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 39 

ABSTRACT 40 

Lignin, a ubiquitous phenylpropanoid polymer in vascular plant cell walls, is primarily 41 

derived from oxidative couplings of monolignols (p-hydroxycinnamyl alcohols). It was 42 

recently discovered that a wide range of grasses, including cereals, utilize a member of 43 

flavonoid, tricin (3´,5´-dimethoxyflavone), as a natural co-monomer with monolignols for 44 

cell wall lignification. Previously, we established that cytochrome P450 93G1 is a 45 

flavone synthase II (OsFNSII) indispensable for the biosynthesis of soluble tricin-derived 46 

metabolites in rice (Oryza sativa L.). Here, our tricin-deficient fnsII mutant was further 47 

analyzed with an emphasis on its cell wall structure and properties.  The mutant is similar 48 

in growth to the wild-type control plants with normal vascular morphology. Chemical 49 

and NMR structural analyses demonstrated that the mutant lignin is completely devoid of 50 

tricin, indicating that FNSII activity is essential for deposition of tricin-bound lignin in 51 

rice cell walls. The mutant also showed substantially reduced lignin content with 52 

decreased syringyl/guaiacyl lignin unit composition. Interestingly, the loss of tricin in the 53 

mutant lignin appears to be partially compensated by incorporating naringenin which is a 54 

preferred substrate of OsFNSII. The fnsII mutant was further revealed to have enhanced 55 

enzymatic saccharification efficiency, suggesting that cell wall recalcitrance of grass 56 

biomass may be reduced through manipulation of flavonoid monomer supply for 57 

lignification.  58 

  59 
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INTRODUCTION 60 

 61 

Phenylpropanoids are natural phenolic compounds widespread in plants and they 62 

contribute to many aspects of plant development and responses towards biotic and abiotic 63 

stimuli. The phenylpropanoid pathway starts from L-phenylalanine and/or L-tyrosine that 64 

split(s) off from primary metabolism. Non-oxidative deaminations and successive 65 

hydroxylation and/or ligation with coenzyme A (CoA) produce p-coumaroyl CoA which 66 

serves as a common intermediate for many classes of phenylpropanoids (Fig. 1). 67 

Branching off from p-coumaroyl CoA, flavonoids and monolignols are the two major 68 

downstream metabolite classes generated separately from the pathway (Dixon et al., 69 

2002; Vogt, 2010; Barros et al., 2016).  70 

Flavonoids are a large class of secondary metabolites widespread in vascular 71 

plants and certain bryophytes. The structures of flavonoids are highly diverse and 72 

different classes are assigned based on the modification of the C6-C3-C6 backbone. 73 

Flavonoids display various physiological functions as antioxidants (Agati et al., 2012), 74 

phytoalexins (Koes et al., 1994; Du et al., 2010b), signaling molecules (Hassan and 75 

Mathesius, 2012), or pigments (Goto and Kondo, 1991). In monocot family Poaceae, 76 

which are the grasses including the cereals, one of the predominant forms of flavonoids is 77 

tricin, a 3´,5´-dimethoxyflavone, commonly found as O-linked conjugates in vegetative 78 

tissues (Zhou and Ibrahim, 2010; Dong et al., 2014; Li et al., 2016). The biosynthesis of 79 

flavonoids is achieved by a combination of the phenylpropanoid pathway and the 80 

polyketide pathway. Sequential condensation of p-coumaroyl CoA with three malonyl 81 

CoA is catalyzed by chalcone synthase (CHS), and followed by isomerization by 82 

chalcone isomerase (CHI) to form naringenin, a flavanone which is the precursor for the 83 

biosynthesis of all the other classes of flavonoids. To produce tricin conjugates, 84 

naringenin is converted into apigenin by flavone synthase II (FNSII), and sequential 85 

hydroxylations and O-methylations at the flavone B-ring furnish tricin which is then 86 

further converted into the downstream tricin derivatives (Fig. 1).      87 

Lignin, on the other hand, is an abundant phenylpropanoid polymer derived from 88 

oxidative couplings of monolignols, i.e., p-hydroxycinnamyl alcohols, and is one of the 89 

major cell wall components in vascular plants. By filling up spaces between cell wall 90 
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polysaccharides (cellulose and hemicelluloses), lignin confers increased mechanical 91 

strength, imperviousness, and resistance to pathogens (Boerjan et al., 2003; Bonawitz and 92 

Chapple, 2010; Umezawa, 2010). Lignin biosynthesis and bioengineering have long been 93 

a major research focus particularly because of its economic importance associated with 94 

agro-industrial utilizations of biomass. Lignin has traditionally been viewed as an 95 

impediment to chemical pulping, forage digestion by livestock, and cellulosic bioethanol 96 

production, but is increasingly viewed as a potent source for producing aromatic 97 

commodities from biomass. Accordingly, the phenylpropanoid pathway responsible for 98 

synthesizing monolignols that build up lignin polymers has been one of the major targets 99 

in cell wall bioengineering studies (Ragauskas et al., 2014; Beckham et al., 2016; Rinaldi 100 

et al., 2016).  101 

The biosynthesis of monolignols from p-coumaroyl CoA involves aromatic 102 

hydroxylations and O-methylations as well as successive side-chain reductions to 103 

 www.plantphysiol.org on June 1, 2017 - Published by www.plantphysiol.orgDownloaded from 
Copyright © 2017 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org/
http://www.plantphysiol.org


 5

generate the three canonical monolignols differing in their degree of aromatic 104 

methoxylation (Fig. 1) (Boerjan et al., 2003; Bonawitz and Chapple, 2010; Umezawa, 105 

2010). In angiosperms, i.e., both in dicots and monocots, lignins are majorly composed of 106 

guaiacyl (G) and syringyl (S) units derived from combinational radical couplings, 107 

initiated by laccases and/or peroxidases, of two monolignols, coniferyl and sinapyl 108 

alcohols, respectively, with a lower amount of p-hydroxyphenyl (H) units from p-109 

coumaryl alcohol (Boerjan et al., 2003; Bonawitz and Chapple, 2010; Umezawa, 2010). 110 

While sharing this typical lignin trait with dicots, lignins in the major monocot family 111 

Poaceae (grasses including cereals) are partially acylated at the γ-position with p-112 

coumarate. It has been established that such lignin acylations arise from lignification with 113 

γ-p-coumaroylated monolignols generated by a grass specific acyltransferase, p-114 

coumaroyl-CoA:monolignol transferase, PMT (Fig. 1) (Petrik et al., 2014). Furthermore, 115 

it was recently demonstrated that various commelinid monocots, including Poaceae 116 

species, also incorporate a small amount of γ-feruloylated monolignols for lignification 117 

(Karlen et al., 2016). 118 

Flavonoids have been known to couple with monolignols, forming extractable 119 

flavonolignans, flavonolignols, and their O-glycosides. For example, silymarin extracted 120 

from milk thistle seeds contains flavonolignans derived from coupling of taxifolin and 121 

coniferyl alcohol (Kim et al., 2003; Wang et al., 2010). Hydnocarpin and 5´-122 

methoxyhydnocarpin, coupling products of luteolin with coniferyl or sinapyl alcohol, 123 

were identified in Hydnocarpus wightiana (Parthasarathy et al., 1979), Onopordon 124 

corymbosum (Cardona et al., 1990) and Hymeneae palustris (Pettit et al., 2003). Other 125 

naturally occurring flavonolignans and flavonolignols include pseudotsuganol, 126 

hydnowightin, neohydnocarpin, palstatin, sinaiticin, and silandrin (Foo and Karchesy, 127 

