
Network-Aware Recommendations in Online
Social Networks

Department of Computer and System Sciences Antonio Ruberti

Dottorato di Ricerca in Computer Science and Engineering – XXVIII
Ciclo

Candidate

Noor Aldeen Alawad
ID number 1568492

Thesis Advisor

Prof. Stefano Leonardi

Co-Advisor

Dr. Aris Anagnostopoulos

A thesis submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science and Engi-
neering

September 2016

Thesis defended on 20 February 2017
in front of a Board of Examiners composed by:

Prof. ALFONSO GEREVINI (chairman)
Prof. LAURA TARANTINO
Prof. MIRIAM DI IANNI

Network-Aware Recommendations in Online Social Networks
Ph.D. thesis. Sapienza – University of Rome

© 2016 Noor Aldeen Alawad. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Version: February 20, 2017

Author’s email: alawad@dis.uniroma1.it

mailto:alawad@dis.uniroma1.it

iii

Abstract

Along with the rapid increase of using social networks sites such as Twitter, a massive
number of tweets published every day which generally affect the users decision to forward
what they receive of information, and result in making them feel overwhelmed with this
information. Then, it is important for this services to help the users not lose their focus from
what is close to their interests, and to find potentially interesting tweets. The problem that
can occur in this case is called information overload, where an individual will encounter too
much information in a short time period. For instance, in Twitter, the user can see a large
number of tweets posted by her followees. To sort out this issue, recommender systems are
used to give contents that match the user’s needs.

This thesis presents a tweet-recommendation approach aiming at proposing novel tweets
to users and achieving improvement over baseline. For this reason, we propose to exploit
network, content, and retweet analyses for making recommendations of tweets.

The main objective of this research is to recommend tweets that are unseen by the user
(i.e., they do not appear in the user timeline) because nobody in her social circles published
or retweeted them. To achieve this goal, we create the user’s ego-network up to depth
two and apply the transitivity property of the friends-of-friends relationship to determine
interesting recommendations. After this step, we apply cosine similarity and Jaccard distance
as similarity measures for the candidate tweets obtained from the network analysis using
bigrams. We also count the mutual retweets between the ego user and candidate users as
a measure of shared similar tastes. The values of these features are compared together for
each of the candidate tweets using pairwise comparisons in order to determine interesting
recommendations that are ranked to best match the user’s interests.

Experimental results demonstrate through a real user study that our approach improves
the state-of-the-art technique. In addition to the efficiency of our approach in finding relevant
contents, it is also characterized by the fact of providing novel tweets, which solves the
over-specialization challenge or serendipity problem that appears when using content-based
recommender systems as a stand alone approach of recommendation.

v

Acknowledgments

First of all, I would like to express my deepest gratitude and appreciation to my supervisor
Prof. Stefano Leonardi for his help, wisdom, sagacious guidance and advice over the
years. And I would also like to thank my collaborators: Dr. Aris Anagnostopoulos, Dr. Ida
Mele, and Dr. Fabrizio Silvestri for their insightful comments, efforts and dedication to my
research.

I would like to thank all the people who participated in the user studies of this research
for their time and interest in my work. I also have to thank my wife for her support,
encouragement, and patience during my study. Finally, I want to thank my late parents who
assisted me a lot in my early life.

vii

Contents

1 Introduction 1
1.1 Online Social Networks . 1

1.1.1 Factors affecting the constructions of social networks 3
1.1.2 Twitter social network . 3

1.2 Motivation and Research Objectives . 8
1.3 Thesis Outline . 10

2 Literature Review 13
2.1 Recommender Systems . 13

2.1.1 Recommender systems paradigm 13
2.1.2 Collaborative filtering recommendation 15

2.1.2.1 User-based collaborative filtering 16
2.1.2.2 Item-based collaborative filtering 17
2.1.2.3 Collaborative filtering practical challenges 18

2.1.3 Content-based recommendation 19
2.1.3.1 Content-based recommenders advantages 19
2.1.3.2 Content-based recommenders practical challenges 20

2.1.4 Hybrid recommendation . 22
2.1.4.1 Hybrid recoomender systems aggregation 22
2.1.4.2 Hybrid recommender systems classes 22

2.1.5 Recommender systems applications 24
2.2 Twitter recommendations . 25

2.2.1 Followee Recommendations . 25
2.2.2 Tweet-based Content Recommendations 28
2.2.3 Tweet Recommendations . 32
2.2.4 Retweet Recommendations . 34

3 Design and Methodology 37
3.1 The Retrieval Process . 37

3.1.1 Retrieving friends and friends-of-friends 38
3.1.2 Retrieving the timeline of the user 39

3.2 Network Analysis . 41
3.2.1 Egocentric networks . 41
3.2.2 MapReduce framework . 42
3.2.3 Triangles in social networks . 44

3.2.3.1 Number of triangles in a graph (G) 44

viii Contents

3.2.3.2 Triangles types in directed graphs 45
3.2.3.3 Link recommendation based on triangles 45

3.2.4 Our approach of finding and counting open triangles 46
3.3 Content Analysis . 48

3.3.1 Retrieving the profile properties and timeline of the top-k users . . . 48
3.3.2 Tweets preprocessing . 50
3.3.3 Content-similarity measures . 51

3.3.3.1 Cosine similarity . 51
3.3.3.2 Jaccard distance . 52

3.3.4 Using N-grams . 52
3.4 Retweet Analysis . 54
3.5 Ranking of Recommendations . 60

4 Experimental Results 63
4.1 User Study Evaluation . 63

4.1.1 User study design . 63
4.1.2 Demographic information of the participants 64
4.1.3 Characterization of the participants 65
4.1.4 Tweets rating . 67

4.2 Candidate Users Timelines . 68
4.2.1 Tweets and retweets of candidate users 68
4.2.2 Outdated candidate users . 77
4.2.3 Preprocessed (re)tweets of candidate users 77

4.3 Assessing the Performance of the Recommendation System 77
4.3.1 Precision . 78
4.3.2 Normalized Discounted Cumulative Gain (nDCG) 79
4.3.3 Reciprocal Rank (RR) . 79
4.3.4 Results and discussion . 79

5 Conclusions and Future Work 85

A Registering a Twitter Application 87

B Twitter’s REST API 91
B.1 Authentication methods . 91
B.2 API requests . 92

B.2.1 GET friends/ids . 92
B.2.2 GET statuses/user_timeline . 92
B.2.3 GET statuses/retweeters/ids . 92
B.2.4 GET users/lookup . 97

C Issues Related to Retrieving a User’s Timeline 101
C.1 Dealing with large accounts . 101
C.2 Dealing with character encodings . 101
C.3 Dealing with socket timeout . 103

Bibliography 114

1

Chapter 1

Introduction

The World Wide Web (WWW) is a prominent resource of information that is accessible by
network. It was initially created to take care of the requests from scientists in universities in
order to share information automatically. Then it is widely spread across billions of people
to connect on the Internet. The basic constructs of the WWW are the web pages that are
accessible by web browsers. The webpages contents are text documents, images, sounds,
and video.

From these huge resources of information, people can do activities like: reading docu-
ments, listening to music, watching videos. Therefore, in order to find information that is
relevant to their demands, they need to get results of high quality according to their queries
using information retrieval techniques. In these days, users interact with the web by adding,
removing, and changing contents. For example, User-Generated Content (UGC) take the
form of of blogs, wikis, or contents from online social networking sites like: Facebook,
Twitter, where users contact with each other through posting or tweeting text, sending
messages, posting photos or videos.

1.1 Online Social Networks

Online social networks allow people to connect to one another and to share information,
opinions, and ideas. And, they will give an opportunity to find friends to connect among the
network members (social relationship). Those friends will appear as links in the profile of
the user. Based on the interaction between a user and her friends, they are mainly classified
into five classes [38]: family, friends, neighbors, contacts, and co-workers as shown in
Figure 1.1 .

Mislove et al. [80] show that online social networks are not new platforms, as for
example, the graph that represent sending emails between users is considered as online
social network. The online social network sites that are popular in term of size are Twitter,
Facebook, Flickr, YouTube, etc. The users of these sites can register to interact with these
networks, and they may specify some additional informations about themselves (e.g., their
birthday, residence place, interests), and this will be part of their profiles. The social network
consists of user accounts and links between them. Some sites, such as Twitter and Flickr,
allow users to link to any other user, without obtaining permission from the link target.
While other sites, such as Facebook, LinkedIn, need permission from both the creator and
target before a link is established between them.

2 1. Introduction

Figure 1.1. User-links classes

Due to the huge amount of data posted by users, there is an imminent need to filter con-
tents that are useful to a target user, so that she will concentrate on interesting contents. The
task that should be carried out in this case is information filtering to eliminate unnecessary
or undesirable contents from an information stream before showing them to users

To solve this problem, there is a platform that is called “recommender system”, which
is a subclass of information filtering. Recommender systems are profit-oriented to online
vendors like: Amazon.com (Internet-based retailer), Netflix.com (streaming media and
video on demand provider), and IMDb.com (online database of information related to films,
television programs and video games). These systems predict user preferences (ratings) for
new items based on previous ratings on other items. The companies that are developing these
systems focused on enhancing the accuracy of prediction, for instance, in October 2006,
Netflix lunched an open tournament with a prize of one million dollars for the algorithm
that best predicts user ratings for films1. The cause of conducting this tournament is that the
best proposed algorithm will match the interests and needs of a large group of users and as a
result, will raise profits for e-commerce websites [52].

Some companies exploit the trust level between users to spread their services. For
example, Hotmail appends a promotion message at the bottom of every outgoing email:
“Get your private, free email at http://www.hotmail.com.”. A large number of persons who
will receive such message in the email will sign up and then spread the message all around.
Consequently, the number of Hotmail user accounts grew from zero to 12 million in 18
months on only a half million dollar advertising budget. By this, they found that their
approach beat other marketing strategies [57].

1http://netflixprize.com/

1.1 Online Social Networks 3

1.1.1 Factors affecting the constructions of social networks

Social networks are constructed in various shapes. Nevertheless, they are affected by
different factors. McCulloh et al. [76] define the mechanisms that govern the social relations
between ties as following:

• Homophily: It is also known as the “birds of a feather flock together” where members
are likely to create connections with others who are similar to them, with regard
to socio-demographic attributes (i.e., age, gender, education), or shared interests or
beliefs.

• Social conformity: It describes how people, groups, and organizations create, control,
and delete links in the network.

• Reciprocity: The extent to which there are common ties between members of a
network. For instance, if user (X) send en email to user (Y), then does user (Y) will
send a reply to user (X)?

• Proximity: It predicts that there are inter-relations between members who are physi-
cally close to each other in a place.

• Balance: It proposes that two users are more likely to be connected if they have
mutual friends (Triadic transitivity).

In [7], the authors studied the effect of homophily to predict future links. As they found
that users with similar interests are more likely to connect with each other.

1.1.2 Twitter social network

Twitter is a popular micro-blogging system which was created in March 2006 by Jack Dorsey,
Evan Williams, Biz Stone, and Noah Glass. In Twitter, users can post short messages, called
tweets, whose length is at maximum 140 characters. Tweets typically consist of personal
information, status updates, news, or links to webpages or other web content (e.g., images
and videos). Twitter users, by following one another, define a social graph, where nodes are
users, and a direct edge (u, v) represents the fact that the user u follows the user v.

The tweets posted or retweeted by a user are shown on the user’s profile page as well
as on the timeline of her followers. These users can reply to the author of the tweet, or
they can retweet the original message, so that it is made visible to their followers, too.
Retweets are very frequent, allowing the propagation of interesting information into the
Twitter community, and, for this reason, the users follow news channels, favorite celebrities,
or friends to obtain new information as soon as possible. Other actions that a user can make
is Mention where a user tag another one. The Like action represents the user’s appreciation
for a tweet. Figure 1.2 show an example of tweet’s components, where their descriptions are
highlighted in red color.

4 1. Introduction

Figure 1.2. Tweet components

Figure 1.3 shows the tweet activity, which contains information about how impressive
the tweet is:

• Impressions: Number of times people saw a tweet.

• Total engagements: Number of times people interacted with a tweet, which is a sum
of the following measures.

– Detail expands: Number of times people viewed the details about a tweet.

– Link clicks: Number of times people clicks on the URL embedded in a tweet.

– Replies: Number of replies to tweet.

– Likes: Number of times people liked (favorited) a tweet.

– Retweets: Number of times people retweeted a tweet.

Hashtags are phrases that have the number sign (#) as a prefix. For example: (#Sapienza,
#SIGIR2016) are used to know what is happening regarding the terms ‘Sapienza’, and
‘SIGIR2016’. A user who click on these hashtags will be redirected to a page that contains
all the users who have included the hashtag in their own tweets. An individual can create her
own hashtag, so that other users can interact with it and create conversations easily. When
a hashtag become popular at a certain time, then it will be a trend, and it appears on the
left side of a user’s page. Hashtags can help everyone to keep up to date efficiently, so the
people can contact each other during an event (i.e., conference).

1.1 Online Social Networks 5

Figure 1.3. Tweet Activity

A user’s feed is a list of (re)tweets that are posted periodically by the user and that are
arranged chronologically with the most recent posts first. On the other hand, a user can send
direct message (DM) to another one to participate in private conservation.

Twitter has millions of users who use its services everyday, and create huge amount of
data. The following are recent statistics on Twitter 2 (Updated till August 2016):

• Number of Twitter users (monthly active users) is 313 million.

• Estimated total number of Twitter registered users is 1.3 billion.

• Unique monthly visitors to Twitter (desktop and mobile) is 120 million.

• Average number of monthly visitors to Twitter that do not log in is 500 million.

• Average number of followers per Twitter user is 208 user.

• Number of Twitter accounts that have ever sent a tweet is 550 million.

• Percentage of Twitter users that have tweeted, but not within the past year is 43%.

• Percentage of Twitter users that created an account and never sent a tweet is 44%.

• Number of Twitter users in the US is 66 million.

• Daily active Twitter users are 100 million.

• Percentage of active Twitter users that log onto it more than once a day is 34%.

Each user on Twitter can identify herself to world through providing information about
herself once she signed up. These information include:

• Name: Identify the real name of a user with maximum of 20 characters long.

• Location: Determine the geographical location of a user.

• Web link: An external link to a personal webpage.
2http://expandedramblings.com/index.php/march-2013-by-the-numbers-a-few-amazing-twitter-stats/

6 1. Introduction

• Bio: A small paragraph of less than 160 characters, to express the user’s business,
interests, etc.

Basically, Twitter specify two classes for the individuals around a user: people you
follow (followees), and people who follow you (followers). And according to [60], Twitter
community is classified into three groups:

• Twitter friends of a user: they are the people a user follow and follow her back.

• Twitter fans of a user: they are people who follow a user although they are not
followed back.

• Twitter inspiration: They are people a user follows without following her.

As mentioned in [56], the users are also classified into three categories: information
source, information seeker, and friends, where information source users are those who have
large number of followers, and this class of users always posts important updates in a regular
time, while information seeker users are those who posts rarely and follow other users, and
the friend class which contains family members or the user colleagues who have the same
domain of work. The user intentions on Twitter are mainly concentrated on the ordinary
daily activities, and it is considered as the largest class of users.

Twitter is used by researchers to get help in their work, through tweeting a summary of
their projects, and ask others for feedback. The followers would access these projects, by
following the URLs inside their tweets, and sending their comments. And to fit under the
restriction of the maximum characters limit (140 characters), a publisher could use one of
the URL shorteners services 3,4 to replace the original long URL.

Mollett et al. [81] show that Twitter give opportunities for ‘crowd sourcing’ research
activities across the sciences, social sciences, history and literature through asking people to
help with gathering information, making observations, launching data analysis, transcribing
and editing documents. Other researchers have also used Twitter to help ‘crowdsource’
research funding from interested public bodies.

Burghardt [22] shows that Twitter attract researchers in various academic fields, and this
happens, because of the following features:

• Message size: Twitter messages are relatively short, which almost bring out homo-
geneous datasets. While the posts of other social media are larger and of different
lengths, which results in imbalanced data.

• Sample size: A huge number of messages are posted on Twitter daily, that make it a
rich source of data.

• Metadata: Twitter messages give all types of metadata, such as username, creation
date, language, geolocation, etc.

• Availability: Most of the data is public, so that, not only registered users can access
it, but it is also accessible by all web users.

3http://tinyurl.com/
4https://bitly.com/

1.1 Online Social Networks 7

• Accessibility: The services provided by Twitter to access and download the data give
flexibility to deal with it. These services are a pre-defined Application Programming
Interfaces (API) which will be explained in Appendix B.

Moreover, in academia, Twitter data was analyzed during conferences, for instance,
Letierce et al. [67] found that Twitter is effectively used in broadcasting scientific messages,
and they conducted their research by:

1. Getting tweets that contain official hashtags of three conferences.

(a) (#iswc2009). The International Semantic Web Conference (ISWC 2009).

(b) (#online09). The Online Information Conference 2009 (Online 09).

(c) (#estc2009). The European Semantic Technology Conference (ESTC 2009).

2. Identifying the way they do it.

3. Checking whether their tweets can reach other communities.

They found that studying streams of scientific conferences give intends to consider trend
topics of the event, and they noticed that users whom have an authority during an event get a
high score over the others. They conclude that Twitter remove barrier between researchers
and broadcast the event to a larger set of audience.

In [121], the authors studied the similarity of information flows in Twitter communica-
tions by comparing two types of citations:

• URLs pointing to external resources.

• Retweets (RTs) that cite other users tweets.

They conducted citation analysis on collection of tweets that contain hashtags for two
conferences:

• (#www2010). The World Wide Web Conference (WWW2010).

• (#mla09). The Modern Language Association Conference (MLA 2009).

They conclude that RTs may indicate the most well known twitterers, while URLs could be
counted to specify the impact of referenced publications or presentation slides. In related
research [122], the authors show that the kinds of Websites that the URLs refer to, the
highly cited URLs from the conference datasets, and the number of retweets for the different
datasets, are highly retweeed by users.

Priem et al. [89] studied the way and the cause of citing on Twitter, through answering
the following questions:

• Do scholars cite on Twitter?

• If yes, how these citations occur on Twitter?

• Do these citations carry impact?

In their research, they form a sample of 28 academics, where they inspected their
reactions to Twitter citation, as they answered the questions as following:

8 1. Introduction

• Yes. The scholars use Twitter to cite articles.

• The following are about how Twitter citations appear:

– It was noticed that half of these citations have a direct link to a resource, while
others have intermediary links to the target resource.

– Twitter citations are much faster than traditional citations, with 40% happen in
the first week of the cited resource’s publication.

• The participants said that Twitter citations transmit scholarly impact.

At last, they conclude that Twitter citations could enhance traditional citation analysis
through presenting faster and broader metrics of scholarly communication.

1.2 Motivation and Research Objectives

The huge number of tweets posted everyday causes the problem of information overload.
This problem was studied by Rodriguez et al. [94], they present to what degree the social
network users are overwhelmed with the large amount of information posted in these
networks. In addition to this, they explain how this problem affects the choices of users to
share and spread information to other users, and they note the following:

• Through their experiments, they prove that there exist a limit on the size of information
that are posted daily. They detect that there is a small number of Twitter users who
approximately post more than 40 tweets per day.

• Although there exist limits on posting information, they discover that there are no
restrictions on the information received by Twitter users. This information is pro-
portional to number of followees. And as known, many Twitter users follow several
hundreds to thousands of other users.

• They report a limit of approximately 30 tweets per hour, in which less than this limit,
the likelihood that a user retweets a tweet remain steady. Conversely, above this
limit, the likelihood that a user retweet a received tweet starts to drop considerably.
Therefore, they conclude that this rate limit estimates the level of information a user
will process, and as result, it will be possible to specify the users who got overloaded
information.

• They notice that, at some point, when users are not overloaded, they handle and
retweet tweets rapidly as they receive more information. In contrast, when users are
overloaded, they take time to handle and spread information as well as they receive
more and more information.

• Apparently, when users are overloaded, they seem to organize tweets from a chosen
subset of users. They noticed that, although the overloaded users follow more users,
the set of users whose tweets they retweet stay to be constant and increments gradually.

Therefore, and according to their study, receiving a large amount of information by users
will affect their role in processing like: concentrating on certain sources, the volume of the
information spread, and the speed of processing information.

1.2 Motivation and Research Objectives 9

Recommendation systems can play a key role in solving the information overload prob-
lem. In Twitter most of these systems are based on recommending users to follow [50],
webpages to visit [127], or they consist in reranking the tweets appearing in the user’s time-
line [125], where the authors used a model to rank tweets and their authors simultaneously
using several networks: the social network connecting the users, the network connecting the
tweets, and a third network that ties the two together.

A new line of research is based on recommending concealed tweets, by which we mean,
tweets that are not posted or retweeted by anybody in the user’s social circles. As a result,
users have access to additional tweets that may be of interest. Consider, for example, the
following scenario: A user is interested in computer science and everyday she checks the
tweets of the computer scientists she is following. Some of these tweets are originally posted
by them, whereas others are just the result of a retweet. When nobody has retweeted a
message that is potentially interesting for the user, such message remains concealed from
the user’s eyes, because it does not appear in her timeline.

In details, the contribution in Chapter 3 is about to employ the transitive property of
ties in the ego networks of Twitter. The graph of users to make recommendations in Twitter
is a directed graph, where nodes represent users and an edge between two users, u and v,
indicate that u is following v. The graph is built for each ego node using data obtained from
their networks.

