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General introduction 

 
Malaria is the most common and severe parasitic mosquito-borne disease, whose burden is still huge 

for human population. Poor communities are the most affected in the countries where malaria is 

endemic. Globally, an estimated 3.3 billion people are at risk of being infected and developing disease, 

and 1.2 billion are at high risk. According to the last estimates, 200 million cases of malaria occurred 

globally in 2013 leading to 600 000 deaths, with 90% of the cases located in Africa and with the 78% of 

the annual deaths occurring in children aged under 5 years, with the pregnant woman at higher risk 

(WHO World Malaria Report 2014). 

Recent efforts to control and even eradicate malaria have involved insecticide-treated bed-nets, 

indoor residual spraying, and antimalarial treatments, such as artemisinin-combined therapies. These 

efforts have contributed to a reduction of 42% in malaria-related deaths since 2000, however the 

growing problem of artemisinin resistance and the absence of an effective malaria vaccine make malaria 

difficult to be eradicated.      

To complicate this task malaria is caused by several parasites of the protozoan Plasmodium genus. In 

fact five species are known to cause malaria in humans: Plasmodium ovale, Plasmodium knowlesi, 

Plasmodium malariae, Plasmodium falciparum and Plasmodium vivax. Most research is focused on the 

latter two strains, which are the deadliest and the most widespread, respectively (Siu & Ploss 2015). 

 

Plasmodium falciparum life cycle 

In the P. falciparum life cycle, a female of the Anopheles mosquito transmits microscopic motile 

sporozoites to the human host during its blood-meal (Figure 1). The sporozoites travel to the liver and 

invade hepatocytes, where parasites replicate as hepatic schizonts until several thousands of merozoites 

are produced, in about 8 days. With the rupture of the hepatocyte all the merozoites are released in the 

human bloodstream, where they invade red blood cells (RBCs). The invasion of the erythrocyte is a 

complex cellular process that requires the interactions between many proteins both on the parasite and 

host surfaces, and that starts the asexual blood cycle of the parasite (Bartholdson et al., 2013). During 

this stage, responsible for the symptoms of malaria disease, the parasite undergoes cycles of growth 

and division inside the red blood cells of the host.  Each intraerythrocytic asexual cycle takes around 48 

hours. The intraerythrocytic parasite grows through the ring and mature trophozoites stages divides 

during the shizont stage and ruptures the host cells to release from 10 to 20 merozoites that invade new 

erythrocytes, spreading the infection.   

 During the asexual blood stage the intracellular parasites ingest small packets of the host cell 

cytoplasm using endocytic structures, known as cytostomes, at the surface of the parasite, and transfer 

the hemoglobin content of the RBC to the acidic digestive vacuole (Tilley et al., 2011). Trophozoites 

sequester to various organs by binding to the capillary endothelium. P. falciparum is able to remodel the 

RBC surface and structure, also presenting adhesins at the RBC surface, enabling infected RBC (iRBC) to 

adhere to blood vessels walls, in order to avoid spleen clearance.. This sequestration is due to the P. 
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falciparum erythrocyte membrane protein 1 (PfEMP1), encoded by the var multigene family.  PfEMP1 is 

exposed on structures protruding from the surface of the infected erythrocyte, called knobs, where it 

binds to some host endothelial receptors including the thrombospondin receptor (CD36), the 

intercellular adhesion molecule 1 (ICAM-1) and chondroitin sulfate A (CSA) (Tilley et al., 2011) (Tiburcio 

et al., 2015). 

 
Figure 1. Life cycle of Plasmodium falciparum. Adapted from (Pasvol, 2010)  

 

  The parasite’s asexual blood stage is responsible for the clinical symptoms of malaria. These range 

from uncomplicated fever, anemia, acidosis, renal failure and cerebral and placental malaria. The latter 

symptoms are due to the adhesion of iRBCs to brain venule endothelial cells or, in pregnant woman, to 

placental syncytiotrophoblasts (Tilley et al., 2011). In cerebral malaria, the main cause of coma, beside 

obstruction, is that the sequestration of the iRBCs can be associated with microvascular pathology as 

demonstrated by endothelial damage and perivascular ring hemorrhages. Monocytes with malaria 

pigment and fibrin-platelet thrombi are also associated with iRBCs sequestration, contributing to the 

congestion. The microvasculature congestion leads to severe endothelial damage, causing disruption of 

the vessel wall with the consequent myelin and axonal damage and breakdown of the blood brain 

barrier (BBB) (Storm, and Craig, 2014). Placental malaria is a common complication of malaria in 

pregnancy in areas of stable parasite transmission, particularly severe for primigravidae. The 

sequestration of iRBCs in the maternal vasculature of the placenta leads to the infiltration of maternal 

immune cells. This can lead in turn to the upregulation of inflammatory cytokines and to large-scale 

fibrin deposits within the placenta. The inflammatory immune response, although could limit parasite 

replication, produces a prolonged chronic infection, associated with both severe anemia and foetal 

grown restriction (Walker et al., 2013). 
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 Plasmodium asexual blood stages are not directly responsible of parasite transmission from the 

human host to the mosquito, which is ensured by the parasite sexual blood stages, the gametocytes. In 

P. falciparum, after the rupture of an asexual schizont, the released merozoites invade new 

erythrocytes, and a small portion of the newly invading parasites differentiate into gametocytes.    

Sexually committed ring stages start the gametocytogenesis: in 10-12 days parasites pass through five 

stages of maturation (stage I to V) in which they differentiate into male and female gametocytes.  From 

stage I to stage IV, the gametocytes are sequestered into internal organs, whereas only mature stage V 

gametocytes are released into the peripheral blood where they can be uptaken by an Anopheles female 

mosquito biting during its bloodmeal the infected person.  

 Once in the mosquito midgut, the gametocyte receives the signals for starting the gametogenesis. 

Such signals include a drop of temperature (by approximately 5°C) and the presence of the mosquito-

derived molecule xanthurenic acid (XA). Both male and female gametocytes lose their elongated 

morphology (‘round up’) and egress from human erythrocyte. The male gametocyte replicates its 

genome three times producing eight motile microgametes, while the female gametocyte transforms 

into a single macrogamete. Then the macrogamete is fertilized by a male microgamete and forms a 

zygote which develops into a motile ookinete that traverses the midgut cell wall and enters into the 

mosquito hemocel where it transforms into an oocyst. Inside the oocyst thousands of sporozoites are 

produced which, after the oocyst rupture, they migrate to the mosquito salivary glands, ready to be 

injected into the human host during the following bloodmeal (Kuehn and Pradel, 2010).  

 All the parasite blood stage parasites (both asexuals parasites and gametocytes) can be grown in 

vitro and hepatic stage parasites can be kept in human hepatocyte cultures. It is possible to induce, in 

vitro, the exflagellation of male gametocytes and the rounding up of female gametocytes. Recently, 

together with the growing need to eradicate malaria, it’s becoming of huge importance to induce, in 

vitro, also some mosquito stages, especially zygotes and ookinetes. 

 

Plasmodium falciparum gametocytogenesis 

 Gametocytes are the only sexual stage of the malaria parasite that develops in human erythrocyte 

and that is responsible for the transmission of the parasite from the human host to the mosquito vector. 

These nonreplicating forms circulate at lower densities and peak at different time during infection than 

asexual parasites, generally appearing, in the case of P. falciparum, 10-14 days after the first appearance 

of asexual parasites in the host bloodstream.  

 While in most Plasmodium species the sexual stages mature within 2 days, the gametocytogenesis of 

P. falciparum takes 10-12 days. (Tiburcio et al., 2015; Butterworth et al., 2013; Nilsson et al., 2015)  

During this period the gametocytes pass through five stages of maturation (Figure 2): from 24 to 30 

hours after the invasion of the host cell, the stage I gametocyte is a round cell,  morphologically 

indistinguishable from an asexual trophozoite; the stage II gametocyte is a half-moon-shaped cell (day2); 

the stage III gametocyte is a symmetric, elongated cell (day 4); this cell stretches and acquires pointed 

edges at stage IV (day 6); the stage V gametocyte displays rounded ends (day 10).  
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Figure 2. Scheme of P. falciparum gametocytogenesis. Modified from (Nillson et al., 2015) 

 

This morphological differentiation is accompanied by several cellular rearrangements, including the 

appearance, from late stage I, of a subpellicular membrane complex subtended by microtubule array 

connected with an F-actin cytoskeleton, the upregulation of approximately 200 gametocyte-specific 

genes (Young et al., 2005), specific production of approximately 200 proteins (Silvestrini et al., 2010) and 

the disassembly of the subpellicular microtubular network at the transition from stage IV to stage V of 

gametocytogenesis (Dearnley et al., 2012; Tiburcio et al., 2015), making mature gametocytes very 

specialized cells.   

 A P. falciparum parasite shows adaptive strategies regarding both the proportion of asexual parasites 

that develop into gametocytes (conversion rate) and the ratio of male to female gametocytes formed. 

The precise point in which both these decisions occur is still unclear but is thought to be prior to 

merozoites formation. Only recently it has been identified a master gene, ap2-g, responsible for 

triggering the transcriptional cascade that initiates gametocytogenesis in P. falciparum (Kafsack et al., 

2014). In asexual parasites the conserved member of the AP2 transcription family is epigenetically 

silenced by the P. falciparum histone deacetylase 2 (PfHda2) and the P. falciparum heterochromatin 

protein 1 (PfHP1) (Coleman et al., 2014; Brancucci et al., 2014).  

 Another important decision in gametocyte development is the sex ratio. The sex ratio is female-

biased (Delves et al., 2013; Teboh-Ewungkem and Wang, 2012). This is explicable with the fact that, in 

the mosquito, each male gametocyte produces up to 8 flagellated motile microgametes and that each 

female gametocyte produces only one non-motile macrogamete, so the parasites ensure to produce 

enough males to fertilize female gametes. The developmental mechanism behind the sex decision is still 

unknown, but has been suggested that merozoites from a single shizont are destinated to form either all 

male or all female gametocytes (Silvestrini et al., 2000). 

 Unlike early stage gametocytes (from stage I to stage IV), only mature P. falciparum stage V 

gametocytes are detectable in human peripheral blood. Maturation of immature gametocytes occurs 

sequestered in human internal organs, mainly in the extravascular space of the human bone marrow. 

These evidences come from recent analysis of biopsies and aspirates (Joice et al., 2014) (Farfour et al., 

2012), and also by qPCR-based detection analysis of sexual stage specific transcripts (Aguilar R et al., 

2014). Although it is still unclear whether gametocyte formation occurs in the vasculature before the 

committed asexual parasites home to the bone marrow or whether it takes place specifically in the 

hematopoietic system, the sequestration of the immature gametocytes from the circulation is 

considered a survival strategy for these cells to escape both from immune cells system and from the 
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mechanical filtration by the spleen. In fact, the onset of gametocyte sequestration seems to be 

completely different from the one of asexual stage parasites, considering that immature gametocytes 

completely lack knobs (Tiburcio et al., 2013). A combined study of ektacytometry and microsphiltration 

demonstrated that immature stage II, III and IV gametocytes are less deformable and more stiff than 

stage V gametocytes, with an important switch in deformability during the maturation of gametocytes 

from stage IV to stage V. This switch in deformability is directly associated to a dynamic association-

dissociation of proteins of the STEVOR family with the erythrocyte membrane compartment during 

gametocytogenesis, with a direct association shown in stage III/IV gametocytes, which confer the cell 

rigidity, no more detectable in stage V gametocytes (Tiburcio et al., 2012). Because of their 

deformability, stage V gametocytes are not retained by the spleen’s filtration system and can freely 

circulate in the human bloodstream where they are ingested by the mosquito.  

 

Plasmodium falciparum blood stage metabolism – Hemoglobin digestion 

During the intraerythrocytic stage, the parasite consumes up to 80% of the erythrocyte cytoplasm, 

using a cytostome to ingest packets of hemoglobin. The hemoglobin is for the parasite a source of amino 

acids and osmolytes and, by its degradation, the parasite creates the sufficient space for growth and 

division (Klonis et al., 2007). The hemoglobin degradation process occurs in the parasite’s digestive 

vacuole (DV), an acidic organelle with an estimated pH of 5.0-5.4, maintained by a proton gradient 

activated by an ATPase pump (Saliba et al., 2003).  

 It is thought that hemoglobin digestion in the malaria parasite is mediated by two aspartic proteases 

(plasmepsin I and II) and one cysteine protease (falcipain) which have been isolated and purified from 

the DV and that function optimally at an acidic pH (Goldberg et al. J Exp Med. 1991).  