1989; Sharma et al., 1979; Pettit et al., 2003; Nyiredy et al., 2008). In monocots, the 128 

widespread nature and the high structural diversity of tricin-type flavonolignans and their 129 

related derivatives are well documented (Yang et al., 2013; Zhou and Ibrahim, 2010; Lan 130 

et al., 2016a; Li et al., 2016). More strikingly, after resolving the unknown signals in the 131 

NMR spectra of polymeric lignins isolated from wheat cell walls, tricin was recently 132 

discovered as an integrated component of lignins (Del Río et al., 2012). Subsequently, 133 

extensive surveys have revealed that tricin-bound lignins abundantly exist particularly in 134 
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the monocot family Poaceae, which comprises grasses including cereals. They have been 135 

also found in some commelinid monocot families outside Poaceae, such as Arecaceae 136 

(palms) and Bromeliaceae (pineapples and relatives), the non-commelinid family 137 

Orchidaceae (the orchids), particularly in the genus Vanilla, and also in certain dicots 138 

(Lan et al., 2015; Lan et al., 2016a; Lan et al., 2016b; Wen et al., 2013; Del Río  et al., 139 

2015; Rencoret et al., 2013; Koshiba et al., 2017).  140 

Tricin, as an authentic lignin monomer in grasses, incorporates into the lignin 141 

polymers via combinational radical couplings, as in the way lignification takes place 142 

solely with monolignols in dicots and gymnosperms. Lacking the abilities to either 143 

undergo radical dehydrodimerization or to start the polymer chain elongations from the 144 

phloroglucinol A ring, tricin always occurs at one terminus of a lignin polymer chain, and 145 

was proposed to function as a nucleation site for lignification (Lan et al., 2015). The 146 

discovery of the tricin-bound lignins, illustrating the plasticity of lignification and its 147 

strong inter-connection with flavonoid biosynthesis, sheds a new light on the studies of 148 

lignin biosynthesis and bioengineering. Currently, however, it remains largely unknown 149 

how tricin-bound lignins are biosynthesized and function in grass cell walls. Given that 150 

many of the grass biomass crops, e.g., sorghum, sugarcane, switchgrass, and bamboo, 151 

produce substantial amounts of tricin-bound lignins (Lan et al., 2016b), it is also 152 

intriguing to investigate how tricin-bound lignins are affecting the utilization properties 153 

of cell walls.  154 

We previously reported that a flavone synthase II (OsFNSII) is essential for the 155 

biosynthesis of extractable tricin metabolites, i.e. tricin O-glycosides and O-156 

flavonolignans, in rice seedlings (Lam et al., 2014). OsFNSII, which catalyzes the direct 157 

conversion of flavanones to flavones, is a cytochrome P450 enzyme (CYP93G1) 158 

belonging to the grass-specific 93G subfamily. In the present study, we address the 159 

involvement of OsFNSII in lignification and examine cell wall properties upon tricin 160 

deficiency.  A T-DNA insertional rice fnsII mutant was subjected to a series of analyses 161 

for assessment of growth phenotypes, gene expressions as well as lignin structure. A 162 

series of chemical analyses demonstrated that the mutant produced cell walls with 163 

reduced lignin levels and decreased syringyl/guaiacyl lignin unit composition. NMR 164 

characterizations revealed the complete depletion of tricin along with the incorporation of 165 
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naringenin, a flavanone substrate of OsFNSII, as a new component in cell wall lignin. 166 

Importantly, such lignin alterations resulted in enhanced cell wall digestibility without 167 

negative impact on growth and development. Together, our work establishes the essential 168 

role of OsFNSII in tricin lignification in cell wall and suggests that grass biomass 169 

utilization may be enhanced by manipulation of flavone biosynthesis pathway.   170 

 171 
  172 
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RESULTS 173 
 174 

Expression of Flavonoid and Monolignol Biosynthetic Genes in Wild-type Rice 175 

Plants  176 

At the onset of this study, we performed in silico gene expression analysis of flavonoid 177 

and monolignol biosynthetic genes in wild-type rice (O. sativa L. ssp. japonica cv. 178 

Nipponbare) (Sato et al., 2012). As with other putative/known tricin biosynthetic genes 179 

such as OsCHS1 (Shih et al., 2008; Hong et al., 2012), OsCHI (Shih et al., 2008), and 180 

OsC5´H (CYP75B4; Lam et al., 2015), OsFNSII (CYP93G1; Lam et al., 2014) was most 181 

prominently expressed in culm at reproductive and ripening stages, where cell wall 182 

lignification is typically occurring; we confirmed concurrent expressions of 183 

putative/known monolignol biosynthetic genes including OsCAD2 (Koshiba et al., 2013b, 184 

Zhang et al., 2006), OsCAldOMT1 (Koshiba et al., 2013a), and OsPMT (Petrik et al., 185 

2014) as well as the common phenylpropanoid genes including OsPAL1/2 (Cass et al., 186 

2015) and Os4CL3 (Gui et al., 2011) (Supplemental Fig. S1). In addition, OsFNSII, along 187 

with its downstream OsC5´H (Fig. 1), was expressed in leaf at vegetative stage and also 188 

in lemma and palea at the later stage of flower development, and several monolignol 189 

biosynthetic genes displayed similar spatial and temporal expression patterns 190 

(Supplemental Fig. S1). These data support our contention that OsFNSII is involved not 191 

only in the biosynthesis of soluble tricin metabolites, e.g., tricin O-glycosides and O-192 

flavonolignans (Lam et al., 2014), but also of tricin monomer for lignification in the 193 

major rice vegetative tissues, as further demonstrated below. 194 

 195 

Phenotype of OsFNSII-knockout Mutant Rice 196 

To further examine the involvement of OsFNSII in cell wall lignification, we 197 

reinvestigated a loss-of-function mutant rice (O. sativa L. ssp. japonica cv. Kitaake) 198 

which we characterized previously (Lam et al., 2014); this mutant has a T-DNA insertion 199 

in the second exon of the OsFNSII locus (Fig. 2A). Gene expression analysis on a 200 

homozygous mutant line (fnsII) using a quantitative real-time PCR (qRT-PCR) approach 201 

suggested that overall, with the exception of a slightly depressed OsC5´H expression, 202 

there are no significant changes in the major flavonoid and monolignol biosynthetic gene 203 
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expressions compared to wild-type plants (Supplemental Fig. S2). The mutant plants 204 

grew to maturity without displaying significant morphological changes compared with 205 

the wild-type controls (Fig. 2B). Although a slight reduction in plant height was 206 

observed, fnsII plants overall displayed a similar growth performance comparable to 207 

wild-type plants in terms of their culm length, tillering, fertility, and biomass production, 208 

at least under the growth conditions used (Table I).  209 

 210 

Histochemical Analysis of OsFNSII-knockout Mutant Rice Cell Walls 211 

Transverse sections from developing culms of fnsII mutant and wild-type plants were 212 

subject to histochemical analyses using lignin and flavonoid staining reagents (Fig. 2C). 213 

As is the case with wild-type plants, fnsII mutants developed morphologically normal 214 

vascular tissues with thick secondary walls in the cortical sclerenchyma fibers and 215 

vascular bundles. The fnsII cell walls exhibited positive colorations with phloroglucinol-216 