In our approach, we first conduct a network analysis as in the following situation,
suppose that there is a tie between X and Y and one between Y and Z, then it will be
expected that X is connected to Z. If this link exist, then they form a closed triangle,
otherwise, they form an open triangle. Closed triangles indicate that X can see updates from
Z (Z is one of the friends of X). In contrast, in open triangles, Z updates are seen only
from the set of Y users (Z is one of the ‘friends of friends’ of X), and consequently, unseen
by X . To choose the most important candidates from Z, we used the number of links from
Y to Z as a criteria . Based on the fact that the volume of data that we need to process is
large, where the set of Z users are counted in millions, we used MapReduce platforms to
extract and propose these candidate users through applying two rounds of map-reduce jobs.

Then, we used content analysis measures to find the similarity between the user X and
the set of candidate users that resulted from the network analysis. In content analysis, we
applied cosine similarity and Jaccard distance between the timeline of X and the timelines
of the proposed users of Z using unigrams and bigrams. In addition to this, we used retweet
analysis through counting the incommon retweets between the user X and the proposed
users of Z.

The features that we computed their values through network analysis, content analysis,
and retweet analysis were used to build the feature matrix. The rows represent the tweets,
and the columns represent the features. A pairwise comparison was used to rank the tweets
in order to show the highly relevant tweets to the user according to the strategy of providing
the user with the tweets that have the best combination of features’ values. Figure 1.4 shows
an overview of the system structure.

We present a user study aimed at proving the quality of our recommender system. We
contact people from network of our friends asking them for help in evaluating our approaches.
We asked them some information about their twitter accounts, interests, etc. Then, we sent
them a link that they can follow to obtain a set of tweets when they were ready. After
that, the users were asked to evaluate based on how much interesting are the recommended
tweets.

10 1. Introduction

Figure 1.4. General Overview of the System Structure

The user study that we conducted is not anonymous, but the only personal information
that we requested from users is minimal (gender, age range, topic interests, how much
they use twitter, and in general how much they access the Internet), and it is optional. The
interface of the recommender system is efficient, user-friendly and easy to use that describes
the overall process of rating the recommended tweets. As a result, we received positive
feedback from the users through interaction and participation, and they expressed their
interest to know the outcomes of the study.

Pennacchiotti et al. [87] tackled the problem of recommending unseen tweets by propos-
ing tweets whose content matches the user’s interests. We follow and extend their idea of
recommending hidden tweets that are potentially interesting to the user, but instead of using
only the content analysis, we propose to exploit the structure of the network around the user
as well as the analysis of mutual retweets; we demonstrate that this yields an improvement
in the quality of the recommendations.

1.3 Thesis Outline

This thesis has the following structure:

• Chapter 2 contains the description of the paradigm, types, applications of recom-
mender systems, and a review of recent literature on Twitter recommendations.

• Chapter 3 presents the structure of our recommender system by first describing the

1.3 Thesis Outline 11

retrieval process from Twitter, how to find candidate tweets based on the user’s
network, and then to rank and recommend subset of them through content and retweet
analysis.

• Chapter 4 describes the users who participated in the user study, explains the results of
the experiments that were conducted in this research, and demonstrates the superiority
of our approach over the baseline.

• And finally, Chapter 5 concludes the thesis and proposes the directions for future
work.

13

Chapter 2

Literature Review

Recommendation systems help the users to find products and services, music and videos as
well as blogs and news articles, and they have been widely studied in the past [92, 39, 21].

2.1 Recommender Systems

There are two main types of recommender systems (personalized and non-personalized):

1. The personalized recommender systems examine the users’ preferences in recommen-
dation.

2. The non-personalized recommender systems will not benefit from user preferences.
For instance, a recommender system will suggest the same recommendations for
everyone. (i.e., Top-10 best seller goods in a market).

Basically, most of the recommender systems that is widely used are personalized rec-
ommenders [93]. As in Figure 2.1, the following approaches of recommendation are
mainly used as personalized recommenders, and they will be described in details in the
sections: 2.1.2, 2.1.3 and 2.1.4 :

• Collaborative Filtering (CF).

– User-based CF.

– Item-based CF.

– Hybrid models (User-based CF and Item-based CF).

• Content-based.

• Hybrid models (CF and Content-based).

2.1.1 Recommender systems paradigm

The major goal of a recommender system is to suggest items to a user through applying
transactions. The data that is used in a recommender system consists of three types [93]:

14 2. Literature Review

Figure 2.1. Recommender systems techniques

• Items: Items are the entities that are recommended (i.e., tweets, movies, restaurants,
etc). The Items have descriptions that are used in the process (i.e., category, price,
location, etc). The values of these items may be useful to the user or not, (positive
or negative). However, providing users with useful contents will save their time in
searching for related items from a very large number of items.

• Users: Users are the people who will receive the recommendations. They have
different characteristics and tastes. These information are used to predict items of
interests to them. A model should be built to take these information in consideration
(i.e., demographic information like: age, gender, education).

• Transactions: They represent the interactions between the process objects and the
recommender system. These transactions take three forms:

– Transactions between users themselves, (i.e., a user follows another).

– Transactions between users and the recommender systems, (i.e., a user makes a
request).

– Transactions between the recommender systems and users through items, (i.e.,
user’s feedback).

Figure 2.2 shows the paradigm of a recommender system, where a user sends a request
to the recommender system, and the system in its turn extracts the features of items to

2.1 Recommender Systems 15

recommend items that are of interest to users based on their descriptions and the relation
between users.

Figure 2.2. Recommender systems paradigm

2.1.2 Collaborative filtering recommendation

Collaborative filtering represents recommending items by referring to other users’ activities
and preferences in items. Collaborative filtering was widely studied in literature [97, 37, 43,
91]. Amazon company has been using collaborative filtering for long time to recommend
products to their customers. Also, the Netflix Prize use collaborative filtering algorithm to
predict user ratings for films.

The users preferences are called ratings, and they are represented in a triple as: (User,
Item, Rating). And these ratings may appear in many patterns, based on the type of the
considered system [53]:

• Real or integer-valued rating scales such as 0–5 stars.

• Binary (like/dislike) or ternary (like/dislike/unknown).

• Unary ratings (has purchased).

The set of all rating triples makes (User, Item) ratings pairs, such that the unknown values
are marked as question marks as in the sparse matrix in Table 2.1.

16 2. Literature Review

Table 2.1. Four scales user ratings for items

Item1 Item2 Item3 Item4 Item5
User1 1 ? 3 3 2
User2 2 4 ? 1 ?
User3 ? 1 3 2 3
User4 1 3 ? ? 4

Collaborative filtering recommendation system is classified into the following algo-
rithms [33, 108]:

1. Memory based: It recommends the items based on the past activities of users.

2. Model based: It recommends the items through a learned predictive model (ma-
chine learning model) by referring to the past activities of users in order to enhance
prediction performance.

3. Hybrid: This technique incorporates both the memory-based and the model-based
algorithms together. It enhances the quality of predictions and it solves problems that
can be encountered when building collaborative filtering recommender systems like
sparsity and information loss that will reduce accuracy.

There exist many forms of collaborative filtering systems [53], however the mostly used
are user-based and item-based collaborative filtering.

2.1.2.1 User-based collaborative filtering

This filtering approach is also called “Nearest neighbor collaborative filtering”, where users
are expressed as neighbors. It is used to predict user preferences through the following two
steps:

1. Find users who have similar ratings to a target user (the user who will receive predic-
tions).

2. Use these ratings from those users to predict items that are of interest to the target
user.

To calculate user similarities between the users’ corresponding ratings, a lot of measures
can be used, like: Pearson correlation, Cosine similarity.

Figure 2.3 shows an example that presents user-user collaborative filtering. In the figure,
there are 4 users and 5 items, through which we can observe the following:

• {u1} is interested in the items {i2, i3}, and {u3} is interested in the items {i2, i3, i5}.
Therefore, items {i2, i3} are shared interests - (indicated by orange arrows).

• {u2} is interested in the items {i1, i4}, and {u4} is interested in the item {i4}.
Therefore, items {i4} is a shared interest - (indicated by green arrows).

From this, it is clear that there is a correlation between the users (u1 and u3), and between
(u2 and u4). So in this case, i5 is predicted to be recommended to u1, and i1 is predicted to
be recommended to u4. (Indicated by the purple arrows)

2.1 Recommender Systems 17

Figure 2.3. User-User CF

2.1.2.2 Item-based collaborative filtering

In contrast to the user-based approach, this one will make predictions according to similari-
ties between items as in the following two steps:

1. Build an item-item matrix determining relationships between pairs of items.

2. Deduce the target user interests by investigating the matrix that are similar to her data.

These similarities can be calculated by finding the cosine similarity between items in a
matrix of item-item.

Figure 2.4 shows an example that presents item-item collaborative filtering. In the figure,
there are 4 users and 5 items, through which we can observe the following:

• {i2} is one of the preferences of users {u1, u2, u3}, and {i4} is one of the preferences
of users {u1, u2, u3, u4}. Therefore, users {u1, u2, u3} have almost same interests -
indicated by orange arrows for their interest in item {i2}, and green arrows for their
interest in item {i4}.

From this, it is clear that there is a correlation between the users {u1, u2, u3} and user {u4}.
So, in this case, {i2} is predicted to be recommended to {u4}. (indicated by the purple
arrows).

18 2. Literature Review

Figure 2.4. Item-Item CF

2.1.2.3 Collaborative filtering practical challenges

The two major challenges that may be encountered in this class of recommender systems
are: sparsity and scalability.

Sparsity: There is a high possibility that (User, Item) matrix be large and sparse, which
results in incomplete data that affect the quality of recommender systems when finding
users of similar interests. Kumar et al. [63] overcome this problem using trust inference
through a model that finds transitive user similarities. The trust inferences are explained in
the following example:

1. Suppose that user1 and user2 rate Item1.

2. Suppose that user2 and user3 rate Item2.

3. Then, there may be a correlation between user1 and user3.

They infer the trust between the users (1 and 3) through user2. They found that their method
adds new information to the collaborative filtering algorithm.

In another research, chen et al. [30] suggested to consider the direct similarity and
the indirect similarity between users, and create the similarity matrix through the relative
distance between the user’s rating using association retrieval. This retrieval process aims
to create a graph of documents, index terms and queries, and then to find the transitive
associations among terms and documents using this graph. Their approach results in
enhancing the quality of the recommendation system.

2.1 Recommender Systems 19

Sachan et al. [96] solved the sparsity problem by using fuzzy inference rule, and then
they used k-nearest neighbor algorithm to compute the similarity between users. While
Pechkis et al. [86] reduce the size of the sparse matrix by clustering the user’s ratings through
ordering the rows and columns of the matrix.

Scalability: This is another problem that is popular in recommender systems, when
the matrix size increase because of its basic elements (Users, Items). The researchers
in [124, 41] used the idea of clustering to solve this problem through grouping together
similar users as well as items.

Pagare et al. [83] also propose two approaches to solve scalability issues:

1. They exploit the structure of cloud computing, such that, they apply their work on
Map-Reduce on Hadoop cluster.

2. They propose a cluster-based collaborative filtering recommendation algorithm.

2.1.3 Content-based recommendation

This type of recommender systems recommend items to users based on the item’s description
and the users’ interests through building profiles for those users [85]. The corresponded
items to be recommended are subset of different candidate items that match the items that
were already rated by the target user. The items may be documents, Web pages, tweets,
news, etc. Content based recommendation was deeply studied in the literature [18, 79].

As depicted in Figure 2.5, content-based recommendation process passes in the following
steps [108]:

1. Infer items’ attributes through analyzing their characteristics (items’ keywords).

2. Compare items’ attributes with the the preferences of the target user which can be
gained through:

• Preference model of the user that represents her interests.

• Interaction log of user with the recommender system to feed the profile by the
profile learner, (user’s feedback).

3. Get the filtered items to build the user profile and make recommendations through
applying classification techniques like: decision trees, nearest neighbors, linear classi-
fiers, etc.

The user’s feedback can be positive (predicted items liked by the user) or negative (predicted
items are not of the user’s interest) as mentioned by Holte et al. [54]. And the feedback can
be ‘explicitly’ taken from users response to the system (ratings, like/dislike, comments), or
‘implicit’ deduced from the activities of users, like save or bookmark a page. In this case,
learning from feedback model will take in consideration the changes in user preferences.

2.1.3.1 Content-based recommenders advantages

The following are the benefits of applying content-based approach in recommendation [70]:

• Independency: It depends only on the ratings from the active user to build her profile,
and it is not dependent on other users’ ratings.

20 2. Literature Review

Figure 2.5. Content-based recommendation process

• Transperancy: The items’ descriptions are clearly determined and used. They are
open to active users, so they can be trusted.

• New item: There is an ability to recommend unrated new items without having these
items rated by several users.

2.1.3.2 Content-based recommenders practical challenges

Nevertheless of the advantages, however there are some limitations that should be consid-
ered [70]:

• Lack of Information: Getting features automatically is not enough in recommenda-
tion, and it results in unsuitable suggestions, and this is because other supplementary
information is needed. So, domain knowledge would be good to add more information
in order to enhance the process.

• Over specialization (‘serendipity’): The recommended items may not be novel to
users, such that, it mainly depends on the candidate items with the highest scores, and
consequently, it makes recommendation of certain type of items. In contrast, in our
approach, we used hybrid approach (CF and content-based) to solve this problem, and
recommend novel tweets to active user.

• New user: Inadequate ratings that are provided to the system will not give a clear
picture about the user’s interests, and eventually, recommending items to new users.

2.1 Recommender Systems 21

Yu et al. [129] proposed an approach to solve the problem of ‘Over specialization’.
Given that, the recommender system suggest similar items that have more overlap between
them than others, their approach which is called ‘recommendation diversification’ is used to
recommend dissimilar items. In their work, they define diversity as a measure of how much
each item differs from the other terms (items that have higher ranks by the recommender
systems while it contains few mutual explanations in common). They showed that their
approach is effective in doing recommendations.

Also, in [55], the authors propose an extended content-based approach to introduce
serendipity by doing a preprocessing step through representing the documents as concepts
rather than keywords.

Other challenges can be addressed by building hybrid recommendation systems that will
be explained in the next subsection 2.1.4. For instance, Basu et al. [16] recommend movies
by using both ratings and content information through an inductive learning approach. This
approach takes a user and a movie as input, and outputs a predict label (like/dislike) to
classify the movies. They evaluated their system that uses content features, and observed
better results than baselines.

Cantador et al. [25] show the evaluation of content-based recommendation models that
are used as similarity measures between user and item profiles as following:

• TF-based Similarity.

• TF Cosine-based Similarity.

• TF-IDF Cosine-based Similarity

• BM25-based Similarity

• BM25 Cosine-based Similarity.

In which they add the Vector Space and Okapi BM25 (BestMatching25) ranking models to
the traditional approaches, and they give precision values.

Wang et al. [117] use classification by concepts and instances to enhance content-based
recommendation, and they find that their approach:

• Retrieve more explicitly and implicitly related items without affecting negatively the
accuracy of the recommender system.

• Give serendipitous recommendations (new and interesting recommendations).

• Provide users with more useful and complete explanations for recommended items.

Martínez et al. [74] make a new content-based recommender system that give the
opportunity to users to offer more informations about their tastes through providing a
linguistic context, and they are conducted by the following steps:

1. Collect the preferences from different information sources.

2. Filter the items through computing the similarity between users’ interests and the
items’ description.

3. Rank and select the most interesting items to users.

22 2. Literature Review

2.1.4 Hybrid recommendation

Hybrid recommender systems merge collaborative filtering and content-based filtering
together to obtain better accuracy and performance in order to overcome the deficiencies
and limitations that may be encountered if they are considered separately. A lot of research
has been done during the last users regarding these types of systems [15, 20, 42].

2.1.4.1 Hybrid recoomender systems aggregation

Adomavicius et al. [6] explain the way that collaborative filtering and content-based ap-
proaches combined together:

• Combining separate recommenders: Collaborative filtering and content-based fil-
tering are used in isolation, and then combined together through one of the following
alternatives:

– Combine the items’ ratings that were gained from each of the recommender
systems into one recommended list of items.

– At some point, select the recommender system that is better than the other, based
on its quality (i.e., accuracy).

• Adding content-based characteristics to collaborative models: Content-based
technique is integrated into the collaborative filtering. This strategy will get over:

– The cold start problem (Insufficient information about users) in collaborative
filtering.

– Overspecialization problem of content-based filtering.

• Adding collaborative characteristics to content-based models: Collaborative fil-
tering is integrated into the content-based technique. (i.e., this strategy is done by
grouping of content-based profiles).

• Developing a single unifying recommendation model: This strategy selects fea-
tures from both content-based technique and collaborative filtering to form a model of
recommendation.

2.1.4.2 Hybrid recommender systems classes

Burke [24] classified hybrid recommender systems into the following classes:

• Weighted: It combines scores of items from the outcomes of other recommendation
techniques. As an example, Claypool et al. [31] combine both approaches in their
system ‘P-Tango’ to strengthen predictions through adjusting the weights of these
approaches to meet user’s interests.

• Switching: It switches between recommendation techniques based on a specific
criteria, where content-based approach is applied first, then, if it gives insufficient
results, a collaborative filtering approach will be adopted. Tran et al. [111] choose the
technique of recommendation that best match the historical ratings of a user.

2.1 Recommender Systems 23

• Mixed: It provides recommended items alongside in a merged list from recommenda-
tion systems. Cotter et al. [32] combines a list of recommended TV programs based
on content-based techniques (textual descriptions of TV shows) and collaborative
techniques (information about the preferences of other users).

• Feature combination: It inserts features of one recommendation technique ‘con-
tributer recommender’ (such as collaborative recommendation) into another ‘actual
recommender’ (such as content-based recommendation). This class of recommenders
improves the quality of the system by adding new types of features. And as mentioned
before, Basu et al. [16] build a movie recommender system that use both user ratings
and content features which results in a reasonable enhancement of precision over
collaborative filtering.

• Feature augmentation: It is similar to the feature combination class, but in this case,
the ‘contributer’ provides novel features for each items through the logic of the domain.
Sullivan et al. [103]. solved the sparsity of the data sets through using association rule
mining over the collaborative data to deduce novel content characteristics (features)
for content-based recommendation.

• Cascade: It gives a priority for one technique to be applied first, and provides a list
of recommended items, then this list is refined by a second technique. Burke [23]
proposed a system that is called ‘Find-Me Systems’, through which they used the
collaborative filter as a post-filter for the knowledge-based recommender system.

• Meta-level: In this class the ‘contributing recommenders’ will not add new features
as in ‘feature augmentation’ class, in contrast, it will replace the whole data of ‘actual
recommnders’. Littlestone [68] et al. propose a content-based model for each user to
predict her interests in restaurants. Basically the model contains vectors of terms and
weights to be compared among users in order to provide them with predictions.

Figure 2.6 shows a summarization of hybrid recommender systems. It presents the
set of classes that can be used to combine collaborative recommender systems and
content-based recommender systems.

Grivolla et al. [45] propose a hybrid recommender system that combines user demo-
graphics and item characteristics, around a collaborative filtering core based on user-item
interactions. They evaluated their approach on data sets from MovieLens, such that the input
to their approach are:

1. User data.

2. Location data.

3. Offer data.

4. Coupon history.

Items {1, 2 and 3} that represent user demographics are extracted and processed from User
Generated Contents (UGC) platforms. The coupon history are gathered from a discount
coupon provider, and the data includes:

• User profiles.

24 2. Literature Review

Figure 2.6. Hybrid recommendation system

• Offer descriptions.

• User-offer pairs.

• Additional info, such as interactions of user with offer (clicks).

From this data, an optimized preference matrix is created to predict unknown preference
associations by the recommender. At last, they found that user and item information improve
the performance of recommendation.

Kim et al. [59] confirmed that their recommender system was enhanced when combining
social network analysis and collaborative filtering as in the following:

1. Choose subgroups of users through social network analysis (SNA),

2. Cluster the users into subgroups.

3. Recommend movies based on the clustering result.

2.1.5 Recommender systems applications

Recommender systems are used in different areas, where they are classified into the following
domains as in [93]:

• Entertainment: Recommend movies, music, etc.

2.2 Twitter recommendations 25

• Content: Recommend personalized newspapers, documents, Web pages, e-learning
applications, and e-mail filters.

• E-commerce: Recommend products to buy (i.e., books, cameras, etc) for consumers.

• Services: Recommend travel services, experts for consultation.

Also, social networks recommendation is considered as an example of the ‘content’
class.

2.2 Twitter recommendations

With the rapid growth of Twitter, a lot of research has been focusing on analyzing Twitter
data and the activities of its users for improving personalization and recommendations [65].
Recommendation tasks can be divided into the following categories:

• Followee recommendations.

• Tweet-based content recommendations.

• Tweet recommendations.

• Retweet recommendations

2.2.1 Followee Recommendations

A user in Twitter tend to follow new users who share the same interests as she has. The new
users can be discovered through counting the common friends between them and the user,
or comparing their profiles, or based on how popular the account is. In [13], the authors
proposed an approach which recommends the people to follow by analyzing the topology of
the network around the user through observing the set of followees of her colleagues who
have the same followers as her, and those followees are proposed to be recommended to the
user.