 The proteolytic process of hemoglobin degradation releases free heme (ferriprotoporphyrin IX), 

which is toxic for the malaria parasite. Plasmodium species lack a heme oxygenase, the enzyme that in 

all the vertebrates is responsible for degradation of the heme moiety. For this reason the parasite 

converts the heme monomer into an inert biocrystal called malaria pigment or hemozoin, a molecule 

with paramagnetic properties that is retained into P. falciparum digestive vacuole (Coronado et al., 

2014).  

In 2012 Hanssen and colleagues utilized soft X-ray microscopy analysis of cell volume and hemoglobin 

content in erythrocytes infected by P. falciparum asexual and sexual stages (Hanssen et al., 2012). They 

demonstrated that the hemoglobin concentration in erythrocytes infected by asexual parasites shows a 

biphasic pattern: it remains constant during the ring stage and decreases 24h after invasion, when the 

parasite starts the nuclear division (corresponding to an increase in hemoglobin digestion). In 

throphozoites and in early shizonts hemoglobin concentration is sustained at a constant level because  

the parasite exhibits the most intensive hemoglobin digestion and  to decrease more in erythrocytes 

infected by segmented shizonts (Figure 3).  
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Figure 3. Transmission X-ray tomography of asexual stages of P. falciparum (Hanssen et al., 2012).  

 

During the asexual blood cycle of P. falciparum, the change in hemoglobin content of the infected 

erythrocyte is accompanied by an increase in volume of the parasite and by the concomitant decrease 

of the host red blood cell, so that the total volume of the infected erythrocyte is kept constant until 

early schizogony,.  

 In parasite sexual development, the concentration of hemoglobin in the host erythrocyte decreases 

gradually during differentiation from stage II to stage V of gametocytogenesis. By contrast, the total 

amount of hemoglobin in an erythrocyte infected by stage II gametocytes is lower than that for 

uninfected erythrocytes, similar to that of erythrocyte infected by mid-late trophozoite. The quantity 

decreases in stage III and IV of gametocytes development, to remain stable in stage V gametocytes 

(Figure 4), where hemozoin crystals are dispersed in male mature gametocytes and more condensed in 

the center of female mature gametocytes. This suggests that hemoglobin digestion is completed by 

stage IV of gametocytogenesis, which is also supported by the observation that the volume of hemozoin 

crystals remains constant in the later stages of gametocyte development. 
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Figure 4. Transmission X-ray tomography of sexual stages of P. falciparum (Hanssen et al., 2012). 

  

 These evidences show that, although about 50% of the host hemoglobin is digested by the time the 

parasite reaches the stage II of gametocytogenesis, the digestion seems to continue until the 

gametocyte reaches stage IV of development. 

 

Plasmodium falciparum blood stage metabolism – Redox equilibrium  

During the erythrocytic life, P. falciparum parasites are subjected to a large amount of oxidative 

stress, coming both from the host immune response and from hemoglobin degradation.  

 When hemoglobin is taken up by the parasites into their acidic digestive vacuole, it is converted into 

amino acids and free heme (ferriprotoporphyrin IX). Toxic heme must be detoxified from the parasite 

and up to 90% is biomineralized to form inert hemozoin. Some of this heme is however not converted 

into hemozoin and is released into the parasite cytoplasm where it is oxidized with the production of 

superoxide and hydrogen peroxide (H2O2) thatmust be degraded or sequestered to prevent membrane 

damage and parasite death (Muller 2004; Jortzik and Becker 2012).  

 In order to counteract the oxidative stress and to maintain controlled redox equilibrium, parasites 

use a NADPH-dependent thioredoxin and glutathione system (Figure 5). 
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Figure 5. Sources of oxidative stress in P. falciparum (Jortzik and Becker 2012). 

 

-The glutathione system in P. falciparum 

 The redox equilibrium of P. falciparum mostly depends on glutathione, which cycles between an 

oxidized (GSSG) and a reduced (GSH) form (Becker et al., 2003) (Figure 6). The GSSG results from many 

reactions and it is toxic for the cell at high concentration (above 100μM). It is in part exported from the 

parasite cell to the host erythrocyte and in part is recycled by the glutathione reductase (GR) or by 

thioredoxin and plasmoredoxin (Becker et al., 2003). 

 The GSH is synthesized de novo by the γ-glutamyl-cysteine synthetase (γGCS) and glutathione 

synthetase (GS) and its synthesis is essential for the development of P. falciparum in the host red blood 

cell (Patzewitz et al., 2012). 

 The P. falciparum glutathione reductase (GR) is a member of a group of enzymes known as flavo 

disulphide oxidoreductases, that specifically reduce oxidized glutathione in a FAD and NADPH-

dependent reaction in order to maintain most of the glutathione in its reduced form. 
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Figure 6. The glutathione system in P. falciparum (Jortzik and Becker 2012).  

 

 Glutathione is involved in many vital detoxification pathways in P. falciparum. GSH is the major 

reductant of the oxidoreductase glutaredoxin (Grx) which in turns reduces a number of target proteins. 

GSH also functions as a co-factor for the glutathione S-transferase (GST) for the detoxification of 

electrophilic compounds and for glyoxalase, which detoxify methylgyoxal (Figure 6) (Tripathi et al., 2007; 

Gallo et al., 2009; Jortzik and Becker 2012). 

 

-The thioredoxin system in P. falciparum  

P. falciparum expresses two thioredoxin reductase (TrxR) isoforms which are located in the cytosol 

and in the mitochondria, respectively (Kehr et al., 2010). TrxR reduces the thioredoxin (Trx) transferring 

electrons from NADPH via FAD to the disulphide substrate. So the Trx activity, which strictly depends on 

TrxR, is based on modifying the redox status of protein targets via its Cys-xx-Cys active motif (Figure 7). 

In P. falciparum three Trx have been identified that can be reduced by TrxR. Trx1 is located in the cytosol 

and can directly and efficiently reduce oxidized glutathione, acting as a backup for the glutathione 

system. PfTrx1 counteracts the parasite’s oxidative stress by directly detoxifying H2O2, tert-

buthylhydroperoxyde (tBuOOH), cumene hydroperoxydes (CHP) and S-nitrosoglutathione and by 

maintaining the antioxidant capacity of ascorbate, lipoic acid and lipoamide  (Kanzok et al., 2000).  

Furthermore, PfTrx1 reduces Trx-dependent peroxidases and the Plasmodium-specific dithiol protein 

plasmoredoxin (Plrx) (Becker et al., 2003). 
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Figure 7. The thioredoxyn system in P. falciparum (Jortzik and Becker 2012).  

 

 PfTrx1 interacts also with proteins involved in protein folding, transcription and translation, 

glycolysis, hemoglobin catabolism and signal transduction and specifically reduces S-

adenosylmethionine synthetase, S-adenosyl-L-homocysteine hydrolase, and ornithine δ-

aminotransferase (OAT).  

 The P. falciparum detoxifying system relies on NADPH-dependent enzymes that use electrons from 

the NADPH to balance the oxidative stress of the cell. At least the 80% of NADPH in the parasite-infected 

red blodd cell is produced by the P. falciparum glucose-6-phosphate-dehydrogenase 6-

phosphogluconolactonase (PfGluPho). This is a bifunctional enzyme that catalyzes the first two steps of 

the pentose phosphate pathway (PPP) and shows major structural and functional differences with 

respect to the human monofunctional counterpart glucose-6-phosphate-dehydrogenase (G6PD) (Jortzik 

et al., 2011).   

 

Resistance of P. falciparum to current antimalarial treatments and the need of new 

drugs 

 The first antimalarial treatment was discovered 400 years ago, with the observation that acutely ill 

patients were cured of specific periodic fevers after treatment with infusions of the bark from the 

‘chinchona’ plants growing in the Peruvian Amazon. Such an activity was later attributed to the alkaloid 

quinine (QN), which is still important for treating severe and complicated P. falciparum malaria. Based 

on the quinine, several 4-aminoquinolines were then synthesized and used as antimalarial drugs with, 

among them, chloroquine (CQ).   Chloroquine interferes with hemozoin crystals formation (Fitch 1998) 



11 
 

and was used for hundreds of millions of treatments annually before resistance appeared in 1960s 

(Miller et al., 2013; Aguiar et al., 2012). Chloroquine resistance is conferred by mutations in the P. 

falciparum gene encoding the chloroquine resistance transporter (PfCRT), expressed on the membrane 

of the parasite digestive vacuole (Fidock DA et al., 2000). The pfcrt gene shows an extraordinary 

sequence diversity among geographically distinct isolates and codes for a 45-KDa with ten 

transmembrane domains (Valderramos and Fidock 2006). 

Chloroquine resistance can be modulated also by mutations or changes in the expression of a P. 

falciparum P-glycoprotein homolog (PfPgh1 or PfMRD1) encoded by the P. falciparum multidrug 

resistance 1 gene (pfmdr1). This gene encodes a 162-KDa protein that resides in the membrane of the 

digestive vacuole of the parasite and that consists of two homologous halves, each with six 

transmembrane domains and a conserved nucleotide-binding domain (Valderramos and Fidock 2006). 

Both PfMDR1 and PfCRT1mutant parasites show resistance to other antimalarial drugs, including 

mefloquine, quinine, lumefantrin, halofantrine and artemisinin (Mu et al., 2003). 

 The process of hemoglobin digestion is the target also for the action of artemisinin-class 

antimalarials on Plasmodium species. The artemisinins have been developed from the ancient Chinese 

herbal remedy qinghaosu, used to cure periodic fevers. The artemisinin structure is characterized by a 

superoxide pharmacophore with a peroxide bridge that is cleaved and activated by ferrous heme or free 

ferrous iron causing the production of reactive carbon-centered radicals that kill the parasite (Hartwig et 

al., 2009). Because of it was described a hypersensitivity to artemisinin also for very early parasite (2-4 

hours post-invasion) (Klonis et al., 2013) when hemoglobin digestion not appears to occur, alternative 

pathways for artemisinin activation have been hypothesized. One possibility is that artemisinin 

activation occurs via one hemoglobin-dependent pathway, dominating in trophozoites, and one 

hemoglobin independent pathway in rings, suggesting, for example, the sarco/endoplasmic reticulum 

Ca2+-ATPase (PfSERCA) as a potential direct artemisinin target (Eckstein-Ludwig et al., 2003; Cardi et al., 

2010) or a possible metal-independent artemisinin direct association with cofactors involved in the 

maintenance of redox omeostasis (Haynes et al., 2007).  

Artemisinin was isolated in the 1970s, and from the original molecule several analogues such as 

sodium artesunate, dihydroartemisinin, arteether and artemether have been developed.  

 Atovaquone is a naphtoquinone-derivative and a structural analogue of coenzyme Q (ubiquinone) in 

the mitochondrial electron transport chain. It interferes with the transfer of electrons generated by 

pyrimidine synthesis and was shown to collapse the membrane potential. P. falciparum resistant lines 

show point mutation in the cytochrome b gene (Korsinczky et al., 2000).  

 The appearance of P. falciparum resistance to many drugs led to the necessity of finding new drug 

targets between the different metabolic pathways of the parasite, and also to introduce therapies that 

combine two different drugs (combination therapies) in order to attack the parasite on different sides. 

 Until few years ago the interest in finding new drugs mostly aimed to cure the symptoms of malaria 

caused by the asexual erythrocytic stages of P. falciparum and to counteract the widespread resistance 

to the known most effective antimalarials. Since the past decade, a new attention has been given to the 

ambitious objective of eradicating malaria. This requires to combine: 1) renewed efforts to develop 

insecticides that overcome known resistance pathways and kill all mosquitoes; 2) the delivery of 

effective vaccines that protect infant and children (nowadays almost totally absent); 3) the delivery of 
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appropriate and sensitive diagnostic tools to guide health care tactics, and 4) the discovery, 

development and delivery of new drugs that not only clear the asexual blood parasites to cure patients, 

but also kill the asymptomatic and vector stage forms, the gametocytes, that allow the transmission of 

P. falciparum.  

 So far, the only drug which has been described as active against P. falciparum immature and mature 

gametocytes, in vivo, is primaquine, an 8-aminoquinoline which however has known gastro-intestinal 

side effect and presents risk of haemolytic anemia to patients who have low activity of G6PD (G6PD-

deficiency).  For these reasons it is not recommended for infants or for pregnant women. 

 Finding new drugs means also to employ high throughput screening (HTS) assays that allow to 

simultaneously screen several thousands of compounds, in vitro, at low cost. Most of these assays have 

been used to screen drugs against asexual blood stages parasites, and were based on the possibility to 

incorporate [3H] hypoxanthine or the non-radioactive SYBR green, during parasite DNA replication. 