HCl (Wiesner reagent) that is known to react with cinnamaldehyde end-groups in the 217 

monolignol-derived lignin polymers. The staining of fnsII mutant cell walls, however, 218 

was apparently less intense than that of wild-type cell walls, indicating a decreased lignin 219 

content and/or a considerable alteration in lignin structure. In parallel, the sections were 220 

treated with vanillin-HCl, a well-known staining reagent for general flavonoid 221 

compounds (Gardner, 1975). The wild-type sections displayed a yellowish positive 222 

staining in the cortical sclerenchyma fibers and vascular bundle cell walls, suggesting a 223 
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substantial amount of flavonoid, presumably tricin, bound to the cell walls. In contrast, 224 

no obvious flavonoid staining was observed for the fnsII mutant cell walls, suggesting a 225 

considerable depletion of flavonoids in the cell walls (Fig. 2C). These histochemical data 226 

collectively suggest that OsFNSII disruption does not lead to defects in vascular 227 

morphology but potential reduction and/or alteration of flavonoid-bound lignins in cell 228 

walls.      229 

 230 

Chemical Analysis of OsFNSII-knockout Mutant Rice Cell Walls 231 

To investigate the cell wall chemotype of the fnsII mutant, we first performed a series of 232 

chemical analyses on extractive-free cell wall residues (CWRs) prepared from senesced 233 

culm, sheath, and leaf tissues; no significant differences were found in the yield of CWR 234 

per dry plant tissue between wild-type and fnsII mutant plants (Table I). Lignin content 235 

determined by thioglycolic acid assay was remarkably reduced, by 34-58%, in fnsII 236 

mutant cell walls compared to wild-type cell walls (Fig. 3A). This is in line with our 237 

earlier observation in the histochemical analysis (Fig. 2C). We also employed 238 

thioacidolysis to quantify lignin monomers released from monolignol-derived β–O–4 239 

lignin substructures (Lapierre et al., 1986; Yamamura et al., 2012; Yue et al., 2012). The 240 

mutant cell walls released significantly less, by 17-33%, lignin monomers than wild-type 241 

cell walls upon thioacidolysis degradation (Fig. 3B), further confirming that OsFNSII 242 

disruption reduces the generation of lignins from monolignols. However, when the 243 

thioacidolysis monomer yield is expressed relative to lignin content, an opposite trend 244 

was observed in most of the samples (Supplemental Fig. S3). The total thioacidolysis-245 

released H+G+S monomers and G monomers per thioglycolic lignin were significantly 246 

higher in all the tissues tested. Also, significant increases in S-type monomers in culm 247 

and leaf, and H-type monomers in leaf tissues were observed. Intriguingly, the fnsII 248 

mutant cell walls appeared to show a trend of decreased S/G monomer ratio in all the 249 

tissues tested (Fig. 3C and 3D). Taken together, our lignin analysis suggested that 250 

OsFNSII disruption somehow affects the content and composition of lignins derived from 251 

typical monolignols. 252 

Cell wall-bound p-coumarates (pCAs) and ferulates (FAs) were quantified as the 253 

corresponding free acids released under mild alkaline hydrolysis of CWRs. The fnsII 254 
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mutant cell walls displayed significantly reduced pCA levels (25-48% less compared to 255 

wild-type controls) particularly in culm and sheath tissues (Fig. 4A), whereas FA levels 256 

were not significantly affected in all the vegetative tissues investigated (Fig. 4B). Given 257 
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that a majority of pCA is bound to lignins whereas FA mainly to hemicelluloses 258 

(arabinoxylans) in typical grass cell walls (Ralph, 2010), it is plausible that the reduced 259 

pCA levels in culm and sheath were associated with the reduced levels of lignins derived 260 
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from monolignols (Fig. 3). This was further supported by comparing the pCA content per 261 

thioglycolic lignin between wild-type and the fnsII mutant plants (Supplemental Fig. S4): 262 

there was no substantial difference on the content of pCA per lignin in the culm and 263 
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sheath tissues. We also analyzed cell wall sugar composition via a combination of 264 

trifluoroacetic acid and sulfuric acid-catalyzed cell wall hydrolysis reactions (see the 265 

experimental section). Overall, wild-type and fnsII mutant cell walls displayed similar 266 
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sugar profiles, suggesting that OsFNSII disruption does not affect the composition of cell 267 

wall polysaccharides; as is typical in grass cell walls, crystalline cellulose and 268 

arabinoxylans comprise a major part of cell wall polysaccharides in both wild-type and 269 

fnsII mutant tissues (Supplemental Fig. S5).  270 

 271 

2D NMR Analysis of OsFNSII-knockout Mutant Rice Cell Walls 272 

To further investigate the impact of OsFNSII-knockout mutation on cell wall structure, 273 

we performed 2D NMR analysis on the cell walls isolated from fnsII and wild-type culm 274 

tissues. We first analyzed whole cell wall materials by simple swelling of CWRs in 275 

dimethyl sulfoxide (DMSO)-d6/pyridine-d5 after fine ball-milling. This approach 276 

provides a global picture of the chemical composition and structure of cell wall lignins as 277 

well as polysaccharides (Mansfield et al., 2012; Kim and Ralph, 2010). For a more in-278 

depth analysis, we analyzed lignin-enriched cell walls prepared from CWRs following 279 

enzymatic removal of polysaccharides (Tobimatsu et al., 2013; Zhao et al., 2013).  280 

The aromatic sub-regions of the short range 1H–13C correlation (HSQC) NMR 281 

spectra displayed typical lignin aromatic signals from G and S units (G and S), as well as 282 

those from H units (H) albeit at low levels (Fig. 5 and Supplemental Fig. S6A). Volume 283 

integrations of these contour signals estimated 46-58% and 42-54% of S and G lignins, 284 

respectively (Fig. 5E). In line with our observation in thioacidolysis (Fig. 3D), S lignin 285 

signals were clearly depleted over G lignin signals in the fnsII mutant cell wall spectra. 286 

Besides the typical aromatic signals from the monolignol-derived lignins, the HSQC 287 

spectra of wild-type cell walls displayed the characteristic set of aromatic signals from 288 

lignin-bound tricin units (T); the chemical shifts of all the C–H correlations from the 289 

flavone aromatic system (T3, T8/6, and T2´/6´) are in total agreement with literature data 290 

(Del Río et al., 2012; Lan et al., 2015; Koshiba et al., 2017). In contrast, all these tricin 291 

signals were strikingly depleted to undetectable levels (<1 %) in the spectra of fnsII 292 

mutant cell walls (Fig. 5B and 5E). This clearly suggests that disruption of OsFNSII 293 

expression results in a strongly reduced incorporation of tricin into the lignin polymer.  294 

In addition, a new set of aromatic signals appeared at δC/δH 95.0-96.5/6.2 in the 295 

fnsII mutant spectra. Based on the location of FNSII in the tricin biosynthetic pathway, 296 

we hypothesized that the new flavonoid-bound lignins could have been derived from 297 
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incorporating naringenin intermediate into the lignin polymers (Fig. 1). To test this 298 

hypothesis, we prepared synthetic lignin polymers (GN-DHP) via in vitro peroxidase-299 

catalyzed copolymerization of naringenin and coniferyl alcohol. A close comparison of 300 

the NMR spectra of the mutant cell walls and GN-DHP firmly established the 301 

incorporation of naringenin into the lignin polymers (Fig. 5B and 5D). The resolved and 302 

diagnostic signals appearing at δC/δH 95.0-96.5/6.2 were assigned to C8–H8 and C6–H6 303 

correlations of the naringenin flavanone aromatic system (N8/6). Although the signals 304 

from naringenin B-ring were most likely overlapping with G and H lignin aromatic 305 

signals [C2´–H6´ correlations (N2´/6´) at δC/δH ~128/~7.4; C3´–H5´ correlations (N3´/5´) at 306 
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δC/δH ~115/~7.0], characteristic methylene signals from naringenin C-ring (N3) were also 307 

well resolved and clearly seen at δC/δH 78.5/5.5 in the aliphatic sub-regions of the mutant 308 

and naringenin-incorporated GN-DHP spectra (Fig. 6 and Supplemental Fig. S6B). 309 