The authors in [10] suggested a followee recommender framework that as indicated by a
heuristic methodology, investigates the topology of followers/followees system of Twitter to
discover and recommend candidate users, and rank them by focusing on their similarities
with the interests of the user, and they proposed three profiling techniques that are classified
into two methodologies:

• The first one builds a model for a user through examining the content of her own
tweets.

• The second one models the users through the tweets of their followees through:

– Modeling a target user by the set of folowees’ profiles.

– Modeling a target user by a set of classes that can be found by bunching her
followees in clusters as indicated by the content of their tweets.

26 2. Literature Review

As a result, the methodologies that utilize the posts of the followees of users either separately
or gathered into classes for modeling their interests, showed remarkable degree of precision
in recommendation. In addition to this, in [12], a technique was utilized to investigate
Twitter with the objective of finding candidate users to recommend, based on the idea of
that, if a user v is followed by both users u1 and u2, then followers of u1 may be interested
in following u2. They detected the user’s interests through building a content-based profile
for the user.

Also in [11], the authors presented two recommendation methodologies:

• Collaborative filtering technique: It chooses candidate recommendations using just the
network topology, where it investigates the connections from the target user to choose
a set of candidate recommendations and ranks them based on a scoring function.

• Content-based technique: It uses the contents of the followees’ tweets, where it makes
a vector of terms that represents the target user’s interests by referring to the tweets
posted by her followees, and this vector is then used to find new users.

And they found that the content-based technique is better at yielding good recommendations.
Other studies have based their followee recommendations on the popularity and activity

of Twitter users, where in [27], both tweet content factor and social relation factor were
taken in consideration to model inter-user preference which are affected by the user actions
that include following users, retweeting tweets from followees and adding comments for the
tweets of users. And in [40], the authors recommend followees based on the popularity and
activity; such that if the ratio of followees and followers exceed a predetermined threshold
then the user is considered as popular, while the activeness is measured through counting
the number of the posted tweets since a user has created his/her account, and as a result it
was noticed that considering these two features together is better than considering each of
them individually.

As mentioned in [44], reciprocity is considered as a method of recommendation such
that if a user (X) is interested in another user’s (Y) posts, then there is a higher probability
that (Y) is interested in user X’s posts. And if two users have the same followees, then
they mainly share the same interest; and so they will be recommended to each other. Also
they are recommended if they have the same followers since they have the same audience.
Moreover; those users who can be reached through group of users of her followees (i.e.,
followees of followees) are also recommended to that user.

Twittomender [50] is a famous system, which recommends followees based on the users’
tweets and their relationships in the social graph. In detail, the approach concentrates on
mining through Twitter API, the contents of the user’s profile like the tweets, the Ids of
her followers and followees. In which, a user asks the system through a search query to
find users with similar profiles, or those users are recommended based on the tweets posted
in the account. This research adopted seven strategies that are listed in the following two
categories:

• Content-based:

1. Users own tweets.

2. Followee’s tweets.

3. Follower’s tweets.

2.2 Twitter recommendations 27

4. All tweets

• Collaborative-based:

1. Followee’s Ids.

2. Follower’s Ids,

3. All Ids.

Then, the users are represented by TF-IDF scores. A followee is considered as a best
recommended user, if she is not followed by many users, which is represented through the
IDF score. At last, they found that collaborative-based is better than content-based through
which considering all Ids is better than followee’s ids and also better than combining both
followers/followees ids. Although our system does not recommend people to follow, but
novel interesting tweets, there are some similarities with these approaches, because we also
exploit the network structure of the social graph.

The researchers in [49] propose recommendations of followees to a user based on content
and collaborative filtering methods. They built models for Twitter users from their tweets
and relationships of their social graphs.

The researchers, too, in [51] give an opportunity for ‘cold-start’ users to discover new
users to follow, who have a similar interest with them, and this is based on a pre collected
historical data from Twitter, or through providing more information about the users to follow
like: description of their profiles, the top terms they mention in their tweets or who they
mention in their tweets.

In [62], the followee recommendations were done according to:

• The number of user’s followers.

• The number of lists or groups that the user is listed in.

• The number of news related group the user is in.

They found that recommendation based on the number of followers is better than the number
of lists the user is in.

In a study done in [109], the authors showed that the accuracy of followee recommen-
dations can be enhanced through considering the personality factor (the combination of
emotional, attitudinal and interpersonal that exist in an individual) in recommendation, such
that through a data analysis, they showed that there exist relations among users characteris-
tics.

The authors in [110] showed that the precision of recommendations can be enhanced
when taking in consideration an adaptive technique for recommending followees by ideally
combining diverse factors of recommendations based on the preferences of previously
chosen followees. It is also fit to the changes of preferences overtime.

In [123], the authors predict if the user will follow others who are recommended from
Twitter. The factors that are considered in prediction are:

• Item popularity.

• Item category.

• Followees’ acceptance.

28 2. Literature Review

• Extracted keywords and actions: (retweet, mention, comment).

It was found that item popularity is the best feature that affect the recommendation positively,
and also the extracted keywords and actions of the user.

In the research [47], the researchers enhanced the accuracy of recommendation systems
through using implicit sentiment analysis. They stated a weighting function of user interests
based on:

• (Sentiment): Which is the sentiment expressed by the user for a given concept.

• (Volume): How much she is interested in that concept.

• (Objectivity) How much she expresses objective comments on it.

To refine the content-based profiles, they built profiles for the user through the weighting
function that consider SVO (Sentiment, Volume, Objectivity) to the user attitudes, and this
yield in advantages to recommend followees in comparison to other methods.

Recommending followees was discussed through considering the new location of a user
and her interests that were deduced from her previous tweets in order to look for new users
to follow [9]. In details, their approach is composed of four components:

• User interests list: Extracting the nouns that appear in the last 150 tweets or retweets.

• Local tweets input: Retrieving local tweets and hashtags and analyzing items to find
keywords, tags, category and topic.

• Conceptual fuzzy sets subsystem: Computing the similarity degree between local
tweets and user interests list.

• Output trends list: Collecting the result of conceptual fuzzy sets subsystem.

The link structure is important in several recommendation systems as in [128], where
an augmented social graph was built based on both user attributes and graph structure
information, The authors applied a random walk algorithm on this graph to estimate the link
relevance to the user.

2.2.2 Tweet-based Content Recommendations

Due to the lack of user-profiling information, recommending web content is often challeng-
ing, and Twitter has demonstrated to be a rich source from which is possible to obtain more
information about web users. In particular, it has been proven that using Twitter data (e.g.,
tweets, retweets, hashtags of the user and of her friends) is possible to improve the URL
recommendations [127].

And also, there is another research that is related to ranking URLs based on the users’
interest [28]. The authors designed two approaches: one of them is through recommending
URLs from the followees and followees of followees, and the other is the popularity score
of URLs. Then, the proposed URLs are ranked through the topic-relevance and the social
process. The topic-relevance was done through measuring the similarity between the tweets
that contain these proposed URLs and the user’s tweet, and between them and user’s
followees tweet, while in the social process, the proposed URLs are ranked based on the
vote powers of the user who tweeted the URL, such that those vote powers are determined

2.2 Twitter recommendations 29

through the users followers count, frequency of tweeting, etc. At last, it was discovered
that the proposed URLs from the followees of followees are the most interesting. And that
combining both methods which contain: the proposed URLs compared to user’s tweets, and
the vote powers give the best ranking.

Differently from these works, we do not recommend web content but focus on recom-
mendations of tweets.

A content-based approach was suggested by [88] to recommend news that are ranked
according to the users’ tweets through her social graph (i.e., friends and followers,) or from
the tweets of the public timeline of Twitter, and this were done by applying the following
strategies:

1. Mine tweets from the public timeline, searches the user’s index of RSS items.

2. Mine tweets from people the user follows, searches the user’s index of RSS items.

3. Mine tweets from the public timeline, searches the entire space of RSS items gathered
from all users’ subscriptions.

4. Mine tweets from people the user follows, searches the entire space of RSS items
gathered from all users’ subscriptions.

5. Rank stories by recency.

The results show that the users prefer stories originated from their favorite RSS feeds, that
are ranked by public tweets or the tweets of their social graph, than stories that from a wider
community repository of RSS stories. However, in our approach, we do not recommend
news but we recommend tweets.

Sun et al. [104] build a diffusion graph to recommend subsets of micro-blogs in emer-
gency occasions, where they applied their approach on Twitter during the early spread of
H1N1 disease, and they found that their approach is better than the other state of the art
methods.

In [130], the authors collected data from Twitter to train probabilistic collaborative
filtering models that are called Matchbox in order to predict individual retweets in Twitter.
The learning algorithms are carried out using the following features:

• The tweet source (the tweeter).

• The user who is retweeting (the retweeter).

• The tweet content.

They found that the tweeter and retweeter were the most important features for prediction.
Ramage et al. [90] show a scalable implementation of a partially supervised learning

model that maps the content of the Twitter feed into dimensions (substance, style, status,
and social characteristics of posts). Such that, these dimensions help in discovering new
users and for filtering tweets in the meantime. They proved the efficiency of these models in
finding similarities in posts, and the performance of personalized feed re-ranking.

Naveed et. al [64], analyzed a set of high-level and low-level content-based features on
a large collections of Twitter messages.

The low-level features can be obtained in straightaway from the text of the messages,
and they include:

30 2. Literature Review

• The words contained in a tweet.

• The tweet being a direct message,

• The presence of URLs.

• The presence of hashtags.

• The presence of usernames.

• The presence of emoticons.

• The presence of question and exclamation marks.

• The terms with a strong positive or negative meaning.

The high-level features are gained from:

• Associating tweets to topics.

• Determining the sentiments of a tweet.

The authors trained a logistic regression analysis model to predict the chance of retweeting
a tweet based on its contents. They found that there is a high probability for a tweet to be
retweeted when its topic is general or public, and that bad news spread rapidly in Twitter.
However, in our approach, we concentrate on recommending the tweet contents.

In [36], the researchers suggest an approach to rank tweets by training a learning-to-rank
algorithm using the following features:

• Content relevance features: They represent the features that characterize the content
relevance between queries and tweets, like:

– Similarity of contents.

– Tweet Length.

• Twitter specific features: They represent the features that characterize the particular
characteristics of tweets, like:

– Retweet count.

– URLs shared in tweet.

• Account authority features: They represent the features that show the influence of
authors of the tweets in Twitter, like:

– Sum_mention: Sum of mention scores of users who published or retweeted the
tweet.

– First_list: List score of the user who published the tweet.

– Important_follower: The highest follower score of the user who published or
retweeted the tweet.

2.2 Twitter recommendations 31

From this framework, it was found that Sum_mention, First_list, Important_follower,
length and URL were the best features. In particular, the existence of URLs and the number
of times the account is listed by other users were the most effective features.

The researchers in [5] considered the temporal dynamics of user profiles in Twitter that
are figured out from users’ activities. They defined time-sensitive user modeling strategies
(hashtag-based and entity-based), and evaluated them in context of a recommender system
that provides Web site recommendations on the Social Web. They gave the best accuracy
and performance.

In [58], the authors showed a semantic web technique to filter public tweets that are
analogous to the interests from personalized user profiles. They collected and clustered
information about users from social media networks (i.e., Twitter, Facebook and LinkedIn).
They selected the entities and interests from tweets, they modeled them, they grouped users
based on them, and they recommended tweets with suitable interests to the users according
to these groups.

The researchers in [115] suggest a new recommender system which is called whom-to-
mention by training a machine learning ranking function through the following features:

• User interest match.

• Content-dependent user relationship.

• User influence.

They conducted a real user study, in which they found superiority of their approach in
comparison to other baseline algorithms. Apart from what they did, we do not recommend
persons to mention, we recommend new undiscovered tweets.

Tweets are used as a facility to recommend hashtags [100, 35] by classifying similar
tweets based on their contents, and enhancing this process by following the documents that
are linked to them.

In [131], the researchers trained a learning-to-rank algorithm using three categories
of features: user-based, movie-based, and tweet-based, in which their approach beat the
baselines.

The research that was done in [126] used a topic identification as a proxy to analyze
huge number of tweets, and to measure the interestingness of a person’s tweet by refering to
its latent topics. They also showed that their approach outperform other baseline algorithms.

The authors in [120] propose a new method to enhance finding the news highlights
through using microblogs. For a news article, they did the following two steps:

1. They found a set of indicative tweets, and use them to help in ranking the news
sentences for extraction.

2. They extract the top ranked tweets as a substitute of sentence extraction.

They show that their approach outperforms state-of-the-art baseline approaches, and that the
tweets extraction shows a good performance for generating highlights that are closer to the
human compression.

32 2. Literature Review

2.2.3 Tweet Recommendations

Most of these approaches offer a ranking of tweets based on a query, or they re-rank the
tweets appearing in the user’s timeline. Yan et al. [125] rank tweets and their authors using
hybrid networks. Uysal and Croft [113] proposed to rank the incoming tweets based on
their probability to be retweeted by the users, and the ranking of tweets is done through a
classifier that is trained with four features

• Author-based features: They are determined from the user profile: followers count,
friends count, account age, statuses count, favorites count, average of tweets per week,
etc.

• Tweet-based features: They are determined through hashtags, URLs, mentions,
whether a tweet is retweeted, the length of the tweet, the tf-idf score of the tweet, etc.

• Content-based features: This is related to the information contained in the tweet, such
that the filtered tweets are those with minimum cosine distance to other tweets for
successive weeks in the user timeline.

• User-based features: These features are used to determine whether the author of the
tweet is a follower or friend for the user who will receive the recommendation, and if
they mention each other before or if the user retweeted a tweet from the author.

And through their work, it was noticed that the ranked tweets are adjusted based on the
proposed users who have a higher probability to retweet.

Lumbreras et al. [72] build a model called ‘MarkovTrust’ that is applied to Twitter to
guess trust among users according to their interactions. Their recommender system do the
following actions:

1. Crawl the Twitter network by following the top trusted neighbors of target users,

2. Make tweet recommendations by depending on both past retweets and estimated trust.

The results show that recommendations are enhanced when using this approach and this
system adds more accuracy to trust based recommender systems.

Chen et al. [26] suggest a real-time recommender system that is called ‘TeRec’, in
which it models users’ preferences on the fly and gives recommendations based on this.
Their system gives opportunities for users to post tweets, receive recommended hashtags
and provide feedbacks to update the system. Through experimental results, they proves
dominance of their approach over baseline for real time hashtag recommendation for tweet
streams.

In [114], the authors examined the way the audience spread information. They analyzed
their approach upon social plugins, Facebook pages, and Twitter accounts, and they found
that:

1. The audience shares online news content strongly through social plugins.

2. The activity of the news media in Facebook and Twitter impacts the activity of the
audience.

3. The news media are more active on Twitter than on Facebook.

2.2 Twitter recommendations 33

Krestel et al. [61] invented general approaches for recommending tweets to news articles’
readers. In their system, they consider the following actions:

1. They invented and trained different models to recommend tweets to news articles.

2. From a dataset of tens of thousands of tweets and news articles, they gathered thou-
sands of relevance judgments.

3. They conducted a large-scale user study to judge their invented models.

Through their research, they determined the related content tweets by handling language
models and topic models to overcome the following challenges:

• The tweets should be as similar in content as the news article.

• The tweets should be posted in about the same time as the article.

• The recommended lists of tweets should be useful and not redundant.

They showed that using topic models is better than the language model approach to discover
related tweets.

Lu et al. [71] present a system that depend on Wikipedia concepts and link structure,
such that they consider the following two remarks:

• If the user u is following the user v and the user u has lots of communications with v,
then u is interested in v’s interests.

• If the user u is interested in the concept α, then u will be interested in the concepts
that are closely related to the concept α.

In details, they re-rank tweets in the timeline of user through building a user profile based on
the tweets of the user and how they are related to user preferences. This profile is defined as
concepts through a random walk on Wikipedia graph by exploiting the inter-links between
Wikipedia articles. They found that their model is impressive and efficient in recommending
tweets to users.

Guo et al. [46] improve the quality of the contents of short text in social media like in
Twitter, in which they proposed the following strategies:

1. They create a dataset that contain tweet-news pairs by linking tweets to news.

2. They suggest to build a graph based latent variable model that models the text-to-text
information (correlations between texts) by considering the following features:

(a) The tweet specific features like hashtags.

(b) The news specific features like the named entities in a document.

(c) The temporal information in tweets and news articles.

Mainly, they proposed to model the inter short text correlations (text-to-text information) in
addition to text-to-word information. They show that their approach beats the baselines.

Wang et al. [116] propose a recommender system that recommend tweets to core users.
They offer an algorithm that is combined with WAF (Word Activation Forces) to analyze
the data and process the tweets of the users in order to recommend tweets to core users, and

34 2. Literature Review

moreover, they consider the emotional bias of each of the tweets’ nouns in their algorithm.
They prove the effectiveness of their approach in comparison to others.

Liu et al. [69] examined the retweeting patterns of users through modeling their retweet-
ing behaviors (the retweeting history of each user) by considering 3W retweeting patterns:

• Temporal (When).

• Social (Who).

• Topical(What).

And also, they designed a time-aware recommendation method in order to recommend
tweets during the online sessions of users. They showed that their results outperformed
other baseline approaches.

Tang et al. [106] explore the way of exploiting social relations from local and global
perspectives in recommender systems and suggest an approach that use both of them together
as following:

• The local perspective of social relations reveals the correlations between users and
their neighborhoods.

• The global perspective of social relations reveals the reputation of a user in the whole
social network.

They conclude that ratings from users with high reputations are more likely to be trustworthy.
The system that uses both of them for recommendation is called ‘LOCABAL’, and it beats
other social recommender systems

The author in [73], combines active learning methodologies into tweet recommendation
to discover and rank relevant tweets. The proposed method give a ranked list of most relevant
and novel tweets at time T based on query Q. The novelty of the recommended tweets is
considered by clustering the retrieved tweets.

Wang et al. [118] suggest two approaches for tweet recommendations:

• Recommend tweets based on the cosine similarity between topic-distributions of users
and candidate tweets.

• Recommend tweets based on word ranking in each topic, by assuming that there is
only one topic for each tweet.

The evaluation of their approach shows better performance in comparison to other
baselines.

2.2.4 Retweet Recommendations

There are only some research papers that are interested in retweet recommendation. For
instance, Zhao et al. [132] propose an online recommender system of retweets that are
suitable for the followers. They show that a tweet will likely be retweeted, if the user retweet
it earlier in a period of no more than two days of the tweet creation date, and at the same
time, not to retweet many tweets. The issue here is to choose retweets as soon as they appear
in the Twitter feed before seeing the following ones. They used two online algorithms:

2.2 Twitter recommendations 35

• Real-time recommendation: It is to decide immediately to retweet a tweet when it is
encountered through comparing its score with a threshold.

• Non-real-time recommendation: It is to take care of the selection quality, through
looking at the sucessive tweets to decide to retweet in a chosen time window.

They found that the later algorithm (Semi-online) gave better results than the former one
(Online).

Nasirifard et al. [82] check the relevancy of hashtags in tweets to the followers of a target
user. And to recommend tweets which the user should retweet for his followers through the
following two steps:

• Audience profiling that allows users to find the subset of their followers that will be
tagged based on a term in tweet (i.e., it can be gained from the hashtags of tweet).

• Recommending well-connected topic-sensitive users for a tweet, who may retweet
the tweet.

Their recommendations system ‘Tadvise’ is fruitful and impressive for followers to retweet
a tweet.

Suh et al. [102] studied how the features of tweets will make them retweeted. They
found that a tweet that contains contents like: URLs and hashtags have higher chance to be
retweeted. And that other contextual features of an account like: age of account and number
of followers affect the action of retweeting.

Lee [66] built a model to find the right persons at the right time on Twitter who probably
will retweet a tweet and spread it. And another model was used to estimate the period of
time an individual will retweet a post based on the past retweets. Through their approaches,
they concluded that the retweeting acrivities were doubled in comparison to two baselines.

Our approach differs from these, because it aims at making recommendations of con-
cealed tweets, which are tweets that do not appear in the user timeline, because they have
not been posted or retweeted by anybody in the user’s social circles.

Moreover, our approach is user-centric in the sense that the recommendations do not
depend on a specific query but they rather match the user’s interests inferred from previous
user’s (re)tweets. In this way, our recommendation algorithm is similar to [87] where the
authors recommend unseen tweets based on the content similarity.

Differently from them, we exploit not only the analysis of tweet content but also the
structure of the network around the users (ego-network) and the users’ interest similarity
which is mined from their common retweets. As we will explain in Chapter 3, we define a
set of candidate tweets to recommend by creating the user’s ego-network with depth two
and exploiting the transitivity property of the following–follower relationships among users.
These candidate tweets are then ranked by using content-similarity measures plus the users’
interest similarity to best match the user’s interests.

37

Chapter 3

Design and Methodology

In this chapter, we describe the structure of our recommendation approach. The approach
is based on recommending tweets that cannot be seen by the user, for example, because
nobody in her circles wrote or retweeted them. Twitter users who subscribe to our system
receive recommendations of novel tweets, which do not appear in their timeline but which
are of potential interest.

For making recommendations we applied network, content, and retweet analyses. The
idea is to use the network structure around the user as a pre-filtering step to find candidate
tweets to recommend. Then, these tweets are ranked by using the content-similarity features
and the number of common retweets, which is an indication of how much the users’ interests
are similar.