These assays are being replaced by enzymatic assays as luciferase assays (Siciliano and Alano 2015). The 

need of anti-gametocyte drugs imposes to develop different types of assays. For these reasons new 

enzymatic assays, as one based on the parasite lactate dehydrogenase (pLDH) detection (D’Alessandro 

et al., 2013), specific luciferase assays (Adjalley et al., 2011; Cevenini, Camarda et al., 2014) and 

functional assays such as the functional imaging assay (Lucantoni, Silvestrini et al., 2015) have been 

developed. 
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Aim of the thesis 
 

 Development of a functional imaging assay specific for testing compounds against mature 

stage V gametocytes of P. falciparum. 

 

 Development of a dual-color luciferase assay for testing compounds against both immature 

and mature gametocytes of P. falciparum. 

 

 Development of a bioluminescence assay specific for testing compounds against mature stage 

V gametocytes of P. falciparum. 

 

 Study of the mechanism of action of methylene blue against mature gametocytes of P. 

falciparum and of the parasite redox metabolism. 

 

 Evaluation of the activity and of the mechanism of action of a piperazine-containing 

compound, Actelion-451840, against asexual and immature and mature sexual blood stage 

parasites of P. falciparum. 

 

 

These aims are developed throughout the following manuscripts.  
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Abstract: Plasmodium falciparum gametocytes, specifically the mature stages, are the only malaria 

parasite stage in humans transmissible to the mosquito vector. Anti-malarial drugs capable of killing 

these forms are considered essential for the eradication of malaria and tools allowing the screening of 

large compound libraries with high predictive power are needed to identify new candidates. As 

gametocytes are not a replicative stage it is difficult to apply the same drug screening methods used for 

asexual stages. Here we propose an assay, based on high content imaging, combining “classic” 

gametocyte viability readout based on gametocyte counts with functional viability readout, based on 

gametocyte activation and the discrimination of the typical gamete spherical morphology. This simple 

and rapid assay has been miniaturized to a 384-well format using acridine orange staining of wild type P. 

falciparum 3D7A sexual forms, and was validated by screening reference antimalarial drugs and the 

MMV Malaria Box. The assay demonstrated excellent robustness and ability to identify quality hits with 

high likelihood of confirmation of transmission reducing activity in subsequent mosquito membrane 

feeding assays. 

 

Introduction 

Malaria is a disease resulting from infection by the intracellular protozoan parasite Plasmodium. It 

remains the most significant parasitic disease in the world, causing ~200 million clinical cases and up to 

750,000 deaths each year (WHO World Malaria Report 2014). Substantial efforts are being made not 

only to reduce the number of clinical manifestations and deaths attributed to malaria, but also to 

achieve eradication of this disease. Plasmodium falciparum, responsible for the most severe form of 

malaria, is transmitted by female Anopheles mosquitoes, which inject sporozoites into humans causing 

an asymptomatic hepatic infection, followed by the intra-erythrocytic parasite proliferation responsible 

for the symptoms of malaria and fatal complications of the disease such as severe anaemia and cerebral 

malaria. Within the host red blood cells, parasites undergo several rounds of asexual replication, while a 

small proportion develops into sexual forms called gametocytes. Male and female P. falciparum 

gametocytes undergo five stages of maturation (stage I to V), which last about 10 days. Mature 
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gametocytes persist in the peripheral circulation for several weeks (Bousema and Drakeley 2011; 

Bousema et al., 2010), where they can be taken up by a mosquito during a blood meal. Inside the 

mosquito midgut mature gametocytes are triggered within a few minutes to differentiate into female 

and male gametes, followed by mating. Fertilization produces a motile ookinete which further develops, 

eventually leading to the generation of infective sporozoites migrating to the insect salivary glands. 

Malaria control is mostly achieved by prevention of mosquito bites (insecticide-treated nets, indoor 

spraying) (Karunamoorthi 2011), plus prophylactic and drug treatment, presently based on artemisinin-

based combination therapy (ACT). However, emerging resistance to artemisinins in the field is a pressing 

issue (Petersen et al., 2011; Dondorp et al., 2009; Mok et al., 2015). In this context, the development of 

new antimalarial drugs is critical, as the current choice of drugs is limited. In addition to activity against 

blood stage asexual parasites, inhibition of gametocyte viability and a cognate block in parasite 

transmission, is a necessary complementation for an integrated program of antimalarial intervention.  

The last four years have seen the emergence of a considerable number of different approaches to 

determine the impact of compounds on gametocyte development (Chevalley et al., 2010; Peatey et al., 

2009; Tanaka et al., 2011; Lelievre et al., 2012; Lucantoni et al., 2013; Ruecker et al., 2014; Bolscher et 

al., 2015; Duffy and Avery 2013; Sanders et al., 2014; Cevenini et al., 2014; D’Alessandro et al., 2013; 

Wang et al., 2014; Miguel-Blanco et al., 2015). Some of these assays are focused specifically on stage IV-

V gametocytes, with the aim to identify compounds active against the mature sexual stages, the only 

ones able to survive and further develop in the mosquito blood meal. While many schizonticides, such 

as chloroquine, retain some efficacy against young gametocytes (stages I, II, and III) (Lucantoni et al., 

2013), gametocytes at late stages of maturation are less/not sensitive to them (Duffy and Avery 2013; 

Butterworth et al., 2013). The insensitive stage V gametocytes remain quiescent but infectious in the 

peripheral bloodstream for at least three weeks (Bousema et al., 2010; Eichner et al., 2001). These cells 

are directly responsible for malaria parasite transmission as they are programmed to sense the 

environmental changes in the transition from human circulation to the mosquito midgut and to readily 

transform into male and female gametes. The first event in gamete formation, induced by a decrease in 

temperature and the presence of the gametocyte-activating factor xanthurenic acid (XA), is the rapid 

morphological transition from the typical crescent shape of mature gametocytes to a round cell (Billker 

et al., 1998), in a process, essential for the progression of gametogenesis (Taylor et al., 2008), defined as 

“rounding-up” (Figure 1). 

Current screening assays for compounds active against gametocytes use a variety of detection 

methods, including measurement of parasite ATP levels (Lelievre et al., 2012), parasite enzymatic 

activity (D’Alessandro et al., 2013) or expression of a gene reporter (Lucantoni et al., 2013). Additional 

image based approaches ascertain gametocyte viability with Mitotracker (Duffy and Avery 2013), or 

measure the formation of female gametes/zygotes using antibodies against the gamete-zygote surface 

protein Pfs25 (Bolscher et al., 2015; Miguel-Blanco et al., 2015) or specifically assess male gametocyte 

ability to produce flagellated gametes (Ruecker et al., 2014). The major drawbacks in the current assays 

include the need to use gametocyte cultures highly purified from asexual parasites (D’Alessandro et al., 

2013) or from uninfected red blood cells, or both (Lelievre et al., 2012), long incubation and assay times 

imposed by the slow decay of the enzymatic or transgenic reporter activity in unhealthy or dead mature 

gametocytes (D’Alessandro et al., 2013) or by the slow accumulation of sufficient signal intensity (Duffy 
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and Avery 2013). The existing assays able to quantify female gamete formation, all based on Pfs25 

antibody, require high number of parasites, which limits throughput (Bolscher et al., 2014), and/or 

additional 16h-24h incubation of activated gametocytes/gametes to achieve adequate signal intensities 

of fluorescent labelled Pfs25 antibodies (Ruecker et al., 2014; Bolscher et al., 2014; Miguel-Blanco et al., 

2015). 

In order to address the need for a high throughput assay to measure the viability of the quiescent 

mature gametocytes we developed a simple and robust phenotypic assay, solely based on the fact that 

only viable mature stage V gametocytes are able to form gametes. After compound treatment, mature 

gametocytes are triggered to undergo gametogenesis and multiple imaging readouts are measured 

within two hours, including both the total gametocyte numbers and the fraction of those, alive, able to 

“round up”. Importantly, our high-throughput compatible assay is optimized for use with non-transgenic 

parasites, allowing the screening of mature gametocytes from any laboratory line or field isolate. 

 

Methods 

P. falciparum culture and gametocytogenesis. The strains 3D7A and 3D7-PFL1675c/ULG8-GFP were 

cultured in vitro as described by Trager and Jensen (Trager and Jensen 1976) with minor modifications. 

Briefly, parasites were maintained in human type 0-positive RBCs at 5% haematocrit (Hct) in RPMI 1640 

medium supplemented with 25 mM HEPES (Sigma), 50 µg/ml hypoxanthine and with the addition of 

either 10% (v/v) naturally clotted heat-inactivated 0+ human serum (Interstate  Blood  Bank,  Inc.) and 5 

nM WR99210 (Jacobus Pharamaceuticals) for 3D7-PFL1675c/ULG8-GFP, or 5% AB human serum (Sigma) 

and 2.5 mg/ml Albumax II (Gibco) for 3D7A. The cultures were maintained at 37°C in a standard gas 

mixture consisting of 5% O2, 5% CO2 and 90% N2. 

At Day−3 of the induction protocol, mid stage trophozoite parasites were isolated on a CS magnetic 

column (MACS) and VarioMACS separator (Miltenyi Biotec). Fresh RBCs were added to the isolated 

trophozoites to reach a final parasitemia of 2%, and the hct reduced to 1.25%. After overnight shaking, 

the Day−2 culture was put under nutritional stress overnight, by keeping the cultures at a high 

parasitemia of 9% at 2.5% hct and providing only a partial (3/4) exchange of medium. Resulting 

trophozoite parasites, Day−1, were adjusted to 2% - 3% parasitaemia and shaken overnight. Gametocyte 

cultures were maintained in medium supplemented with 50 mM N-acetylglucosamine (NAG; Sigma-

Aldrich) in order to clear residual asexual parasites and obtain a virtually pure gametocyte culture. At 

Day 4, 3D7-PFL1675c/ULG8-GFP gametocytes were isolated on a CS magnetic column, resuspended in T-

25 flasks at 2.5% hct, >50% parasitaemia and cultivated in a hypoxia workstation (Bugbox, Ruskin Intl), 

until fully mature stage V gametocytes (Day 14). 3D7A gametocytes used in the non-transgenic assay 

were diluted with fresh blood to a final gametocytemia of 10% and maintained at 2.0 - 2.5% hct in a 

standard incubator, with daily change of pre-warmed culture medium until use (stage V; day 12 of 

gametocytogenesis). 

Gametogenesis was measured by treating samples with 50 µM xanthurenic acid (XA; Sigma-Aldrich) 

in exflagellation buffer (RPMI 1640 with 20 mM HEPES, 4 mM sodium bicarbonate, pH 8.0). After 10 min 

incubation at room temperature, the numbers of macrogametes and non-activated female gametocytes 

were determined using Giemsa smears. Specific inhibition of rounding-up was achieved by incubating 

samples with 5 μM CMPD-2 (kind gift from Dr. D.A. Baker, London School of Hygiene & Tropical 
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Medicine) for 10 min at room temperature. Cultures showing an activation of 95% or above on day 12 

were used in the assay.  

 

Anti-malarial compound stock preparations and handling. A panel of 39 antimalarial compounds 

(see Table S1 for complete details) was prepared as 10 mM / 100% DMSO stock solutions from solids. 

For IC50 determination, DMSO compound stocks were serially diluted in 384-well deep well 

polypropylene storage plates (Axygen), across the plate. The dilutions made resulted in three 

concentrations per log dose for each compound tested (14 points, final concentration range 10 µM – 0.5 

nM). All dilutions were in 4% DMSO, of which 5 μl were stamped into the assay plate, using a Minitrak 

(PerkinElmer) liquid handler, to a final DMSO concentration of 0.4% v/v. The antimalarials were tested in 

three biological replicates. 

The MMV Malaria Box was received as 10 mM stocks in 100% DMSO. Compounds were reformatted 

into 384-well format while being pre-diluted twofold into 100% DMSO. DMSO-diluted stocks were 

stored at −20°C and once thawed were not repeat freeze-thawed in order to maintain the integrity of 

the compounds. On the day of assays, stocks were further diluted 25 fold in water and finally 10 fold 

into culture, to obtain a final screening concentration of 5 µM at 0.4% DMSO. The MMV Malaria Box was 

screened at a single dose of 5 µM, in two biological replicates. MMV Malaria Box hits were manually 

cherry-picked, serially diluted as described above and tested in dose-response (14 points, range 10 µM – 

0.5 nM) in three biological replicates. 

 

Assay Development: Proof of Principle. As proof of principle, the initial assay was developed using a 

96 well plate format with 3D7-PFL1675c/ULG8-GFP transgenic parasites. Mature gametocyte cultures 

were plated in 96 wells imaging plates (Ibidi, Germany), in a final volume of 100 μL per well. To test the 

relationship between the automated gamete count and the initial gametocyte density per well, 

gametocytes were seeded at different initial densities (1,250 – 90,000 per well). The rounding-up 

process was activated 48 hours post-incubation by the addition of 5 μL XA (50 μM final concentration). 

