
Title Interacting Default Intensity with a Hidden Markov Process

Author(s) YU, F; Ching, WK; GU, J; SIU, TK

Citation Quantitative Finance       , 2017, v. 17, p. 781-794

Issued Date 2017

URL http://hdl.handle.net/10722/240945

Rights

Postprint:
This is an Accepted Manuscript of an article published by Taylor
& Francis Group in [Quantitative Finance] on [2017], available
online at:
http://www.tandfonline.com/doi/abs/10.1080/14697688.2016.1237
036; This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International
License.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/84929532?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ar
X

iv
:1

60
3.

02
90

2v
1 

 [
q-

fi
n.

C
P]

  9
 M

ar
 2

01
6

Interacting Default Intensity with Hidden Markov

Process

Feng-Hui Yu ∗ Wai-Ki Ching † Jia-Wen Gu ‡ Tak-Kuen Siu §

March 10, 2016

Abstract

In this paper we consider a reduced-form intensity-based credit risk model with a hidden

Markov state process. A filtering method is proposed for extracting the underlying state

given the observation processes. The method may be applied to a wide range of problems.

Based on this model, we derive the joint distribution of multiple default times without

imposing stringent assumptions on the form of default intensities. Closed-form formulas for

the distribution of default times are obtained which are then applied to solve a number of

practical problems such as hedging and pricing credit derivatives. The method and numerical

algorithms presented may be applicable to various forms of default intensities.

Keywords: Reduced-form Intensity Model; Default Risk; Credit Derivatives; Hidden Markov

Model (HMM).

1 Introduction

Modeling credit risk has long been a critical issue in credit risk management. Attention has been

given to it especially since the global financial crisis in 2008. Credit risk modeling has a lot of

applications, for example, pricing and hedging the credit derivatives, as well as the management

of credit portfolios. Models adopted in the finance industry may be grouped into two major

∗Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of

Hong Kong, Pokfulam Road, Hong Kong. E-mail: maggie.yufenghui@gmail.com.
†Corresponding author. AdvancedModeling and Applied Computing Laboratory, Department of Mathematics,

The University of Hong Kong, Pokfulam Road, Hong Kong. E-mail: wching@hku.hk.
‡Department of Mathematical Science, University of Copenhagen, Denmark. E-mail: jwgu.hku@gmail.com.
§Department of Applied Finance and Actuarial Studies, Faculty of Business and Economics, Macquarie Uni-

versity, Sydney, NSW 2109, Australia. Email: Ken.Siu@mq.edu.au;ktksiu2005@gmail.com

1

http://arxiv.org/abs/1603.02902v1


categories: structural firm value models and reduced-form intensity-based models. For the first

class of models, it was pioneered by Black and Scholes (1973) and Merton (1974). The key idea

of the structural firm’s value model is to model the default of a firm by using its asset value,

where the asset value is governed by a geometric Brownian motion. When the asset value falls

below a certain prescribed level, the default of the firm is triggered. For the second kind of

model, it was pioneered by Jarrow and Turnbull (1995) and Madan and Unal (1998). The main

idea of reduced-form intensity-based models is to consider the defaults as exogenous processes

and describe their occurrences with Poisson processes and their variants.

The interacting intensity-based default models are widely adopted to model the portfolio

credit risk and defaults. Since we focus on contagion models in this paper as in, for example,

Giesecke (2008), we differentiate intensity-based credit risk models into top-down models and

bottom-up models. The top-down models focus on modeling the default times at the portfolio

level without reference to the intensities of individual entities. Based on this, one can also

recover the individual entity’s intensity with some method like random thinning, etc. Some

works related to this class of models include Davis and Lo (2001), Giesecke, Goldberg and Ding

(2005), Brigo, Pallavicini and Torresetti (2006), Longstaff and Rajan (2008) and Cont and Minca

(2011), etc. While the bottom-up model focuses on modeling the default intensities of individual

reference entities and their aggregation to form a portfolio default intensity. Some works related

to this class of models include Duffie and Garleanu (2001), Jarrow and Yu (2001), Schönbucher

and Schubert (2001), Giesecke and Goldberg (2004), Duffle et al. (2006) and Yu (2007), etc.

The differences between these two classes of models are the form of individual entity’s default

intensities and the way the portfolio aggregation is formed. In this paper we shall focus on a

bottom-up model.

Based on the model developed by Lando (1998), Yu (2007) extended the model and applied

the extended model multiple defaults and their correlation. In addition, Yu adopted the total

hazard construction method proposed by Norros (1986) and Shaked and Shathanthikumar (1987)

to simulate the distribution of default times which have interacting intensities. Zheng and Jiang

(2009) then adopted this method and derived closed-form formulas for the multiple default

distributions under their contagion model. Gu et al. (2013) introduced a recursive method to

calculate the distribution of ordered default times, and Gu et al. (2014) further proposed a

hidden Markov reduced-form model with a specific form of default intensities.

In this paper we develop a generalized reduced-form intensity-based credit model with hidden

Markov process. The model is applicable to a wide class of default intensities with various forms
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of dependent constructions. For the hidden Markov process, we also discuss a flexible method

to extract the hidden state process given the observations processes, which may hopefully have

applications in diverse fields. Then using the total hazard construction method by Yu (2007),

we derive closed-form formulas for the joint default distribution. When the intensities are

homogeneous, analytic algorithm for the calculation of the joint distribution of ordered default

times is provided. The explicit formula may enhance the computational efficiency in applications,

for instance, pricing of credit derivatives. We remark that the results in Gu et al. (2014) is a

special case of the method discussed here. In addition, we extend the total hazard construction

method to the cases with hidden process to simulate the joint distribution of default times. We

remark that hidden Markov models have been employed in studying credit risk, see for instance,

Frey and Runggaldier (2010, 2011), Frey and Schmidt (2011), Elliott and Siu (2013) and Elliott

et al. (2014).

The rest of this paper is structured as follows. Section 2 gives a snapshot of the interacting

intensity-based default model with hidden Markov process. Section 3 presents the method for

extracting the hidden state process from the observation processes. Section 4 derives the closed-

form expression for the joint default distribution based on the total hazard construction method,

and also presents an analytic formula for the distribution of ordered default times. Besides,

the extended total hazard construction method under a hidden Markov process to obtain the

joint distribution of default times is also presented. Section 5 provides numerical methods for

some situation in Section 3 which may be used in both Sections 3 and 4, and error analysis

is also discussed. Section 6 illustrates an application of the proposed method in pricing credit

derivatives. Finally, Section 7 concludes the paper.

2 Model Setup

Let (Ω,F , P ) be a complete probability space where P is a risk-neutral probability measure,

which is assumed to exist. Suppose there are K interacting entities, and we let Ni(t) :=

1{τi≤t}, where τi is a stopping time, representing the default time of credit name i, for each

i = 1, 2, · · · ,K. Suppose we have an underlying state process (Xt)t≥0 describing the dynamics

of the economic condition. Let FX
t := σ(Xs, 0 ≤ s ≤ t) ∨ N where N represents all the null

subsets of Ω in F and C1 ∨ C2 is the minimal σ-algebra containing both the σ-algebras C1 and

C2. We also let Ht := σ(Xt) ∨ FN
t where

FN
t = F1

t ∨ F2
t ∨ . . . ∨ FK

t and F i
t := σ(1{τi≤s}, 0 ≤ s ≤ t) ∨ N .
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We assume that for each i = 1, 2, . . . ,K, Ni(t) possesses a nonnegative, {Ht}t≥0-adapted, inten-

sity process λi satisfying

E

(∫ t

0
λi(s)ds

)
<∞, t ≥ 0, (1)

such that the compensated process

Mi(t) := Ni(t)−

∫ t∧τi

0
λi(s)ds , t ≥ 0, (2)

is an ({Ht}t≥0, P )-martingale. Note that after the default time τi, Ni(t) will stay at the value

one, so there is no need to compensate for Ni(t) after time τi, see, for example, Elliott et al.

(2000).