To explore our method more deeply, when a user u subscribes to the service, the system
uses the Twitter API to retrieve u’s friends, friends of friends, and timeline (i.e., tweets and
retweets). Given u’s ego-network up to depth two, the recommendation algorithm exploits
the transitivity property of the following–follower relationships. For example, assume that
user u follows a set of users vi who follow user z, and that u does not follow z, the (re)tweets
of z are not visible to u, unless some vi retweeted them. The idea is to use z’s (re)tweets,
which do not appear in u’s timeline, as possible candidates for the recommendations. To
weigh the importance of the tweets of z, we count the number of users vi that are in between.

3.1 The Retrieval Process

At the beginning, for the user, the system is accessing the Twitter REST (Representational
State Transfer) APIs [2] through the API keys in order to retrieve all her friends, friends of
friends and her timeline including (re)tweets, retweeters list, and the user who issued the
retweet. In Appendix A, there is more information about the way of creating applications
from Twitter Developers site and how to establish connections, and how to determine the
application type.

Twitter supports a few authentication methods [1], and with a range of OAuth 1 which
is an open protocol to allow secure authorization in a simple and standard method from
web, mobile and desktop applications. The authentication methods are OAuth signed au-
thentication and Application-only authentication. However, Application-only authentication

1http://oauth.net/

38 3. Design and Methodology

has a rate limit higher than the other authentication methods, so we used it in our system.
Appendix B shows more information about REST APIs and these authentication methods.

Twitter put limits on the download process for developers by restricting the number of
requests in a time window. These requests could be of two main classes:

• GET, like statuses/home_timeline, statuses/retweets/:id, friends/list, etc.

• POST, like statuses/update, statuses/retweet/:id, direct_messages/new, etc.

Basically, our system uses four kinds of requests: GET friends/ids, GET statuses/user_timeline,
GET statuses/retweeters/ids, and GET users/lookup, which they are explained in Ap-
pendix B:

In retrieving data, we used Twython which is a Python library that gives the ability to
access Twitter data through Twitter REST API.

Twython [77] gives a facility to query data for:

• User information.

• Twitter lists.

• Timelines.

• Direct Messages.

• and anything found in the Twitter API docs as the requests in [2].

It also offers support for OAuth 2 for application authenticated calls to do read-only calls
to Twitter, (i.e., searching, reading a public users timeline). Aftering installing Twython, it
can be imported in Python through the following statement:

from twython import Twython

After registering application as in Appendix A, then you need the Consumer_Key,
Consumer_Secret, Access_token, and Access_token_Secret to be passed to the library, and
then it converts the retrieved JSON from Twitter into a Python object.

3.1.1 Retrieving friends and friends-of-friends

In our approach, this retrieval process goes through two passes. The application sends
requests to retrieve the friends in the first pass, and friends-of-friends in the second pass as
shown in Figure 3.1. Through this, it takes in consideration the rate limits in a time window.

In Algorithm 1, the user’s friends will be retrieved and stored in the form of ‘(user-
friend)’ in the edges list 1, and the the user’s friends of friends will be retrieved and stored
in the form of ‘(friend-friend_of_friend)’ in the edges list 2.

Algorithm 1 Retrieving accounts of distance 2 from a central node (u)
1: /* Input: A user u.
2: Output: Edges list1, ‘edgesL1’: (u, vi), and edges list2, ‘edgesL2’: (vi, wj). */
3: vi ← ids_of_u′s_friends
4: edgesL1← (u, vi)
5: for id ∈ vi do
6: wj ← ids_of_id′s_friends

7: edgesL2← (vi, wj)

3.1 The Retrieval Process 39

Figure 3.1. Flow diagram of friends and friends-of-friends list.

Figure 3.2 clarifies the process in an example, where the red edges are retrieved from
the first pass, and the blue edges are retrieved from the second pass.

Through this process, there exist some private Twitter accounts that raise an error when
crawled. In this case, Twitter API returns the following error:

- TwythonAuthError: Twitter API returned a 401 (Unauthorized), An error occurred
processing your request.

This is because the user is a private account, and it is not permitted to access her friends,
and so the program will skip this account and proceed to the next public accounts through
an exception handling process.

3.1.2 Retrieving the timeline of the user

For the user, when a request is sent, the retrieved information of this user step encompasses:

• English (re)tweets posted by the user.

• Retweeters list for retweets.

• ID of the source user who generate the retweet.

As in Algorithm 2, the retweeters list will be stored for later use to find from distance
two, whom from the users share the same retweets as the main user, so that this will give an
indication of common interest.

40 3. Design and Methodology

Figure 3.2. Example of friends and friends-of-friends edges in a graph.

We show in Figure 3.3 the flow of the retrieval process for the user timeline. Throughout
this process, we dealt with encoding some (re)tweets in order to be stored properly. There are
some issues to consider when working with timelines, such as dealing with large accounts,
character encodings and socket timeout, and they are explained in Appendix C.

Algorithm 2 Downloading the time-line for a user (u)
1: /* Input: A user u.
2: Output: The (re)tweets posted by u, their ids, and retweets list. */
3: timlne← the_timeline_of_u
4: RT ← A_retweet
5: for ti ∈ timlne do
6: txti ← text_of_ti
7: TIDi ← tweet_id_of_ti
8: if ti = RT then:
9: RetLst← retweet_list_of_ti

10: RetId← id_of_source_user

3.2 Network Analysis 41

Figure 3.3. Flow diagram of the user timeline.

3.2 Network Analysis

The scenarios we have developed can be mapped to the problem of finding open triangles
in the ego-network of a user. Inspired by the MapReduce approach of Suri et al. [105] for
counting triangles, we designed and implemented a MapReduce algorithm to find open
triangles.

3.2.1 Egocentric networks

Egocentric networks include nodes called “alters” who are connected to a central individual
node called “ego”, The ties berween them are used to find the effect of alters on the ego. For
example, a network of a user’s friends in Twitter would be an egocentric. Other types may
extend from the ego friends to access friends of friends.

In [48], the author presents some definitions related to alters (i.e., “friends” in twitter)
and their relations to each other:

• Neighborhood: It represents the ego and all nodes that are connected to it, which is a
one-step from ego included; and it also includes all of the ties among all of the nodes
that are connected to ego.

• N-step neighborhood: It expands the size of ego’s neighborhood by including all
nodes that are connected to ego at a path length of N, and all the connections among
all of these nodes.

42 3. Design and Methodology

• “In” neighborhood: For directed graph, an “in” neighborhood would include all the
nodes who sent ties directly to ego.

• “Out" neighborhood: For directed graph, an “out” neighborhood would include all
the nodes to whom ties are directed from ego.

In our system of recommendation, we used the “2-step-Out” neighborhood, where (“Out”
neighborhood) as friends, and “2-step” neighborhood as friends-of-friends.

Mainly, egocentric networks are characterized by the number of degrees from ego as men-
tioned in the book: “ANALYZING SOCIAL MEDIA NETWORKS WITH NODEXL” [75]:

• The 1-degree ego network consists of the ego and their alters. 3.4 (a).

• The 1.5-degree ego network extends the 1-degree network by including connections
between all of the alters (i.e., How the friends are related to each other) 3.4 (b).

• The 2-degree ego network include all of the alters’ own alters (i.e., friends of
friends) 3.4 (c).

Figure 3.4. Number of degrees from ego

And again, in our system, we built a subset of the egocentric networks up to degree 2.

3.2.2 MapReduce framework

MapReduce is a programming model, and an associated implementation for processing and
generating large data sets that was developed within Google, such that the computation

3.2 Network Analysis 43

includes two functions Map and Reduce [34]:

• Map: It is written by the user that takes an input pair and produces a set of
intermediate key/value pairs. The MapReduce library groups together all intermediate
values associated with the same intermediate key (I), and passes them to the Reduce
function.

• Reduce: It is also written by the user that accepts an intermediate key (I), and a set of
values for that key, and then merges together these values to form a possibly smaller
set of values.

The framework splits the data into smaller pieces that are processed in parallel on cluster
of machines by the mappers. Then, the output from the mappers is compacted by reducers
into desired output as in Figure 3.5 .

Figure 3.5. Mapreduce structure

MapReduce advantages
According to Google’s developers, using MapReduce to process big data has the follow-

ing benefits:

• Simplicity: MapReduce is considered as high level framework that keep the
programmer apart form the low level details through which the programmers can
write parallel programs easily.

• Fault tolerance: if one of the machines failed while executing a mapper, it will be
assigned to another machine.

44 3. Design and Methodology

• Locality of processing:When running large MapReduce operations, most input data
is read locally, and so, it prevents network bandwidth from being exhausted.

• Smoothness in data distribution: The number of mappers and reducers are more
than machines, so that, it enhance dynamic load balancing, and hasten recovery when
a machine fails.

3.2.3 Triangles in social networks

One of the social networks analysis tasks is triangles counting, that is considered as an
essential task in graph mining in general. It is used to estimate the clustering coefficients
and transitivity ratio of a graph [112].

Clustering coefficient is one of the graph properties that measures the degree to which
nodes in a graph tend to cluster together. In other words, it measures the extent to which
a user’s friends are also friends of each other [119]. It can be computed for a node u by
finding the fraction of the number of pairs of neighbors connected by edges to the number of
pairs of neighbors. The clustering coefficient for a graph will be the average of the clustering
coefficients for all the nodes of the graph.

3.2.3.1 Number of triangles in a graph (G)

According to the research related to finding, counting and listing triangles in large Graphs
[99], and based on the following notations:

• G = (V,E) is a graph with a set of nodes V and a set of edges E.

• |n| is the number of nodes.

• |m| is the number of edges.

Then, a triangle is a three-node subgraph of G which is fully connected. It will be clear
that the number of triangles in a graph can be computed by enumerating the

(n
3
)

nodes, and
count how many of them are fully connected.

In the Ph.D. thesis entitled as “Algorithmic Aspects of Triangle-Based Network Analysis”
[98], the author presents the following main algorithms that count triangles efficiently with
Θ(m3/2) running time:

• “node-iterator-core” algorithm: It starts from a node u that has the lowest degree
by checking repeatedly whether for all the pairs of it’s neighbors they belong to the
edges of the graph, and then removes node u.

• “edge-iterator” algorithm: It goes over all edges and compares the neighborhood
of the two incident nodes. For an edge (u1, u3) the nodes (u1, u2, u3) will form a
triangle if and only if node u2 exists in both neighborhoods of u1 and u3.

• “forward” algorithm: It is a refinement of algorithm edge-iterator. It works by
comparing a subset of the node’s neighborhoods instead of all of them through pre-
ordering the nodes in non increasing order of their degrees as a preprocessing step.

3.2 Network Analysis 45

3.2.3.2 Triangles types in directed graphs

Given a directed graph G′, then for a selected edge (n1, n2), there are four different kinds
of directed triangles [17]:

• Cyclic: a 2-edge path from n2 to n1, as in Figure 3.6 (a).

• Transitive: a 2-edge path from n1 to n2, as in Figure 3.6 (b).

• Input: a 2-inliks to the nodes n1, n2, as in Figure 3.6 (c).

• Output: a 2-outliks from the nodes n1, n2, as in Figure 3.6 (d).

Figure 3.6. Directed graph triangles

3.2.3.3 Link recommendation based on triangles

Link recommendation is an essential application of counting triangles in online social
networks as mentioned in [112], where the authors proposed a procedure to recommend the
links which create as many triangles as possible.

Given the following notations:

• G(V,E) is an undirected, unweighted graph.

• (u) is a node which will receive recommendation.

46 3. Design and Methodology

• A(n) is the adjacency matrix of the node n.

The procedure to recommend links to the node (u) from other nodes except her neighbors,
can be done as in the following:

1. Find S = V −N , where N = j1, ..., jdu is the set of the du neighbors of node u.

2. For every node v ∈ S, compute the inner product 〈A(u), A(v)〉.

3. Sort the |S| inner products, and choose nodes v1, ..., vk which result in the top-k
inner products.

By this, the higher value of inner product between (u) and (v), the more common
neighbors between them, and consequently the best link recommendation.

3.2.4 Our approach of finding and counting open triangles

Inspired by the MapReduce approach of Suri et al. [105] for counting triangles, we designed
and implemented a MapReduce algorithm to find open triangles in the ego-network of a
user.

In our algorithm, when user u follows v, and v follows z, the predicted link would be
(u, z), and recommendations would go from z to u as if u is actually one of z’s followers.
We also count the missing edges that close triangles so as to rank the nodes at distance two
from the ego based on how many incoming links they have.

Specifically, given the ego node u, let Γ(u) be the set of u’s friends (followees) and
Γ(Γ(u)) \ Γ(u) the set of u’s friends of friends who are not friends of u. We define as the
weight of user z ∈ Γ(Γ(u)) \ Γ(u) to be the number of in-links weight(z) = |(Γ(u), z)|
as described in Algorithm 3. Nodes are then ranked based on decreasing values of their
weights.

Figure 3.7 shows an example of traversing a graph to find the weights of the nodes at
distance two from the ego u, as follows:

Given that:

• Γ(u) = {v1, v2, v3, v4}

• Γ(Γ(u)) = {z1, z2, z3, z4, z5}

• Γ(Γ(u)) \ Γ(u) = {z1, z3, z4, z5}

Then the weights of the nodes zi at distance two, such that the z ∈ Γ(Γ(u)) \ Γ(u) are
described as green out-links arrows to u:

• weight(z1) = 1

• weight(z3) = 4

• weight(z4) = 2

• weight(z5) = 3

3.2 Network Analysis 47

Figure 3.7. Finding and ranking missing triangles

Then, the nodes will be ranked as: z3, z5, z4, z1. However, z2 is not considered, since even
it can be reached through the friend v1, it is a friend of u that can be reached directly. The
red dashed arrow from z2 to u indicates that the link is ignored.

In [105], the authors used MapReduce algorithms for counting triangles, where data are
represented as a <key, value> pair, and passed through the following processes, that can be
repeated for multiple rounds:

• Map: <key, value>→ multiset of <key, value> pairs

• Shuffle: Aggregate all <key, value> pairs with the same key and it is executed by
underlying system and sort them.

• Reduce: <key, multiset(value)>→ <key, multiset(value)>

As Algorithm 3 shows, the implementation is applied in two passes:

1. Pass 1: Find the paths of distance two from the central node in parallel.

2. Pass 2: Filter off the paths that are already closed by an edge from the central node,
and output the remaining ones.

The mappers and reducers in the algorithm will work as follows:

1. The first mapper identifies the set Γ(ego).

2. The first reducer identifies the nodes in Γ(Γ(ego)) \ ego.

3. The second mapper identifies the set Γ(Γ(ego)) \ (Γ(ego) ∪ ego)

4. The final reducer counts for each node z ∈ Γ(Γ(ego)) \ (Γ(ego) ∪ ego) how many
nodes vi such that ego→ vi → z exist.

48 3. Design and Methodology

Algorithm 3 MR-Counting-Open-Triangles(V,E)
1: /* Let G = (V,E) be the graph and (u, v) ∈ E the edge from u to v. Let ego be the id of the

ego node and let Γ(v) be v’s neighborhood */
2: Map 1: Input: key, (u, v); ego
3: if u = ego then
4: emit key, (u, v) // key is the default input key

5: Reduce 1: Input: key, [(u, v1), (u, v2), . . .]
6: // for each node at distance 2 from the ego, check cycles.

7: for (u, v) ∈ values do
8: for z ∈ Γ(v) do:
9: if u 6= z then:

10: emit (v, (u, z))
11: Map 2: Input: v, (u, z)
12: /* check if the edge (u, z) that closes a triangle is open. If so, then u doesn’t follow z and cannot

see z’s tweets. */
13: if (u, z) 6∈ E then:
14: emit ((u, z), 1)
15: Reduce 2: Input: (u, z), [1, 1, . . .]
16: /* sum the counts for each missing edge and emit a single key/value with the edge (u, z) and

sum. */
17: sum← 0
18: for i ∈ values do
19: sum = sum+ i

20: emit (u, z), sum

3.3 Content Analysis

Tweets that best match the user’s interests can be discovered by applying the content
similarity between a candidate tweet and the ego’s (re)tweets as well as the similarity
between ego’s and candidate users’ timelines.

3.3.1 Retrieving the profile properties and timeline of the top-k users

In this stage, from the top-k nodes that were ranked by the counting of open triangles, we
downloaded their (re)tweets, and we ignored non-English tweets and outdated accounts that
were not posted during the previous two months as a threshold.

In Algorithm 4, we retrieved the timeline, and some profiles properties of the top-K
ranked nodes The value of k that we tried in our approach was 50. We used the function
GET users/lookup to download the following profile properties for each user:

• User name (usr_nam).

• Profile image url (pro_pic).

• Screen name (scr_nam).

• Location (loc), this property is optional, and if it is empty, it will be set to “Unknown”.

3.3 Content Analysis 49

• Time zone (tim_zon).

We appended to these retrieved fields, the rank of the node (RnkJ) from Algorithm 3
which represents the count of open triangles, that we will use later as a feature for the user.

For each user, we used the function GET statuses/user_timeline to download the
timeline, and check if the top tweet in the timeline is created in not later than two months
prior to the current date of retrieval (i.e., The value of THR is 60 days). We also reused
the technique of “Working with timelines” [3] which is explained in Appendix C in order
to download 40 more (re)tweets in addition to the 20 (re)tweets that can be downloaded as
default. This will result in providing 60 (re)tweets in total per user. And so the information
for a tweet would be:

• Tweet’s text (txti).

• Date and time of the tweet (DaTi).

• Tweet’s language (lang).

We formatted the date and time of the tweet in a way that is near to the tweets date
and and time displayed in Twitter, and this was done by getting it from the timeline, and
reformatting it as in the following: (’%a %b %d, %Y h. %H:%M:%S’), where:

• %a is the abbreviated weekday name.

• %b is the abbreviated month name.

• %d is the day of the month as a decimal number [01,31].

• %Y is the year with century as a decimal number.

• %H is the hour (24-hour clock) as a decimal number [00,23].

• %M is the minute as a decimal number [00,59].

• %S is the second as a decimal number [00,59].

For example, the retrieved data for a candidate user includes the fields: date, time, time
zone, location and language, and it will be like the following:

Sat Oct 10, 2015 h. 04:24:09 - America/Los_Angeles timezone - Oakland, CA - en

Such that:

• (Sat Oct 10, 2015 h. 04:24:09) is the date and time.

• (America/Los_Angeles timezone) is the time zone.

• (Oakland, CA) is the location, (i.e., State of California. Oakland).

• (en) is the language, (English language).

50 3. Design and Methodology

Algorithm 4 Downloading tweets of the top-k ranked nodes
1: /* Input N ← Top− k_ranked_list.
2: Output: The timeline and profile details of these nodes. */
3: for j ∈ N do
4: usr_nam← user_name
5: pro_pic← profile_picture
6: scr_nam← screen_name
7: loc← location
8: tim_zon← time_zone
9: RnkJ ← Rank_of_j

10: if loc = φ then
11: loc = “Unknown′′

12: timlne← the_timeline_of_j
13: for ti ∈ timlne do
14: cdt(ti)← creation_date(ti)
15: if (current_date− cdt(ti)) <= THR then
16: txti ← ti_text
17: DaTi ← ti_date_and_time
18: lang ← ti_language

3.3.2 Tweets preprocessing

Tweets preprocessing is an essential part to eliminate the incomplete, noisy data that are
considered unnecessary. Then, to stem the tweets’ words after tokenizing them through the
function ‘word_tokenize’ from NLTK library in Python.

After removing non-English content, the (re)tweets are preprocessed by:

• Removing stop words like (‘i’, ‘me’, ‘my’, ‘myself’, ‘we’, ‘our’, etc). These words
do not contain important implication, and they can be removed through passing the
argument ‘english’ to the ‘stopwords’ function from NLTK corpus in Python.

• Removing punctuations, and hypertext symbols (&, <, w/, etc).

• Removing retweets symbols (RT @, via @) and mentions (@username) and hashtag
symbol (#).

• Removing abbreviations (I’ve, ’d, ’ll, n’t, etc).

• Removing URLs, (i.e., http, https, www).

• Removing short tweets (tweets with less than 25 characters, or those with less than 5
words, or with few nouns).

Stemming is an important step in natural language processing, that is used to convert a
word to its root by removing suffixes, prefixes. The idea behind this is that the words that
have the same root describe the same thing. As a result, this will reduce the computations
and eliminate excessive overhead. For example, the words (collected, collection, collections,
collective) have the same root (collect). We used PorterStemmer function in NLTK library
in Python to do the process of deriving the words into their roots.

3.3 Content Analysis 51

3.3.3 Content-similarity measures

As content-similarity measures we used the cosine similarity and Jaccard distance, which
are typically employed for making recommendations of tweets [19], news articles [101],
and research papers [84].

We computed the similarity of tweets by using single terms and bi-grams. Moreover,
one type of similarity is computed between the timelines of u and of z ∈ Γ(Γ(u)), and
another similarity is between the candidate tweet originated from z and u’s (re)tweets. This
gives us an overall number of six content-similarity features: both cosine similarity and
Jaccard distance for the tweets, the timelines, and the timelines using bigrams.

3.3.3.1 Cosine similarity

Finding the similarity between two tweets is frequently used in information retrieval. The
weighting heuristics used in its calculation is TFIDF.

The TFIDF weighting is the term frequency-inverse document frequency that represents
a weight for ranking the words by taking in consideration the context of the text that contains
this word.