Gamete numbers were measured in 20 wells using a Scan^R automated imaging cytometry station 

(Olympus, Japan). Briefly, microplates were imaged with a UPLSAPO 20X N.A. 0.75 (Olympus, Japan) and 

a filter cube consisting of 470-90nm excitation, 500nm dichromatic mirror and 520 nm long-pass 

emission. Gametocytes were seeded at a final average density of 40,000 / well, which allowed sampling 

of a statistically relevant number of events from a single 400x400 µm image field from each well. The 

Scan^R Analysis software (v2.5.1) was used to detect and analyze gametocytes from each well. The 

'edge' algorithm was used to segment images and shape and intensity thresholds were finely adjusted 

for each experimental session in order to exclude debris and poorly stained cells. Further area- and 

circularity-based gating of events allowed complete separation of elongated (gametocytes) versus round 

(gametes) parasites and compared to manually counted gametes using a haemocytometer. The number 

of identified parasites per well image (average ± SD) was plotted against the actual number of parasites 

per well using linear regression. 

In a separate experiment, the speed of gametocyte rounding-up was determined by the addition of 

paraformaldehyde (PFA, 2% final concentration) at different time intervals after stimulation of mature 

gametocytes with XA and temperature shift. 
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As candidate positive controls specific for blocking the rounding up process even in presence of XA 

stimulation, we tested the specific PfPKG inhibitors CMPD-1 and CMPD-2 (McRobert et al., 2008; Taylor 

et al., 2010) in 8 points dose response. 

 

Acridine Orange Gamete (AO-GMT) assay. For greater versatility, a HTS assay was designed which 

would allow the use of non-transgenic parasite strains, where gametocytes were stained with a 

fluorescent dye. For this assay, experimental compounds prepared as described above were dispensed 

in 384 black clear-bottom imaging plates (Viewplate, PerkinElmer) and added with 20 µl of medium. In 

each AO-GMT assay plate the following in-plate controls were used: 5 μM CMPD-2 (7 wells); 5 µM 

Methylene Blue (MB; 7 wells); 0.4% DMSO (14 wells). 

Plates were then pre-warmed at 37°C for a minimum of 30 minutes. 3D7A gametocytes on day 12 of 

gametocytogenesis from cultures showing acceptable rounding-up upon XA stimulation were seeded in 

the pre-warmed plates using a Multidrop (Thermo Scientific) 384 reagent dispenser to a final volume of 

45 µl and 0.1% hct (40,000 gametocytes per well). Plates were sealed with gas-exchange membranes 

(Breathe Easy, Sigma) and immediately returned to standard incubation conditions (37°C; 5% O2, 5% CO2 

and 90% N2). Extreme care was taken in keeping handling time to a minimum and to ensure pre-

warming of all tools and reagents at 37 °C before use. 

After 48 hours incubation, plates were retrieved and brought to room temperature. Using a Bravo 

Automated Liquid Handling Platform (Agilent), half of the culture supernatant volume was slowly 

aspirated from each well and gently replaced with RPMI supplemented with 25 mM HEPES (Sigma) and 

50 µg/ml hypoxanthine, 80 µM XA and 120 nM acridine orange base (AO; Sigma) to final in-well 

concentrations of XA and AO of 40 µM and 60 nM, respectively. Plates were imaged after 2.5 hours 

light-protected incubation at room temperature (22.7 ± 0.3 °C). The assay workflow is illustrated in 

Figure 2. 

 

Imaging data analysis. Image acquisition and analysis was undertaken on an Opera QEHS micro-plate 

confocal imaging system (PerkinElmer). Four field images were taken from each well at 5 μm from the 

bottom of the 384-wells imaging plates using a 20X water immersion objective using 488 nm excitation 

and 520/35 nm emission, and an exposure time of 280 - 400 msec.  

A custom script based on the spot detection algorithm was developed using the high-volume image 

data storage and analysis system Columbus 2.5 (PerkinElmer). A first pass selection was used to filter out 

unwanted spots based on size (accepted range 45 – 100 px2) and background-corrected spot intensity 

(accepted range between the 5th and 95th percentile of DMSO and CMPD-2 pooled spot populations). 

A second pass selection using a spot width-to-length cutoff of 0.65 allowed to discriminate between 

“spherical” fluorescent gametes, and crescent-shaped fluorescent gametocytes within the selected spot 

population. With these specifications, it took approximately 20 minutes to screen one full plate. 

The use of both a ‘full kill’ (MB) and a ‘no round-up’ (CMPD-2) control in each plate, together with the 

shape-recognition script allow the simultaneous quantification of compound effects on the overall 

gametocyte population (irrespective of their ability to round-up, i.e. a “classical” fluorescence-based 

gametocytocidal assay), as well as to determine the impact on functional viability and efficiency of 

rounding-up. 
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Raw imaging data were exported to Excel 2010 (Microsoft) and reduction in gametes and total sexual 

form numbers, as well as inhibition of rounding-up were calculated as a percentage of the relevant 

positive and negative controls as below: 

1: 

% activated gametocyte / gamete inhibition 

=  100 −
gamete no.  sample −  gamete no.  CMPD−2

gamete no.  0.4% DMSO − gamete no.  CMPD−2
×  100; 

2: 

            % inhibition of rounding − up =  100 −
RND  sample− RND  CMPD−2

RND  0.4% DMSO− RND  CMPD−2
×  100, 

where RND is the proportion of female gamete in each well: 

3: 

RND =  
gamete no.  sample

gamete no.  sample +  gametocyte no.  sample
 

4: 

              % total gametocyte inhibition =

  100 −
(gametes+gametocytes)  sample − (gametes+gametocytes)  MB

(gametes+gametocytes)  CMPD−2 − (gametes+gametocytes)  MB
×  100. 

 

CMDP-2, an inhibitor of rounding up, which completely blocks activation but does not kill 

gametocytes, was used as either positive control for activated gametocyte numbers and rounding-up 

(no activation) vs 0.4% DMSO (max activation), as well as negative control for total parasite numbers (no 

kill and no activation) vs MB (full kill).  

The assay quality was evaluated for each readout using the Z’ parameter, defined as: 

Z′ =  
3 × σneg + 3 × σpos

avgneg − avgpos
 

where avg and σ represent the average and standard deviation of the signal obtained from at least 7 

wells; and neg and pos represent the relevant negative (maximum signal) and positive (minimum signal) 

controls used for each readout. 

Correlation between number of gametocyte per well determined by microscopy counts or identified 

by the light microscopy Scan^R assay script were calculated using Excel 2010 (Microsoft). Correlation 

between total sexual form counts and gamete numbers obtained in the HTS confocal imaging assay was 

calculated using SPSS v.21 (IBM). Normalized % inhibitions were plotted against log µM concentration of 

each compound and IC50 values were calculated using a variable slope, 4 parameter non-linear 

regression analysis in GraphPad Prism 5.0. IC50 values were not calculated for compounds which did not 

reach maximal inhibition at the highest concentration tested. 

 

Standard Membrane Feeding Experiments. Standard Membrane Feeding Experiments were 

performed as described previously (Zhang et al., 1999). Briefly, compounds were diluted in DMSO and 

RPMI1640 medium and combined with mature gametocytes from P. falciparum reporter strain NF54-

∆Pf47-5’hsp70-GFP::Luc to a final compound concentration of 1 and 10 µM (0.1% DMSO) and incubated 

for 24 hours. Subsequently, the haematocrit was adjusted to 56% by adding fresh human red blood cells 
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(Sanquin, the Netherlands) and the bloodmeal was fed to 2 day old Anopheles stephensi mosquitoes. 

Eight days post-feeding, ten mosquitoes from each of the two vehicle control (0.1% DMSO) cages were 

dissected and the baseline oocyst intensity was determined by microscopy following staining of the 

midguts with 2% mercurochrome. In addition, twenty-four mosquitoes from each cage were 

homogenized and luciferase reporter activity was determined as described previously (Stone et al., 

2014). 

 

Results 

Healthy mature gametocytes of P. falciparum exposed to a drop in temperature and 40 μM XA are 

readily triggered to undergo gamete formation. The first step of the process is the fast transition from 

the typical elongated shape of both male and female gametocytes to a spherical cell, still enclosed in its 

erythrocyte membrane (Figure 1). With the only assumption that this process requires the mature 

gametocyte to be alive, as it needs to sense the change in environment and to respond by modifying its 

cell shape, we hypothesized that effects of compounds on mature gametocyte viability could be 

phenotypically assessed from their ability to “round up” and that failure to undergo this developmental 

step would be predictive of the compounds’ transmission-blocking activity measured in experimental 

infections of mosquitoes. To this end we devised an imaging-based assay measuring  the number of 

induced spherical activated gametocytes in a format suitable for high throughput screening of large 

compound libraries, and then compared the data from our assay with published or newly generated 

data on the transmission-blocking activity in the mosquito of the identified hits. 

 

 

         
Figure 1. A. The mature gametocyte activation process (modified from Kuehn and Pradel 2010). B. Time lapse of 

gametocyte rounding-up. 
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Establishing Proof of Principle for the rounding-up assay. To establish the “rounding up” assay, a P. 

falciparum transgenic line expressing a GFP reporter under control of the flanking regions of parasite 

gene PFL1675c, abundantly transcribed in stage V gametocytes was initially used. This strain produces 

elongated mature gametocytes which are readily distinguishable, by fluorescence microscopy, from the 

spherical rounded up gametes (Figure 2A,B). Synchronous stage V gametocytes were obtained in 96 

wells microtiter plates18 to develop a proof-of-principle assay (GFP-GMT) in which GFP detection of 

elongated gametocytes and of induced spherical gametes was achieved with a Scan^R (Olympus, 

Germany) modular epifluorescence microscope-based imaging platform. Script parameters were 

specifically optimized (see methods for full details) to identify the fluorescent cells and subsequently 

enable spherical gametes to be distinguished from elongated gametocytes. In this protocol, each 

fluorescent parasite was identified by calculating background-corrected fluorescence intensity and an 

edge segmentation parameter, which defined the object for further analysis as a region of interest (ROI). 

For each ROI, a circularity factor was then calculated to classify the object as a spherical rounded up 

gamete or as an elongated, non-activated gametocyte. Further area- and circularity-based gating 

parameters were incorporated to ignore signal from debris and poorly stained cells, and to specifically 

identify elongated gametocytes and round gametes, importantly generating image galleries of the 

individual objects for post-assay quality control inspections. 

A linear relationship was observed between the number of gametocytes per well, as determined by 

manual haemocytometer counts, compared to the automated script estimation. An r2 value of 0.98 was 

obtained and linearity was maintained from 1250 to 80,000 gametocytes per well (Figure 2C). 

In establishing the gametogenesis induction protocol, a time course was performed to define the 

minimum time necessary to achieve a satisfactory rounding up efficiency before image acquisition. 

These experiments showed that 10 minutes are sufficient to achieve rounding up of 80% of the induced 

gametocytes (Figure 2D). 

In order to introduce a reliable baseline control of non-activated gametocytes, we tested two specific 

inhibitors of the gametocyte rounding up process, Compound 1 and Compound 2 (CMPD-1 and -2). 

These are potent inhibitors of the P. falciparum cGMP-dependent Protein Kinase G (PKG), previously 

described to block the gametocyte transition from crescent to spherical shape (CMPD-1 IC50 = 5.8 nM 

against recombinant PfPKG) (McRobert et al., 2008). Mature gametocytes were activated with XA in 

presence or absence of increasing concentrations of CMPD-1 and CMPD-2; parasites were fixed with 2% 

paraformaldehyde after 10 minutes and the plate imaged. Results (Figure 2E) confirmed a higher 

inhibitory activity of CMPD-2 (IC50 = 0.07 μM) compared to CMPD-1 (IC50 = 0.47 μM) (McRobert et al., 

2008; Taylor et al., 2010), and the former was chosen as the reference rounding-up inhibitor in the 

assay. 
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Figure 2. A, B. Representative images of fluorescent gametocytes (A) and gametes (B) from the parasite line 3D7-

PFL1675c/ULG8-GFP . C. Linearity plot of the number of gametocyte per well determined by microscopy counts or identified 

by the assay script after Scan^R station automated cytometry imaging. D. Kinetic of rounding-up efficiency in a gamete 

activation time course with 3D7-PFL1675c/ULG8-GFP gametocytes. E. Dose-response analysis of the action of CMPD-1 and 2 

inhibitors on rounding-up of 3D7-PFL1675c/ULG8-GFP gametocytes. 