For all the market participants, we assume that they cannot observe the underlying process

(Xt)t≥0 directly. Instead, they observe the process (Yt)t≥0, revealing the delayed and noisy

information of (Xt)t≥0, and also observe the default process (N i
t )t≥0. Hence, the common

information set available to the market participants at time t is Ft := FY
t ∨ FN

t where FY
t :=

σ(Ys, 0 ≤ s ≤ t)∨N . We further assume that (Xt)t≥0 is an “exogenous” process to (N i
t )t≥0, i =

1, 2, . . . ,K, i.e., For any t, the σ-fields FX
∞ and FN

t are conditionally independent given FX
t and

P (τi 6= τj) = 1, i 6= j.

To simplify our discussion, throughout the paper, we suppose that (Xt)t≥0 is a two-state

Markov chain taking a value in {x0, x1}. We assume the transition rates of the chain for

“x0 → x1” and “x1 → x0” are θ0 and θ1, respectively. The observable process (Yt)t≥0 is

again a two-state Markov chain taking value in {y0, y1}, with transition rates depending on Xt,

i.e., η0(Xt)(y0 → y1) and η1(Xt)(y1 → y0), where η0 and η1 are real-valued functions. At time

0, we suppose that X0 is in state x0 and Y0 is in state y0. The methods introduced later in

our paper may still be applicable when the Markov chains X and Y have more than two states

though more complicated notation may involve.

3 Extraction of Hidden State Process with Observable Pro-

cesses

To specify the form of the intensities, we give the following notations. Suppose that at time t,

ND
t defaults have already occurred at t1, t2, . . . , tND

t
such that

0 = t0 < t1 < · · · < tND
t

≤ t.

Then we denote TND
t

= (t1, · · · , tND
t
) the ordered ND

t default times and IND
t

= (j1, · · · , jND
t
)

the corresponding ND
t defaulters, and the mth (1 ≤ m ≤ K) defaulted obligor is jm. We
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assume that i > ND
t and t < τ i, where τ i is the obligor i’s default time. Each process λi

(i = 1, . . . ,K), is {Ht}t≥0-predictable, that is to say λi(t) is known given information about

the chain X and all the default processes prior to time t. Then the intensity of τ i may be

written as λit = λi(t|IND
t
, TND

t
,Xt) where Xt is the state of chain X at time t. Note that

(IND
t
, TND

t
,Xt) ∈ Ht.

Since the path of X is unobservable, while the path of Y and Ni, (i = 1, . . . ,K) are observ-

able, we can use the relationship between X, Y and Ni, (i = 1, . . . ,K) to find the probability

law of X. We apply the recursive method proposed in Gu et al. [15] to calculate the conditional

probability P (Xt = xi|Ft), (i = 0, 1, t ≥ 0). Before discussing the method, we need to find the

expressions for all the unknown items in the recursive formulas. In the process of finding the

expressions, we also present moment generating function method to achieve our goal.

3.1 Some Preliminaries

Let T̄i,k,j(s0,∆s) be the union of subintervals of time of the chain X in state xk in the time

interval [s0, s0 + ∆s] given the chain starts from Xs0 = xi and ends at Xs0+∆s = xj. For each

i, j = 0, 1, we let

T̄i,j(s0, t) = (T̄i,0,j(s0, t), T̄i,1,j(s0, t))
T and u(t̄) = (u0(t̄), u1(t̄))

T

where t̄ ∈ [s0, s0 + t]. Note that T̄i,1,j(s0, t) = [s0, s0 + t]\T̄i,0,j(s0, t). Since jumps in chain Y

and defaults are Poisson processes, using the concept of moment generating function, we define

Ψ̄ij(s0,u, t) = E

[
exp

{∫

T̄i,0,j(s0,t)
u0(t̄)dt̄+

∫

T̄i,1,j(s0,t)
u1(t̄)dt̄

}]
.

Note that u(t̄) is an arbitrary integrable function. This means, in this case, we can adopt this

moment generating function. For instance, u(t̄) can be the transition rates of jumps in chain Y

or the default rates which are the default intensities accumulated by all the entities by time t̄

before default.

Proposition 1 Let Φ̄ij(s0,u, t) = Pij(t)Ψ̄ij(s0,u, t), where Pij(t) is the probability that a pro-

cess in state xi will be in state xj after a time of t, and i, j = 0, 1. Then





Φ̄ij(s0,u, t) = θi

∫ t

0
exp

(∫ s0+t−s

s0

(ui(t̄)− θi)dt̄

)
Φ̄jj(s0 + t− s,u, s)ds

Φ̄ii(s0,u, t) = θi

∫ t

0
exp

(∫ s0+t−s

s0

(ui(t̄)− θi)dt̄

)
Φ̄ji(s0 + t− s,u, s)ds + exp

(∫ s0+t

s0

(ui(t̄)− θi)dt̄

)

(3)

where i, j = 0, 1.
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Proof:

Ψ̄ij(s0,u, t)

= E

[
exp

(∫

T̄i,0,j(s0,t)
u0(t̄)dt̄+

∫

T̄i,1,j(s0,t)
u1(t̄)dt̄

)]

=
θi

Pij(t)

∫ t

0
e−θis · e

∫ s0+s
s0

ui(t̄)dt̄Pjj(t− s)E

[
exp

(∫

T̄j,0,j(s0+s,t−s)
u0(t̄)dt̄+

∫

T̄j,1,j(s0+s,t−s)
u1(t̄)dt̄

)]
ds

=
θi

Pij(t)

∫ t

0
exp

(∫ s0+s

s0

(ui(t̄)− θi)dt̄

)
Pjj(t− s)Ψ̄jj(s0 + s,u, t− s)ds

=
θi

Pij(t)

∫ t

0
exp

(∫ s0+t−s

s0

(ui(t̄)− θi)dt̄

)
Pjj(s)Ψ̄jj(s0 + t− s,u, s)ds.

We also have

Ψ̄ii(s0,u, t) =
θi

Pii(t)

∫ t

0
e
∫ s0+t−s

s0
(ui(t̄)−θi)dt̄Pji(s)Ψ̄ji(s0 + t− s,u, s)ds +

e
∫ s0+t
s0

(ui(t̄)−θi)dt̄

Pii(t)
.

Replace Ψ̄ij(s0,u, t) by
Φ̄ij(s0,u,t)

Pij(t)
, we can then get the system of equations in the proposition.

We find that when the expression of u(t̄) satisfies some “good” property, Eq. (3) in the

above proposition has a unique solution. The property is that u(t̄) does not have any direct

relationship with time t̄ even though it may have implied relationship with t̄. This means u(t̄)

can be written as u. Then, not only the problem of solving Eq. (3) can be simplified, but

some related definitions can also be simplified as well. Similar as before, let Ti,k,j(∆s) be the

occupation time of the chain X in state xk in the time interval [s, s+∆s] given the chain starting

from Xs = xi and ending at Xs+∆s = xj . For each i, j = 0, 1, we let

Ti,j(t) = (Ti,0,j(t), Ti,1,j(t))
T and u = (u0, u1)

T ∈ R
2.

The moment generating function of Ti,j(t) is given by

Ψij(u, t) = E(exp{uTTi,j(t)}).

Apply the same method to Ψij(u, t) as we have done to Ψ̄ij(u, t), and let

Φij(u, t) = Ψij(u, t) · Pij(t).

We can also get the equivalent Eq. (3) for Φij(u, t), i.e., replacing Φ̄ij(u, t) with Φij(u, t),

(ui(t̄)− θi) with ui − θi in Eq. (3). Then to solve the equivalent equation, it suffices to solve a

linear system of O.D.E.s (c.f. Gu et al. [15]):

∂Φ(u, t)

∂t
= AΦ(u, t),
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where

Φ(u, t) =


 Φ11(u, t) Φ12(u, t)

Φ21(u, t) Φ22(u, t)


 and A =


 u0 − θ0 θ0

θ1 u1 − θ1


 .

This linear system of O.D.E.s is known as the fundamental matrix equation in the literature.

Then it is well-known that the equation has a unique solution which is called the fundamental

matrix solution with the initial condition Φij(u, 0) = 1, i, j = 0, 1 as

Φ(u, t) = eAt1 · 1T

where 1 is the two-dimensional column vector with all entries being equal to 1. Hence we can

get the solution for Ψij(u, t) by

Ψij(u, t) =
Φij(u, t)

Pij(t)
.