• TF is the normalized term frequency as in Equation 3.1 :

TF (wi) = c

N
(3.1)

c : The number of times a word (wi) occurs in the tweet tj .
N : The total number of words in the tweet tj .

• IDF is the inverse document frequency, and in this case a document represents a tweet,
as in Equation 3.2 :

IDF (wi) = log(T
tj

) (3.2)

T : The total number of recommended tweets from the proposed candidates.
ti: The number of tweets containing the given word (wi).

In this way, rare words will get importance as well as frequent ones in the Twitter feed. By
multiplying them together we will gain the TFIDF weighting, as in Equation 3.3 :

TFIDF (wi) = TF (wi) ∗ IDF (wi) (3.3)

The following Equation 3.4 is used to find the cosine similarity:

CS(X,Y) =

n∑
i=1

Xi × Yi√√√√ n∑
i=1

X2
i ×

√√√√ n∑
i=1

Y 2
i

(3.4)

The attribute vectors X and Y are the TFIDF vectors of two tweets. The cosine similarity
value is 1 when the two tweets are identical, and 0 if they are completely different.

52 3. Design and Methodology

3.3.3.2 Jaccard distance

Finding the distance between two tweets is computed based on the Jaccard distance measure,
that is frequently used in information retrieval. It can be computed as in Equation 3.5:

JD(X,Y) = 1− |X ∩ Y |
|X ∪ Y |

(3.5)

The attribute vectors X and Y are the terms of the tweets. This formula is calculated
through dividing the difference of the sizes of the union and the intersection of two set of
tweets by the size of the union of them. The Jaccard distance value is 0 when the two tweets
are identical, and 1 if they are completely different.

3.3.4 Using N-grams

Word level N-grams are widely used in recommenders systems, and natural language
processing. They are mainly a sequence of consecutive fixed size of n words, where they are
extracted by moving one word ahead each time. As in [14], we consider n-grams for values
of n equal to 1 (uni-grams), and 2 (bi-grams). To find near-duplicate tweets, a fingerprint
summary of the tweet’s words will be constructed, and this fingerprint will be compared
with other tweets.

The following example clarifies the concept of bigrams (N = 2) for this sentence: “data
mining is an interesting field”. In this sentence, the bigrams would be 5:

• (data mining).

• (mining is).

• (is an).

• (an interesting).

• (interesting field).

As shown here. we moved from the first bigram (data, mining) to (mining, is) to (is, an),
and so on. Basically, this is done by moving one word ahead to extract the following bigram.
For tri-grams, where (N = 3), the 3-grams would be 4:

• (data mining is).

• (mining is an).

• (is an interesting).

• (an interesting field).

So, when N = 1, the process is called unigrams, and it is basically the individual words
in a sentence. When N = 2, it is called bigrams, and when N = 3 it is called trigrams.
When N > 3 this is usually referred to as four grams (quad-grams) or five grams and so on.

To generalize, we can calculate the number of N-grams in a given sentence through the
following:
Given that:

3.3 Content Analysis 53

• |W |: the number of words in the sentence.

• N : the gram size.

Then, for a sentence s, the number of N-grams can be calculated by Equation 3.6:

Count_s(Ngrams) = |W | − (N − 1) (3.6)

For example, if we have a sentence of 15 words length, and we want to find it’s quad-
grams, then their count would be 12. In Algorithm 5, the tweets were sent as set of words,
and the N value will be 2, so the algorithm will return list of bigrams.

Algorithm 5 N-grams tokenizer algorithm
1: /* Input: text← set_of_words.
2: N ← gramsize.
3: Output: The list of bigrams. */
4: length← len(text)
5: bigrams← []
6: for c ∈ range(length−N + 1) do
7: l← text[c : c+N]
8: bigrams.append(l)

This process make sense when the comparison is done between the timeline of the ego
(the node to which recommendation goes) and the timeline of a candidate user that comes
from the open triangles approach. This is because of the balance in the number of tweets
between the users’s timelines. N-grams can be tri-grams, quad-grams or more, but it was
found that the best size of grams was of 2, because of the short text limitation of tweets.

And so, we computed the cosine similarity and Jaccard distance measures between the
timelines of the ego and the candidate users from distance two using bigrams constructs.
The following is an example of applying Jaccard distance to bigrmas:
Suppose that we have the following four sentences:

1. S1: minimum system recommended requirements.

2. S2: requirements, system recommended.

3. S3: writing comments beside commands are minimum system recommended require-
ments.

4. S4: writing comments beside statements make them more readable.

The bigrams will be:

1. b1 = [minimum system], [system recommended], [recommended requirements].

2. b2 = [requirements system], [system recommended].

3. b3 = [writing comments], [comments beside], [beside commands], [commands are],
[are minimum], [minimum system], [system recommended], [recommended require-
ments].

54 3. Design and Methodology

4. b4 = [writing comments], [comments beside], [beside statements], [statements make],
[make them], [them more], [more readable].

Then, the Jaccard distance will be:

1. Given that: |b1 ∩ b2| = 1, and, |b1 ∪ b2| = 4, then:

JD(S1, S2) = 1− 1
4 = 0.75

2. Given that: |b1 ∩ b3| = 3, and, |b1 ∪ b3| = 8, then:

JD(S1, S3) = 1− 3
8 = 0.625

3. Given that: |b1 ∩ b4| = 0, and, |b1 ∪ b4| = 10, then:

JD(S1, S4) = 1− 0
10 = 1.0

4. Given that: |b2 ∩ b3| = 1, and, |b2 ∪ b3| = 10, then:

JD(S2, S3) = 1− 1
10 = 0.9

5. Given that: |b2 ∩ b4| = 0, and, |b2 ∪ b4| = 9, then:

JD(S2, S4) = 1− 0
9 = 1.0

6. Given that: |b3 ∩ b4| = 2, and, |b3 ∪ b4| = 13, then:

JD(S3, S4) = 1− 2
13 ≈ 0.846

The most similar sentences are those which have the lowest Jaccard distance (i.e., S1 and
S3). In contrast, the less similar sentences are those which have the highest Jaccard distance
(i.e., S1 and S4, S2 and S4).

3.4 Retweet Analysis

We include another feature based on the number of common retweets, which provides an
indication of the similarity between the interests of the user u and her neighbors at distance
two as shown in Algorithm 6.

Although a user’s retweet will be viewed in the feed of her followers, it may reach other
users who follow her followers, or their followers, etc. As a result, it has a higher probability
to be reweeted from the followers of followers who find it useful. In this case, the user who
share a retweet will appear in the retweeters list of the retweet status.

For example, in Figure 3.8 (a), the users {v1, v2, v3, v4} who are a subset of z followers
share retweets from z, while in Figure 3.8 (b), users u1 and u2 are followers of v2 and they
share retweets from z through v2.

3.4 Retweet Analysis 55

Figure 3.8. Network of retweets for two levels

Indeed, we noticed that users share on average 15 retweets, so we can use the number of
mutual retweets to infer how close the users’ interests are as in [29], where in this research,
there is an assumption that says “users who have retweeted similar statuses in the past are
likely to retweet similar statuses in the future”. In this case, other related tweets which is
not discovered by content-similarity methods can be found through retweet analysis.

Actually, retweeting action is a measure of personal usefulness to the user, where she
read the tweet and found that its contents are interesting, and as a consequence, it is worth
to spread it. The retweets count in general was also used as a feature in [95] to find the
influence of user to her followers that help in deciding whether to follow her or not.

Tables 3.1 - 3.34 show the common retweets for selected users who participated in the
experiment. We found that there exist strong ties between the user and the candidate users,
that gives an evidence to its importance to be included as a feature in finding similarities.

56 3. Design and Methodology

Algorithm 6 Finding the common retweets between the central node (u) and a candidate
user

1: /* Input: Retweeters list (RetLst) from algorithm 2, and the candidate users (N) from algorithm
3.

2: Output: The count of the common retweets for each of the candidate users (N) */

3: for j ∈ N do
4: if N [j] ∈ RetLst then
5: count = count +1

Table 3.1. Common retweets (u1)

candidate users common retweets
u1_v1 1
u1_v2 5
u1_v3 7
u1_v4 1
u1_v5 3
u1_v6 2
u1_v7 14
u1_v8 1
u1_v9 1
u1_v10 3
u1_v11 1
u1_v12 6
u1_v13 1
u1_v14 5
u1_v15 5
u1_v16 12
u1_v17 1

u9 14
u1_v18 7

Table 3.2. Common retweets (u2)

candidate users common retweets
u2_v1 2
u2_v2 1

Table 3.3. Common retweets (u3)

candidate users common retweets
u3_v1 2
u3_v2 6
u3_v3 9
u3_v4 7
u3_v5 7
u3_v6 1

Table 3.4. Common retweets (u4)

candidate users common retweets
u1_v12 1

Table 3.5. Common retweets (u5)

candidate users common retweets
u5_v1 1
u5_v2 1

u1 2

Table 3.6. Common retweets (u6)

candidate users common retweets
u6_v1 5
u6_v2 4

u1 8
u6_v3 1
u6_v4 2
u6_v5 3
u6_v6 2
u6_v7 1
u6_v8 1
u6_v9 1

Table 3.7. Common retweets (u7)

candidate users common retweets
u7_v1 1
u7_v2 1

Table 3.8. Common retweets (u8)

candidate users common retweets
u6_v2 1

Table 3.9. Common retweets (u9)

candidate users common retweets
u9_v1 1
u9_v2 2
u9_v3 4
u9_v4 1
u9_v5 1
u9_v6 1
u9_v7 10

3.4 Retweet Analysis 57

Table 3.10. Common retweets (u10)

candidate users common retweets
u10_v1 4
u10_v2 1
u10_v3 1
u10_v4 9

Table 3.11. Common retweets (u11)

candidate users common retweets
u11_v1 1
u11_v2 2
u11_v3 1
u11_v4 1
u6_v1 5
u11_v5 1
u11_v6 1
u11_v7 2
u11_v8 1
u11_v9 1

u11_v10 4
u11_v11 3
u11_v12 6

u6_v2 2
u11_v13 1

Table 3.12. Common retweets (u12)

candidate users common retweets
u12_v1 3
u12_v2 1
u1_v13 1
u12_v3 1
u12_v4 2
u12_v5 1
u9_v1 1
u12_v6 1
u9_v6 1
u12_v7 2
u12_v8 1
u12_v9 1
u1_v4 1

Table 3.13. Common retweets (u13)

candidate users common retweets
u13_v1 3
u6_v1 1
u13_v2 1
u13_v3 1
u13_v4 2
u9_v7 2

Table 3.14. Common retweets (u14)

candidate users common retweets
u14_v1 1
u14_v2 1
u12_v7 1
u9_v1 1
u14_v3 1
u14_v4 1
u14_v5 1

Table 3.15. Common retweets (u15)

candidate users common retweets
u6_v1 5
u6_v2 1

u1 4
u15_v1 1
u15_v2 1

Table 3.16. Common retweets (u16)

candidate users common retweets
u16_v1 1

Table 3.17. Common retweets (u17)

candidate users common retweets
u17_v1 1
u17_v2 1
u17_v3 3
u17_v4 1
u17_v5 3

Table 3.18. Common retweets: (u18)

candidate users common retweets
u18_v1 1
u18_v2 2
u6_v5 1
u18_v3 1
u18_v4 1

Table 3.19. Common retweets (u19)

candidate users common retweets
u33 1

58 3. Design and Methodology

Table 3.20. Common retweets (u20)

candidate users common retweets
u20_v1 13
u20_v2 2
u20_v3 5
u6_v1 21
u14_v3 1

u1 16
u11_v7 1
u20_v4 1
u20_v5 7
u11_v11 1
u20_v6 1
u15_v2 4
u6_v3 1
u20_v7 2
u20_v8 2
u20_v9 3
u20_v10 2
u20_v11 2
u15_v1 1
u20_v12 4

Table 3.21. Common retweets: (u21)

candidate users common retweets
u2_v1 3
u21_v1 1
u21_v2 1

u33 1
u21_v3 1
u20_v3 1
u11_v7 1

u26 1
u21_v4 1
u21_v5 1
u6_v1 4

Table 3.22. Common retweets (u22)

candidate users common retweets
u5_v2 1

u9 1
u22_v1 2
u20_v4 1

Table 3.23. Common retweets (u23)

candidate users common retweets
u14_v5 2
u23_v1 1
u23_v2 1
u23_v3 2
u23_v4 1
u23_v5 1
u23_v6 1
u23_v7 1
u23_v8 2
u23_v9 1
u23_v10 2

Table 3.24. Common retweets (u24)

candidate users common retweets
u2_v1 1
u6_v1 2

u24_v1 1
u24_v2 1

u1 8
u33 1

u6_v6 2
u14_v3 1

Table 3.25. Common retweets (u25)

candidate users common retweets
u25_v1 1
u25_v2 1
u25_v3 1

Table 3.26. Common retweets (u26)

candidate users common retweets
u14_v3 2
u20_v9 12
u13_v1 1
u26_v1 1
u11_v7 1
u26_v2 1
u6_v1 7
u13_v4 3
u20_v3 17
u26_v3 4
u14_v1 1
u26_v4 2
u20_v6 3

u1 42
u12_v6 1
u26_v5 8
u26_v6 1

3.4 Retweet Analysis 59

Table 3.27. Common retweets (u27)

candidate users common retweets
u11_v11 1
u11_v12 2
u6_v2 1
u11_v8 1
u27_v1 1
u6_v3 1
u21_v4 1
u27_v2 2
u15_v1 3

Table 3.28. Common retweets (u28)

candidate users common retweets
u28_v1 1
u28_v2 1
u28_v3 1
u28_v4 3
u28_v5 2

Table 3.29. Common retweets (u29)

candidate users common retweets
u25_v3 9
u29_v1 5

Table 3.30. Common retweets (u30)

candidate users common retweets
u30_v1 1
u30_v2 1

Table 3.31. Common retweets (u31)

candidate users common retweets
u31_v1 1
u31_v2 1
u31_v3 3
u31_v4 2

Table 3.32. Common retweets (u32)

candidate users common retweets
u15_v2 1
u6_v1 1
u20_v3 1
u32_v1 2
u11_v1 1

Table 3.33. Common retweets: (u33)

candidate users common retweets
u11_v1 3
u6_v1 6
u20_v7 1
u20_v9 14
u26_v2 1
u13_v1 2
u12_v6 1
u26_v3 3
u6_v3 1
u21_v3 4
u1_v13 1

Table 3.34. Common retweets (u34)

candidate users common retweets
u20_v7 2
u20_v1 10
u20_v9 3
u34_v1 1
u26_v5 1

u20_v11 2
u34_v2 1
u6_v1 2
u34_v3 3
u34_v4 1
u26_v3 1
u34_v5 1
u9_v6 2

60 3. Design and Methodology

3.5 Ranking of Recommendations

We obtained the ranked list of tweets to recommend by using the pairwise comparison [107].
For two items, (a, b), a pairwise comparison check if item a is ranked higher than item b
or not. In more detail, we create a matrix of tweets and features (we assume that all the
features have the same importance) as Figure 3.9 shows.

Figure 3.9. A tournament to compute the top-k tweets.

As in Algorithm 7 , we consider all pairwise combinations of candidate tweets and we
compare them with respect to the features. A tweet beats another one if it has a better value
for more features. At the end, each tweet has a number of wins against the rest of the tweets,
which induces a ranking among all the tweets. Tweets with higher number of wins are more
likely to be relevant to the user’s interests and are shown on the top of the ranked list of
recommendations.

Algorithm 7 The pairwise-comparison algorithm to compute the top-k tweets
1: /* Input: Tweets_features matrix (Tweets: T, Features: F).
2: Output: Ranked list of tweets. */
3: n← count(tweets)
4: TC ← combinations(n, 2)
5: for (ti, tj) in enumerate(TC) do
6: for k ∈ F do:
7: if ti[F [k]] > tj [F [k]] then
8: counts[ti] = counts[ti] + 1
9: else:

10: counts[tj] = counts[tj] + 1
11: Sort tweets based on the counts list

3.5 Ranking of Recommendations 61

Table 3.35 shows an example of a pairwise comparison matrix for ranking 10 tweets,
where each value in a cell represents the id of the tweet that has better features’ values than
the other one.
In this operation, the first tweet is compared to the other 9 tweets, the second is compared to
the rest, and so on. Finally, they get scores accordingly.

The scores would be calculated as following:

1. The score of the 1st tweet can be computed through counting its occurrences in the
first row.

2. The score of the 2nd tweet can be computed through counting its occurrences in the
second row and the second column.

3. The score of the 3rd tweet can be computed through counting its occurrences in the
third row and the third column.

4. The score of the 4th tweet can be computed through counting its occurrences in the
forth row and the forth column.

5. The score of the 5th tweet can be computed through counting its occurrences in the
fifth row and the fifth column.

6. The score of the 6th tweet can be computed through counting its occurrences in the
sixth row and the sixth column.

7. The score of the 7th tweet can be computed through counting its occurrences in the
seventh row and the seventh column.

8. The score of the 8th tweet can be computed through counting its occurrences in the
eighth row and the eighth column.

9. The score of the 9th tweet can be computed through counting its occurrences in the
ninth row and the ninth column.

10. The score of the 10th tweet can be computed through counting its occurrences in the
tenth column.

The tweets are ranked based on these scores, where the first is the one with highest score
(i.e., Tweet #6), and the last one is that with lowest score (i.e., Tweet #5).

62 3. Design and Methodology

Table 3.35. Pairwise comparison matrix

Tweets 1 2 3 4 5 6 7 8 9 10 Score Rank
1 1 1 4 1 6 7 8 1 10 4 6
2 2 4 2 6 7 8 2 10 3 7
3 4 3 6 7 8 3 10 2 8
4 4 6 4 8 4 4 7 3
5 6 7 8 9 10 0 10
6 6 6 6 6 9 1
7 8 7 7 6 4
8 8 8 8 2
9 10 1 9

10 5 5

From the previous example, it is clear that we used the upper triangle of the matrix above
the main diagonal, and this is because the matrix is square symmetric, such that comparing
tweet X with Y is the same as comparing Y with X . And also, tweets are not comparable
to itself as shown in the main diagonal. Generally, the number of comparisons is

(n
2
)
, where

n is the number of tweets.

63

Chapter 4

Experimental Results

In this chapter, we present the experiment that we performed to validate our methodology
and its results. As our approach does not recommend (re)tweets that are visible to the user,
because it aims at recommending concealed tweets, we could not use retweets to assess if
the recommendations are interesting or not. Therefore, we conducted a user study, where
we proposed to real Twitter users our recommended tweets and collected their feedback.

4.1 User Study Evaluation

In the user study, we involved 42 active Twitter users to test the quality of our recommender
system by judging the tweets that are supposed to be the most interesting to them. They
expressed their interaction by participating in the experiment as soon as they were invited.

4.1.1 User study design

The users could participate to our experiment by registering to our system using their screen
name (the Twitter handle of the user) and email as shown in Figure 4.1 . Other optional
information could also be provided:

• Real name: First name and last name.

• Gender.

• Age range: The range is divided into intervals, as their bounds like this: (<=19, 20-29,
30-39, 40-49, 50-59, >=60).

• Twitter usage: It asks for how often do the user login in Twitter. And the scale of the
response is: (every day, once in a week, once in a month, and infrequently).

• Internet usage: It asks for how often do the user connected to Internet. The scale of
the response is also: (every day, once in a week, once in a month, and infrequently).

The user can select her interests from a set of check-boxes, or provide them in a text
area if they were not listed in the check-boxes.

64 4. Experimental Results

Figure 4.1. Registration form of the experiment

4.1.2 Demographic information of the participants

The participants of our user study were recruited from the list of the authors’ followers
[8]. Most of them are young (between 20 and 30 years old) as presented in the bar chart of
Figure 4.2:

Figure 4.2. Age range distribution among the participants

4.1 User Study Evaluation 65

The users who participated in the experiment are researchers, coming from different
countries, affiliations, and research areas. The selected users are very active online (all of
them use Internet everyday and 81% of them access Twitter frequently) as presented in the
bar chart of Figure 4.3.

Figure 4.3. Twitter usage of the participants

After the registration, the user will receive an acknowledgment of successful registration,
and then, the system will retrieve the user’s information needed to make the recommenda-
tions, and once these were ready, the user was notified by an email and could rate the list of
recommended tweets by logging into the system through the screen name as in Figure 4.4.

Figure 4.4. User’s login screen

4.1.3 Characterization of the participants

The participants are active on Twitter in term of the frequency of tweets / retweets they
posted. In Figures 4.5 and 4.6 , the participants are grouped based on the count of their
(re)tweets into five classes:

66 4. Experimental Results

• Greater than or equal to 1 thousands (re)tweets, (>= 1000).

• Greater than or equal to 500 and less than 1 thousands (re)tweets, (>= 500 &&
< 1000).

• Greater than or equal to 100 and less than 500 (re)tweets, (>= 100 && < 500).

• Greater than or equal to 50 and less than 100 (re)tweets, (>= 50 && < 100).

• Less than 50 (re)tweets, (< 50).

Figure 4.5. Participants groups according to their activity of tweeting in their timelines

Figure 4.6. Participants groups according to their activity of retweeting in their timelines

4.1 User Study Evaluation 67

The percentage of participants who have more than 50 tweets in their timelines is 67%
as in Figure 4.5, and the percentage is 74% for the participants who have more than 50
retweets as in Figure 4.6.