The aliphatic sub-regions of the HSQC spectra also provide information of the 310 

major inter-monomeric linkages in the lignin polymers (Fig. 6 and Supplemental Fig. 311 

S6B). Typical lignin linkage signals from β–O–4 (I), β–5 (II), and β–β (III) units as well 312 

as those from the corresponding γ-acylated units (I´, II´, and III´) were visible in both 313 

wild-type and fnsII mutant cell wall spectra. Volume integrations of the relatively well-314 

resolved Cα–Hα contours appearing in the lignin-enriched cell wall spectra allowed us to 315 
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estimate the distributions of these lignin inter-monomeric linkages (Fig. 6E). Our data 316 

suggested that the mutant lignins were significantly depleted in β-aryl ethers (I+I´) and 317 

augmented in phenylcoumarans (II+II´) and β–β (III+III´) units compared with wild-318 

type lignins. As further discussed below, such shifts in the lignin linkage pattern might be 319 

a consequence of the reduction and partial replacement of tricin units by naringenin units. 320 

We also analyzed the profiles of cell wall polysaccharides based on the sugar anomeric 321 

correlations appearing in the whole cell wall spectra (Kim and Ralph, 2014; Brennan et 322 

al., 2012). Overall, distributions of the sugar correlations were similar between the wild-323 

type and mutant spectra (Supplemental Fig. S6C), which is totally in line with the 324 

chemical data (Supplemental Fig. S5).  325 

 326 

Digestibility of OsFNSII-knockout Mutant Rice Cell Walls 327 

Lastly, to determine the effect of truncation of the tricin biosynthetic pathway on cell 328 

wall digestibility, we evaluated enzymatic saccharification efficiency of the rice cell 329 

walls. Pulverized and de-starched culm CWRs were digested, without any pretreatment, 330 

using a cocktail of commercially available cellulolytic enzymes (Hattori et al., 2012). 331 

Typical enzymatic hydrolysis profiles were obtained for both wild-type and mutant cell 332 

walls; saccharification was rapid during the first 6 h of hydrolysis and continued 333 

incubation released comparatively small amounts of additional glucose. As illustrated in 334 

Fig. 7, it was clearly observed that the mutant cell walls yielded more glucose than the 335 

wild-type controls at all the incubation times examined. The enhancement of 336 

saccharification efficiency was 25-30% when expressed as glucose yield per cell walls 337 

and 30-40% when expressed as glucose yield per total glucan.  338 

 339 

  340 
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DISCUSSION 341 

 342 

FNSII Mutant Rice Produces Cell Wall Lignins Devoid of Tricin 343 
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The tricin biosynthetic pathway in rice was completely elucidated recently with 344 

identification of a series of previously uncharacterized flavone enzymes (Kim et al., 345 

2006; Lam et al., 2014 and 2015). Among them, OsFNSII (CYP93G1) represents a 346 

branch-point enzyme for the entry to tricin biosynthesis in rice (Lam et al., 2014). Grass 347 

FNSIIs classified in the CYP93G subfamily were likely to have evolved independently 348 

from dicot FNSIIs which belong to the 93B subfamily (Supplemental Fig. S7). 349 

Recombinant OsFNSII converts naringenin and eriodictyol into apigenin and luteolin, 350 

respectively. In addition, Arabidopsis over-expressing OsFNSII produces apigenin, 351 

luteolin and chrysoeriol O-glycosides, which are normally not produced in the tissues 352 

examined. Furthermore, the accumulation of extractable flavones, including tricin O-353 

glycosides and O-flavonolignans, was compromised in the fnsII mutant. Hence, OsFNSII 354 

is indispensable for the production of extractable tricin metabolites in rice (Lam et al., 355 

2014).  356 

The present study provides compelling evidence that OsFNSII is also responsible 357 

for generating tricin monomer for cell wall lignification in rice. Our NMR analysis 358 

clearly demonstrated that the fnsII mutant produces cell wall lignins devoid of tricin 359 

residues. The tricin aromatic signals appearing in the HSQC spectra of the mutant cell 360 

walls are below detection limits (<1 %), while those signals account for about 34% 361 

relative to the total of G and S lignin signals in the wild-type cell walls (Fig. 5E). It 362 

should be noted here that, as recently reported (Lan et al., 2016b), such HSQC NMR-363 

based estimates of tricin concentrations are most likely excessive; tricin is mostly in 364 

lignins as the polymers’ terminal units and typical HSQC experiments over-quantify such 365 

more mobile terminal units compared with rigid internal units (Mansfield et al., 2012; 366 

Tobimatsu et al., 2013; Okamura et al., 2016). In fact, a recent study reported that tricin 367 

concentrations in grass lignins determined by a more reliable chemical method are 368 

typically 1-3% (Lan et al., 2016b). Given that all the tricin signals are below the detection 369 

limit in our HSQC NMR analysis for the fnsII mutant, it is conceivable that the actual 370 

concentration of lignin-bound tricin in this mutant is practically zero. 371 

 Interestingly, FNSII-mutation also impacted lignification of typical monolignols. 372 

Thioglycolic acid lignin assay estimated 34-58% lignin reductions in fnsII mutant cell 373 

walls compared to wild-type controls (Fig. 3A). In addition, we observed 18-35% 374 
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reductions in the total yields of monolignol monomers released upon thioacidolysis (Fig. 375 

3B), suggesting that the apparent lignin reduction in the fnsII mutant was not only caused 376 

by the loss of tricin units, but also by the depletion in the lignin units derived from the 377 

canonical monolignols. This is also corroborated by the lower intensity of phloroglucinol-378 

HCl lignin staining in vascular tissues (Fig. 2C) as well as the reductions in lignin-bound 379 

pCA levels (Fig. 4A). On the other hand, when the yield of thioacidolysis-released 380 

monolignol monomers was expressed relative to the thioglycolic lignin content, an 381 

increase was observed in the fnsII mutant (Supplemental Fig. S3), implying that the 382 

mutant lignin is less condensed. Apparently, this is contradictory to what was observed in 383 

our NMR analysis; the fnsII mutant contained less non-condensed β-aryl ethers and more 384 

phenylcoumaran and β-β units than the wild-type control (Fig. 6E). It could be partly due 385 

to the fact that, unlike NMR which provides structural information on the entire lignin, 386 

thioacidolysis analyzes only a fraction of the polymer containing cleavable β-aryl ethers; 387 

it is also reported that the acylation of lignin in grasses impedes the efficient cleavage of 388 

β-aryl ethers and thus the lignin monomer yield determined for grass samples under 389 

typical thioacidolysis conditions could be substantially underestimated (Grabber et al., 390 

