24 shows that Kj increases as the
crack size increases. Figure 24 shows that the SIF assumes its maximum value
when the crack tip is very close to the dclamination front as in the casc of
crack length equal to 3.1805 m. Otherwise, the maximum values occurs at
the top/bottom surfaces. In other words, the delamination front signicantly
affects the crack tip stress field. K1 and Ky are symmetrical along the thickness
direction with respect to the mid-plane. The displacement and stress contours
are shown in Figures 26 and 27, respectively. In the crack growing process,
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stress concentration appears at the transverse crack tip and delamination front.
Stress concentrations of o171 and o992 arc most significant along w = 0° and w =
490° which define the minor and major axis of the semi-elliptical delamination,
respectively. Meanwhile, stress concentration of oy is most significant along
w = +45°.
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Fig. 24 Variation of SIF versus the crack size for the rectangular isotropic plates with an
edge crack and elliptic delamination
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Fig. 25 Distribution of SIF along the thickness direction as the crack growing for the
rectangular isotropic plates with an edge crack and elliptic delamination

The material properties of the rectangular composite plate with delamina-
tion and transverse crack are the same as those given in Section 8.2.2. Three
kinds of stacking sequences [30]g, [45]s and [60]g are considered. The boundary
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(a) (b) (c)

Fig. 26 Fringe of displacements for the rectangular isotropic plates with an edge crack
and elliptic delamination (a) u1; (b) u2 and (c) us

(@) (b) (©)

Fig. 27 Fringce of stresses for the rectangular isotropic plates with an edge crack and clliptic
delamination (a) o11; (b) 22 and (c) 012

condition and loads are the same as those of the isotropic plate. The elliptic
delamination is located at the 4th interface, namely, [6/0/0/6/ N /0/0/6/0).

Variation of SIF versus the crack size is shown in Figure 28. The distri-
butions of SIF along the thickness direction are shown in Figure 29 as the
crack grows. For fibre angle equal to 45°. K7 increases with the crack length.
Meanwhile, Ki; first increases and then decreases as the crack grows. Similar
to the isotropic plate, the delamination front significantly affects the crack tip
stress ficld. Both K7 and Ky along the thickness dircction arc symmetrical
with respect to the mid-plane. The changes in K1 and K71 along the thickness
direction increase as the transverse crack tip approaches the delamination
front.

Displacement and stress contours are shown in Figures 30 and 31, respec-
tively, which can illustrate the effect of fibre angle on the displacement and
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stress distributions with respect to those of the isotropic plate. Stress con-
centrations still appcar at the transversce crack tip and dclamination front.
However, in the delamination front, the concentration area of o1y is located
at the directions w = —30°, the concentration area of o5 is located at the
directions w = —45° and w = 90° and the concentration area of o5 is located
at region near the directions w = +45°.

For three kinds of fibre angle (6 = 30°, § = 45° and § = 60°), growth paths
are shown in Figure 32.
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Fig. 28 Variation of SIF versus the crack size for the rectangular composite plates with
an edge crack and elliptic delamination
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Fig. 29 Distribution of SIF along the thickness direction as the crack grows for the rect-
angular composite plate with an edge crack and an semi-elliptic delamination (a) Ki; (b)
K11
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(@) (b) (©)

Fig. 30 Fringc of displacements for the rectangular composite plates with an edge crack
and an semi-elliptic delamination (a) w1; (b) u2 and (c) us

@) (b) ©

Fig. 31 Fringe of stresses for the rectangular composite plates with an edge crack and
elliptic delamination (a) o11; (b) 022 and (c) o12

9 Conclusions

Using an improved layerwise displacement assumption and the extended finite
element method (XFEM), a new analysis method is proposed for the laminated
composite plates with transverse transverse cracks and/or multiple delamina-
tions. The SIF and the crack growth are predicted by the interaction integral
mcthod and the maximum circumferential tensile criterion, respectively.

The extended layerwise method (XLWM) of laminated composite plates
can not only describe the multiple delaminations together with through and
non-through transverse cracks but also accurately predict the displacement
and stress fields of the crack tip and delamination front. As the XLWNM is
quasi three dimensional and the transverse cracks of each single layer are in-
dependently described, the thickness distribution of the SIF can be calculated
and the predict crack growth angle can be different for each mathematic layer.
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Fig. 32 Growth path for different fibre angle

This is an important advantage compared with the existing shell elements en-
riched by XFEM. The XLWNM extends the application of the XFEM in damage
analysis and prediction to laminated composite structures.

The predicted static responses, SIF and crack growth are in excellent a-
greement to the analytical and the available solutions. From the numerical
investigations, the following conclusions can be drawn:

1. Some nodes will be very close to the crack surface as the crack grows. The
present local remeshing scheme can shift these nodes without scarifying
the mesh quality.

2. For the static response, the present displacement prediction agrees well to
that of the 3D elastic prediction of MSC.Nastran whilst the SIF and crack
angle predictions are in excellent agreement with the analytical or other
reference solutions.

3. The boundary and loading conditions are symmetric with respect to the
mid-plane in the numerical example, the thickness distribution of Kj fol-
lows. Furthermore, K1 and K11 are always equal to their respective average
values along the thickness direction near z/H ~ 0.2 and z/H =~ 0.8.

4. The dclamination front has a profound cffect on the crack tip stress ficld.
The changes in K7 and Kiy along the thickness direction increase as the
transverse crack tip gets closer to the delamination front.
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A The shape functions in the displacements field along the
thickness direction

The linear Lagrange interpolation functions ¢, can be expressed as

1 Zk_1— 2 _ _
Yy =——"—7"— Zp-1<2<Z
2k — Rk—1
Pz = Ch (10)
o =———"— 2 <2< Zpq
Zk+1 — %k
where zp = 21, -+, Zi, = M -+, ZN41 = ZN41. 2i are defined in Figure 1.

The weak discontinuous shape function Oy can be expressed as

1 Zk—1—Z

—ppT————— Zk-1<z<z
Zk—1 — Rk—1
zZ— Zk
—pp— k 2 <z <z
Zi — 2k
O = - (41)
ZL— 2z B
2= zZy <z < zZpi1
Zr — 2k
Z— Zk+1 _
_‘P%Zf 241 <2< Zpp
Zp+1 — Rk+l

The shape function =) used to model delaminations can be expressed as

2]671 — 2z
Zp—1 — Zk—1
- Z— Zk41
Zk41 — Zkt1

0 else
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