Figure 4.7 shows the sizes of the 2-hop ego networks of the participants, in which they
are grouped into five classes:

• Greater than or equal to 1 million edges, (>= 1M).

• Greater than or equal to 500 thousands and less than 1 million edges, (>= 500K &&
< 1M).

• Greater than or equal to 100 thousands and less than 500 thousands edges, (>= 100K
&& < 500K).

• Greater than or equal to 50 thousands and less than 100 thousands edges, (>= 50K
&& < 100K).

• Less than 50 thousands edges, (< 50K).

Figure 4.7. Network size of the participants

From Figure 4.7, it is clear that the percentage of the participants whom their network
size is greater than or equal to 50 thousands is 78.6%, and that the major class of them have
their network size between 100 thousands and half million with a percentage of 40.5%

4.1.4 Tweets rating

A total of 420 tweets from Oct. 7 to Nov. 17, 2015 were rated by our users. We compare
the precision of our recommendations against a baseline approach for recommending
concealed tweets. Since our aim is to recommend not visible tweets, we cannot compare our
performance against algorithms that re-rank tweets appearing in the user’s timeline. As a

68 4. Experimental Results

baseline, we used the approach presented by Pennacchiotti et al. [87], which exploits the
content similarity among tweets, and, to the best of our knowledge, it is the only work on
recommendation of unseen tweets.

We adopted their approach based on the cosine similarity, and for the evaluation we
proposed the top-5 recommended tweets from our approach and the top-5 recommendations
from the baseline. The two rankings were presented to the users, in a way that the user
could not identify what system was used for creating the corresponding ranking. Following
the same experiment of [87], our users could rate the proposed recommendations using a
four-grade scale:

• Excellent (the tweet is very interesting/informative w.r.t. her interests),

• Good (the tweet is interesting/informative w.r.t. her interests),

• Fair (the tweet is somehow interesting/informative w.r.t. her interests),

• Bad (the tweet is not interesting/informative at all).

Figure 4.8 shows an example of 10 recommended tweets for the user (u13).

4.2 Candidate Users Timelines

The candidate users are the users at distance two from the participants. A large portion
of them have similar interests, where their timelines have a high percentage of common
retweets, or their tweets were retweeted by the participants, and most of their (re)tweets
were written in English.

4.2.1 Tweets and retweets of candidate users

In the experiment, we noticed that most of the participants had retweeted retweets from
candidate users at distance two with a percentage of 81%, and that the percentage of
participants who had retweeted a tweet originated form candidate users at distance two is
69% as in Figure 4.9 and Figure 4.10 respectively.

4.2 Candidate Users Timelines 69

Figure 4.8. A list of 10 recommended tweets to the users (u13).

70 4. Experimental Results

Figure 4.9. Number of participants who have retweets from candidate users at distance 2

Figure 4.10. Number of participants who have tweets from candidate users at distance 2

As shown in Figures 4.9 and 4.10, about 60% of the participants had at least one
retweet and less than 20 retweets from candidate users at distance two. This percentage is
about 55% for tweets from candidate users at distance two.

Figure 4.11 shows that the candidate users may contain:

• Tweets that were tweeted by the ego.

• Retweets that were retweeted by the ego.

4.2 Candidate Users Timelines 71

• Tweets and retweets that were retweeted by the ego.

Figure 4.11. (Re)tweets of ego that were posted in the candidate users’ timelines

Figures 4.12 - 4.21 show tweets and retweets of candidate users for 10 participants.

For example, in Figure 4.12, the participant (u1) had retweeted:

• 10 tweets from the candidate user ‘WIRED’.

• 1 tweet from the candidate user ‘MIT Tech Review’.

• 2 tweets and 5 retweets from the candidate user ‘Randy Olson’.

It is clear from the figure that the candidate users ‘WIRED’, ‘MIT Tech Review’, and ‘Randy
Olson’ appear in the seventh, eighth, and ninth locations of the candidates list.

72 4. Experimental Results

Figure 4.12. (Re)tweets of user (u1) that were posted from candidate users

Figure 4.13. (Re)tweets of user of user (u6) that were posted from candidate users

4.2 Candidate Users Timelines 73

Figure 4.14. (Re)tweets of user (u7) that were posted from candidate users

Figure 4.15. (Re)tweets of user (u11) that were posted from candidate users

74 4. Experimental Results

Figure 4.16. (Re)tweets of user (u12) that were posted from candidate users

Figure 4.17. (Re)tweets of user (u13) that were posted from candidate users

4.2 Candidate Users Timelines 75

Figure 4.18. (Re)tweets of user (u17) that were posted from candidate users

Figure 4.19. (Re)tweets of user (u20) that were posted from candidate users

76 4. Experimental Results

Figure 4.20. (Re)tweets of user (u24) that were posted from candidate users

Figure 4.21. (Re)tweets of user (u31) that were posted from candidate users

4.3 Assessing the Performance of the Recommendation System 77

4.2.2 Outdated candidate users

Most of the candidate users at distance two are active, such that the other outdated accounts
were removed from the retrieval process as mentioned in subsection 3.3.1. Figure 4.22
shows that 40.5% of ego users do not have outdated accounts in the top-50 retrieved
candidate users. In general, about (2

3) of ego users have at most one outdated candidate
account in the top-50 retrieved candidate users.

Figure 4.22. Number of participants who encountered outdated candidate users at distance 2

4.2.3 Preprocessed (re)tweets of candidate users

Throughout the preprocessing step as in subsection 3.3.2 , we noticed that the (re)tweets of
candidate users were mostly written in English, such that more than (3

4) of the participants
retrieved and stored at least (2

3) of the candidate users’ timelines as in Figure 4.23. Also,
most of the (re)tweets of candidate users were retrieved and stored to be recommended
later, where more than (3

4) of the participants filtered out at most 700 (re)tweets from the
candidate users’ timelines as in Figure 4.24.

4.3 Assessing the Performance of the Recommendation System

For assessing the performance of our recommendation algorithm, we computed the following
measures:

• Precision.

• Normalized Discounted Cumulative Gain (nDCG).

• Reciprocal Rank (RR).

78 4. Experimental Results

Figure 4.23. Number of participants who recieved non-English (re)tweets from candidate users at
distance 2

Figure 4.24. Number of participants who got filtered out (re)tweets from candidate users at distance
2

And we evaluate our approach against the baseline based on these measures. We found that
our approach have higher values.

4.3.1 Precision

The precision at k metric (p@k) is the percentage of relevant tweets found in the top-k
ranked tweets as in Equation 4.1.

4.3 Assessing the Performance of the Recommendation System 79

Precision = Relevant_recommended_tweets_in_top− k
k_recommended_tweets

(4.1)

To apply this measure, we casted the four-grade scale to a binary score (1 for interesting
and 0 for uninteresting). In particular, user’s answers Excellent, Good, and Fair correspond
to 1 and Bad to 0. We obtain similar results if we map Excellent and Good to 1 and Fair and
Bad to 0.

4.3.2 Normalized Discounted Cumulative Gain (nDCG)

It measures the performance of a recommendation system based on the graded relevance of
the recommendations. We used this metric to asses the effectiveness of our recommendation
algorithm using the actual non-binary rates. It compares the ranking of tweets based on
relevance scores:the recommendation scores and the ranking based on the user grades.

Equation 4.2 shows this measure which is considered as a favored metric because it
includes the order of the retrieved tweets. In this equation, “Discounted Cumulative Gain”
(DCG) can be computed by Equation 4.3, where:

• reli: is the graded relevance of the result at position i.

• Ideal DCG (IDCG): is the ideal result list which was sorted by relevance.

nDCGk = DCGk

IDCGk
(4.2)

DCGk =
k∑

j=1

2relj − 1
log2(j + 1) (4.3)

4.3.3 Reciprocal Rank (RR)

The Reciprocal Rank (RR), is also a measure of the performance of top-k recommendation,
through finding how early in the proposed list the first relevant recommended tweet is ranked,
which is the inverse of the ranking position of the first relevant tweet, as in equation 4.4 .

RR = 1
Rank_of_highest_ranking_relevant_tweet

(4.4)

Where: a RR value equal to 1 is the best, and 0 is the worst. If none of the recommendations
is correct, then the reciprocal rank will be set to 0.

4.3.4 Results and discussion

We calculated the average of the precision and nDCG metrics over all the users who sub-
scribed to the system. In Table 4.1, we show a comparison of our approach and the baseline
for the average precision and nDCG of the top-k tweets (with k = 1, ..., 5). Compared to
the baseline we could observe an average improvement of 12.4% for Precision@k and of
1.6% for nDCG.

80 4. Experimental Results

Table 4.1. Comparison between our approach and the baseline.

Precision
p@1 p@2 p@3 p@4 p@5

Our Approach 0.85 0.82 0.80 0.79 0.80
Baseline 0.73 0.67 0.67 0.68 0.69

nDCG
@1 @2 @3 @4 @5

Our Approach 0.75 0.79 0.84 0.88 0.92
Baseline 0.74 0.77 0.82 0.86 0.91

We run t-test and could observe that the results were statistically significant at p < 0.1
for p@1 and at p < 0.05 for the other precisions as shown on Table 4.2.

Table 4.2. t_test for the top-k recommendations

Top-K Mean Difference t_value P Statistically sig.
top-1 0.122 1.36 0.087 <0.10
top-2 0.146 2.01 0.023 <0.05
top-3 0.138 2.07 0.021 <0.05
top-4 0.116 1.95 0.027 <0.05
top-5 0.102 1.78 0.039 <0.05

We computed the following statistics of the top-5 ranked tweets for our approach and
the baseline as following:

• Minimum: The least value in the data.

• First quartile (Q1): 25% of data fall below the lower quartile.

• Median (Q2): 50% of all data are below or above it.

• Third quartile (Q3): 75% of all data are below the upper quartile.

• Maximum: The greatest value in the data.

The range of scores from lower to upper quartile is referred to as the inter-quartile range
(IQR).

In Table 4.3, the statistics for the top-1 recommended tweets show that 25% of the data
are less than 1 for our approach, while 25% of the data are less than 0 for the baseline, which
gives an evidence of the goodness of our approach.

Table 4.3. The statistics of both methods for the top-1 recommended tweets

Stats Our Approach Baseline
Minimum 0 0

Q1 1 0
Median 1 1

Q3 1 1
Maximum 1 1

4.3 Assessing the Performance of the Recommendation System 81

In Table 4.4, the statistics for the top-2 recommended tweets show that half of the data
are less than 1 for our approach, while for the baseline half of the data are less than 0.5, so
that our approach is better too.

Table 4.4. The statistics of both methods for the top-2 recommended tweets

Stats Our Approach Baseline
Minimum 0 0

Q1 0.5 0.5
Median 1 0.5

Q3 1 1
Maximum 1 1

In Table 4.5, the statistics for the top-3 recommended tweets show that 25% of the
data are less than 0.667 for our approach, while 25% of the data are less than 0.333 for the
baseline. And that half of the data are less than 1 for our approach, while for the baseline
half of the data are less than 0.667, so that our approach still dominates as the best one.

Table 4.5. The statistics of both methods for the top-3 recommended tweets

Stats Our Approach Baseline
Minimum 0 0

Q1 0.667 0.333
Median 1 0.667

Q3 1 1
Maximum 1 1

In Table 4.6, the statistics for the top-4 recommended tweets show that the average
minimum value is 0.25 for our approach, while it is 0 for the baseline.

Table 4.6. The statistics of both methods for the top-4 recommended tweets

Stats Our Approach Baseline
Minimum 0.25 0

Q1 0.5 0.5
Median 0.75 0.75

Q3 1 1
Maximum 1 1

In Table 4.7, the statistics for the top-5 recommended tweets show that the average
minimum value is 0.2 for our approach, while it is 0 for the baseline.

82 4. Experimental Results

Table 4.7. The statistics of both methods for the top-5 recommended tweets

Stats Our Approach Baseline
Minimum 0.2 0

Q1 0.6 0.6
Median 0.8 0.8

Q3 1 1
Maximum 1 1

We also computed the Reciprocal Rank (RR), such that we considered the tweet which
has been rated as Excellent, Good, or Fair by the user as the first relevant tweet. The average
RR over all users is of 91% for our approach and 83% for the baseline.

We report in Figure 4.25 the summary statistics with respect to the Likert scale judge-
ments for both methods. We can observe that there is a larger number of tweets rated as
Excellent and Good, while the number of tweets rated as Bad is lower compared to the
baseline.

Figure 4.25. Comparison between our approach (red) and the baseline (blue) for the Likert scale.

Finally, in Figure 4.26 there are the percentages of tweets rated as Excellent, Good,
Fair, and Bad, respectively. From these figures, it is clear that our method outperforms the
baseline with higher percentage value.

4.3 Assessing the Performance of the Recommendation System 83

Figure 4.26. Comparison between our approach (red) and the baseline (blue) for each value of the
Likert scale.

85

Chapter 5

Conclusions and Future Work

Recommender systems for the social web are turning out to be progressively important to
find useful information from the huge amount of information that are produced by users
everyday. This research exploits the advantages of using MapReduce in processing the
massive amount of data which are crawled from the user’s network through Twitter APIs
platforms.

In addition to the feature of collaborative-based filtering, the data is also analyzed based
on the features extracted form content-based similarity and incommon user’s actions. These
features are used together to recommend new interesting tweets to the user.

In more detail, this research have presented a novel approach for recommending con-
cealed tweets. It first builds the network with two-hop distance from the user, such that the
obtained graph will contain the out-links from the user (friends), and the out-links from her
out-links (friends-of-friends). Then, two rounds of MapReduce algorithms are applied to
find the links that close open triangles. And, as a feature, it makes sense to consider the
count of these links to rank the nodes at 2-hop distance from the user.

After that, the timelines of the top list of best nodes are crawled to get the candidate
tweets from which we want to recommend to the user. We found that the chronological
order of these tweets may not be the best choice, so we applied content similarity measures:
the cosine similarity and Jaccard distance between them and the user’s tweets using bigrams
constructs. The bigrams are applied at the timelines level between the ego and the candidate
users. As a result, these features, enhance the quality of recommendations. Moreover, we
used a retweet analysis of shared retweets between the ego user and the candidate users.

Finally, the tweets are ranked through pairwise comparison of the features’ values in
order to propose most interesting ones to the user that otherwise would remain hidden from
her.

In experimental results, we conducted a real user study, and confirmed that our recom-
mendation system outperforms the existing approach for recommending unseen tweets with
an improvement of 12.4% in the precision.

As a final remark, this research add valuable insight to the recommender systems,
through providing the user with most interesting contents from hidden environment, so that
she will not miss important information which is mainly different from existing approaches
that only recommend contents from direct connections that are seen by the user. As well
as it implicitly gives a chance for the ego user to follow new people whenever she rate the
recommended tweets.

86 5. Conclusions and Future Work

For future work, we would like to extend our study in order to consider also the feedback
from the users, and collect more data about their interests. In this case, the users will provide
opinions about the quality of the recommendations such as: the way of determining the
tweets that are auto-generated through bots, or how to exclude some candidate users, etc.
It would also be interesting to recommend tweets to new Twitter users who just joined the
network (cold start recommendations).

Another interesting extension of our approach consists in using the early adopter defi-
nition for Twitter users. The definition of early adopter is similar to the one presented in
Mele et al. [78] for news recommendations. In that work, the pages visited by users who
clicks on a new interesting page early are recommended to the other users. Similarly, we
can assume that if a user retweets a tweet before the others and this happens frequently, she
is the early adopter for the tweet. Such user appears early in the retweeters’ list, so she gets
a higher score relative to the retweeters’ list length. Preliminary experiments conducted
using retweet analysis have shown good performance. So, we think that the approach of
early adoption for tweets is promising and deserves further investigation, for example, we
plan to conduct a user study and collect users’ feedback.

At last, here we considered only a particular graph property, but we plan to try other
approaches to find and weighting potential tweets (e.g., from the followers), so that the
network analysis will be a stronger interface to find new interesting candidates to the user,
and result in a scalable system that have more diverse options.

We will apply an algorithm to learn weights of the features, in order to have better
features combination and to find their importance related to the user, and consequently better
ranking of the tweets. And also, we will consider other structural features that will enhance
the quality of recommendations, and make it more efficient. All this will allow to make
better predictions of tweets.

87

Appendix A

Registering a Twitter Application

Twitter give users the ability to create applications, and these applications have interfaces to
work with which are called APIs. On June 11th, 2013, the version 1.0 of Twitter REST API
(v1.0) retired and the programmers migrated to v1.1, and if someone use his application to
access Twitter data through v1.0, he will get the following error:

The Twitter REST API v1 is no longer active. Please migrate to API v1.1.
https://dev.twitter.com/docs/api/1.1/overview.

The characteristics of v1.1 are:

• By using this version a user can create sessions that are SSL (Secure Sockets Layer).

• The data format is just JSON (JavaScript Object Notation)

• The used authentication is OAuth.

In other words, more restrictions are added to give the users permission to write data like
tweeting on behalf of them. After sign in, the user can create a new App, and access this
webpage:

https://apps.twitter.com/

and press “Create New App” button, as in Figure A.1:

Figure A.1. Creating New Application

Then the will be directed to the application details as Figure A.2 shows:
To create an application, the user will be asked to fill the following fields:

• Name: The application name is a required field which must be unique name (not
registered before).

• Description: This field is also required so the user can choose descriptive names for
his applications to distinguish them from each other.

88 A. Registering a Twitter Application

Figure A.2. Application details

• Website: This is the website address where the application will be hosted and accessed
publicly, and it is also a required field.

• Callback URL: This is an optional field, which gives permission to other users to
authenticate themselves through log into your App.

And then, the user will create his application after reading the agreement and agree on it.
The application settings and details will be displayed in the first two tabs, while the third tab
will contain the consumer key, consumer secret that identify the application, as in Figure
A.3.

A user can also choose the access level from the ‘Permission’ tab as in Figure A.4),
which have three types:

• Read only.

• Read and Write.

• Read, Write and Access direct messages.

In fact, these access levels are used to give more permissions to the App to add/remove
tweets, etc.

It would be better to select the desired access level permission before creating access
token keys, because if you change the permission you should regenerate them again to get
the effect.

89

Figure A.3. Application keys

Figure A.4. Access tokens permissions

Figure A.5 shows the access token value and secret that are used to authorize the Twitter
application.

90 A. Registering a Twitter Application

Figure A.5. Access token value and secret

To conclude, you need the following values from your app to access Twitter API:

• Consumer Key.

• Consumer Secret.

• Access Token.

• Access Token Secret.

These secret keys should be private to the account owner, because if they were known,
any one can access her Twitter account.

91

Appendix B

Twitter’s REST API

The REST APIs [2] provide programmatic access to read and write Twitter data: Author a
new Tweet, read author profile and follower data, and more.

B.1 Authentication methods

Twitter supports two authentication methods which are OAuth signed authentication and
Application-only authentication.

OAuth signed authentication.
In order to make authorized calls to Twitter’s APIs, the application must first obtain an

OAuth access token on behalf of a Twitter user to do the following:

• Give a facility to add “Sign in with Twitter” button on your website.

• If you want to read or post Twitter data on behalf of visitors to your website.

• When a mobile, desktop, or embedded app can’t access a browser.

• If you want to access the API from your own account.

• When you need to use usernames/passwords and have been approved for xAuth.

• If you offer an API where clients send you data on behalf of Twitter users

• Want to issue authenticated requests on behalf of the application itself

Application-only authentication
Twitter offers applications the ability to issue authenticated requests on behalf of the

application itself (as opposed to on behalf of a specific user). In other words, the app will
not gain the context of an authenticated user like OAuth signed authentication functions (i.e.,
Posting, updating tweets, etc). The application will give the user the ability to:

• Pull user timelines.

• Access friends and followers of any account.

• Access lists resource

• Search in tweets.

• Retrieve any user information.

92 B. Twitter’s REST API

B.2 API requests

In our research, we focus on four methods for collecting data from Twitter:

• GET friends/ids.

• GET statuses/user_timeline.

• GET statuses/retweeters/ids.

• GET users/lookup.

The following sections explain the returned data from Twitter, that is applied to my account.
The extracted values of fields are highlighted in colors.

B.2.1 GET friends/ids

It returns a list of the IDs of the followees ‘friends’ for a user (u), sorted with the most
recently following user first. They are grouped into 5000 user IDs, and are ordered with the
most recent following first. The total number of requests is 15 per 15-min window. The
next_cursor values can be used to retrieve more IDs (if exist). The URL of this request is:

https://api.twitter.com/1.1/friends/ids.json?cursor=-1&screen_name=nooraldeentamim
&count=5000

Table B.1 is an example of applying this request.

B.2.2 GET statuses/user_timeline

It returns the user’s most recent tweets (up to 3, 200 tweets) posted by the user, and can be
retrieved by her screen_name or user_id parameters, and it is identical to the contents of her
profile on Twitter. The total number of requests is 300 per 15-min window. (In user-auth the
number of requests is only 180). The URL of this request is:

https://api.twitter.com/1.1/statuses/user_timeline.json?screen_name=nooraldeentamim
&count=1

The content in Tables B.2 and B.3 is an example of applying this request. It shows the
recent tweet from my timeline.