In practice, when the expressions of ui(t̄), (i = 0, 1) are given, we can substitute them into

the above Eq. (3), then intuitively we can check whether it has a solution. Note that the

expressions of ui(t̄), (i = 0, 1) determine whether the system is solvable. If it is solvable, then

we can obtain the solution Φ̄ij(s0,u, t), (i, j = 0, 1). Note that the results in [15] can be regarded

as a special case that has a unique solution.

3.2 Recursive Formulas for Extracting Hidden Process

For ω̃t ∈ Ft, we can express ω̃t in a more clear way as follows:

ω̃t = (NY
t , N

D
t , SNY

t
, IND

t
, TND

t
)

where

• SNY
t
= (s1, s2, . . . , sNY

t
),

• IND
t

= (j1, j2, . . . , jND
t
),

• TND
t

= (t1, t2, . . . , tND
t
),

• NY
t counts the number of jumps in chain Y by time t,

• ND
t counts the number of defaults by time t,

• (s1, s2, . . . , sNY
t
) is the collection of ordered jump times of the chain Y by time t, i.e.,

0 < s1 < . . . < sNY
t
≤ t,
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• (t1, t2, . . . , tND
t
) is the collection of ordered default times by time t, i.e., 0 < t1 < . . . <

tNY
t
≤ t,

• (j1, j2, . . . , jND
t
) is the collection of ordered corresponding name of defaulters by time t,

i.e., name ji defaults at time ti.

Here ω̃t can be interpreted as the state of the stochastic dynamical system at time t. Given the

information up to time t, i.e., Ft, we divide the time period [0, t] into (NY
t +ND

t ) sub-periods,

[0, h1], (h1, h2], . . . , (hNY
t +ND

t −1, hNY
t +ND

t
]. In each of them, exactly one default or one jump

in Y is observed. When there is no default or jump occurred by time t, the calculation of

P (Xt = xi | Ft) can be simplified and we shall introduce it later.

Define ĪND
t

= (1, 2, . . . ,K)\IND
t
. Suppose that s and s + ∆s are two endpoints of one

sub-period. The following characterizes the computational method for P (Xt = xi | Ft). For

ω̃ ∈ {tk = s+ t̄k ∈ (s, s +∆s]},

P (Xs = xi | Fs+∆s) = P (Xs = xi | Fs, tk = s+ t̄k, jk = β)

=
P (Xs = xi | Fs) ·

(∑
l=0,1 f

i,l
tk
(s+ t̄k;β, s,∆s)

)

∑
j=0,1 P (Xs = xj | Fs) ·

(∑
l=0,1 f

j,l
tk
(s+ t̄k;β, s,∆s)

)
(4)

and

P (Xs+∆s = xi | Fs+∆s) =
∑

j=0,1

P (Xs = xj | Fs+∆s)P (Xs+∆s = xi | Fs+∆s,Xs = xj)

=
∑

j=0,1

P (Xs = xj | Fs+∆s)
f
j,i
tk
(s+ t̄k;β, s,∆s)

∑
l=0,1 f

j,l
tk
(s+ t̄k;β, s,∆s)

(5)

where

f
j,i
tk
(t;β, s,∆s)dt = P (tk ∈ dt, jk = β,Xs+∆s = xi | Xs = xj, N

D
s , N

Y
s , IND

s
).

Similarly, we have for ω̃ ∈ {sk = s+ s̄k ∈ (s, s+∆s]},

P (Xs = xi | Fs+∆s) =
P (Xs = xi | Fs)

(∑
l=0,1 f

i,l
sk (s+ s̄k; s,∆s

)

∑

j=0,1

P (Xs = xj | Fs)



∑

l=0,1

f j,lsk
(s + s̄k; s,∆s




(6)

and

P (Xs+∆s = xi | Fs+∆s) =
∑

j=0,1

P (Xs = xj | Fs+∆s)
f
j,i
sk (s+ s̄k; s,∆s)(∑

l=0,1 f
j,l
sk (s + s̄k; s,∆s

) (7)

where

f
j,i
sk (t; s,∆s)dt = P (sk ∈ dt,Xs+∆s = xi | Xs = xj , N

D
s , N

Y
s , IND

s
).
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Combining Eqs. (4), (5), (6) and (7), we obtain a recursive method for computing P (Xt =

xi | Ft) in terms of f j,itk
(s + t̄k;β, s,∆s) and f

j,i
sk (s + s̄k; s,∆s). That is to say, with the fact

that P (X0 = x0|F0) = 1 and P (X0 = x1|F0) = 0, we can apply them to Eq. (4) or Eq. (6)

according to Ft, and then to get P (X0 = xi|F∆s) which are unknown in the calculation of

P (X∆s = xi|F∆s) in Eq. (5) or Eq. (7). The equation to calculate P (X∆s = xi|F∆s) should be

chosen according to Ft as well. By repeating this recursion procedure, we can obtain the desired

conditional probabilities.

To get the expressions for the desired f
j,i
tk
(s + t̄k;β, s,∆s) and f

j,i
sk (s + s̄k; s,∆s), we need

to use the method introduced in section 3.1. Replace u by −(ηi(x0), ηi(x1)), i = 0, 1 and we

know that there exists unique solutions for Ψij, i, j = 0, 1. Replace u(t̄) by −(λi(x0), λi(x1)),

i = 1, · · · ,K in Eq. (3), we then could have a direct sense of whether it is solvable or not. If it

is solvable and has an analytical solution, then from the definition of f j,itk
(s + t̄k;β, s,∆s) and

f
j,i
sk (s+ s̄k; s,∆s), we get

f j,i
sk
(s+ s̄k; s,∆s) =

∑

l=0,1

Pjl(s̄k)Pli(∆s− s̄k)ηC(NY
s )(xl)

×Ψjl

(
−(ηC(NY

s )(x0), ηC(NY
s )(x1))

T , s̄k
)

×Ψli

(
−(ηC(NY

s +1)(x0), ηC(NY
s +1)(x1))

T ,∆s− s̄k
)

×Ψ̄jl


s,−

∑

i∈Ī
ND

s

(λi(t̄|IND
s
, TND

s
, x0), λi(t̄|IND

s
, TND

s
, x1))

T , s̄k




×Ψ̄li


s+ s̄k,−

∑

i∈Ī
ND

s

(λi(t̄|IND
s
, TND

s
, x0), λi(t̄|IND

s
, TND

s
, x1))

T ,∆s− s̄k


 ,

f
j,i
tk

(s+ t̄k;β, s,∆s) =
∑

l=0,1

Pjl(t̄k)Pli(∆s− t̄k)λβ(s+ t̄k|IND
s
, TND

s
, Xs = xl)

×Ψjl(−(ηC(NY
s )(x0), ηC(NY

s )(x1))
T , t̄k)

×Ψli

(
−(ηC(NY

s )(x0), ηC(NY
s )(x1))

T ,∆s− t̄k
)

×Ψ̄jl


s,−

∑

i∈Ī
ND

s

(λi(t̄|IND
s
, TND

s
, x0), λi(t̄|IND

s
, TND

s
, x1))

T , t̄k




×Ψ̄li

(
s+ t̄k,−

∑
i∈Ī∗

ND
s

(λi(t̄|I∗ND
s
, T ∗

ND
s
, x0), λi(t̄|I∗ND

s
, T ∗

ND
s
, x1))

T ,∆s− t̄k

)

where I∗
ND

s
= IND

s

⋃
{β}, T ∗

ND
s

= TND
s

⋃
{tβ} and

C(x) =





1, x+ Y0 ≡ 0 (mod 2)

0, x+ Y0 ≡ 1 (mod 2).

9



If up to time t, no jump or default has been observed, then we have the following: for ω̃ ∈ {no

jump or default observed in [0, t]},

P (Xt = xi | Ft) =
P (Xt = xi,no jump or default in[0, t])∑

j=0,1

P (Xt = xj ,no jump or default in[0, t])

where

P (Xt = xj,no jump or default in[0, t]) = P (Xt = xj)Ψ0j

(
−(ηC(0)(x0), ηC(0)(x1))

T , t
)
× Ψ̄0j(0,

−
∑

i∈I(λi(t̄|IND
0
, TND

0
, x0), λi(t̄|IND

0
, TND

0
, x1))

T , t).