 

Assay miniaturization and scale-up for HTS. To develop an assay not reliant on transgenic 

gametocytes but potentially applicable to any parasite line or clinical isolate, the assay protocol 

optimised for proof of principle was modified to introduce a straightforward step for parasite labelling 

with the fluorescent dye, Acridine Orange (AO). AO has been previously demonstrated to have very low 

anti-plasmodial activity, compared to other fluorescent dyes (Joanny et al., 2012). The final AO 

concentration of 60 nM utilized in our assay is 51-fold lower than its reported IC50 against 3D7 stage V 

gametocytes (Gebru et al., 2014). The introduction of an additional full-kill positive control treatment, 

the potent gametocytocidal compound, Methylene blue (MB) (Adjalley et al., 2011), allowed the assay 

to simultaneously measure the gametocytocidal and rounding-up inhibitory effects of compounds 

(Figure 3A). Importantly, the AO gamete (AO-GMT) assay was adapted to 384 well format for HTS. In all 

assay runs, the in-plate controls consisted of 5 μM MB and 5 µM CMPD-2 as positive controls (7 wells 

each) and 0.4% DMSO as the negative control (16 wells). The average ± SEM Z’ values for gamete 

numbers (CMPD-2 as positive control) and total gametocyte numbers (MB as positive control) were 0.69 

± 0.02 and 0.66 ± 0.02, respectively (n = 12). The DMSO control showed an average %CV of 8.0% ± 

0.004% (n = 12). The performance of the assays was extremely stable from the first to last plates with 

high within-plate reproducibility (Figure 3B). The final flow chart of the AO-GMT assay is illustrated in 

Figure 4. 
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Figure 3. A. Quantitative comparison (n = 17) and exemplar images of positive and negative controls P. falciparum 3D7A 

parasite populations, obtained from the Opera High Content Screening system. Dark bars = activated gametocyte numbers; 

light bars = total gametocyte numbers. Error bars represent SEM; percentages above bars indicate % rounding-up. 

B. AO-GMT assay in-plate control data. Spots identified by the script as gametes (left panel) and gametocytes (right panel) 

in wells treated with 0.4% DMSO (closed circles); 5 µM methylene blue (close squares) or 5 µM CMPD-2 (open squares). 

Average numbers ± SEM. Error bars in positive controls are masked by symbols in some cases due to their small size.  
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Figure 4. Workflow of the AO-GMT assay and the underlying parasite biology. 

 

Activity of current anti-malarial compounds on mature gametocytes. The AO-GMT imaging assay 

was used to screen a set of 39 known antimalarial drugs belonging to different chemical classes and 

acting via different mechanisms on asexual parasites, whose activities have been recently tested against 

multiple malaria parasite species and stages (Delves et al., 2012) and on P. falciparum gamete formation 

(Ruecker et al., 2014; Bolscher et al., 2015; Sun et al., 2014). 

Compounds were tested in dose-response at a maximum concentration of 10 μM for 48h. In brief, 

results showed that very few compounds affected gametocyte numbers and viability with an IC50 value 

below 5 µM (Table 1). The low number of active compounds identified is in agreement with previous 

published assays (Ruecker et al., 2014; Bolscher et al., 2015; Sun et al., 2014). Analysis of the inhibition 

readouts at 10 µM showed, as expected, a broad correlation between activity on gametes and on total 

gametocytes. 
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Table 1. Activity of a panel of antimalarial drugs and compounds on gametes, total sexual forms and rounding-up 

efficiency. 

 

 Generally, active compounds showed a higher activity on gamete inhibition with respect to 

gametocyte viability (Figure 5), an observation likely explained by the higher sensitivity of the functional 

viability readout. Five compounds, namely thiostrepton, cycloheximide, artemisone, atovaquone and 

primaquine, were found to reduce gamete numbers more than total parasite numbers at this 

concentration (Table 1).  

 

                                   
Figure 5. A. Activity of 39 current and candidate antimalarial drugs on mature P. falciparum 3D7A gametocytes and their 

rounding-up process. Scatterplot of activities of all compounds Compounds were tested at 10 µM concentration. Red and 

green lines represent 50% activity thresholds for functional viability and total gametocytes readout, respectively. Five 
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compounds showing a higher inhibition on gametes than on total gametocytes are shown as blue squares (thiostrepton, 

cycloheximide, artemisone, atovaquone and primaquine). 

 

Methylene blue represented the only compound from the panel tested which exhibited strong 

inhibitory activity against mature gametocytes, with an IC50 of 0.17 ± 0.04 µM for gametes and 0.28 ± 

0.04 µM for total gametocytes, in agreement with previous reports (Ruecker et al., 2014; Bolscher et al., 

2015; Duffy and Avery 2013; Miguel-Blanco et al., 2015; Adjalley et al., 2011; Sun et al., 2014; 

Spangenberg et al., 2013). Antimalarial drugs belonging to the 4-aminoquinoline, 8-aminoquinoline and 

antifolate classes have previously been shown to have poor late stage gametocytocidal activity in vitro 

(Ruecker et al., 2014; Bolscher et al., 2015; Duffy and Avery 2013; Miguel-Blanco et al., 2015; 

Spangenberg et al., 2013). As expected, our AO-GMT assay detected activity for most of these 

compounds only at concentrations above 2.5 µM. Only naphthoquine displayed moderate IC50 values in 

similar ranges for gametes and total sexual forms of 1.14 ± 0.23 and 1.60 ± 0.22 µM. Pyrimethamine, 

reported to selectively target male gametogenesis (Ruecker et al., 2014; Delves et al., 2013), was 

inactive in our female gamete assay. Among the aminoalcohols only mefloquine (both racemic and +RS) 

reduced gamete numbers, with an estimated IC50 of 5 µM, similar to other recent reports on female 

gamete assays (Ruecker et al., 2014; Bolscher et al., Miguel-Blanco et al., 2015). No specific effect on 

rounding-up efficiency was observed. Of the seven antibiotic-like compounds tested, only thiostrepton 

and cycloheximide demonstrated activity against gamete formation. Thiostrepton was the most potent, 

with an IC50 of 1.39 ± 0.31 µM on rounded forms. Interestingly, upon treatment with the two 

compounds at 10 µM, 92.6% and 62.1% gamete inhibition were observed, respectively, however total 

gametocyte counts were only slightly reduced, demonstrating that these compounds mainly affected 

the rounding-up process itself (thiostrepton RND EC50  1.97 ± 0.16 µM). Previous work has pointed out 

that endoperoxides have inhibitory effect on P. falciparum sexual stages, although with large assay-

related differences (Ruecker et al., 2014; Bolscher et al., 2015; Duffy and Avery 2013; Miguel-Blanco et 

al., 2015; Spangenberg et al., 2013). In our 48h AO-GMT assay none of the five endoperoxides tested 

fully inhibited gametes or gametocytes at 10 µM, however artemisone and artesunate reached 50% 

gamete inhibition at 5 µM. 

 

Phenotypic Screening of the Medicines for Malaria Venture Malaria Box. Medicines for Malaria 

Venture (MMV) has assembled a “Malaria Box” of 390 compounds with antimalarial activity against 

asexual blood stage parasites (Spangenberg et al., 2013) and made it freely available to the research 

community for use in the identification of new antimalarial targets and for screening against other 

parasite stages, as well as against unrelated organisms. 

Given the amount of transmission blocking data rapidly accumulating on this focused library 

(Medicines for Malaria Venture 2015), the MMV Malaria Box was chosen to further validate the AO-

GMT assay. Compounds were screened at 5 µM with a 48 h incubation on stage V gametocytes. A strong 

linear correlation (r2 = 0.957) was observed between the inhibition values obtained by the two assay 

readouts, namely efficiency of gamete rounding up and total number of sexual forms after compound 

incubation, suggesting that a compound’s gametocytocidal activity is quantitatively described by either 

parameter. However, a scatter plot of the values from these readouts shows that with increasing 
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gametocytocidal activity an increasing number of compounds reduced gamete numbers more than total 

sexual forms (visible as outliers in Figure 6A). This observation confirms the higher sensitivity of the 

functional readout over the total count, as already observed with reference antimalarial drugs. The 

overall comparison of the two assay readouts also indicated that none of the Malaria Box compounds 

exclusively affected gamete formation without reducing total gametocyte numbers at the same time, 

i.e. no compound showed an activity similar to that of the CMPD-2 control. 

Primary screening identified 37 hits with > 50% inhibitory activity on gamete formation. Of these, 

three compounds were immediately excluded from the active hit list due to autofluorescence or clearly 

visible artifacts detected upon inspection of the screening images. 

The majority of the hits detected at the 5 µM screening dose were gametocyte/gamete inhibitors (24 

compounds, 71% of the total hits), while fewer compounds showed a gamete-biased activity (i.e. 

decreased the rounding-up efficiency to a higher degree than they reduced total parasite numbers; 10 

hits, 29% of the total) (Figure 6B). Of the gamete-biased hits, MMV000760, MMV000787, MMV007907 

and MMV396797 showed gamete vs. total gametocyte inhibitions of 69.0% vs. 38.8%, 66.2% vs. 42.0%, 

77.1% vs. 48.1% and 88.1% vs. 51.9%, respectively. These results indicate that such compounds, while 

killing a proportion of the gametocyte population at 5 µM, also cause sterilization of the remaining, 

otherwise viable population.  
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Figure 6. A. Scatterplot of activity on gamete formation and gametocytes for the entire MMV Malaria Box. Spots are total 

gametocyte percent inhibition values (X axis) and difference between gamete inhibition and corresponding X value (Y axis) of 

two biological replicates; red and green lines represent 50% activity thresholds for functional viability and total gametocytes 

readout, respectively. Dotted gray line indicates gamete and gametocyte inhibition equipotency. White diamonds correspond 

to the two compounds with the most potent gametocytocidal activity in subsequent dose-response tests. Compounds were 

screened at 5 µM concentration. B. Overview of screening outcomes; see Supplementary Table S2 for the complete dataset. 

 

 

The inhibitory activity of the twenty four anti-gametocyte/gamete hits was confirmed in follow-up 

dose-response experiments (Table 2), using fresh stock concentrates. The most potent inhibitors of 

gamete formation were MMV006172 and MMV665980, with submicromolar IC50 values of 0.455 ± 0.040 

µM and 0.809 ± 0.100 µM, respectively. Twelve more confirmed hits, while still completely inhibiting 

gamete formation at the highest concentration of 5 µM, showed a lower potency with IC50 values in the 

range of 1.1 – 2.9 µM. The rest of the confirmed hits only reached inhibition values between 50% and 

85% at the highest concentration, and therefore an IC50 value was not calculated. 
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Table 2. Activity of the confirmed AO-GMT hits from the MMV Malaria Box on P. falciparum 3D7A gamete formation and 

gametocytes. 

  

Five of the 8 confirmed hits with an IC50 below an arbitrary threshold of 2.5 µM (MMV665980, 

MMV019918, MMV000448, MMV665941, MMV667491) have been recently shown to be efficient 

transmission blocking compounds in dose-response Standard Membrane Feeding Assay (SMFA) 

experiments (data available at ChEMBL: http://www.ebi.ac.uk/chemblntd). The remaining three 

compounds (MMV006172, MMV007591 and MMV005830) had never been previously tested by this 

assay. We therefore assessed the transmission reducing potential of these compounds by SMFA 

performed on mature gametocytes treated for 24 h at 1 and 10 µM. Microscopic analyses of midguts of 

mosquitoes in the vehicle control cages showed a baseline infection of 2.8 oocysts on average per 

mosquito. Analyses of luminescence signals showed that all compounds reduced oocyst intensities by 

more than 85% at 10 µM (Figure 7). The most potent hit in our assay, MMV006172, was also the most 

active in SMFA, resulting in a  complete block of infection intensity and prevalence  at 10 µM,  and near 

complete block at 1 uM (99,8% inhibition of oocyst intensity and 98% inhibition of oocyst prevalence). 