B.2.3 GET statuses/retweeters/ids

It returns a list of at most 100 user IDs who retweetes a tweet that is given to the API through
an id parameter. This id can be extracted from the user_timeline of the user B.2.2. The total
number of requests is 60 per 15-min window. (In user-auth the number of requests is only
15). Table B.4 shows an example of the list of retweeters of a reweet.

The URL of this request is:

https://api.twitter.com/1.1/statuses/retweeters/ids.json?id=489278285525032960&count=100
&stringify_ids=true

B.2 API requests 93

Table B.1. Friends ids of my account

Field Value
previous_cursor 0
previous_cursor_str 0
next_cursor 0

ids

[119512412, 15455450, 118197667, 2273201773L, 3128829965L,
146195370, 130671142, 127894322, 17157367, 15937226,
114485232, 20167623, 14538236, 14065835, 214272214,
2998896042L, 16868154, 14771839, 170281514, 436609034,
4833032980L, 720119788060721153L, 2478543656L, 70478255,
26261214, 22674817, 4829277184L, 54817041, 36412963,
204297410, 14826566, 229814338, 17960107, 234017215,
19739240, 486002273, 481094172, 227097055, 40216901,
19659370, 176757073, 400804254, 153327232, 30339571,
53125982, 123375238, 50692734, 108885204, 1105671,
382393, 13386092, 113125584, 2178067878L, 15089078,
5734242, 91697719, 607216969, 46131106, 91367103,
561201648, 2354542969L, 117553058, 12031032, 13568892,
115058238, 59504716, 15494489, 17078917, 32942338,
106064139, 16534969, 4038531, 78969930, 80422885,
20926161, 234321271, 17707080, 10095482, 14344469,
57741058, 5082531, 16067035, 283937225, 144776261,
10587552, 3080761, 633, 8143682, 17396121,
147949965, 42388966, 87208346, 427431943, 22994885,
250344120, 2510162390L, 45820175, 11990112, 2207892020L,
12179872, 398500188, 2663672256L, 2493328698L, 114565226,
1128974390, 216098950, 16958875, 2215006026L, 54833072,
997784960, 19388339, 2190723061L, 227458257, 125483940,
61814526, 23484381, 1455272023, 1562578862, 85648537,
9316452, 47885616, 12, 68678236, 93473293,
1134349284, 220145170, 620167024, 305474242, 242868086,
831420816, 138556170, 11892372, 1270104007, 220041728,
1527607790, 21457289, 16319797, 783214, 14749606,
6844292, 267283568, 372131355, 116455109, 6253282,
511402689, 1304717864, 146994016, 16687314, 72299308,
318310715, 31311757, 50090898, 33838201, 88727377,
105768989, 26000689, 10876852, 20536157, 4641021,
50393960, 1373460025, 547871798, 18189723, 115151170]

next_cursor_str 0

94 B. Twitter’s REST API

Table B.2. [Part1]: GET statuses/user_timeline

Field Value
contributors None
truncated False

text
Twitter spikes after Microsoft buys LinkedIn for
$26 billion https://t.co/xj1DeRCAgz
via @themoneygame

is_quote_status False
in_reply_to_status_id None
id 742341578170245122
favorite_count 1

source
<a href=“http://twitter.com” rel=“nofollow” Twitter
Web Client/>

retweeted False
coordinates None
symbols []

user_mentions
[{u‘id’: 65448361, u‘indices’: [89, 102],
u‘id_str’: u‘65448361’, u‘screen_name’:
u‘themoneygame’, u‘name’: u‘BI Markets’}]

hashtags []

urls
[{u‘url’: u‘https://t.co/xj1DeRCAgz’, u‘indices’:
[61, 84], u‘expanded_url’: u‘http://read.bi/1Ol4Gx4’,
u‘display_url’: u‘read.bi/1Ol4Gx4’}]

in_reply_to_screen_name None
in_reply_to_user_id None
retweet_count 0
id_str 742341578170245122
favorited False
follow_request_sent False
has_extended_profile False
profile_use_background_image True
default_profile_image False
id 822143767
profile_background_image_url_https https://abs.twimg.com/images/themes/theme1/bg.png
verified False
profile_text_color 333333

profile_image_url_https
https://pbs.twimg.com/profile_images/
378800000074791549/
6b26302825ae09c0e46042cf9cfb3e03_normal.jpeg

profile_sidebar_fill_color DDEEF6

urls

[{u’url’: u’http://t.co/q8TPBqT4dW’, u’indices’:
[0, 22], u’expanded_url’:
u’http://www.dis.uniroma1.it/∼alawad/’,
u’display_url’: u’dis.uniroma1.it/∼alawad/’}]

followers_count 47

B.2 API requests 95

Table B.3. [Part2]: GET statuses/user_timeline

Field Value
profile_sidebar_border_color C0DEED
id_str 822143767
profile_background_color C0DEED
listed_count 1
is_translation_enabled False
utc_offset 7200
statuses_count 181

description
When one door closes, another opens; but we often look
so long and so regretfully upon the closed door that we
do not see the one that has opened for us. - Ale

friends_count 184
location Sapienza University of Rome
profile_link_color 0084B4

profile_image_url
http://pbs.twimg.com/profile_images/
378800000074791549/
6b26302825ae09c0e46042cf9cfb3e03_normal.jpeg

following False
geo_enabled True

profile_banner_url
https://pbs.twimg.com/profile_banners/
822143767/1368978123

profile_background_image_url http://abs.twimg.com/images/themes/theme1/bg.png
screen_name nooraldeentamim
lang en
profile_background_tile False
favourites_count 130
name Noor Aldeen Alawad
notifications False
url http://t.co/q8TPBqT4dW
created_at Thu Sep 13 20:32:17 +0000 2012
contributors_enabled False
time_zone Rome
protected False
default_profile True
is_translator False
geo None
in_reply_to_user_id_str None
possibly_sensitive False
lang en
created_at Mon Jun 13 13:03:18 +0000 2016
in_reply_to_status_id_str None
place None

96 B. Twitter’s REST API

Table B.4. The list of retweeters for a retweet

Field Value
previous_cursor 0
previous_cursor_str 0
next_cursor 0

ids

[40965059, 178483403, 2417186826, 2412270288, 2417347170,
2411206362, 2415480745, 196194980, 812380152, 2412016100,
395197255, 23179623, 216706300, 367900071, 359324126,
2397301877, 63566265, 15327664, 100491371, 1117650571,
822143767, 784984, 585857069, 2456496284,116549673,
1243357730, 22622136, 16376537, 14752306, 503674501,
131448307, 57651821, 15189144, 176741459, 2371756192,
149808271, 2188107351, 362633864, 138516722, 904834980,
2374704301, 336240028, 2380259712, 59263014, 267342991,
19029792, 2638353259, 19932305, 606362845, 2498788723,
2160201530, 16840386, 21575173, 8674902, 14681121,
2330128201, 2615209200, 179205109, 1930579800, 22514183,
348967193, 79184517, 61775988, 48115420, 2255492856,
131786415, 2344725759, 2396892662, 209605296, 396578935,
24869669, 711364834, 17022290, 246191393, 15203929,
85996257, 1672681, 1300455596, 1635006739, 2167208841,
430096982, 85118086, 236287900, 328926221, 1573319048,
429707643, 275315306, 988437164]

next_cursor_str 0

B.2 API requests 97

B.2.4 GET users/lookup

It returns the user objects for at most 100 users in a request, they can be passed to the
user_id and/or screen_name parameters through comma-separated values. The contents
in Tables B.5 and B.6 show an example of applying this method. We are interested in
retrieving the user’s name, screen name, profile image url, location, and time zone. The total
number of requests is 60 per 15-min window.

The URL of this request is:

https://api.twitter.com/1.1/users/lookup.json?screen_name=nooraldeentamim’

98 B. Twitter’s REST API

Table B.5. [Part1]: GET users/lookup

Field Value
follow_request_sent False
has_extended_profile False
profile_use_background_image True
default_profile_image False
id 822143767

profile_background_image_url_https https://abs.twimg.com/images/themes/theme1/
bg.png

verified False
profile_text_color 333333

profile_image_url_https
https://pbs.twimg.com/profile_images/
378800000074791549/
6b26302825ae09c0e46042cf9cfb3e03_normal.jpeg

profile_sidebar_fill_color DDEEF6

urls

[{u‘url’: u‘http://t.co/q8TPBqT4dW’,
u‘indices’: [0, 22], u‘expanded_url’:
u‘http://www.dis.uniroma1.it’, u‘display_url’:
u‘dis.uniroma1.it/’}]

followers_count 47
profile_sidebar_border_color C0DEED
id_str 822143767
profile_background_color C0DEED
listed_count 1
contributors None
truncated False

text
Twitter spikes after Microsoft buys LinkedIn for
$26 billion https://t.co/xj1DeRCAgz
via @themoneygame

is_quote_status False
in_reply_to_status_id None
id 742341578170245122
favorite_count 1

source

Twitter Web Client

retweeted False
coordinates None
symbols []

user_mentions
[{u‘id’: 65448361, u‘indices’: [89, 102], u‘id_str’:
u‘65448361’, u‘screen_name’: u‘themoneygame’,
u‘name’: u‘BI Markets’}]

hashtags []

urls

[{u‘url’: u‘https://t.co/xj1DeRCAgz’,
u‘indices’: [61, 84], u‘expanded_url’:
u‘http://read.bi/1Ol4Gx4’,
u‘display_url’: u‘read.bi/1Ol4Gx4’]}

B.2 API requests 99

Table B.6. [Part2]: GET users/lookup

Field Value
in_reply_to_screen_name None
in_reply_to_user_id None
retweet_count 0
id_str 742341578170245122
favorited False
geo None
in_reply_to_user_id_str None
possibly_sensitive False
lang en
created_at Mon Jun 13 13:03:18 +0000 2016
in_reply_to_status_id_str None
place None
is_translation_enabled False
utc_offset 7200
statuses_count 181

description
When one door closes, another opens; but we often look
so long and so regretfully upon the closed door that we
do not see the one that has opened for us. - Ale

friends_count 164
location Sapienza University of Rome
profile_link_color 0084B4

profile_image_url
http://pbs.twimg.com/profile_images/
378800000074791549/
6b26302825ae09c0e46042cf9cfb3e03_normal.jpeg

following False
geo_enabled http://t.co/True
profile_banner_url https://pbs.twimg.com/profile_banners/822143767/1368978123
profile_background_image_url http://abs.twimg.com/images/themes/theme1/bg.png
screen_name nooraldeentamim
lang en
profile_background_tile False
favourites_count 130
name Noor Aldeen Alawad
notifications False
url http://t.co/q8TPBqT4dW
created_at Thu Sep 13 20:32:17 +0000 2012
contributors_enabled False
time_zone Rome
protected False
default_profile True
is_translator False

101

Appendix C

Issues Related to Retrieving a User’s
Timeline

C.1 Dealing with large accounts

For large accounts we worked with timelines like the technique in [3] through iterating over
the timeline using cursoring to get the complete list of (re)tweets and avoiding redundancy.

In details, there exist a parameter “max_id” that works with streams of data called
cursoring. Because of the dynamic changes in posting tweets frequently for accounts,
this request parameter is used to track the tweets through their IDs instead of the paging
technique that are used for other methods.

The application sends a request to a timeline with the maximum retrieval rate limit.
Then, for subsequent requests, the lowest ID of the tweet will be be passed as the value of
the max_id parameter for the next request, and so it will return Tweets with IDs lower than
or equal to the value of the max_id parameter inclusive. In this case, the last tweet will be
returned again, so we can retrieve for a request, all the tweets except the last one as in figure
C.1.

C.2 Dealing with character encodings

When retrieving a tweet, it may contain non-ASCII characters (that is outside the 7-bit
ASCII (0-127)), for example, these are non-ASCII characters: “ï”, “é”, etc. The Unicode
string that contain these characters can be encoded to ASCII and the errors will be ignored
by using the following statement:

twt = twt.encode(‘ascii’, ‘ignore’)

Also, when retrieving a tweet, it may contain a backslash that may be considered as an
escape character. These characters can be replaced through:

twt = twt.replace(‘\n’, ”).replace(‘\r’, ”)

102 C. Issues Related to Retrieving a User’s Timeline

Figure C.1. Using the max_id parameter in timeline retrieval.

C.3 Dealing with socket timeout 103

C.3 Dealing with socket timeout

Socket timeouts were occurred when attempting to connect to REST API during fetching
retweeters list alongside with the user’s timeline. After importing socket, the function we
used to create socket object is:

socket.setdefaulttimeout(timeout)

Where the ’timeout’ can be a nonnegative floating point number expressing seconds, or
None [4]:

• If a non-zero value is given, subsequent socket operations will raise a timeout
exception if the timeout period value has elapsed before the operation has completed
(Where operations fail if they cannot be completed within the timeout specified for
the socket) and they raise a timeout exception or the system returns an error.

• If zero is given, the socket is put in non-blocking mode, where operations fail if they
cannot be completed immediately: functions from the select can be used to know
when and whether a socket is available for reading or writing.

• If None is given, the socket is put in blocking mode, where operations block until
complete or the system returns an error (such as connection timed out).

We set a value of the argument of 5 minutes. 300 second timer to fetch data, and if it
pass without data reception, then it will send a keep-alive new request to prevent the process
from timing out the connection.

105

Bibliography

[1] Authentication & authorization - twitter developers. Available from: https://dev.
twitter.com/oauth/overview/authentication-by-api-family.

[2] Rest apis. Available from: https://dev.twitter.com/rest/public.

[3] Working with timelines. Available from: https://dev.twitter.com/rest/
public/timelines.

[4] 5_18.1. socket low-level networking interface python 3.5.2 documentation_2016
(2016). Available from: https://docs.python.org/3/library/
socket.html#socket-timeouts.

[5] ABEL, F., GAO, Q., HOUBEN, G.-J., AND TAO, K. Analyzing temporal dynamics
in twitter profiles for personalized recommendations in the social web. In Proceedings
of the 3rd International Web Science Conference, p. 2. ACM (2011).

[6] ADOMAVICIUS, G. AND TUZHILIN, A. Toward the next generation of recommender
systems: A survey of the state-of-the-art and possible extensions. IEEE transactions
on knowledge and data engineering, 17 (2005), 734.

[7] AIELLO, L. M., BARRAT, A., SCHIFANELLA, R., CATTUTO, C., MARKINES, B.,
AND MENCZER, F. Friendship prediction and homophily in social media. ACM
Transactions on the Web (TWEB), 6 (2012), 9.

[8] ALAWAD, N. A., ANAGNOSTOPOULOS, A., LEONARDI, S., MELE, I., AND SIL-
VESTRI, F. Network-aware recommendations of novel tweets. In Proceedings of
the 39th International ACM SIGIR conference on Research and Development in
Information Retrieval, pp. 913–916. ACM (2016).

[9] ALMESHARY, M. AND ABHARI, A. A recommendation system for twitter users in
the same neighborhood. In Proceedings of the 16th Communications & Networking
Symposium, p. 1. Society for Computer Simulation International (2013).

[10] ARMENTANO, M. G., GODOY, D., AND AMANDI, A. Recommending information
sources to information seekers in twitter. In International workshop on social web
mining (2011).

[11] ARMENTANO, M. G., GODOY, D., AND AMANDI, A. Towards a followee rec-
ommender system for information seeking users in twitter. In Proceedings of the
Workshop on Semantic Adaptive Social Web (SASWeb 2011). CEUR Workshop Pro-
ceedings, vol. 730, pp. 27–38 (2011).

https://dev.twitter.com/oauth/overview/authentication-by-api-family
https://dev.twitter.com/oauth/overview/authentication-by-api-family
https://dev.twitter.com/rest/public
https://dev.twitter.com/rest/public/timelines
https://dev.twitter.com/rest/public/timelines
https://docs.python.org/3/library/socket.html#socket-timeouts
https://docs.python.org/3/library/socket.html#socket-timeouts

106 Bibliography

[12] ARMENTANO, M. G., GODOY, D., AND AMANDI, A. A. Followee recommendation
based on text analysis of micro-blogging activity. Information systems, 38 (2013),
1116.

[13] ARMENTANO, M. G., GODOY, D. L., AND AMANDI, A. A. A topology-based
approach for followees recommendation in Twitter. In ITWP’11.

[14] ASHOK, B., JOY, J., LIANG, H., RAJAMANI, S. K., SRINIVASA, G., AND VAN-
GALA, V. Debugadvisor: a recommender system for debugging. In Proceedings of
the the 7th joint meeting of the European software engineering conference and the
ACM SIGSOFT symposium on The foundations of software engineering, pp. 373–382.
ACM (2009).

[15] BALABANOVIĆ, M. AND SHOHAM, Y. Fab: content-based, collaborative recommen-
dation. Communications of the ACM, 40 (1997), 66.

[16] BASU, C., HIRSH, H., COHEN, W., ET AL. Recommendation as classification:
Using social and content-based information in recommendation. In Aaai/iaai, pp.
714–720 (1998).

[17] BATAGELJ, V. AND MRVAR, A. Pajek—analysis and visualization of large networks.
In Graph drawing software, pp. 77–103. Springer (2004).

[18] BEEL, J. AND LANGER, S. Research paper recommender systems: A literature
survey.

[19] BENZARTI, S. AND FAIZ, R. EgoTR: Personalized tweets recommendation approach.
In CSOC’15.

[20] BILLSUS, D. AND PAZZANI, M. J. User modeling for adaptive news access. User
modeling and user-adapted interaction, 10 (2000), 147.

[21] BUETTNER, R. A framework for recommender systems in online social network
recruiting: An interdisciplinary call to arms. In 2014 47th Hawaii International
Conference on System Sciences, pp. 1415–1424. IEEE (2014).

[22] BURGHARDT, M. Introduction to tools and methods for the analysis of twitter
data. Available from: https://www.researchgate.net/publication/
281785732_Introduction_to_Tools_and_Methods_for_the_
Analysis_of_Twitter_Data.

[23] BURKE, R. Integrating knowledge-based and collaborative-filtering recommender
systems. In Proceedings of the Workshop on AI and Electronic Commerce, pp. 69–72
(1999).

[24] BURKE, R. Hybrid recommender systems: Survey and experiments. User modeling
and user-adapted interaction, 12 (2002), 331.

[25] CANTADOR, I., BELLOGÍN, A., AND VALLET, D. Content-based recommenda-
tion in social tagging systems. In Proceedings of the fourth ACM conference on
Recommender systems, pp. 237–240. ACM (2010).

https://www.researchgate.net/publication/281785732_Introduction_to_Tools_and_Methods_for_the_Analysis_of_Twitter_Data
https://www.researchgate.net/publication/281785732_Introduction_to_Tools_and_Methods_for_the_Analysis_of_Twitter_Data
https://www.researchgate.net/publication/281785732_Introduction_to_Tools_and_Methods_for_the_Analysis_of_Twitter_Data

Bibliography 107

[26] CHEN, C., YIN, H., YAO, J., AND CUI, B. Terec: A temporal recommender system
over tweet stream. Proceedings of the VLDB Endowment, 6 (2013), 1254.

[27] CHEN, H., CUI, X., AND JIN, H. Top-k followee recommendation over microblog-
ging systems by exploiting diverse information sources. Future Generation Computer
Systems, 55 (2016).

[28] CHEN, J., NAIRN, R., NELSON, L., BERNSTEIN, M., AND CHI, E. Short and tweet:
experiments on recommending content from information streams. In CHI’10.

[29] CHEN, K., CHEN, T., ZHENG, G., JIN, O., YAO, E., AND YU, Y. Collaborative
personalized tweet recommendation. In SIGIR’12.

[30] CHEN, Y., WU, C., XIE, M., AND GUO, X. Solving the sparsity problem in
recommender systems using association retrieval. Journal of computers, 6 (2011),
1896.

[31] CLAYPOOL, M., GOKHALE, A., MIRANDA, T., MURNIKOV, P., NETES, D., AND

SARTIN, M. Combining content-based and collaborative filters in an online news-
paper. In Proceedings of ACM SIGIR workshop on recommender systems, vol. 60.
Citeseer (1999).

[32] COTTER, P. AND SMYTH, B. Ptv: Intelligent personalised tv guides. In AAAI/IAAI,
pp. 957–964 (2000).

[33] DAS, A. S., DATAR, M., GARG, A., AND RAJARAM, S. Google news personaliza-
tion: scalable online collaborative filtering. In Proceedings of the 16th international
conference on World Wide Web, pp. 271–280. ACM (2007).

[34] DEAN, J. AND GHEMAWAT, S. Mapreduce: simplified data processing on large
clusters. Communications of the ACM, 51 (2008), 107.

[35] DOVGOPOL, R. AND NOHELTY, M. Twitter hash tag recommendation. arXiv
preprint arXiv:1502.00094, (2015).

[36] DUAN, Y., JIANG, L., QIN, T., ZHOU, M., AND SHUM, H.-Y. An empirical study
on learning to rank of tweets. In Proceedings of the 23rd International Conference on
Computational Linguistics, pp. 295–303. Association for Computational Linguistics
(2010).

[37] EKSTRAND, M. D., RIEDL, J. T., AND KONSTAN, J. A. Collaborative filtering
recommender systems. Foundations and Trends in Human-Computer Interaction, 4
(2011), 81.

[38] ESTER, M. Recommendation in social networks. In RecSys, pp. 491–492 (2013).

[39] FRIEDRICH, G. AND ZANKER, M. A taxonomy for generating explanations in
recommender systems. AI Magazine, 32 (2011), 90.