Note that if the jump intensities of chain Y : ηi (i = 0, 1), are not as simple as in our as-

sumptions and they are also related with time directly, i.e., ηi(t̄), all the algorithms intro-

duced above are still applicable and we just need to replace Ψij

(
−(ηC(0)(x0), ηC(0)(x1))

T , t
)
by

Ψ̄ij

(
−(ηC(0)(x0), ηC(0)(x1))

T , t
)
, i, j = 0, 1. This replacement holds only when Eq. (3) given

u(t̄) = −(η0(t̄), η1(t̄)) has an analytical solution.

If Eq. (3) does not admit an analytical solution given ui(t̄), (i = 0, 1), we also provide

numerical method in Section 5. Now we know how to get P (Xt = xi|Ft).

4 Default Distributions

We derive the default distributions in this section. Besides deriving closed-form expressions for

default distributions, extended total hazard construction method for hidden Markov model to

derive the joint default distribution is also presented.

4.1 Closed-Form Expressions for Default Distributions

In this subsection, we compute the conditional joint distribution of default times

P (τ1 > t1, τ2 > t2, . . . , τK > tK | Ft)

and the distribution of ordered default times

P (τk > s | Ft), k = 1, 2, . . . ,K.

Notice that when t = 0, we don’t have any information, the above two conditional probabilities

become unconditional probabilities. As for the first probability, due to the Markov property of

Xt and the structure of λi(t), we have

P (τ1 > t1, τ2 > t2, . . . , τK > tK | Ft)

=
∑

i=0,1

P (τ1 > t1, τ2 > t2, . . . , τK > tK | FN
t ,Xt = xi)× P (Xt = xi | Ft).

10



Since we know how to calculate P (Xt = xi | Ft), we only need to compute the conditional joint

probability P (τ1 > t1, τ2 > t2, . . . , τK > tK | FN
t ,Xt = xi).

Assume we first enter the market immediately after the ND
t th default of the K obligors

at time t, to simplify the notations, we denote m = ND
t , that means we already know the

information Tm = (t1, · · · , tm), Im = (j1, · · · , jm) and FY
t by time t. Then we can get the

following equation:

P (τ1 > t1, τ2 > t2, . . . , τK > tK | FN
t ,Xt = xi)

= P (τ jm+1 > tjm+1 , . . . , τ jK > tjK | τ j1 = t1, . . . , τ
jm = tm,Xt = xi).

Furthermore, we also know the relationship that

f(tjm+1 , . . . , tjK | Ft) = (−1)K−m dK−m

dtjm+1 . . . dtK
P (τ1 > t1, τ2 > t2, . . . , τK > tK | FN

t ,Xt = xi)

where f(tjm+1 , . . . , tjK | Ft) is the conditional joint density function. Therefore, to obtain the

desired conditional probability, it suffices to find its conditional joint density function.

Here we employ the approach introduced by Yu (2007) [27] (called the total hazard construc-

tion method) to derive the conditional density function.

Proposition 2 The expression of the density function that we intend to get is in the form of

expectation

f(tjm+1 , . . . , tjK | Ft) = E




K∑

l=m+1

∑

i∈Īl

λi(t
jl |Il, Tl,Xtjl ) · exp


−

K∑

l=m+1

(
∑

i∈Īl

∫ tjl

tl

λi(u|Il, Tl,Xu)du)




 .

Proof: Without loss of generality, we assume that tjm+1 < . . . < tjK . In this case, τm+1 − τm

would be the first default time we observed after entering the market. By using the total hazard

construction method pioneered by Yu (2007) [27] with the information already known, we draw

a collection of independent standard exponential random variables: (Ejm+1 , · · · , EjK ). Then we

know

τm+1 − τm = min
i∈Īm

Λ−1
i (Ei) = min

i∈Īm
inf{s ≥ 0 : Λi(s) ≥ Ei}

which implies that

P
(
τm+1 − τm > t | Fτm

)
= P

(
min
i∈Īm

inf{s ≥ 0 : Λi(s) ≥ Ei} > t

)
.

11



Suppose the information FX
∞ is known, then

P (τm+1 − τm > t | Fτm) =
∏

i∈Īm

P

(
Ei >

∫ tm+t

tm

λi(u|Im, Tm,Xu)du

)

=
∏

i∈Īm

exp

(
−

∫ tm+t

tm

λi(u|Im, Tm,Xu)du

)

= exp


−

∑

i∈Īm

∫ tm+t

tm

λi(u|Im, Tm,Xu)du


 .

Then if we assume that τm < t < τm+1 and ti > τ i, i = 1, . . . ,m, and let λm+1(t) denote

the (m+ 1)th default rate at time t, then

λm+1(t) =
∑

i∈Īm

∫ t

tm

λi(u|Im, Tm,Xu)du.

Since

P (τm+1 > t | Fτm ,Xs(tm<s<∞)) = e
−

∑
i∈Īm

∫ t
tm

λi(u|Im,Tm,Xu)du = e−λm+1(t)

we have

P (τ jm+1 > tjm+1 , . . . , τ jK > tjK | Ft,Xs(tm<s<∞))

=
K∏

l=m+1

P (τ jl > tjl | Ft,Xs(tm<s<∞))

=
K∏

l=m+1

e−λl(tjl ) =
K∏

l=m+1

exp


−

∑

i∈Īl−1

∫ tjl

tl−1

λi(u|Il−1, Tl−1,Xu)du




= exp


−

K∑

l=m+1

(
∑

i∈Īl−1

∫ tjl

tl−1

λi(u|Il−1, Tl−1,Xu)du)




and therefore

f(tjm+1, . . . , tjK | Ft,Xs(tm<s<∞))

= (−1)K−m dK−m

dtjm+1 . . . dtK
P (τ jm+1 > tjm+1 , . . . , τ jK > tjK | Ft,Xs(tm<s<∞))

= (−1)K−m dK−m

dtjm+1 . . . dtK
exp


−

K∑

l=m+1

(
∑

i∈Īl−1

∫ tjl

tl−1

λi(u|Il−1, Tl−1,Xu)du)


 |

tl−1=t
jl−1

=

K∏

l=m+1

∑

i∈Īl−1

λi(t
jl |Il−1, Tl−1,Xtjl ) · exp


−

K∑

l=m+1

(
∑

i∈Īl−1

∫ tjl

t
jl−1

λi(u|Il−1, Tl−1,Xu)du)




and

f(tjm+1 , . . . , tjK | Ft) = E[f(tjm+1 , . . . , tjK | Ft,Xs(tm<s<∞))]
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= E




K∏

l=m+1

∑

i∈Īl−1

λi(t
jl |Il−1, Tl−1,Xtjl ) · exp


−

K∑

l=m+1

(
∑

i∈Īl−1

∫ tjl

t
jl−1

λi(u|Il−1, Tl−1,Xu)du)






= E




K∏

l=m+1

∑

i∈Īl−1

λi(t
jl |Il−1, Tl−1,Xtjl ) · exp


−

K∑

l=m+1

(

∫ tjl

t
jl−1

∑

i∈Īl−1

λi(u|Il−1, Tl−1,Xu)du)




 .

If Eq. (3) in the previous section given u(t̄) = −(λi(x0), λi(x1)), i = 1, . . . ,K, has unique

solutions, then we further have the following result.

Proposition 3 The explicit formula for calculating the desired density function is in this form:

f(tjm+1 , . . . , tjK | Ft) = (−1)K−m ·
∑

lm+1=0,1

∑

lm+2=0,1

· · ·
∑

lK=0,1

·
d(Ψ̄ilm+1(t

jm ,−
∑

i∈Īm
(λi(t̄|Im, Tm, x0), λi(t̄|Im, Tm, x1))

T , tjm+1 − tjm))

dtjm+1

·
d(Ψ̄lm+1lm+2(t

jm+1 ,−
∑

i∈Īm+1
(λi(t̄|Im+1, Tm+1, x0), λi(t̄|Im+1, Tm+1, x1))

T , tjm+2 − tjm+1))

dtjm+2

· · · · ·
d(Ψ̄lK−1lK (t

jK−1 ,−
∑

i∈ĪK−1
(λi(t̄|IK−1, TK−1, x0), λi(t̄|IK−1, TK−1, x1))

T , tjK − tjK−1))

dtjK

where Ψ̄ij, i, j = 0, 1 are the moment generating function defined in Section 3.