1996; Yue et al., 2012).  391 

In addition to the reduced lignin levels, we also observed significantly decreased S/G 392 

lignin unit ratios in all the mutant tissues as determined by both thioacidolysis (Fig. 3D) 393 

and NMR (Fig. 5E). It has been reported that disruptions in the monolignol biosynthetic 394 

pathway redirect the metabolic flux in the phenylpropanoid pathway and occasionally 395 

affect accumulations of flavonoids (Besseau et al., 2007; Li et al., 2010; Fornalé et al., 396 

2010; Abdlrazzak et al., 2006; Fornalé et al., 2015; Vanholme et al., 2012). It is therefore 397 

conceivable that a blockage in a flavonoid pathway may in turn affect the generation of 398 

monolignols and their lignin polymers. Very recently, it was reported that a maize mutant 399 

defective in CHS (Figure 1) produces tricin-depleted cell walls with a substantially 400 

increased total lignin content (Eloy et al., 2016), which is apparently in contrast to our 401 

FNSII rice mutant with lignins depleted in both tricin and monolignol-derived units. As 402 

CHS is the entry enzyme for the flavonoid pathway branching off from the general 403 

phenylpropanoid pathway (Figure 1), downregulation of CHS can redirect the carbon flux 404 

from the biosynthesis of flavonoids to canonical monolignols, which consequently results 405 
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in plants with increased lignin levels. Such scenario, however, may not prevail in our rice 406 

fnsII mutant because FNSII functions in the downstream of the flavonoid pathways 407 

(Figure 1). In fact, as further discussed below, fnsII mutant rice abnormally accumulates 408 

narigenin-incorporated lignins as well as other narigenin-derived flavone and flavanone 409 

metabolites as we previously reported (Lam et al., 2014). These data suggest that the 410 

carbon flux redirected from the biosynthesis of tricin is at least partially compensated 411 

within the flavonoid pathway. Although further studies are required, the reduction of 412 

lignin content in the rice fnsII mutant may suggests a feedback system that controls the 413 

relative carbon flux between flavonoid and monolignol biosynthetic pathways. It should 414 

be also noted here that, unlike the case of CHS-defective maize (Eloy et al., 2016), CHS-415 

suppressions in some dicot species resulted in no alterations or, like in our FNSII rice 416 

mutant, reductions in lignin levels (Li et al., 2010; Zuk et al., 2016). Therefore, cross-417 

interactions between the flavonoid and monolignol pathway metabolisms may also be 418 

much dependent on different metabolic plasticity in different plant species.  419 

  420 

FNSII Mutant Rice Incorporates Naringenin as A Novel Lignin Component 421 

An intriguing discovery in this study was that loss of tricin for lignification in the fnsII 422 

mutant was partially compensated by incorporating naringenin, a flavanone substrate of 423 

FNSII, as a new component of lignin polymer units (Fig. 1). In line with this, we 424 

previously reported over-accumulation of soluble naringenin metabolites in the fnsII 425 

mutant seedlings (Lam et al., 2014). The successful generation of synthetic lignin 426 

polymer (GN-DHP) from naringenin and coniferyl alcohol in vitro indicates that 427 

naringenin is compatible in lignin polymerization; naringenin has a capability to be 428 

radicalized by peroxidases, cross-coupled with monolignols, and integrally incorporated 429 

into the lignin polymers. Our NMR analysis also demonstrated that the lignin-linked 430 

naringenin residues still contain the intact phloroglucinol A-rings (Fig. 5 and 6). This 431 

suggests that reactions of p-hydroxyphenyl B-ring far exceed A-ring reactions during 432 

lignin polymerization with naringenin. Previous studies examining chemical and 433 

enzymatic oxidations of tricin (Lan et al., 2015) and analogous flavonoids (Elumalai et al, 434 

2012; Grabber et al., 2012; Itoh et al., 2007) also have reported predominant reactions of 435 

cinnamoyl B-rings over phloroglucinol-type A-rings. Furthermore, these NMR data can 436 
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be also interpreted that the newly incorporated naringenin units are linked majorly as the 437 

terminal units of the lignin polymer chains, as is proposed for the canonical tricin units 438 

(Lan et al., 2015).  439 

Tricin bearing the 3´,5´-dimethoxyl-p-hydroxyphenyl B-ring incorporates into 440 

lignin exclusively via 4´–O–β-type coupling, which ultimately creates β-aryl ether units 441 

in the lignin polymer chains (Fig. 8A) (Lan et al., 2015). On the other hand, naringenin 442 

with non-substituted p-hydroxyphenyl B-ring logically can couple with monolignols not 443 

only via 4´–O–β-type coupling for β-aryl ether units (Fig. 8B) but also via 3´–β-type 444 

coupling, yielding additional phenylcoumaran units at the lignin terminus (Fig. 8C). 445 

Therefore, our observation that fnsII mutant lignins had notably increased 446 

phenylcoumaran units (about 3-fold increase, based on HSQC signal integrations, Fig. 447 

6E) could be partially explained by the replacement of tricin lignin monomer by 448 

naringenin.  449 

As envisioned by the histochemical analysis with the vanillin-HCl reagent (Fig. 450 

2C), the incorporation of naringenin into fnsII mutant lignins was unlikely to reach the 451 

level of tricin incorporation in wild-type lignins. In our HSQC analysis, whereas tricin 452 

signals account for ~35 % relative to the total of G and S lignin signals in the wild-type 453 

cell wall spectra, naringenin signals have reached only about 6 % in the fnsII mutant 454 

spectra (Fig. 5E). Our previous metabolite study also suggested a relatively lower level of 455 

soluble naringenin metabolites in fnsII mutant seedlings compared to soluble tricin 456 

metabolites in wild-type seedlings (Lam et al., 2014). Meanwhile, OsFNSII disruption 457 

may also increase carbon flow to the production of flavone C-glycosides through 458 

CYP93G2 which utilize naringenin as a substrate (Lam et al., 2014; Du et al., 2010a). 459 

Extensive studies on the biosynthesis and bioengineering of lignin have revealed 460 

the plasticity of lignification in planta. Manipulation of the canonical monolignol 461 

pathway had led to compositional alterations in the polymer due to incorporation of non-462 

traditional lignin monomers, e.g., caffeyl alcohol in a CCoAOMT-deficient plant (Wagner 463 

et al., 2011), 5-hydroxyconiferyl alcohol in CAldOMT-deficient plants (Jouanin et al., 464 

2000; Ralph et al., 2001; Vanholme et al., 2010; Weng et al., 2010; Koshiba et al., 465 

2013a), ferulic acid in CCR-deficient plants (Ralph et al., 2008; Wagner et al., 2013), and 466 

p-hydroxycinnamaldehydes in CAD-deficient plants (Kim et al., 2000; Marita et al., 467 
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2003; Sibout et al., 2005; Koshiba et al., 2013b; Bouvier d'Yvoire et al., 2013; Zhao et 468 

al., 2013; Anderson et al., 2015). Such malleability of lignification is also exemplified by 469 

the fact that numerous angiosperm plants produce seed coat-specific lignins derived from 470 

caffeyl and 5-hydroxyconiferyl alcohols (Chen et al., 2012; 2013; Tobimatsu et al., 471 

2013). Our discovery that FNSII-deficiency in rice results in incorporation of naringenin 472 

into lignin further illustrates the substantial flexibility in the construction of lignin 473 

polymers in planta.  474 

 475 

FNSII Mutant Rice is Viable and Produces Biomass with an Improved Digestibility 476 