Next, MMV007591 completely blocked infection intensity and prevalence at 10 µM and at 1 µM 

resulted in 80% and 62% reduction of intensity and prevalence, respectively. Finally, MMV005830 was 

the least effective, resulting in 85% and 69% reduction of intensity and prevalence, respectively, at the 

highest concentration tested of 10 µM. At 1 uM, no significant reduction was present. In conclusion, 

these results collectively demonstrate that all the AO-GMT assays confirmed hits tested in SMFA 

Table 1. Activity of the confirmed hits from the MMV Malaria Box on gamete formation and gametocytes.

compound name Set IC50 (µM)‡ ± SEM % inhibition † ± SEM IC50 (µM)‡ ± SEM % inhibition † ± SEM % of control † ± SEM

MMV006172 Probe-like 0.455 0.040 107.33 1.67 0.405 0.090 103.30 0.52 15.12 8.96

MMV665980 Probe-like 0.809 0.100 99.00 2.52 74.82 5.98 16.19 2.75

MMV019918 Drug-like 1.063 0.167 * 95.67 2.03 0.825 0.123 * 88.47 1.82 44.99 4.34

MMV000448 Probe-like 1.095 0.117 * 105.67 1.45 0.643 0.121 * 104.08 0.58 30.45 8.09

MMV665941 Probe-like 1.553 0.276 * 90.67 1.86 0.843 0.265 * 90.84 3.05 74.57 3.22

MMV007591 Probe-like 1.731 0.148 98.33 4.37 1.504 0.269 * 98.32 5.68 53.14 10.91

MMV667491 Probe-like 2.354 0.215 * 98.67 2.33 1.710 0.427 * 93.21 1.03 43.33 10.42

MMV665830 Probe-like 2.469 0.205 * 87.67 3.84 2.043 0.403 * 84.31 2.55 65.52 6.83

MMV396797 Drug-like 2.635 0.113 * 93.00 2.65 69.86 5.88 29.36 2.08

MMV000787 Probe-like 2.693 0.172 * 86.00 0.58 52.57 1.94 29.09 0.47

MMV019690 Probe-like 2.711 0.124 * 93.33 2.60 2.252 0.429 * 91.54 1.58 59.44 9.76

MMV006169 Probe-like 2.718 0.271 * 88.67 7.26 1.710 0.427 * 92.75 7.96 77.61 8.75

MMV019555 Probe-like 2.768 0.176 * 89.33 0.33 79.63 1.75 46.61 3.45

MMV666597 Probe-like 2.926 0.269 * 95.00 6.56 1.927 0.422 * 94.67 4.37 63.97 16.32

MMV000788 Drug-like 80.00 2.52 52.24 1.37 37.14 2.12

MMV396794 Drug-like 80.00 4.16 77.83 1.82 68.81 10.62

MMV006429 Drug-like 75.00 8.62 73.56 4.76 73.16 12.17

MMV665878 Drug-like 74.67 4.91 68.77 2.38 65.04 5.16

MMV007907 Drug-like 74.00 5.13 52.50 3.35 45.41 5.62

MMV000963 Drug-like 73.33 6.01 73.44 5.51 75.53 3.75

MMV000662 Drug-like 71.33 7.54 70.55 6.25 73.43 6.57

MMV396749 Drug-like 57.00 5.13 55.22 2.36 77.27 1.66

MMV665969 Probe-like 56.33 3.48 51.39 1.20 74.19 2.18

MMV306025 Drug-like 50.67 12.33 55.53 9.26 83.65 5.31

* IC50 value to be considered as approximate (maximal inhibition plateau not reached)

† activity at 5 µM shown

‡ IC50 values were calculated only for compounds whose inhibition at 5 µM reached at least 85%

gametes total sexual forms proportion of rounding-up



35 
 

possessed transmission blocking activity in the mosquito. The SMFA and the AO-GMT assay results are 

therefore in excellent agreement, and provided strong evidence for the predictive power of our 

phenotypic assay.  

 

 
Figure 7. Transmission-reducing activity of three confirmed MMV Malaria Box hits. (A) SMFA showed a baseline mean 

oocyst density of 2.8 mosquitoes per midgut. (B) Luminescence-based assessment of oocyst prevalence (% infected 

mosquitoes). The figure shows average prevalence determined from two independent feeds. Error bars indicate standard 

deviations. (C) Luminescence-based assessment of oocyst intensity. The figure shows luminescence counts in individual 

mosquitoes from replicate feeds (open circles and triangles). Lines and error bars indicate the average and standard error of 

the mean. 

 

Discussion 

This study addressed the need for high throughput assays (HTS) to predict the effect of compounds 

on the mature gametocyte stages of P. falciparum to identify molecules able to block the transmission 

of the parasite from infected humans to mosquitoes. Stage V gametocytes persist in the circulation for 

several weeks and play an essential role for the continuation of the P. falciparum parasite life cycle and 

thus malaria, making them an attractive drug target. However, the apparently quiescent nature of these 

parasites has proven to be the main obstacle in the development of assays capable of reliably 

monitoring their infectivity, thus leaving the SMFA approach as the only functional assay to evaluate 

compound transmission blocking activity. Although the throughput of this assay has been improved by 

use of luminescent reporter parasites (Stone et al., 2014), its capacity is still too limited for screening of 

very large compound libraries. Therefore, there is a need for assays with higher throughput that can 

preselect compounds for subsequent validation in the SMFA.  

As the mature gametocyte is highly responsive to environmental changes, ready to suddenly 

transform into a gamete, we used the first event in gametocyte activation (the “rounding up”) as the 

most sensitive and fastest phenotypic readout of our assay, which in addition makes it specific to 

measure the functional viability of the mature gametocytes. Our results indicate that a high level of 

gametocyte activation is efficiently and reproducibly obtained from highly synchronous, mature stage V 

gametocytes in 384 well plates. 
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Solely based on the ability to count and distinguish elongated gametocytes and spherical gametes, 

our imaging based assay has been validated using reference antimalarial drugs and a pilot screen of a 

small focused library (390 compounds MMV Malaria Box). The protocol, initially performed on GFP-

expressing transgenic parasites, was adapted to assess mature gametocytes of any genetic background 

by labelling the parasites with the inexpensive AO stain. The imaging protocol and scripts specific for this 

assay were developed for use on a confocal high-content imaging system, in conjunction with high-

throughput liquid handling equipment, to obtain a HTS assay. This approach extends the use of the high 

content HTS approach recently proposed for asexual (Duffy and Avery 2012) and sexual parasites (Duffy 

and Avery 2013; Miguel-Blanco et al., 2015) taking advantage of the unique morphology of P. falciparum 

gametocytes and gametes.  

In the HTS adaptation of the AO staining assay, the time elapsing between gametocyte activation and 

automated image acquisition is of the order of 1-2 h. This makes the AO-GCT assay particularly suited to 

monitor the viability of female gametocytes, as the activated male gametocytes maintain a spherical 

shape only for about 10 minutes (Sinden et al., 1978), after which they quickly progress to divide into 

flagellated microgametes, undetected by our assay. As the sex ratio in Plasmodium 3D7A gametocytes is 

strongly female biased, with male gametocytes representing about 1/7 of the total gametocytes 

(Schwank et al., 2010), the AO-GMT assay is nevertheless reliably monitoring compound activity on the 

vast majority of the gametocyte population. The assay is however versatile as the protocol can 

accommodate a cell fixation step after 10 minutes from gamete activation, which, although not practical 

in HTS of large chemical libraries, enables the imaging of all (male and female) round forms in follow-up 

experiments on small number of compounds of interest. The comparison of the AO-GMT assay with the 

two published assay approaches monitoring female gamete formation (Ruecker et al., 2014; Bolscher et 

al., 2015; Miguel-Blanco et al., 2015) indicates that our assay does not require expensive detection 

reagents such as labelled antibodies and/or chemoluminescent immunoassay detection kits, neither the 

long incubation times after gamete activation (16 to 24 h), necessary for those reagents to achieve 

satisfactory fluorescence intensity on the gamete surface (Table 3). Importantly, image acquisition 

within a short time after the induction of gametogenesis ensures that the phenotypic readout truly 

reflects compound effects on the mature gametocyte, rather than possible confounding effects on 

female gamete viability. In addition, this is the first assay with the capability to simultaneously count 

elongated gametocytes and activated gametocytes / female gametes in the same well. Our assay can 

therefore uniquely distinguish between sterilizing compounds that inhibit gametocyte rounding-up 

without affecting total sexual forms and gametocytocidal compounds, as well as partial, dose-related 

effects (Figure 4). This feature can contribute to the identification of sterilizing compounds with 

arguably different mechanisms of action compared to gametocytocidal compounds. So far, however, 

none of the tested antimalarial compounds possessed a female sterilizing activity devoid of inhibition of 

total gametocytes. Moreover, we found that total gametocytes count is an equivalent predictor of 

compound activity as gamete formation. 
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Assay AO-GMT assay 
GFP-GMT 
assay 

female 
assay14 

dual M/F assay13 female assay20 

reagent for 
readout 

Acridine Orange GFP 
conjugated 

Mabs 
conjugated Mabs conjugated Mabs 

time after 
compound 
incubation 

2h 10min 16h 20min + 24h 24h 

plate format 384 wells 384 wells 384 wells 96 wells 384 wells 

gcytes/well 4x104 4x104 2x105 NA 8x103 

readout(s) 
gametocytes and 

female gametes 
spharical 

gametes 
female 

gametes 
male and female 

gametes 
female gametes 

Z’ 
0.69 (gametes) 0.66 

(gametocytes) 
0.76  0.72 

0.43 (male) 0.36 
(female) 

0.7 

 

Table 3. Comparison of existing assay approaches and parmeters with our AO-GMT (confocal microscopy-based, HTS) and 

GFP-GT (light microscopy-based, proof of principle) assays. 

 

Overall, the protocol strength is the use of a straightforward, rapid and fully automated HTS 

approach. After a single magnetic purification step on day 4 of gametocytogenesis, 40,000 

parasites/well are seeded and incubated with compounds in 384-wells imaging plates for 48h, followed 

by exposure to XA and AO in a single automated step without washes, and by automated readout 

acquisition after only 2h incubation at room temperature. The high-content imaging-based assay has the 

advantage that the fluorescent microscopy output is a direct measurement of compound effect on 

individual gametes/gametocytes and not of the total contents of a well, minimizing the interference of 

background effects.  Moreover, the fluorescence signal is specific of parasites, as uninfected 

erythrocytes lack of nucleic acids reactive to the fluorescent marker. Finally, the possibility to store and 

review the images provides an important quality control and allows for the quick elimination of false 

positives/artifacts. At our optimized AO-GMT assay conditions, the current cost of testing a 20,000 

compound library is comparable or lower to that of the other gametocytocidal assays available at 

Griffith, and the current screening capability is 25,000 compounds per week. 

The screening of the MMV Malaria Box with the AO-GMT assay identified 14 active compounds that 

showed an IC50 < 3 μM. Eight of the most potent compounds were tested in SMFA for validation of their 

transmission reducing activity, and all of them proved to be active transmission blocking compounds. 

This confirmation provided solid evidence for the high predictive power of the AO-GMT readout. The 

two top ranking compounds exhibited submicromolar gametocytocidal IC50. The most potent, 

MMV006172, with IC50 = 0.455 µM in our assay, had been previously identified as a late stage 

gametocytocidal compound with IC50 range between 0.420 and 2.6 µM (Duffy and Avery 2013; Sanders 

et al., 2014; Sun et al., 2014; Bowman et al., 2014; D’Alessandro et al., 2015). Its transmission blocking 

activity was confirmed in our SMFA. Interestingly, this compound only caused a partial inhibition at 1 

µM in a previous female gamete formation assay (Ruecker et al., 2014), in which however a different 

assay format and compound exposure time were used. The observation that the longer incubation time 

in our assay leads to a complete female gametocytocidal effect is in keeping with previous observations 
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that presumed sex-specific effects relate to differences in kinetics rather than an absolute sex 

preference of gametocytocidal compound activity (Bolscher et al., 2015). 

The second most potent hit, MMV665980, (IC50 = 0.809 µM) had not been previously identified as a 

late stage gametocytocidal hit, however it was recently reported to reversibly inhibit (sterilize) male and 

female mature gametocytes, with IC50 = 0.614 µM against female gametes in carry-over format (Ruecker 

et al., 2014). Also in this case transmission-blocking activity was verified in SMFA (IC50 = 1.71 µM). Three 

more compounds showing gametocytocidal activity below 2 µM in our assay, namely MMV019918, 

MMV000448 and MMV665941, were previously identified in other gamete (Ruecker et al., 2014) and 

gametocyte assays (Duffy and Avery 2013; Sun et al., 2014), although with a wide range of potencies, 

and all confirmed to be transmission-blocking in SMFA. In conclusion, our assay identified and confirmed 

the activity of all previously reported female gamete inhibitors from the MMV Malaria Box, and all hits 

from our assay that underwent SMFA validation confirmed their transmission-reducing activity in the 

mosquito without false positive hits. 

Our work showed that it is possible to combine a functional readout on a cell type, the mature P. 

falciparum gametocytes, whose quiescent metabolism makes it an elusive drug target, with a 

practicable, cheap, fast and fully automated HTS protocol.  

Our assay significantly accelerates the possibility to screen very large libraries of compounds to 

identify quality hits with very high likelihood of showing transmission blocking activity in the gold 

standard mosquito infectivity assay. 