Proof: We note that

E




K∏

l=m+1

∑

i∈Īl−1

λi(t
jl |Il−1, Tl−1, Xtjl ) · e

−
∑K

l=m+1
(
∫

t
jl

t
jl−1

∑
i∈Īl−1

λi(u|Il−1,Tl−1,Xu)du)




=
∑

lm+1=0,1

∑

lm+2=0,1

· · ·
∑

lK=0,1

E




∑

i∈Īm

λi(t
jm+1 |Im, Tm, Xt

jm+1 ) · e
∫

t
jm+1

tjm

∑
i∈Īm

λi(u|Im,Tm,Xu)du|Xtjm = i,Xt
jm+1 = lm+1





· E



∑

i∈Īm+1

λi(t
jm+2 |Im+1, Tm+1, Xt

jm+2 ) · e
∫

t
jm+2

t
jm+1

∑
i∈Īm+1

λi(u|Im+1,Tm+1,Xu)du|Xt
jm+1 = lm+1, Xt

jm+2 = lm+2




· · · · ·E



∑

i∈ĪK−1

λi(t
jK |IK−1, TK−1, XtjK ) · e

∫
t
jK

t
jK−1

∑
i∈ĪK−1

λi(u|IK−1,TK−1,Xu)du|Xt
jK−1 = lK−1, XtjK = lK




= (−1)K−m ·
∑

lm+1=0,1

∑

lm+2=0,1

· · ·
∑

lK=0,1

d

(
E

[
e
∫

t
jm+1

tjm

∑
i∈Īm

λi(u|Im,Tm,Xu)du|Xtjm = i,Xtjm+1 = lm+1

])

dtjm+1

·

d

(
E

[
e
∫

t
jm+2

t
jm+1

∑
i∈Īm+1

λi(u|Im+1,Tm+1,Xu)du|Xt
jm+1 = lm+1, Xt

jm+2 = lm+2

])

dtjm+2

· · · · ·

d

(
E

[
e
∫

t
jK

t
jK−1

∑
i∈ĪK−1

λi(u|IK−1,TK−1,Xu)du|Xt
jK−1 = lK−1, XtjK = lK

])

dtjK
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= (−1)K−m ·
∑

lm+1=0,1

∑

lm+2=0,1

· · ·
∑

lK=0,1

d(Ψ̄ilm+1
(tjm ,−

∑
i∈Īm

(λi(t̄|Im, Tm, x0), λi(t̄|Im, Tm, x1))T , tjm+1 − tjm))

dtjm+1

·
d(Ψ̄lm+1lm+2

(tjm+1 ,−
∑

i∈Īm+1
(λi(t̄|Im+1, Tm+1, x0), λi(t̄|Im+1, Tm+1, x1))

T , tjm+2 − tjm+1))

dtjm+2

· · · · ·
d(Ψ̄lK−1lK (tjK−1 ,−

∑
i∈ĪK−1

(λi(t̄|IK−1, TK−1, x0), λi(t̄|IK−1, TK−1, x1))
T , tjK − tjK−1))

dtjK

Similarly if the equations related to Ψ̄ij do not have analytical solutions, then we can use

the same approximation method which will be discussed in the next section to approximate Ψ̄ij

with Ψij. Thus one can obtain an explicit approximation expression for the density function

f(tjm+1 , . . . , tjK | Ft). When the expressions of the default intensities are homogeneous and

symmetric,

P (τ jm+1 < · · · < τ jk < s < τ jk+1 < · · · < τ jK | Ft)

=

∫ t

tm

∫ t

tjm+1

· · ·

∫ t

t
jk−1

∫ ∞

t

∫ ∞

t
jk+1

· · ·

∫ ∞

t
jK−1

f(tjm+1 , tjm+2 , . . . , tjK | Fs)dt
jK · · · dttjm+1 .

Because they are homogeneous and symmetric,

P (τ jk ≤ s < τ jk+1 | Ft) = (K −m)!P (τ jm+1 < · · · < τ jk < s < τ jk+1 < · · · < τ jK | Ft).

Furthermore, we have

P (τ jk > s | Ft) =

k−1∑

i=m

P (τ ji ≤ s < τ ji+1 | Ft).

4.2 Extended Total Hazard Construction Method for HMM

We further extend the total hazard construction method to make it applicable to various forms

of default intensities modulated by a hidden Markov process, then to gain the joint default

distribution.

The total hazard accumulated by obligor i by time t, denoted by ψi(t|IND
t
, TND

t
,Xt), can be

defined as follows:

ψi(t|IND
t
, TND

t
,Xt) =

ND
t −1∑

l=0

Λi(tl+1 − tl|Il, Tl,Xtl+1
) + Λi(t− tND

t
|IND

t
, TND

t
,Xt) (8)

where

Λi(s|Il, Tl,Xtl+s) =

∫ tl+s

tl

λi(µ|Il, Tl,Xµ)dµ (9)

is the total hazard accumulated by obligor i in the time interval [tl, tl+s]. Note that the default

processes are independent unit exponential random variables. And we define the inverse function

Λ−1
i (x|Ik, Tk, N

Y
∞, SNY

∞
) = inf{s : Λi(s|Ik, Tk,Xtk+s) ≥ x}, x ≥ 0 (10)
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where (NY
∞, SNY

∞
) ∈ FY

∞ is the entire history of the path of Y , NY
∞ is the entire number of jump

in the chain Y and SNY
∞

is the collection of corresponding ordered jump times.

The total hazard can be constructed by the following recursive procedure:

Step 1. Generate a complete sample path of Y , and denote it as (NY
∞, SNY

∞
) ∈ FY

∞.

Generate a collection of i.i.d. unit exponential random variables (E1, · · · , EK).

Step 2. Let j1 = argmin{Λ−1
i (Ei) : i = 1, · · · ,K} and define τ̂ j1 = Λ−1

j1
(Ej1).

Note that T1 = (t1), t1 = τ̂ j1 , I1 = (j1).

Step 3. (i) Assume that (τ̂ j1 , . . . , τ̂ jm−1) and the simulated path of Xs(0 ≤ s < τ̂ jm−1) are

already obtained as Tm−1 = (t1, . . . , tm−1), tl = τ̂ jl , l = 1, . . . ,m− 1 and Im−1 = (j1, . . . , jm−1),

where m ≥ 2. By using the conditional probability of

P (Xs = xi|F̃s), i = 0, 1, x0 = 0, x1 = 1, s ≥ τ̂ jm−1 and F̃s = FY
s ∨ Tm−1 ∨ Im−1,

we can generate a sequence of random numbers of Xs under this conditional probability.

We can then obtain the simulated path of Xs, s ≥ τ̂ jm−1 which will be useful in the calculation of

Λ−1
i (x|Im−1, Tm−1, N

Y
∞, SNY

∞
).

(ii) Note that Īm−1 = (1, 2, . . . ,K)\Im−1.

Therefore, with the information of Tm−1, Im−1 and the path of Xs(0 ≤ s < τ̂ jm−1) ∪Xs(s ≥ τ̂ jm−1),

i.e., the path of X. We let

jm = argmin{Λ−1
i (Ei − ψi(tm−1|Im−1, Tm−1,Xtm−1)|Im−1, Tm−1, N

Y
∞, SNY

∞
) : i ∈ Īm−1}

where ψi(tm−1|Im−1, Tm−1,Xtm−1) is the total hazard accumulated by Name i under the condition

of defaults and information of chain X by the (m− 1)th default time, i.e., tm−1.

Then we let

τ̂ jm = tm−1 + Λ−1
jm

(Ejm − ψjm(tm−1|Im−1, Tm−1,Xtm−1)|Im−1, Tm−1, N
Y
∞, SNY

∞
)

and reserve the simulated path of Xs, τ̂
jm−1 ≤ s < τ̂ jm at this step.

Thus, with the simulated path, we can get the simulated path of Xs, 0 ≤ s < τ̂ jm .