As the quantity and quality of lignin affect many aspects of lignocellulosic biomass 477 

utilization, regulation of lignin biosynthesis has been a primary target for cell wall 478 

bioengineering (Ragauskas et al., 2014; Beckham et al., 2016; Rinaldi et al., 2016). 479 

During biofuels production, lignin is a major recalcitrant barrier to the enzymatic 480 

saccharification of cell wall polysaccharides. Reduction of lignin content and/or 481 

alteration of lignin composition can improve the efficiency of enzymatic cell wall 482 

hydrolysis and downstream microbial fermentations (Chen and Dixon, 2007). However, 483 

 www.plantphysiol.org on June 1, 2017 - Published by www.plantphysiol.orgDownloaded from 
Copyright © 2017 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org/
http://www.plantphysiol.org


 25

such lignin modifications often result in developmental abnormalities, such as collapsed 484 

xylem, stunted growth, and infertility (Bonawitz and Chapple 2013). Importantly, despite 485 

with a considerably reduced lignin content and altered flavonoid-bound lignins, the fnsII 486 

mutant develops apparently intact vascular tissues (Fig. 2C) and displays overall normal 487 

plant growth, biomass production, and fertility, all comparable with the wild-type 488 

controls (Table I). Likewise, the recently reported tricin-depleted maize CHS-mutant 489 

displayed no growth defects (Eloy et al., 2016). Although a more comprehensive analysis 490 

on plant growth performance under various stress conditions should be examined in the 491 

future, it is implicated that the absence of integrated tricin in lignins is unlikely a major 492 

detrimental factor for growth and development at least in rice and maize. At the same 493 

time, the fnsII mutant exhibits a remarkably enhanced cell wall digestibility (Fig. 7). 494 

Considering that tricin actually takes up small portions of rice cell walls (Lan et al. 495 

2016b), the improved enzymatic saccharification efficiency of the rice fnsII mutant could 496 

be attributed mainly to the reduced lignin levels. On the contrary, the tricin-depleted 497 

maize CHS-mutant showed a substantially reduced saccharification efficiency, which was 498 

in turn attributed to the increased lignin levels (Eloy et al., 2016). Taken together, lignin 499 

content, rather than an absence or modification of lignin-bound tricin units, is likely a 500 

major factor affecting the saccharification efficiency observed for the tricin-truncated 501 

mutant plants. 502 

 503 

Overall, we envision that genetic manipulations of tricin biosynthesis could be an 504 

alternative strategy to engineer grass cell walls for efficient biomass conversion processes 505 

without severely compromising plant fitness. Given that the CYP93G members (FNSIIs) 506 

are highly conserved in Poaceae (Lam et al., 2014; Supplemental Fig. S7), there is a 507 

strong potential to extend the application to bioenergy grass crops such as sorghum, 508 

sugarcane, switchgrass, and bamboo. Meanwhile, further generation of transgenic rice 509 

plants with altered flavonoid compositions in lignin will facilitate the elucidation of the 510 

physiology functions and phylogeny of tricin-bound lignins in grasses.   511 

 512 

MATERIALS AND METHODS 513 

 514 
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Plant Materials 515 

Rice T-DNA insertion mutant of CYP93G1 (accession: K-00244; cv Kitaake) was 516 

obtained originally from the Crop Biotech Institute of Kyung Hee University. Rice seeds 517 

were surface sterilized, germinated and grown in a phytotoron under a 12 h photoperiod 518 

and ~30 ºC day / ~24 ºC night temperature regime. The wild-type and fnsII homozygous 519 

mutant plants were isolated by a genomic PCR approach as described previously (Lam et 520 

al., 2014), and primers used for genotyping are listed in Supplemental Table S1. Mature 521 

plants (45 days after the heading) were used for phenotypic characterization, harvested, 522 

and dried in a temperature controlled room (27 ºC, for 30 days) prior to cell wall 523 

characterization.  524 

 525 

Gene Expression Analysis 526 

Total RNA was extracted individually from lignifying culms of rice plants at the heading 527 

stage as described previously (Koshiba et al., 2013b) and reverse-transcribed into cDNA 528 

using random hexamer (Invitrogen, Carlsbad, CA, USA) as a primer. Gene expression 529 

assayed used an Applied Biosystems 7300 Real-time PCR System (Applied Biosystems, 530 

Forester City, CA, USA) and primer sets listed in Supplemental Table S1. An ubiquitin 531 

gene (OsUBQ5; AK061988) was used as an internal control. Microarray-based gene 532 

expression data for in silico gene expression analysis (Supplemental Fig. S1) were 533 

retrieved from the Rice Expression Profile Database (RiceXPro) (Sato et al., 2012). 534 

 535 

Histochemical Analysis 536 

Fresh hand-cut specimens (~8 mm) were excised from culms at the heading stage, fixed 537 

in formaldehyde/propionic acid/ethanol at a ratio of 3.7:5:50 (v/v/v), treated with 538 

ethanol/acetic acid at a ratio of 6:1 (v/v) to remove extractives, and agarose-embedded. 539 

Sections were sliced at 100 μm-thickness using a DTK-2000 microslicer (Dosaka EM, 540 

Kyoto, Japan). For lignin staining using the phloroglucinol-HCl method, sections were 541 

incubated in 1 % (w/v) phloroglucinol in ethanol for 10 min and acidified in 17.5 N HCl 542 

for 10 min.  For flavonoid staining using the vanillin-HCl method, sections were 543 

incubated in 1 % (w/v) vanillin in ethanol for 10 min followed by incubation in 17.5 N 544 
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HCl for 10 min. The sections treated were then observed under an Olympus BX51 545 

microscope (Olympus Optical, Tokyo, Japan). 546 

 547 

Cell Wall Preparations 548 

Extractive-free cell wall residues (CWRs) for chemical analysis and NMR were prepared 549 

as previously described (Yamamura et al., 2012). Briefly, dried rice plant tissues were 550 

pulverized with a TissueLyser (Qiagen, Hilden, Germany), extracted sequentially with 551 

methanol, hexane, and distilled water, and then freeze-dried to give CWRs. For NMR 552 

analysis, CWRs (~300 mg) were further ball-milled using a planetary micro mill 553 

Pulverisette 7 (Fritsch Industrialist, Idar-Oberstein, Germany) with ZrO2 vessels 554 

containing ZrO2 ball bearings (600 rpm, 12 cycles of 10 min at 5 min intervals) 555 

(Mansfield et al., 2012; Tobimatsu et al., 2013). For whole cell wall NMR analysis, 60 556 

mg of the ball-milled CWRs was directly swelled in 600 μl DMSO-d6/pyridine-d5 (4:1, 557 

v/v). In parallel, ~240 mg of the ball-milled CWRs was further digested with crude 558 

cellulases (Cellulysin, Calbiochem, La Jolla, CA, USA) according to the methods 559 

described previously (Tobimatsu et al., 2013). The obtained lignin-enriched CWRs (ca. 560 

40-60 mg) were dissolved in 600 µl DMSO-d6/pyridine-d5 (4:1, v/v) and subjected for 561 

NMR analysis.      562 

 563 

Chemical Analysis 564 

Lignin content was estimated by thioglycolic acid method (Suzuki et al., 2009). 565 

Analytical thioacidolysis was performed according to the method described previously 566 

(Yamamura et al., 2012), and the released lignin monomers were derivatized with N,O-567 

bis(trimethylsilyl)acetamide and quantified by gas chromatography/mass spectrometry 568 