 

Authorship statement 

In this project I produced and characterized the 3D7-PFL1675c/ULG8 transgenic line, used for the 
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Abstract: The unicellular protozoan parasites of the genus Plasmodium impose on human health 

worldwide the enormous burden of malaria. The possibility to genetically modify several species of 

malaria parasites represented a major advance in the possibility to elucidate their biology and is now 

turning laboratory lines of transgenic Plasmodium into precious weapons to fight malaria. Amongst the 

various genetically modified plasmodia, transgenic parasite lines expressing bioluminescent reporters 

have been essential to unveil mechanisms of parasite gene expression and to develop in vivo imaging 

approaches in mouse malaria models. Mainly the human malaria parasite Plasmodium falciparum and 

the rodent parasite Plasmodium berghei have been engineered to express bioluminescent reporters in 

almost all the developmental stages of the parasite along its complex life cycle between the insect and 

the vertebrate hosts. Plasmodium lines expressing conventional and improved luciferase reporters are 

now gaining a central role to develop cell based assays in the much needed search of new antimalarial 

drugs and to open innovative approaches for both fundamental and applied research in malaria. 

1. Introduction 

Half of the world population is at risk of malaria (WHO World Malaria Report 2013), the most 

common and severe parasitic mosquito-borne disease (White et al., 2014). Five species of the protozoan 

genus Plasmodium infect humans, with Plasmodium falciparum and Plasmodium vivax causing over 200 

million cases/year and P. falciparum inflicting virtually all the 6-700,000 annual deaths (2013) recorded 

mainly in children of Sub-Saharan Africa. 

The malaria parasite exhibits a complex life cycle involving an Anopheles mosquito and a vertebrate 

host [Figure 1]. When an infected female mosquito bites a human, the Plasmodium sporozoites travel to 

the liver and invade hepatocytes, where parasites replicate as hepatic schizonts until several thousand 

merozoites are produced and released in the bloodstream. In P. vivax, but not in P. falciparum, some 

liver parasites remain instead quiescent (hypnozoites), resuming replication and infection after several 

weeks or months. Upon erythrocyte invasion in the bloodstream Plasmodium parasites undergo asexual 

replication forming mature schizonts whose rupture releases merozoites that invade new erythrocytes. 

Some blood stage parasites differentiate instead into male and female gametocytes that, when ingested 

in the mosquito blood meal, are activated to produce gametes. Gamete fusion in the insect midgut 

produces a zygote which develops into a motile ookinete, traversing the gut wall and transforming into 

an oocyst, where thousands of sporozoites are produced. The life cycle is closed when sporozoites, 

migrated from the ruptured oocyst to the mosquito salivary glands, are injected in a new human host by 

the insect bite. 
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The pathogenesis of malaria is caused by the asexual blood stages. In the clinical manifestations of P. 

falciparum malaria, the ability of parasites to sequester in the microvasculature of several organs, 

including the brain, is a major cause of disease severity and of a fatal outcome (Milner et al., 2014; 

Miller et al., 2002). Consequently, the need to cure symptomatic patients traditionally drove efforts 

towards finding drugs targeting the asexual blood stage parasites, often underestimating the 

importance of eliminating also the sporozoite and gametocyte transmission stages or, in P. vivax, the 

hypnozoites. The recent concerning reports from South East Asia of a decreased sensitivity of some P. 

falciparum infections to frontline combination therapies based on artemisinin derivatives is now calling 

for renewed efforts to address this emergency in the frame of a global strategy to control malaria and 

eventually eradicate this deadly parasite. 

It is possible to cultivate all asexual and sexual blood stages of P. falciparum in vitro, unlike P. vivax. 

Plasmodium species infecting rodents have been also intensely studied as mouse models of aspects of 

malaria, with Plasmodium berghei particularly exploited for its amenability to genetic manipulation. In 

contrast, transgenesis technology has been comparatively more troublesome in P. falciparum. This 

review aims to highlight the importance of Plasmodium transgenic parasites, particularly those 

engineered with bioluminescent reporters, both in the study of the fundamental biology of Plasmodium 

and in developing effective antimalarial treatments 

Luciferase enzymes catalyze the light-producing chemical reactions of bioluminescent organisms, in 

which a luminogenic substrate (e.g. D-luciferin) is oxidized in the presence of ATP, yielding photons. 

These can be accurately measured by a luminometer with a sensitivity and a virtual absence of 

background that made bioluminescent reporters potent and versatile tools in biology (Smale, 2010). 

Luciferases hold a special place in the history of Plasmodium transgenesis: the first plasmid construct to 

be successfully transfected in malaria parasites contained a firefly (Photynus pyralis) luciferase gene 

whose expression, driven by the promoter of a parasite sexual stage-specific gene, was measured in 

ookinetes of the bird parasite Plasmodium gallinaceum (Goonewardene et al., 1993). Subsequently, 

luciferase reporters have been used to optimize transfection techniques in Plasmodium parasites 

(Hasenkamp et al., 2012; Epp et al., 2008), including the introduction of the luciferase from the sea 

pansy Renilla reniformis, where use of different substrates (D-luciferin and coelenterazine) enabled 

simultaneous detection of the two parasite produced reporters (Militello & Wirth 2003; Helm et al., 

2010). Since the 1990’s, with the stable genetic transformation of different species of Plasmodium 

(Waters et al., 1997), luciferase reporter genes greatly contributed to elucidate key aspects of malaria 

infection, from the parasite cellular biology, protein trafficking, gene function and drug resistance, in 

several developmental stages throughout the Plasmodium life cycle [Figure 1]. 
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Figure 1. Transgenic bioluminescent malaria parasites at different stages of their development in the vertebrate and 

mosquito hosts. The central diagram represents the Plasmodium life cycle, showing the progression through the 

developmental stages of the parasites in the mosquito vector and in the vertebrate host. A) Bioluminescence imaging of 

individual P. falciparum gametocytes expressing a click beetle luciferase under a sexual stage-specific promoter. The bright 

field image shows immobilized gametocytes, highlighted in green, amongst uninfected erythrocytes; the dark field shows the 

bioluminescence signal of the gametocytes incubated with D-

al., 2014). B) Bioluminescence imaging of a mouse infected with asexual P. berghei parasites expressing a firefly luciferase-

GFP fusion. Heatmap of the bioluminescent signal identifies the sites of accumulation of the parasites (Reproduced with 

permission from Claser et al., 2011). C) Fluorescence of a firefly luciferase-GFP fusion protein expressed in P. falciparum 

sporozoites contained in a oocyst and D) obtained from the dissection of infected mosquito salivary glands. Magnification 

In vivo bioluminescent signal obtained by transgenic P. falciparum liver stage parasites developing in the 

chimeric liver of a humanized mouse (C, D, E are reproduced with permission from Vaughan et al., 2014). 
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2. The Plasmodium life cycle marked by bioluminescent parasite developmental 

stages 

 

2.1 Plasmodium mosquito stages  

Parasite sexual stage development in the mosquito vector is crucial for the transmission of 

Plasmodium, and elucidating the biology of this process may therefore lead to design novel malaria 

transmission-blocking strategies. Some studies with bioluminescent parasites highlighted the 

importance of post-transcriptional regulation acting on stability and translation of several mRNAs, 

including those encoding major proteins of the gamete and ookinete surface (Mair et al., 2006). Assays 

with luciferase reporters were for instance fundamental to identify regulatory elements in the 

transcripts of the P25 and P28 surface proteins of P. gallinaceum and P. falciparum (Golightly et al., 

2000; Oguariri et al., 2006).  

Plasmodium parasites expressing luciferases also improved tool development for applied studies. A 

powerful bioassay to determine parasite ability to infect mosquitoes is based on feeding cultured 

Plasmodium gametocytes to mosquitoes, and it is used to measure effect of transmission blocking drugs 

or antibodies. This assay is however technically demanding and time consuming as the resulting oocysts 

need to be individually counted in dissected insects. After improvements by using P. berghei parasites 

expressing a Green Fluorescent Protein (GFP) in mosquito stages (Delves and Sinden, 2010), a transgenic 

line of the human parasite P. falciparum line expressing the firefly luciferase in oocysts was developed. 

In the resulting luminescence-based Standard Membrane Feeding Assay (SMFA) the mean luminescence 

intensity of individual and pooled mosquitoes accurately quantified mean oocyst intensity, eliminating 

the need for mosquito dissection and putting the basis for significant SMFA scalability (Stone et al., 

2014). 

Towards the end of parasite development in the mosquito, the sporozoites produced in the oocyst 

migrate to the insect salivary glands. Number of salivary gland sporozoites, the only mosquito stages 

infectious to a mammalian host, is an important index of Plasmodium mosquito development. The 

construction of a P. berghei line where a GFP-luciferase fusion is specifically expressed in sporozoites 

enabled establishment of a simple and fast assay of sporozoite loads from whole mosquitoes 

(Ramakrishnan et al., 2012). 

 

2.2 Transmission from mosquitoes: sporozoites and liver stages  

Plasmodium sporozoites injected from an infected mosquito to a human or rodent host start their 

intracellular development into the liver hepatocytes. This clinically silent stage is the target for 

prophylactic or vaccine strategies, particularly against P. vivax long lasting hypnozoites. 

Plasmodium liver stage development has been poorly explored compared to that of blood stages 

partly because the in vivo and in vitro analyses, respectively in mouse models and in cultured liver cells, 

are constrained by the necessity to sacrifice high numbers of mice or by inefficiency of sporozoite 

infection of cultured liver cells. Transgenic luciferase-expressing sporozoites improved detection 

strategies introducing bioluminescence imaging (BLI) and in vivo imaging system (IVIS) in the analysis of 

parasite liver stage development in live mice and in cultured hepatocytes. Real-time bioluminescence 
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imaging requires injection of the luciferin substrate in the mouse or in the dissected organ and an 

intensified charge-coupled photon counting video camera to measure photon emission (Franke-Fayard 

et al., 2006; Braks et al., 2013). BLI and IVIS using firefly or sea pansy luciferases have been used for real-

time, live monitoring of the progression of rodent parasitic infection in the whole animal or in specific 

organs (Ploemen et al., 2009; Annoura et al., 2013; Manzoni et al., 2014) and to test activity of drugs 

targeting liver stage infection, using P. yoelii and P. berghei transgenic sporozoites in human liver HepG2 

or Huh-7 cells and in whole mice (Mwakingwe et al., 2009;  Ramalhete et al., 2011; Derbyshire et al., 

2012; Lacrue et al., 2013; Marcsisin et al., 2014; Li et al., 2014; Ramalhete et al., 2014; Zuzarte-Luis et al., 

2014). To improve these approaches, identification of parasite promoters specifically activated in liver 

development was achieved in P. berghei, also in this case relying on use of transgenic luciferase-

promoter fusions (Helm et al., 2010). 

The ability to reliably quantify parasite infection in hepatocytes is essential in the development of 

malaria vaccines. To overcome limitations of qRT-PCR-based quantification, P. berghei parasites 

expressing a GFP-luciferase fusion were introduced to evaluate antimalarial immunity both in vivo, in 

mice where this was induced by sporozoites unable to proliferate after irradiation or chloroquine 

prophylaxis, and in vitro in Huh-7 human liver hepatoma cells (Ploemen et al., 2011; Miller et al., 2013). 

Luciferase expressing P. berghei and P. falciparum sporozoites were also used to assess adequacy of 

sporozoite attenuation, obtained this time by genetic mutation, respectively in in vivo murine malaria 

model and in primary human hepatocytes (Annoura et al., 2012; van Schaijk et al., 2014). These studies 

highlighted the role of cell mediated immunity mounting against the multiplication-deficient 

sporozoites. A role for antibody mediated immunity was instead shown by BLI of luciferase-expressing 

sporozoites of the human parasite P. falciparum in mice with a humanized liver, showing that infection 

in this organ was reduced by passive transfer of a monoclonal antibody targeting the sporozoite surface 

protein CSP (Sack et al., 2014). Finally, P. berghei and P. yoelii luciferase transgenic parasites were 

instrumental to evaluate modes of sporozoite administration, a critical bottleneck in immunization and 

challenge protocols (Ploemen et al., 2013). 