Step 4. If m = K, then stop. Otherwise, increase m by 1 and go to Step 3.

From the recursive procedure, we can obtain the distribution of τ̂ . According to Shaked and

Shanthikumar (1987) [25] and Yu (2007) [27], the distribution of τ̂ obtained from the above

recursive processes is equal to the distribution of the original default time τ . This gives the

following results.

Proposition 4 Let τ be the default time with the intensities

λit = λi(t|IND
t
, TND

t
,Xt), i = 1, . . . ,K
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and the related jump processes satisfying the assumptions mentioned in Section 2. Construct τ̂

according to Steps 1− 4 with the intensity equal to

λi(t|IND
t
, TND

t
,Xt), i = 1, 2, . . . ,K.

Let F ′
t be the minimal filtration containing FY

t and the information of the default processes

related to τ̂ by time t, and P ′ be the distribution of (Y, τ̂ ). Then every element in τ̂ i has

(P ′,F ′
t)-intensity of the form:

λi(t|IND
t
, TND

t
,Xt), i = 1, 2, . . . ,K.

Therefore, we can generate τ by just generating τ̂ .

5 Numerical Approximation Method

In this section, we consider an outstanding problem in Section 3. If Eq. (3) does not admit an

analytical solution given ui(t̄), (i = 0, 1) then we shall try to use another method to approximate

the conditional probability P (Xt = xi|Ft). We can consider approximating Ψ̄ij(s0,u, t) directly.

As we mentioned before, it is because of the default intensities λi, (i = 1, . . . ,K) which give Eq.

(3) with

u(t̄) = −(λi(x0), λi(x1)), i = 1, . . . ,K

does not have an analytical solution, and hence we cannot obtain closed-form expressions for

Ψ̄ij(s0,u, t). Thus, we need to approximate the moment generating function Ψ̄ij(s0,u, t) when

the default intensities are applied. If the error of Ψ̄ij(s0,u, t) is less than any arbitrary ǫ

then according to the expression of f j,isk (s + s̄k; s,∆s) and f
j,i
tk
(s + t̄k;β, s,∆s) given below, we

know that their relative errors can be controlled. Furthermore, from the recursive method for

P (Xt = xi|Ft) presented in Section 3, the error of this conditional probability may be controlled.

In the following, we are going to illustrate how the approximation works. When the length

of the time interval length is small enough, without loss of generality, we can approximately

assign t in the default intensities λi(t) to be the left value of the concerned time interval, i.e.,

t = s0 when the time interval is [s0, s0 + ∆s̄]. Then we can still apply the moment generating

function given u(t̄) = u(s0) = ū, and we know the corresponding Eq. (3) has a unique solution.

But we need to ensure that by using this method, the error of Ψ̄ij(s0,u,∆s̄) can be controlled

such that it can be less than any arbitrarily given ǫ.

16



Proposition 5 The error control ∆Ψij(s0,u,∆s̄) < ǫ < 1, where ǫ is arbitrary, can be achieved

by requiring ∆s̄ to satisfy

∆s̄ <
− ln(1− ǫ)

K · λmax(s0)

where

λmax(s0) = max
i=1,...,K

{λi(s), s ∈ [0, s0]}

and

∆Ψij(s0,u,∆s̄) = |Ψij(ū,∆s̄)− Ψ̄ij(s0,u,∆s̄)|

and

ū(t) = u(s̃k−1) for t ∈ (s̃k−1, s̃k]

and

[0, s0] = [s̃0, s̃1]
⋃

(s̃1, s̃2]
⋃

· · ·
⋃

(s̃n−1, s̃n].

Proof: Note that there are K entities, so when the default intensity is applied, i.e.,

u(t̄) = −(λi(x0), λi(x1)) or u = −(λi(x0), λi(x1)), i = 1, . . . ,K,

we notice the relationships that

E[e−K·λmax(s0)·∆s̄] ≤ Ψij(ū,∆s̄) ≤ E[eK·0·∆s̄]

and

E[e−K·λmax(s0)·∆s̄] ≤ Ψ̄ij(s0,u,∆s̄) ≤ E[eK·0·∆s̄].

Since all λi, i = 1, . . . ,K are nonnegative, therefore, we have the following relationship:

∆Ψij(s0,u,∆s̄) ≤ E[eK·0·∆s̄ − e−K·λmax(s0)·∆s̄] < ǫ

if and only if

eK·λmax(s0)·∆s̄ <
1

1− ǫ

if and only if

∆s̄ <
− ln(1− ǫ)

K · λmax(s0)
.

We can simply let ∆s̄ = − ln(1−ǫ)
K·λmax(s0)

, it is enough to make the error of Ψ̄ij(s0,u,∆s̄) control-

lable. Here we are in the position to approximate f j,isk (s+ s̄k; s,∆s). First, we partition the time
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interval [s, s+s̄k] evenly with step size equal to ∆s̄ = − ln(1−ǫ)
K·λmax(s+∆s) , and denoteM1(s,∆s̄) =

[
s̄k
∆s̄

]
.

That is to say,

[s, s+ s̄k] = [s, s+∆s̄]
⋃

[s+∆s̄, s+ 2∆s̄]
⋃

· · ·
⋃

[s+M1(s,∆s̄) ·∆s̄, s̄k]

Moreover, we do the same thing for the remaining time interval: [s + s̄k,∆s] and denote

M2(s,∆s̄) =
[
∆s−s̄k
∆s̄

]
. We denote M1 = M1(s,∆s̄) and M2 = M2(s,∆s̄). Now the explicit

approximation formula is given as follows:

f
j,i
sk (s+ s̄k; s,∆s) =
∑

l=0,1

∑

l1=0,1

· · ·
∑

lM1
=0,1

∑

l̄1=0,1

· · ·
∑

l̄M2
=0,1

Pjl(s̄k)Pli(∆s− s̄k)ηC(NY
s )(xl)

×Ψjl

(
−(ηC(NY

s )(x0), ηC(NY
s )(x1))

T , s̄k

)

×Ψli

(
−(ηC(NY

s +1)(x0), ηC(NY
s +1)(x1))

T ,∆s− s̄k

)

×Ψjl1


−

∑

i∈Ī
ND
s

(λi(s|IND
s
, TND

s
, x0), λi(s|IND

s
, TND

s
, x1))

T ,∆s̄




×Ψl1l2


−

∑

i∈Ī
ND
s

(λi(s +∆s̄|IND
s
, TND

s
, x0), λi(s+∆s̄|IND

s
, TND

s
, x1))

T ,∆s̄




× · · ·

×ΨlM1
l


−

∑

i∈Ī
ND
s

(λi(s+M1 ·∆s̄|IND
s
, TND

s
, x0), λi(s+M1 ·∆s̄|IND

s
, TND

s
, x1))

T , s̄k − s−M1 ·∆s̄




×Ψll̄1


−

∑

i∈Ī
ND
s

(λi(s̄k|IND
s
, TND

s
, x0), λi(s̄k|IND

s
, TND

s
, x1))

T ,∆s̄




×Ψl̄1 l̄2


−

∑

i∈Ī
ND
s

(λi(s̄k +∆s̄|IND
s
, TND

s
, x0), λi(s̄k +∆s̄|IND

s
, TND

s
, x1))

T ,∆s̄




× · · ·

×Ψl̄M2
i


−

∑

i∈Ī
ND
s

(λi(s̄k +M2 ·∆s̄|IND
s
, TND

s
, x0), λi(s̄k +M2 ·∆s̄|IND

s
, TND

s
, x1))

T ,∆s− s̄k −M2 ·∆s̄


 .
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Similarly, we can get

f
j,i
tk
(s+ t̄k;β, s,∆s) =∑

l=0,1

∑

l1=0,1

· · ·
∑

lM̄1
=0,1

∑

l̄1=0,1

· · ·
∑

l̄M̄2
=0,1

Pjl(t̄k)Pli(∆s− t̄k)λβ(s+ t̄k|IND
s
, TND

s
, xl)

×Ψjl

(
−(ηC(NY

s )(x0), ηC(NY
s )(x1))

T , t̄k
)

×Ψli

(
−(ηC(NY

s )(x0), ηC(NY
s )(x1))

T ,∆s− t̄k
)