(GC/MS) using 4,4´-ethylenebisphenol as an internal standard (Yue et al., 2012). Cell 569 

wall-bound pCA and FA were quantified using the methods described by Yamamura et 570 

al. (2011). The monosaccharide composition of the cell-wall polysaccharides, excluding 571 

crystalline cellulose, was determined by hydrolysing CWRs with trifluoroacetic acid and 572 

analyzing the released monosaccharides as alditol acetates by GC/MS with inositol 573 

acetate as an internal standard (Chen et al., 2012). Crystalline cellulose content of the 574 

residue was determined by washing it with the Updegraff reagent (Updegraff, 1969) 575 
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followed by a complete hydrolysis with 72% sulfuric acid (Hattori et al., 2012) and 576 

glucose quantified by Glucose CII test kit (Wako Pure Chemicals Industries, Osaka, 577 

Japan). 578 

 579 

Generation of Synthetic Lignin Polymers 580 

Dehydrogenation polymer (DHPs) from coniferyl alcohol and naringenin was generated 581 

by the so-called bulk polymerization method (Tobimatsu et al., 2008; 2011).  Briefly, 100 582 

ml of acetone/sodium phosphate buffer (0.1 M, pH 6.5) (1:9, v/v) containing 0.5 mmol of 583 

coniferyl alcohol (for G-DHP) or 0.425 mmol of coniferyl alcohol together with 0.075 584 

mmol of naringenin (for GN-DHP), along with 100 ml of hydrogen peroxide solution 585 

(0.6 mmol) were separately added to 25 ml sodium phosphate buffer (pH 6.5) containing 586 

5 mg horseradish peroxidase (HRP, Type IV, Sigma-Aldrich, St. Louis, MO, USA) over 587 

1 h at room temperature. The solution was further stirred for 14 h and the precipitates 588 

formed were collected by centrifugation (13,640 g, 15 min), washed with distilled water 589 

(50 ml × 4), and lyophilized to afford G-DHP (~53 mg, 59 % weight yield) or GN-DHP 590 

(~37 mg, 38% weight yield) as colorless powders. The DHPs (~30 mg) were dissolved in 591 

600 μl DMSO-d6/pyridine-d5 (4:1, v/v) for NMR analysis. 592 

 593 

2D NMR analysis 594 

NMR spectra were acquired on a Bruker Biospin Avance III 800US system (Bruker 595 

Biospin, Billerica, MA, USA) equipped with a cryogenically cooled 5-mm TCI gradient 596 

probe. Adiabatic heteronuclear single-quantum coherence (HSQC) NMR experiments 597 

were carried out using standard implementation (“hsqcgcep.3”) with parameters 598 

described in the literature (Mansfield et al., 2012). Data processing and analysis used 599 

Bruker TopSpin 3.1 software (Bruker Biospin, Billerica, MA, USA), and the central 600 

DMSO solvent peaks (δC/δH: 39.5/2.49 ppm) were used as an internal reference. HSQC 601 

plots were obtained with typical matched Gaussian apodization in F2 and squared cosine-602 

bell apodization and one level of linear prediction (32 coefficients) in F1. For volume 603 

integration, linear prediction was turned off and no correction factors were used. For 604 

integration of lignin and flavonoid aromatic signals (Fig. 5), C2–H2 correlations from 605 

guaiacyl units (G) and C2–H2/C6–H6 correlations from syringyl units (S), C2´–H2´/C6´–H6´ 606 
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correlations from tricin (T), and C8–H8/C6–H6 correlations from naringenin (N) residues 607 

were used, and the S, T, and N integrals were logically halved. For integrations of lignin 608 

inter-monomeric linkages (Fig. 6), well-resolved Cα–Hα contours from I, I´, II, II´, III, 609 

and III´ units, and C3–H3 contours from N were integrated, and III, III´, and N integrals 610 

were logically halved. The relative contour intensities listed in Fig. 5E and Fig. 6E are 611 

derived from three biological replicates and expressed on G + S = 100 and I + I´ + II + 612 

II´ + III + III´= 100 bases, respectively. 613 

 614 

Determination of Enzymatic Saccharification Efficiency 615 

Enzymatic saccharification efficiency was determined essentially by the method 616 

described in Hattori et al. (2012). Briefly, CWRs were destarched and subjected to 617 

enzymatic hydrolysis with a cellulolytic enzyme cocktail composed of Celluclast 1.5 L, 618 

Novozyme 188, and Ultraflo L (Novozymes, Bagsvaerd, Denmark) in a sodium citrate 619 

buffer (pH 4.8). Glucose concentration at each incubation time point was determined by 620 

Glucose CII test kit (Wako Pure Chemicals Industries, Osaka, Japan). Cellulose content 621 

for calculation of cellulose-to-glucose conversion was independently determined by 622 

hydrolysis of destarched CWRs with sulfuric acid (Hattori er al., 2012). 623 

 624 

Phylogenetic Analysis 625 

The unrooted phylogenetic tree was constructed by neighbor-joining method using 626 

MEGA6 (Tamura et al., 2013) with default parameters. Bootstrapping with 1,000 627 

replications was performed. 628 

 629 

Accession Numbers 630 

Sequence data from this article can be found in the EMBL/GenBank data libraries under 631 

accession number(s) AK100972 (OsFNSII, LOC_Os04g01140). Accession numbers for 632 

the sequences used in the phylogenetic analysis were shown in the tree or in the legend of 633 

Supplemental Fig. S7. 634 
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TABLES 645 

 646 

Table I. Growth phenotypes, biomass yield and fertility rate of wide-type (WT) and fnsII 647 
mutant plants.  648 
 649 

Trait WT fnsII 
Plant Height (cm) a 115.0±4.7 105.1±6.0* 
Culm length (cm) b 86.3±5.3 79.7±7.5 
Ear length (cm) 16.0±2.5 15.3±1.1 
Tiller number 10.4±1.7 12.2±3.4 
Ear number 14.6±2.0 14.8±2.6 
Dry mass of culm (g) 4.8±1.4 3.7±0.7 
Dry mass of sheath (g) 3.2±0.5 3.6±1.3 
Dry mass of leaf (g) 3.0±0.4 3.8±1.1 
CWR yield of culm (%) c 63.2±6.5 62.8±2.5 
CWR yield of sheath (%) c 84.7±0.7 80.2±6.4 
CWR yield of leaf (%) c 73.6±0.99 70.1±4.66 
Number of panicles 15.0±2.2 15.4±2.7 
Average mass per panicle (g) 1.1±0.2 1.2±0.2 
Fertility rate (%) 85.3±3.9 83.6±2.7 
Values are means ± SD (n = 5), and asterisks (*) indicate significant difference from WT 650 
(Student’s t-test, p < 0.05). aLength from cotyledonary node to the tip of the top leaf. 651 
bLength from cotyledonary node to panicle base. cCWR, cell wall residue. 652 
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FIGURE LEGENDS 653 
 654 
Fig. 1. Proposed lignin biosynthetic pathway in grasses.  655 