[40] GARCIA, R. AND AMATRIAIN, X. Weighted content based methods for recommend-
ing connections in online social networks. In Workshop on Recommender Systems
and the Social Web, pp. 68–71. Citeseer (2010).

108 Bibliography

[41] GEORGE, T. AND MERUGU, S. A scalable collaborative filtering framework based
on co-clustering. In Fifth IEEE International Conference on Data Mining (ICDM’05),
pp. 4–pp. IEEE (2005).

[42] GHAZANFAR, M. A. AND PRUGEL-BENNETT, A. A scalable, accurate hybrid
recommender system. In Knowledge Discovery and Data Mining, 2010. WKDD’10.
Third International Conference on, pp. 94–98. IEEE (2010).

[43] GOLDBERG, D., NICHOLS, D., OKI, B. M., AND TERRY, D. Using collaborative
filtering to weave an information tapestry. Communications of the ACM, 35 (1992),
61.

[44] GOLDER, S. A., YARDI, S., MARWICK, A., AND BOYD, D. A structural approach
to contact recommendations in online social networks. In Workshop on search in
social media, SSM (2009).

[45] GRIVOLLA, J., CAMPO, D., SONSONA, M., PULIDO, J.-M., AND BADIA, T. A
hybrid recommender combining user, item and interaction data. In Computational
Science and Computational Intelligence (CSCI), 2014 International Conference on,
vol. 1, pp. 297–301. IEEE (2014).

[46] GUO, W., LI, H., JI, H., AND DIAB, M. T. Linking tweets to news: A framework
to enrich short text data in social media. In ACL (1), pp. 239–249. Citeseer (2013).

[47] GURINI, D. F., GASPARETTI, F., MICARELLI, A., AND SANSONETTI, G. A
sentiment-based approach to twitter user recommendation. In RSWeb@ RecSys
(2013).

[48] HANNEMAN, R. A. AND RIDDLE, M. Introduction to social network methods
(2005).

[49] HANNON, J., BENNETT, M., AND SMYTH, B. Recommending twitter users to
follow using content and collaborative filtering approaches. In Proceedings of the
fourth ACM conference on Recommender systems, pp. 199–206. ACM (2010).

[50] HANNON, J., MCCARTHY, K., AND SMYTH, B. Finding useful users on Twitter:
Twittomender the followee recommender. In ECIR’11.

[51] HANNON, J., MCCARTHY, K., AND SMYTH, B. The pursuit of happiness: searching
for worthy followees on. Computer Networks and ISDN Systems, 30 (1998), 107.

[52] HE, J. AND CHU, W. W. A social network-based recommender system (SNRS).
Springer (2010).

[53] HERLOCKER, J. L., KONSTAN, J. A., TERVEEN, L. G., AND RIEDL, J. T. Evaluat-
ing collaborative filtering recommender systems. ACM Transactions on Information
Systems (TOIS), 22 (2004), 5.

[54] HOLTE, R. C. AND YAN, J. N. Y. Inferring what a user is not interested in. In
Conference of the Canadian Society for Computational Studies of Intelligence, pp.
159–171. Springer (1996).

Bibliography 109

[55] IAQUINTA, L., DE GEMMIS, M., LOPS, P., SEMERARO, G., FILANNINO, M., AND

MOLINO, P. Introducing serendipity in a content-based recommender system. In
Hybrid Intelligent Systems, 2008. HIS’08. Eighth International Conference on, pp.
168–173. IEEE (2008).

[56] JAVA, A., SONG, X., FININ, T., AND TSENG, B. Why we twitter: understanding
microblogging usage and communities. In Proceedings of the 9th WebKDD and 1st
SNA-KDD 2007 workshop on Web mining and social network analysis, pp. 56–65.
ACM (2007).

[57] JURVETSON, S. What exactly is viral marketing. Red Herring, 78 (2000), 110.

[58] KAPANIPATHI, P., ORLANDI, F., SHETH, A. P., AND PASSANT, A. Personalized
filtering of the twitter stream. (2011).

[59] KIM, K.-J. AND AHN, H. Hybrid recommender systems using social network
analysis. World Academy of Science, Engineering and Technology, 64 (2012), 879.

[60] KINGSTON, C. Twitter for beginners. New York: media DIY workshop (2011).

[61] KRESTEL, R., WERKMEISTER, T., WIRADARMA, T. P., AND KASNECI, G. Tweet-
recommender: Finding relevant tweets for news articles. In Proceedings of the 24th
International Conference on World Wide Web, pp. 53–54. ACM (2015).

[62] KRUTKAM, W., SAIKEAW, K., AND CHAOSAKUL, A. Twitter accounts recom-
mendation based on followers and lists. 3rd Joint International Information and
Communication Technology, (2010).

[63] KUMAR, A. AND SHARMA, A. Alleviating sparsity and scalability issues in collab-
orative filtering based recommender systems. In Proceedings of the International
Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA),
pp. 103–112. Springer (2013).

[64] KUNEGIS, N., GOTTRON, T., KUNEGIS, J., AND ALHADI, A. Bad news travel fast:
A content-based analysis of interestingness on twitter. In Proceedings of ACM Web
Science Conference (2011).

[65] KYWE, S. M., LIM, E.-P., AND ZHU, F. A survey of recommender systems in
Twitter. In SocInfo’12.

[66] LEE, K., MAHMUD, J., CHEN, J., ZHOU, M., AND NICHOLS, J. Who will
retweet this?: Automatically identifying and engaging strangers on twitter to spread
information. In Proceedings of the 19th international conference on Intelligent User
Interfaces, pp. 247–256. ACM (2014).

[67] LETIERCE, J., PASSANT, A., BRESLIN, J., AND DECKER, S. Understanding how
twitter is used to spread scientific messages. (2010).

[68] LITTLESTONE, N. AND WARMUTH, M. K. The weighted majority algorithm. In
Foundations of Computer Science, 1989., 30th Annual Symposium on, pp. 256–261.
IEEE (1989).

110 Bibliography

[69] LIU, G., FU, Y., XU, T., XIONG, H., AND CHEN, G. Discovering temporal
retweeting patterns for social media marketing campaigns. In 2014 IEEE International
Conference on Data Mining, pp. 905–910. IEEE (2014).

[70] LOPS, P., DE GEMMIS, M., AND SEMERARO, G. Content-based recommender
systems: State of the art and trends. In Recommender systems handbook, pp. 73–105.
Springer (2011).

[71] LU, C., LAM, W., AND ZHANG, Y. Twitter user modeling and tweets recommen-
dation based on wikipedia concept graph. In Workshops at the Twenty-Sixth AAAI
Conference on Artificial Intelligence (2012).

[72] LUMBRERAS, A. AND GAVALDA, R. Applying trust metrics based on user interac-
tions to recommendation in social networks. In Proceedings of the 2012 International
Conference on Advances in Social Networks Analysis and Mining (ASONAM 2012),
pp. 1159–1164. IEEE Computer Society (2012).

[73] MAKKI, R. Active tweet recommendation based on user interest profiles.

[74] MARTÍNEZ, L., PÉREZ, L. G., AND BARRANCO, M. A multigranular linguistic
content-based recommendation model. International Journal of Intelligent Systems,
22 (2007), 419.

[75] MATEI, S. Analyzing social media networks with nodexl: Insights from a connected
world by derek hansen, ben shneiderman, and marc a. smith: Burlington, ma: Morgan
kauffman, 2011. 284 pages. isbn: 978-0-12-382229-1. Intl. Journal of Human–
Computer Interaction, 27 (2011), 405.

[76] MCCULLOH, I., ARMSTRONG, H., AND JOHNSON, A. Social network analysis
with applications. John Wiley & Sons (2013).

[77] MCGRATH, R. twython. Available from: https://media.readthedocs.
org/pdf/twython/latest/twython.pdf.

[78] MELE, I., BONCHI, F., AND GIONIS, A. The early-adopter graph and its application
to web-page recommendation. In Proceedings of the 21st ACM international confer-
ence on Information and knowledge management, pp. 1682–1686. ACM (2012).

[79] MELVILLE, P., MOONEY, R. J., AND NAGARAJAN, R. Content-boosted collabora-
tive filtering for improved recommendations. In Aaai/iaai, pp. 187–192 (2002).

[80] MISLOVE, A., MARCON, M., GUMMADI, K. P., DRUSCHEL, P., AND BHAT-
TACHARJEE, B. Measurement and analysis of online social networks. In Proceedings
of the 7th ACM SIGCOMM conference on Internet measurement, pp. 29–42. ACM
(2007).

[81] MOLLETT, A., MORAN, D., AND DUNLEAVY, P. Using twitter in university research,
teaching and impact activities. (2011).

[82] NASIRIFARD, P. AND HAYES, C. Tadvise: A twitter assistant based on twitter lists.
In International Conference on Social Informatics, pp. 153–160. Springer (2011).

https://media.readthedocs.org/pdf/twython/latest/twython.pdf
https://media.readthedocs.org/pdf/twython/latest/twython.pdf

Bibliography 111

[83] PAGARE, R. AND PATIL, S. A. Study of collaborative filtering recommendation
algorithm-scalability issue. International Journal of Computer Applications, 67
(2013).

[84] PATEL, A. B., SUTHAR, N. B., AND DHOBI, J. S. Recommending top-n research
papers (based on with, without and boolean items preferences: An user base collabo-
rative filtering approach in mahout). In ICCCIT’12.

[85] PAZZANI, M. J. AND BILLSUS, D. Content-based recommendation systems. In The
adaptive web, pp. 325–341. Springer (2007).

[86] PECHKIS, B. J. AND LEE, E.-J. Isolating matrix sparsity in collaborative filtering
ratings matrices. In Proceedings of the International Conference on Data Mining
(DMIN), p. 1. The Steering Committee of The World Congress in Computer Science,
Computer Engineering and Applied Computing (WorldComp) (2013).

[87] PENNACCHIOTTI, M., SILVESTRI, F., VAHABI, H., AND VENTURINI, R. Making
your interests follow you on Twitter. In CIKM’12.

[88] PHELAN, O., MCCARTHY, K., BENNETT, M., AND SMYTH, B. Terms of a feather:
Content-based news recommendation and discovery using twitter. In European
Conference on Information Retrieval, pp. 448–459. Springer (2011).

[89] PRIEM, J. AND COSTELLO, K. L. How and why scholars cite on twitter. Proceedings
of the American Society for Information Science and Technology, 47 (2010), 1.

[90] RAMAGE, D., DUMAIS, S. T., AND LIEBLING, D. J. Characterizing microblogs
with topic models. ICWSM, 10 (2010), 1.

[91] RESNICK, P., IACOVOU, N., SUCHAK, M., BERGSTROM, P., AND RIEDL, J.
Grouplens: an open architecture for collaborative filtering of netnews. In Proceedings
of the 1994 ACM conference on Computer supported cooperative work, pp. 175–186.
ACM (1994).

[92] RESNICK, P. AND VARIAN, H. R. Recommender systems. Commun. ACM, 40
(1997).

[93] RICCI, F., ROKACH, L., AND SHAPIRA, B. Introduction to recommender systems
handbook. Springer (2011).

[94] RODRIGUEZ, M. G., GUMMADI, K., AND SCHOELKOPF, B. Quantifying infor-
mation overload in social media and its impact on social contagions. arXiv preprint
arXiv:1403.6838, (2014).

[95] ROWE, M., STANKOVIC, M., AND ALANI, H. Who will follow whom? exploiting
semantics for link prediction in attention-information networks. In International
Semantic Web Conference, pp. 476–491. Springer (2012).

[96] SACHAN, A. AND RICHHARIYA, V. Reduction of data sparsity in collaborative
filtering based on fuzzy inference rules. International Journal of Advanced Computer
Research, 3 (2013), 101.

112 Bibliography

[97] SCHAFER, J. B., FRANKOWSKI, D., HERLOCKER, J., AND SEN, S. Collaborative
filtering recommender systems. In The adaptive web, pp. 291–324. Springer (2007).

[98] SCHANK, T. Algorithmic aspects of triangle-based network analysis. Phd in computer
science, University Karlsruhe, 3 (2007).

[99] SCHANK, T. AND WAGNER, D. Finding, counting and listing all triangles in large
graphs, an experimental study. In International Workshop on Experimental and
Efficient Algorithms, pp. 606–609. Springer (2005).

[100] SEDHAI, S. AND SUN, A. Hashtag recommendation for hyperlinked tweets. In Pro-
ceedings of the 37th international ACM SIGIR conference on Research & development
in information retrieval, pp. 831–834. ACM (2014).

[101] SOTSENKO, A., JANSEN, M., AND MILRAD, M. Using a rich context model for a
news recommender system for mobile users. In NRA’14.

[102] SUH, B., HONG, L., PIROLLI, P., AND CHI, E. H. Want to be retweeted? large
scale analytics on factors impacting retweet in twitter network. In Social computing
(socialcom), 2010 ieee second international conference on, pp. 177–184. IEEE (2010).

[103] SULLIVAN, D. O., SMYTH, B., AND WILSON, D. Preserving recommender ac-
curacy and diversity in sparse datasets. International Journal on Artificial Intelligence
Tools, 13 (2004), 219.

[104] SUN, A. R., CHENG, J., AND ZENG, D. D. A novel recommendation framework
for micro-blogging based on information diffusion. In 19th Annual Workshop on
Information Technolgies & Systems (WITS’09) (2009).

[105] SURI, S. AND VASSILVITSKII, S. Counting triangles and the curse of the last reducer.
In WWW’11.

[106] TANG, J., HU, X., GAO, H., AND LIU, H. Exploiting local and global social context
for recommendation. In IJCAI, pp. 264–269 (2013).

[107] TANNENBAUM, P. AND ARNOLD, R. Excursions in modern mathematics. Prentice
Hall (1995).

[108] THORAT, P. B., GOUDAR, R., AND BARVE, S. Survey on collaborative filtering,
content-based filtering and hybrid recommendation system. International Journal of
Computer Applications, 110 (2015).

[109] TOMMASEL, A., CORBELLINI, A., GODOY, D., AND SCHIAFFINO, S. Exploring
the role of personality traits in followee recommendation. Online Information Review,
39 (2015), 812.

[110] TOMMASEL, A. AND GODOY, D. An adaptive technique for weighting multi-
ple factors in followee recommendation algorithms. In Proceedings of the 2015
International Conference on Constraints and Preferences for Configuration and Rec-
ommendation and Intelligent Techniques for Web Personalization-Volume 1440, pp.
32–33. CEUR-WS. org (2015).

Bibliography 113

[111] TRAN, T. AND COHEN, R. Hybrid recommender systems for electronic commerce.
In Proc. Knowledge-Based Electronic Markets, Papers from the AAAI Workshop,
Technical Report WS-00-04, AAAI Press (2000).

[112] TSOURAKAKIS, C. E., DRINEAS, P., MICHELAKIS, E., KOUTIS, I., AND FALOUT-
SOS, C. Spectral counting of triangles via element-wise sparsification and triangle-
based link recommendation. Social Network Analysis and Mining, 1 (2011), 75.

[113] UYSAL, I. AND CROFT, W. B. User oriented tweet ranking: a filtering approach to
microblogs. In CIKM’11.

[114] VILLI, M., MATIKAINEN, J., AND KHALDAROVA, I. Recommend, tweet, share:
User-distributed content (udc) and the convergence of news media and social networks.
In Media Convergence Handbook-Vol. 1, pp. 289–306. Springer (2016).

[115] WANG, B., WANG, C., BU, J., CHEN, C., ZHANG, W. V., CAI, D., AND HE,
X. Whom to mention: expand the diffusion of tweets by@ recommendation on
micro-blogging systems. In Proceedings of the 22nd international conference on
World Wide Web, pp. 1331–1340. ACM (2013).

[116] WANG, X., XIAO, B., LIN, Z., AND LU, Y. A tweets recommendation algorithm
based on user relationship and text emotional tendentiousness. In 2012 3rd IEEE
International Conference on Network Infrastructure and Digital Content, pp. 237–241.
IEEE (2012).

[117] WANG, Y., WANG, S., STASH, N., AROYO, L., AND SCHREIBER, G. Enhancing
content-based recommendation with the task model of classification. In International
Conference on Knowledge Engineering and Knowledge Management, pp. 431–440.
Springer (2010).

[118] WANG, Z. AND IWAIHARA, M. Cross-lingual tweet recommendation based on user
interest using bilingual lda.

[119] WATTS, D. J. AND STROGATZ, S. H. Collective dynamics of ‘small-world’networks.
nature, 393 (1998), 440.

[120] WEI, Z. AND GAO, W. Utilizing microblogs for automatic news highlights extraction.
In COLING, pp. 872–883 (2014).

[121] WELLER, K., DRÖGE, E., AND PUSCHMANN, C. Citation analysis in twitter:
Approaches for defining and measuring information flows within tweets during
scientific conferences. In # MSM, pp. 1–12 (2011).

[122] WELLER, K. AND PUSCHMANN, C. Twitter for scientific communication: How can
citations/references be identified and measured? (2011).

[123] WU, H., SORATHIA, V., AND PRASANNA, V. K. Predict whom one will follow:
followee recommendation in microblogs. In Social Informatics (SocialInformatics),
2012 International Conference on, pp. 260–264. IEEE (2012).

114 Bibliography

[124] XUE, G.-R., LIN, C., YANG, Q., XI, W., ZENG, H.-J., YU, Y., AND CHEN, Z.
Scalable collaborative filtering using cluster-based smoothing. In Proceedings of the
28th annual international ACM SIGIR conference on Research and development in
information retrieval, pp. 114–121. ACM (2005).

[125] YAN, R., LAPATA, M., AND LI, X. Tweet recommendation with graph co-ranking.
In ACL’12.

[126] YANG, M.-C. AND RIM, H.-C. Identifying interesting twitter contents using topical
analysis. Expert Systems with Applications, 41 (2014), 4330.

[127] YAZDANFAR, N. AND THOMO, A. Link recommender: Collaborative-filtering for
recommending urls to Twitter users. ANT’13.

[128] YIN, Z., GUPTA, M., WENINGER, T., AND HAN, J. Linkrec: a unified framework
for link recommendation with user attributes and graph structure. In Proceedings of
the 19th international conference on World wide web, pp. 1211–1212. ACM (2010).

[129] YU, C., LAKSHMANAN, L. V., AND AMER-YAHIA, S. Recommendation diversi-
fication using explanations. In 2009 IEEE 25th International Conference on Data
Engineering, pp. 1299–1302. IEEE (2009).

[130] ZAMAN, T. R., HERBRICH, R., VAN GAEL, J., AND STERN, D. Predicting
information spreading in twitter. In Workshop on computational social science and
the wisdom of crowds, nips, vol. 104, pp. 17599–601. Citeseer (2010).

[131] ZAMANI, H., SHAKERY, A., AND MORADI, P. Regression and learning to rank ag-
gregation for user engagement evaluation. In Proceedings of the 2014 Recommender
Systems Challenge, p. 29. ACM (2014).

[132] ZHAO, X. AND TAJIMA, K. Online retweet recommendation with item count limits.
In Proceedings of the 2014 IEEE/WIC/ACM International Joint Conferences on Web
Intelligence (WI) and Intelligent Agent Technologies (IAT)-Volume 01, pp. 282–289.
IEEE Computer Society (2014).

	Introduction
	Online Social Networks
	Factors affecting the constructions of social networks
	Twitter social network

	Motivation and Research Objectives
	Thesis Outline

	Literature Review
	Recommender Systems
	Recommender systems paradigm
	Collaborative filtering recommendation
	User-based collaborative filtering
	Item-based collaborative filtering
	Collaborative filtering practical challenges

	Content-based recommendation
	Content-based recommenders advantages
	Content-based recommenders practical challenges

	Hybrid recommendation
	Hybrid recoomender systems aggregation
	Hybrid recommender systems classes

	Recommender systems applications

	Twitter recommendations
	Followee Recommendations
	Tweet-based Content Recommendations
	Tweet Recommendations
	Retweet Recommendations

	Design and Methodology
	The Retrieval Process
	Retrieving friends and friends-of-friends
	Retrieving the timeline of the user

	Network Analysis
	Egocentric networks
	MapReduce framework
	Triangles in social networks
	Number of triangles in a graph (G)
	Triangles types in directed graphs
	Link recommendation based on triangles

	Our approach of finding and counting open triangles

	Content Analysis
	Retrieving the profile properties and timeline of the top-k users
	Tweets preprocessing
	Content-similarity measures
	Cosine similarity
	Jaccard distance

	Using N-grams

	Retweet Analysis
	Ranking of Recommendations

	Experimental Results
	User Study Evaluation
	User study design
	Demographic information of the participants
	Characterization of the participants
	Tweets rating

	Candidate Users Timelines
	Tweets and retweets of candidate users
	Outdated candidate users
	Preprocessed (re)tweets of candidate users

	Assessing the Performance of the Recommendation System
	Precision
	Normalized Discounted Cumulative Gain (nDCG)
	Reciprocal Rank (RR)
	Results and discussion

	Conclusions and Future Work
	Registering a Twitter Application
	Twitter’s REST API
	Authentication methods
	API requests
	GET friends/ids
	GET statuses/user_timeline
	GET statuses/retweeters/ids
	GET users/lookup

	Issues Related to Retrieving a User's Timeline
	Dealing with large accounts
	Dealing with character encodings
	Dealing with socket timeout

	Bibliography