×Ψjl1


−

∑

i∈Ī
ND

s

(λi(s|IND
s
, TND

s
, x0), λi(s|IND

s
, TND

s
, x1))

T ,∆s̄




×Ψl1l2


−

∑

i∈Ī
ND

s

(λi(s+∆s̄|IND
s
, TND

s
, x0), λi(s+∆s̄|IND

s
, TND

s
, x1))

T ,∆s̄




× · · ·

×ΨlM̄1
l


−

∑

i∈Ī
ND

s

(λi(s+ M̄1 ·∆s̄|IND
s
, TND

s
, x0), λi(s+ M̄1 ·∆s̄|IND

s
, TND

s
, x1))

T , t̄k − s− M̄1 ·∆s̄




×Ψll̄1


−

∑

i∈Ī∗

ND
s

(λi(t̄k|I
∗
ND

s
, T ∗

ND
s
, x0), λi(t̄k|I

∗
ND

s
, T ∗

ND
s
, x1))

T ,∆s̄




×Ψl̄1l̄2


−

∑

i∈Ī∗

ND
s

(λi(t̄k +∆s̄|I∗ND
s
, T ∗

ND
s
, x0), λi(t̄k +∆s̄|I∗ND

s
, T ∗

ND
s
, x1))

T ,∆s̄




× · · ·

×Ψl̄M̄2
i


−

∑

i∈Ī∗

ND
s

(λi(s̄k + M̄2 ·∆s̄|I
∗
ND

s
, T ∗

ND
s
, x0), λi(s̄k + M̄2 ·∆s̄|I

∗
ND

s
, T ∗

ND
s
, x1))

T ,∆s− t̄k − M̄2∆s̄




where M̄1 =
[

t̄k
∆s̄

]
and M̄2 =

[
∆s−t̄k
∆s̄

]
.

P (Xt = xj,no jump or default in[0, t])

=
∑

l1=0,1

∑

l2=0,1

· · ·
∑

lM=0,1

P (Xt = xj)Ψ0j

(
−(ηC(0)(x0), ηC(0)(x1))

T , t
)

×Ψ0l1(−
∑

i∈I(λi(0|IND
0
, TND

0
, x0), λi(0|IND

0
, TND

0
, x1))

T ,∆s̄)

×Ψl1l2(−
∑

i∈I(λi(∆s̄|IND
0
, TND

0
, x0), λi(∆s̄|IND

0
, TND

0
, x1))

T ,∆s̄)

× · · ·

×ΨlM j(−
∑

i∈I(λi(M ·∆s̄|IND
0
, TND

0
, x0), λi(M ·∆s̄|IND

0
, TND

0
, x1))

T , t−M ·∆s̄)

where M =
[

t
∆s̄

]
.

Now we know how to ensure ∆Ψij(s0,u,∆s̄) < ǫ, and have the formulas for calculating

f
j,i
sk (s+ s̄k; s,∆s), f

j,i
tk
(s+ t̄k;β, s,∆s) and P (Xt = xj ,no jump or default in[0, t]). We can then

discuss how to choose ǫ such that the relative error of them can be controlled as small as we
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wish, i.e., ζ. Taking f j,isk (s + s̄k; s,∆s) as an example in the following discussion, the results

related to the others are similar.

Proposition 6 To ensure the relative error of f j,isk (s+ s̄k; s,∆s), i.e.,

|f̄ j,isk (s+ s̄k; s,∆s)− f
j,i
sk (s+ s̄k; s,∆s)|

f
j,i
sk (s+ s̄k; s,∆s)

where f j,isk (s + s̄k; s,∆s) denotes the real value, f̄ j,isk (s + s̄k; s,∆s) denotes the value calculated

according to the approximation formula, be less than any arbitrary percentage ζ, we can require

the error of Ψ̄ij(s+∆s,u,∆s̄) : ǫ, where ∆s̄ = − ln(1−ǫ)
K·λmax(s+∆s) , to satisfy the following conditions:





2
s̄k·K·λmax(s+∆s)

− ln(1−ǫ)

[
(1 + ǫ · e

− ln(1−ǫ)
K )

s̄k ·K·λmax(s+∆s)

− ln(1−ǫ)
+1

− 1

]
< ζ

2

2
(∆s−s̄k)·K·λmax(s+∆s)

− ln(1−ǫ)

[
(1 + ǫ · e

− ln(1−ǫ)
K )

(∆s−s̄k)·K·λmax(s+∆s)

− ln(1−ǫ)
+1

− 1

]
< ζ

2 .

Proof: Notice that when s1 < s2, the following relationship

− ln(1− ǫ)

K · λmax(s2)
≤

− ln(1− ǫ)

K · λmax(s1)

would always be valid. That is to say, when we choose the numerical time step size ∆s̄ to

ensure the error of Ψ̄ij(s+∆s,u,∆s̄) be less than ǫ, this step size would also ensure the error of

Ψ̄ij(s0,u,∆s̄) where s0 ∈ [0, s+∆s] be less than ǫ as well. Because P (Xt = xj) and Ψ̄ij(s0,u,∆s̄)

are always less than 1, from the expressions for calculating f j,isk (s + s̄k; s,∆s) above, to make

sure that the error be less than ζ, we have the following relationships

∑

l1=0,1

· · ·
∑

lM1
=0,1

(
(Ψ̄jl1 + ǫ) · (Ψ̄l1l2 + ǫ) · · · (Ψ̄lM1

l + ǫ)− Ψ̄jl1 · Ψ̄l1l2 · · · Ψ̄lM1
l

Ψ̄jl1 · Ψ̄l1l2 · · · Ψ̄lM1
l

)
<
ζ

2

which implies

∑

l1=0,1

· · ·
∑

lM1
=0,1

(
(1 +

ǫ

Ψ̄jl1

) · (1 +
ǫ

Ψ̄l1l2

) · · · (1 +
ǫ

Ψ̄lM1
l

)− 1

)
<
ζ

2

and

∑

l̄1=0,1

· · ·
∑

l̄M2
=0,1

(
(Ψ̄ll̄1

+ ǫ) · (Ψ̄l̄1 l̄2
+ ǫ) · · · (Ψ̄l̄M2

i + ǫ)− Ψ̄ll̄1
· Ψ̄l̄1 l̄2

· · · Ψ̄l̄M2
i

Ψ̄ll̄1
· Ψ̄l̄1 l̄2

· · · Ψ̄l̄M2
i

)
<
ζ

2

which implies

∑

l̄1=0,1

· · ·
∑

l̄M2
=0,1

(
(1 +

ǫ

Ψ̄ll̄1

) · (1 +
ǫ

Ψ̄l̄1 l̄2

) · · · (1 +
ǫ

Ψ̄l̄M2
i

)− 1

)
<
ζ

2
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where l = 0, 1. Notice that Ψ̄ij(s0,u,∆s̄), s0 ∈ [s, s+∆s] in the above would always be greater

than e−λmax(s+∆s)·∆s̄ which is equal to e
ln(1−ǫ)

K . Thus we can replace each Ψ̄ij(s0,u,∆s̄) in the

above with e
ln(1−ǫ)

K to find ǫ according to ζ. Also, note that

M1 ≤
s̄k ·K · λmax(s+∆s)

− ln(1− ǫ)
and M2 ≤

(∆s− s̄k) ·K · λmax(s+∆s)

− ln(1− ǫ)
,

then the above equations can be rewritten as follows:




2M1

[
(1 + ǫ

e
ln(1−ǫ)

K

)M1+1 − 1

]
≤ 2

s̄k·K·λmax(s+∆s)

− ln(1−ǫ)

[
(1 + ǫ

e
ln(1−ǫ)

K

)
s̄k·K·λmax(s+∆s)

− ln(1−ǫ)
+1

− 1

]
< ζ

2

2M2

[
(1 + ǫ

e
ln(1−ǫ)

K

)M2+1 − 1

]
≤ 2

(∆s−s̄k)·K·λmax(s+∆s)

− ln(1−ǫ)

[
(1 + ǫ

e
ln(1−ǫ)

K

)
(∆s−s̄k)·K·λmax(s+∆s)

− ln(1−ǫ)
+1

− 1

]
< ζ

2

All the conditions related to the relative errors of f j,isk (s+ s̄k; s,∆s), f
j,i
tk
(s+ t̄k;β, s,∆s) and

P (Xt = xj ,no jump or default in[0, t]) similar to the above proposition should be satisfied to

find a suitable ǫ. Therefore, the relative errors are controlled and the error of P (Xt = xi|Ft) is

also controlled.