PTAL, phenylalanine and tyrosine ammonia lyase; TAL, tyrosine ammonia lyase; 656 

PAL, phenylalanine ammonia lyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-657 

coumarate CoA ligase; HCT, p-hydroxycinnamoyl-coenzyme A: quinate/shikimate p-658 

hydroxycinnamoyltransferase; C3′H, p-coumaroyl ester 3-hydroxylase; CSE, caffeoyl 659 

shikimate esterase; CCR, cinnamoyl-CoA reductase; CCoAOMT, caffeoyl-CoA O-660 

methyltransferase; CAld5H, coniferaldehyde 5-hydroxylase; CAldOMT, 5-661 

hydroxyconiferaldehyde O-methyltransferase; CAD, cinnamyl alcohol dehydrogenase; 662 

PMT, p-coumaroyl-CoA:monolignol transferase; CHS, chalcone synthase; CHI, 663 

chalcone isomerase; FNSII, flavone synthase II; F3′H, flavonoid 3′-hydroxylase; 664 

FOMT, flavonoid O-methyltransferase; C5′H, crysoeriol 5′-hydroxylase; LAC, 665 

laccase; PRX, peroxidase. 666 

 667 
Fig. 2. Gene structure, phenotype, and vasculature of FNSII-knockout mutant rice 668 

(fnsII) compared with a wild-type (WT) rice. 669 

(A) Gene structure of OsFNSII (CYP93G1) in the T-DNA insertional mutant fnsII 670 

used in this study. 671 

(B) Morphological phenotype of WT and fnsII mutant at harvest stage (45 days after 672 

heading). Scale bars denote 10 cm. 673 

(C) Histochemical analysis of culm cell walls in WT and fnsII mutant at heading 674 

stage. Transverse cross sections of culms were stained by phloroglucinol-HCl and 675 

vanillin-HCl reagents for lignin and flavonoids, respectively. Scale bars denote 40 676 

μm. 677 

 678 
Fig. 3. Chemical lignin analysis of cell walls from wild-type (WT) and FNSII-679 

knockout mutant (fnsII) rice plants. 680 

(A) Lignin content determined by thioglycolic acid assay.  681 

(B), (C) and (D) Lignin composition analysis by thioacidolysis. Total monomer yield 682 

per cell wall residue, CWR (B) and relative abundances (C and D) of H, G, and S-683 

type trithioethylpropane monomers released from H, G, and S-type lignins. 684 

Values are means ± standard deviation (SD) from individually analyzed plants (n = 3), 685 

and asterisks indicate significant differences between WT and fnsII mutant plants 686 

(Student’s t-test, *: p < 0.05; **: p < 0.01).  687 
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 688 
Fig. 4. Cell wall-bound p-coumarates (A) and ferulates (B) released from wild-type 689 

(WT) and FNSII-knockout mutant (fnsII) cell walls via mild alkaline hydrolysis. 690 

Values are means ± standard deviation (SD) from individually analyzed plants (n = 3), 691 

and asterisks indicate significant differences between WT and fnsII mutant plants 692 

(Student’s t-test, *: p < 0.05; **: p < 0.01). CWR, cell wall residue. 693 

 694 
Fig. 5. Aromatic sub-regions of short range 1H–13C correlation (HSQC) NMR spectra 695 

of cell wall lignins from culm tissues of wild-type (WT) and FNSII-knockout mutant 696 

(fnsII) rice plants, and in vitro synthetic lignin polymers (DHPs). 697 

(A) and (B) Lignin-enriched cell walls of WT and fnsII mutant plants, prepared by 698 

enzymatic removal of wall polysaccharides with crude cellulases. Contour coloration 699 

matches that of the lignin substructure units shown. 700 

(C) and (D) DHPs prepared from coniferyl alcohol only (G-DHP) and from coniferyl 701 

alcohol along with naringenin (GN-DHP). Contour coloration matches that of the 702 

lignin substructure units shown. 703 

(E) Normalized contour intensity of the major lignin and flavonoid aromatic signals 704 

appearing in the spectra of lignin-enriched cell walls. The values are means ± 705 

standard deviation (SD) from individually analyzed plants (n = 3), and expressed as a 706 

percentage of the total of S and G lignin units. Asterisks indicate significant 707 

differences between WT and fnsII mutant plants (Student’s t-test, **: p < 0.01). n.d., 708 

not detected. 709 

 710 
Fig. 6. Aliphatic sub-regions of short range 1H–13C correlation (HSQC) NMR spectra 711 

of cell wall lignins from culm tissues of wild-type (WT) and FNSII-knockout mutant 712 

(fnsII) rice plants, and in vitro synthetic lignin polymers (DHPs). 713 

(A) and (B) Lignin-enriched cell walls of WT and fnsII mutant plants, prepared by 714 

enzymatic removal of wall polysaccharides with crude cellulases. Boxes labeled x2 715 

indicate regions that are vertically scaled 2-fold. Contour coloration matches that of 716 

the lignin substructure units shown. 717 

(C) and (D) DHPs prepared from coniferyl alcohol only (G-DHP) and from coniferyl 718 

alcohol along with naringenin (GN-DHP). Contour coloration matches that of the 719 

lignin substructure units shown. 720 
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(E) Normalized contour intensity of the major lignin side-chain and naringenin 721 

signals appearing in the spectra of lignin-enriched cell walls. The values are means ± 722 

standard deviation (SD) from individually analyzed plants (n = 3), and expressed as a 723 

percentage of the total of I, I´, II, II´, III, and III´ side-chain structures. Asterisks 724 

indicate significant differences between WT and fnsII mutant plants (Student’s t-test, 725 

*: p < 0.05; **: p < 0.01). n.d., not detected. 726 

 727 
 728 

Fig. 7. Enzymatic saccharification of cell walls from culm tissues of wild-type (WT) 729 

and FNSII-knockout mutant (fnsII) rice plants. The saccharification efficiency is 730 

expressed as glucose yield per cell wall residue, CWR (upper), or as glucose yield per 731 

total glucan (bottom). Values are means ± standard deviation (SD) from individually 732 

analyzed plants (n = 3), and asterisks indicate significant differences between WT and 733 

fnsII mutant plants (Student’s t-test, *: p < 0.05; **: p < 0.01). 734 

 735 
Fig. 8. Generation of flavonoid-bound lignin units upon lignification. 736 

(A) The 4´–O–β pathway for β-aryl units via cross-coupling of tricin and monolignols 737 

upon lignification in wild-type rice cell walls. 738 

(B) and (C) The 4´–O–β and 3´–β pathways for β-aryl ether and phenylcoumaran 739 

units via cross-coupling of naringenin and monolignols upon lignification in fnsII 740 

mutant rice cell walls.  741 

 742 

Supplemental Data  743 

The following materials are available in the online version of this article.  744 

Supplemental Fig. S1. Gene expression data of flavonoid and monolignol 745 

biosynthetic genes in wild-type rice plants. 746 

Supplemental Fig. S2. Relative expression levels of flavonoid and monolignol 747 

biosynthetic genes in fnsII mutant culms. 748 

Supplemental Fig. S3. Thioacidolysis yield per thioglycolic lignin content in wild-749 

type and fnsII mutant rice tissues. 750 

Supplemental Fig. S4. Cell wall-bound p-coumarates content per thioglycolic lignin 751 

content in wild-type and fnsII mutant rice tissues. 752 

Supplemental Fig. S5. Sugar composition in wild-type and fnsII mutant rice tissues. 753 
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Supplemental Fig. S6. HSQC NMR spectra of the whole culm cell walls from wild-754 

type and fnsII mutant rice. 755 

Supplemental Fig. S7. Phylogenetic tree of CYP93 proteins. 756 

Supplemental Table S1. Primers used in this study. 757 

 758 

 759 

 760 

  761 
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