We remark that suppose the expiry time is denoted as Texpiry, then all λmax(s0), s0 ∈ [0, Texpiry]

in proposition 5 and proposition 6 could simply be replaced by λmax = λmax(Texpiry).

6 Numerical Experiments

In the following numerical experiments, for the configuration of the parameters value in the

hidden Markov chain Xt, we let the transition rates be θ0 = 0.1 and θ1 = 0.1, the initial state

x0 = 0. For the observable chain Yt, we set the transition rates

η0(x) =





0.1, x = x0

0.2, x = x1

and

η1(x) =





0.2, x = x0

0.1, x = x1.

and the initial state is y0 = 0 as we assumed. The risk-free interest rate r is assumed to be 5%.

6.1 Numerical Example 1

We consider the pricing of Credit Default Swaps (CDS). Assume that the buyer of the CDS

agrees to pay premiums to the seller continuously over time at a fixed rate until the expiration

time of the CDS contract. If the reference asset defaults prior to the expiry, then the seller will
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pay $1 to the buyer. Denote the seller as entity A, buyer as entity B and the reference asset of

the CDS as entity C. Denote τA, τB , τC the default times and λA, λB , λC the default intensities

of entities A, B and C, respectively. Here the default intensities of these homogeneous three

entities are assumed in the following form:

λi(t) = a+ b ·X(t) + c ·



∑

j 6=i

1{τ j≤t}


 , i, j = A,B,C

where a, b and c are constants, X(t) represents the hidden state process and
∑

j 6=i 1{τ j≤t} repre-

sents the default processes which are observable. Let y be the fixed premium rate, and suppose

the issue time of the swap contract is 0, the expiry time is T , and we are at time s, then the

present value of the premium payment from the buyer should be

E

[∫ T

0
e−rsy1{s<τA,s<τB,s<τC}ds

]
.

This means if any one of the three entities defaults, the buyer of the CDS contract would stop

paying the premium. Similarly, the present the value of the seller should be

E
[
e−rT 1{T<τA,T<τB,τC≤T}ds

]
.

According to these two expressions, one can obtain the premium of the CDS in the following

form:

y =
E
(
e−rT 1{T<τA,T<τB,τC≤T}ds

)

E
(∫ T

0 e−rs1{s<τA,s<τB,s<τC}ds
) .

From the above formula, we know that to calculate y, we need to compute the joint density

function f(s < τA, s < τB, s < τC) and the joint probability P (T < τA, T < τB , τC ≤ T ).

Notice that f(s < τA, s < τB , s < τC) is actually equal to f(τ1 > s) where τ1 denotes the time

of the first default out of the 3 entities, and P (T < τA, T < τB, τC ≤ T ) = P (τ1 ≤ T < τ2).

Here τ1 has the same meaning as before, τ2 denotes the time of the second default in the reference

portfolio. Then we can apply the methods introduced in the previous sections to calculate the

fixed premium rate y. The base setting of parameters are as follows. For the contagion factors,

we let a = 1, b = 0.1, c = 0.1. The expiry T is 5 years, and the initial time is 0. We change the

coefficients a, b and c in the expressions of default intensities separately, and each time we keep

the remaining coefficients unchanged to investigate the change in the CDS premium rate y.

From the above three figures, we find that the value of CDS premium rate y decreases as

the coefficients a, b, and c increase.
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Figure 1: Change of premium y with coefficients

6.2 Numerical Example 2

We then consider a kth-to-default basket CDS contact. Assume that our portfolio contains

K = 10 homogeneous entities, if k entities out of this portfolio default prior to the expiry time,

then $1 will be paid. For simplicity, this payment only occurs at the expiry time, but the

payment of premium occurs at the initial time. Similar to the previous experiment, the entity

i’s default intensity is given by

λi(t) = a+ b ·X(t) + c ·



∑

j 6=i

1{τ j≤t}


 , i, j = 1, 2, · · · ,K.

The value of this kth-to-default basket CDS at time t can be written as

Vk(t) = exp{−r(T − t)}P (τk ≤ T | Ft)

where τk denotes the kth-to-default time. For the state of chain X, x0 and x1 represent the

“good” and “bad” economic state, respectively. While States y0 and y1 of chain Y represent

the delayed information of “bad” economic state and “good” economic state, respectively. Here

we also assume that the total number of entities in the portfolio is K = 10. The calculation of

P (τk ≤ T | Fs) can be obtained from 1− P (τ jk > T | Fs) where

P (τ jk > t | Fs) =

k−1∑

i=m

P (τ ji ≤ t < τ ji+1 | Fs).

The calculation of the probability P (τ ji ≤ t < τ ji+1 | Fs) is similar to the calculation of

P (τ1 ≤ t < τ2) in Experiment 1. Without loss of generality, for simplicity, we consider the

1st-to-default basket CDS as k = 1. We further assume that the initial time is 0, and that

we are at time t = 10 days now, and that the expiry time is T = 100 days. In the following
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Figure 2: Change of CDS’s value from day to day with the 1st default intensities

experiments, we consider two scenarios. In Scenario 1, there is no jump in chain Y and default

observed by expiry time. In Scenario 2, there is one jump in chain Y between day 21 and day

22 but no default observed by expiration. According to the assumptions presented in Section 2,

we know that the initial state of chain X is x0 = 0 and the initial state of chain Y is y0 = 0. In

addition, let the coefficients in default intensities be a = 0.001, b = 0.001, and c = 0.001. Then

one can see the change of basket CDS values from day to day, and here we only provide the

values from day t = 10 to day t = 50 as an example.

From the figure we can see that as time goes by, the general tendency of basket CDS’s value

is increasing. When there is one jump in chain Y from state y0 to state y1, the value will drop

suddenly. It is because at the beginning, the information of chain Y reflected a “bad” economic

condition, when it changed to state y1 which representing a “good” economic state, intuitively,

the probability of defaults will drop suddenly, and the value of basket CDS will therefore drop

suddenly as well.

As we mentioned before, our model and methods may be applicable to various forms of
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Figure 3: Change of CDS’s value from day to day with the 2nd default intensities

default intensities. Therefore, we further consider another form of default intensities which

decay exponentially with time. The expression is as follows:

λi(t) =


a+ c ·

∑

j 6=i

1{τ j≤t}


 e−t + b ·X(t), i, j = 1, 2, . . . ,K.

Same as before, all parameters in this default intensity keep the same as the previous case, then

we can also calculate the value of basket CDS and observe it from day to day.

From the figure, we notice that the overall value based on this form of default intensity is

smaller than the previous one. The phenomenon can be explained as follows. As the default

intensity exponentially decreased with time, the default probability will become smaller accord-

ingly and therefore the value of basket CDS. For the same reason and similar explanations like

before, the value will also jump down suddenly when one jump in observable chain Y from state

y0 to y1 occurred.
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7 Concluding Remarks

In this paper we present a reduced-form intensity-based credit risk model with a hidden Markov

process modeling the evolution of economic condition over time. We also discuss a method to

extract the underlying hidden state process from observable processes: the default processes and

the stochastic process which reflects the delayed and noisy information about the hidden state

process. The method may have a wide range of applications. Based on this, we develop a closed-

form expression to obtain the joint default distribution with the hidden state process. After

deriving this general formula, for the homogeneous contagion portfolio, we also give analytical

formulas for the distribution of ordered default times. Beside, we extend the total hazard

construction method to get the joint distribution of default times for hidden markov models.

We remark that the methods discussed may be applicable to various forms of default intensities.

Algorithms for practical implementation of the methods are presented and their uses for pricing

credit derivatives are illustrated. In the numerical experiments, we consider valuations for

the CDSs premium rates of the regular and basket type with different expressions of default

intensities which cover an exponential decay and a stochastic intensity process. We also study

the sensitivities of premium rates with respect to changes in the underlying parameters in the

regular CDS as an example.
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