 

2.3 From the liver to the blood: the asexual erythrocytic stages  

Maturation of the liver schizont releases thousands of merozoites that invade blood stream 

erythrocytes and starts the asexual, symptomatic blood stage infection. In P. falciparum the blood stage 

schizonts disappear from circulation as they adhere to host ligands on endothelial cells of the 

microvasculature in several organs, especially in the brain and in the placenta, through parasite proteins 

expressed on the infected erythrocyte surface, leading to severe pathogenesis such as cerebral malaria 

or adverse effects during pregnancy. As parasites are observed to accumulate in several organs, 

including the brain, also in the mouse malaria model, real-time BLI in whole mice or in dissected organs 

were conducted with P. berghei transgenic lines expressing luciferase under a constitutive or a schizont-

specific promoter to identify the involved components of the immune system (Franke-Fayard et al., 

2005; Amante et al., 2007; Spaccapelo et al., 2010; Claser et al., 2011; Pasini et al., 2013; Imai et al., 

2014). 

The need to elucidate the mechanisms of malaria pathogenesis directed research on the fundamental 

biology of parasite asexual development, one important aspect being how the parasite regulates its 
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gene expression. The extremely high A+T content of the Plasmodium genomes however prevented 

homology based identification of promoters, regulatory elements and parasite transcription factors, 

whereas luciferase reporters proved to be of paramount importance in functionally identifying gene 

promoters and regulatory regions (Horrocks and Kilbey 1996; Militello et al., 2004; Porter 2002; 

Hasenkamp et al., 2013). This work identifed sequences functioning as bi-directional promoters, like the 

intergenic region of the P. berghei elongation factor-1α (ef-1α) gene (de Koning-Ward et al., 1999; 

Fernandez-Becerra et al., 2003) or the intron of the P. falciparum var genes (Epp et al., 2008), or 

evaluated whether specific promoters from one Plasmodium species were able (Fernandez-Becerra et 

al., 2003; Ozwara et al., 2003) or unable (Azevedo et al., 2007) to recruit the transcriptional machinery 

of a different malaria species. Importantly, luciferase expressing parasites were used to identify 

regulatory regions governing the expression of the P. falciparum polymorphic var genes encoding the 

parasite sequestration ligands, whose expression switch is responsible for parasite antigenic variation 

and immune evasion (Deitsch et al., 1999; Calderwood et al., 2003; Frank et al., 2006; Muhle et al., 

2009). In summary, luciferase reporters not only contributed to identify functional elements involved in 

parasite gene regulation (López-Estraño et al., 2007; Gopalakrishnan and López-Estraño 2010; Bischoff 

et al., 2000; Patakottu et al., 2012; Zhang et al 2011; Militello et al., 2004), but also were essential to 

select specific promoters in the development of Plasmodium inducible expression systems (de Azevedo 

et al., 2012; Kolevzon et al., 2014) and to test new regulatory regions in chromosomally integrated 

luciferase cassettes (Weiwer et al., 2011; Ekland et al., 2011; Che et al., 2012; Khan et al., 2012; 

Hasenkamp et al., 2013). 

A major effort in the fight against malaria, particularly P. falciparum, has been the screening for new 

antimalarial drugs, an endeavor that the appearance of artemisinin resistance in South East Asia makes 

dramatically urgent. In the past decades, in vitro methods measuring the incorporation of [3H]-labeled 

hypoxanthine and ethanolamine or the activity of parasite Lactate Dehydrogenase have been the 

standard for P. falciparum cell based assays and used in large drug screenings (Fidock, 2010). The 

demand for high-throughput, non-radioactive assays prompted to exploit also in Plasmodium the high 

sensitivity and virtual absence of background of luciferase reporters, until recently used in this field only 

to study expression of the P. falciparum multidrug resistance gene pfmdr1 in drug treated parasites 

(Waller et al., 2003; Myrick et al., 2003). To this aim a P. falciparum line expressing the firefly luciferase 

under the heat shock protein 86 (pfhsp86) gene promoter in asexual stages enabled establishment of a 

cell-based luciferase drug screening assay in 96w plates (Cui et al., 2008), subsequently adapted to 384w 

plate using 105-106 parasites per well (Lucumi et al., 2010). Also P. berghei parasites expressing a firefly 

luciferase-GFP fusion were used for in vitro and in vivo bioluminescence drug assay, enabling use of 

animal models to test new drugs in vivo (Franke-Fayard et al., 2008;  Lin et al., 2013). 

 

2.4 Preparing departure from the blood: the gametocytes  

Plasmodium gametocytes are the parasite sexual stages responsible for the transmission from the 

vertebrate host to the mosquito. Male and female gametocytes are formed in the bloodstream and, in 

P. falciparum, they mature in 10 days through five developmental stages. Upon ingestion in the 

mosquito gut, mature gametocytes promptly differentiate into gametes and fertilization ensures 

parasite infection in the insect vector. A key priority in the present goal to globally eliminate malaria is 
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to identify new drugs targeting in the bloodstream both the asexual and the sexual stages of the 

parasite. However, the non-replicative nature of gametocytes imposed to develop specific cell based 

screening assays, different from those used for asexual stages. One problem is for instance that of false 

negative signals due to the persistence of fluorescent reporter or of parasite enzyme activities in 

unhealthy or dying gametocytes. P. falciparum lines expressing a GFP-firefly luciferase gene under 

gametocyte specific promoters were established (Adjalley et al., 2011) and used in high-throughput 

screening assays of compounds with anti-asexual stage activity (Lucantoni et al., 2013). Recently, 

luciferase-based gametocyte assays have been improved by replacing the commonly used commercial 

luciferase substrates with an ATP-free, non-lysing D-luciferin formulation, yielding assay readouts that 

more reliably monitored viability and sensitivity to compounds of the treated gametocytes (Cevenini et 

al., 2014). In this work, absence of parasite cell lysis and the introduction in P. falciparum of the use of a 

potent luciferase from Pyrophorus plagiophthalamus under a gametocyte promoter enabled to perform 

for the first time bioluminescence imaging at the level of single parasite cells, individually distinguishing 

live and dead P. falciparum gametocytes (Cevenini et al., 2014). 

 

3. Multiplexing, subcellular localization, imaging: the future in the use of 

bioluminescence malaria parasites  

Virtually all stages of the complex life cycle of malaria parasites have been enlightened by the use in 

several studies of luciferase reporters. These engineered parasites provided key answers to fundamental 

biological questions and now represent important tools for drug screening. Novel potent reporters have 

already expanded the luciferase repertoire used in P. falciparum beyond the P. pyralis and Renilla 

enzymes (Cevenini et al., 2014; Azevedo et al., 2014), increasing sensitivity and enabling to further 

reduce parasite numbers in high-throughput screening assays, a nontrivial improvement when using 

specific stages (e.g. the gametocytes) whose cultivation is technically demanding. Nevertheless 

exploitation of the full potential of bioluminescent reporters in malaria research is just moving the first 

steps. 

The possibility to tune luciferase emission properties, such as emission wavelength, kinetics or termo- 

and pH-stability, via random or site-directed mutagenesis or use of enzyme natural variants, led to 

introduce multicolor bioluminescence in antimalarial drug screening. A green and a red light emitting 

luciferase from P. plagiophthalamus were expressed in P. falciparum immature and mature 

gametocytes, providing for the first time the possibility to simultaneously measure differential, stage 

specific effects of drugs in a dual-color luciferase assay, and opening the possibility to apply multicolor 

bioluminescence to any parasite stage in fundamental and applied studies. A dual expression system 

with distinct luciferases would for instance be valuable in cell based high-throughput screenings to 

readily identify and discard compounds active against the reporter rather than the target cell (Thorne et 

al., 2012), as they will most likely affect only one luciferase type. 

Another promising application of luciferase reporters is through their fusion to specific signals used 

by the parasite to traffic proteins in different extracelluar compartments of the infected erythrocyte. As 

protein export is uniquely regulated in the parasite and is essential for its survival, use of such fusions 

may be invaluable to screen for compounds targeting this process. Preliminary studies were conducted 

with the P. pyralis enzyme (Burghaus et al., 2001) and more recent work established P. falciparum lines 
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which express a brighter deep-sea shrimp luciferase equipped with sequences driving the reporter in the 

parasite cytoplasm or in erythrocyte compartments (Azevedo et al., 2014). 

In another field of application, the achievement of single parasite cell bioluminescence imaging and 

the availability of luciferases whose red-shifted light emission is more efficiently detectable from blood 

and tissues are paving the road to significant progress in analyses of the host-parasite interplay. Co-

cultures of different P. falciparum stages and human cell types in vitro can provide new insights of the 

physiology of asexual and sexual stage parasite sequestration. The increased sensitivity achieved in in 

vivo mouse imaging with a red-shifted luciferase expressed by the unicellular protozoan parasite 

Trypanosoma brucei (Van Reet et al., 2014) is promising in view of use also in Plasmodium infected mice. 

Importantly, the increasing availability of humanized mouse models for P. falciparum and P. vivax 

infections, supporting development of asexual and sexual blood stages and of liver stages (Kaushansky 

et al., 2014) and the use of P. falciparum transgenic lines with a luciferase expressed constitutively 

(Vaughan et al., 2012) or under stage-specific promoters are expected to answer many unsolved 

questions. 

The wealth of biological information provided by the use of engineered bioluminescent malaria 

parasites, not to mention those not reviewed here expressing a variety of fluorescent reporters, has 

been and will most likely continue to be enormous. The confined use of these whole cell biosensors in 

laboratory settings does not pose regulatory concerns on environmental release. From their aseptic sites 

of utilization, these genetically modified parasites will nevertheless have the most significant impact in 

the real world, contrasting the unbearable burden of a worldwide devastating disease. 
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Abstract: New reliable and cost-effective anti-malarial drug screening assays are urgently needed to 

identify drugs acting on different stages of the parasite Plasmodium falciparum, and particularly those 

responsible for human-to-mosquito transmission, i.e. the P. falciparum gametocytes. Low Z’ factors, 

narrow dynamic ranges and/or extended assay times are commonly reported in current gametocyte 

assays measuring gametocyte-expressed fluorescent or luciferase reporters, endogenous ATP levels, 

activity of gametocyte enzymes or redox dependent dye fluorescence. We hereby report on a dual-

luciferase gametocyte assay with immature and mature P. falciparum gametocyte stages expressing red 

and green-emitting luciferases from Pyrophorus plagiophthalamus under the control of the parasite 
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sexual stage specific pfs16 gene promoter. The assay was validated with reference antimalarial drugs 

and allowed to quantitatively and simultaneously measure stage-specific drug effects on parasites at 

different developmental stages. The optimized assay, requiring only 48h incubation with drugs and using 

a cost-effective luminogenic substrate, significantly reduces assay cost and time in comparison to state-

of-the-art analogous assays. The assay had a Z’ factor of 0.71±0.03 and it is suitable for implementation 

in 96- and 384-well microplate formats. Moreover, the use of a non-lysing D-luciferin substrate 

significantly improved the reliability of the assay and allowed to perform, for the first time, P. falciparum 

bioluminescence imaging at single-cell level. 

                                    

Introduction 

Malaria still represents the deadliest parasitic infection afflicting humans worldwide, with 

Plasmodium falciparum causing the most severe form of the disease. In the goal to globally eliminate 

malaria it is increasingly recognized that anti-parasite interventions need to target not only the 

pathogenic asexual forms of the parasite but also the Plasmodium developmental stages responsible for 

transmission between the human and the Anopheles hosts. Such reinvigorated efforts include the 

challenge of revising high throughput (HTS) drug screening approaches, currently tailored against the 

Plasmodium replicative asexual blood stages, in order to identify compounds active against multiple 

stages of the malarial parasite life cycle. This is particularly important at a time where no safe drug is 

available against P. falciparum transmission stages and reports have established the emergence of 

parasite resistance to the frontline artemisinin drugs. 

P. falciparum gametocytes are the parasite sexual stages responsible for the human-to-mosquito 

transmission. These are formed in the human bloodstream where they undergo a ten-day multi-stage 

development showing remarkable morphological (Hawking et al., 1971) and physiological (Silvestrini et 

al., 2010) differences that distinguish early and mature stages. The non-replicative nature of these 

sexual blood stages and their long maturation time constrained so far the ability of the recently 

developed gametocyte assays to sensitively and reliably monitor compound effects on gametocyte 

viability, mainly because activity of fluorescent or endogenous parasite enzyme reporters tends to 

persist in the unhealthy drug treated gametocytes (D’Alessandro et al., 2013). Current cell based 

reporter assays against these parasite stages generally show suboptimal robustness, require long assay 

time and expensive reagents, and do not provide information about stage-specificity of target drugs. 

 Bioluminescence (BL) is the emission of light in living organisms in which an enzyme, generally called 

luciferase, catalyses the oxidation of a specific substrate, luciferin, with a release of photons in the 

visible spectrum. Luciferase genes cloned from different organisms are used in several bioanalytical 

applications thanks to peculiar characteristic of BL reactions such as high quantum yield, high signal-to 

noise ratio and the possibility to multiplex assays using luciferases emitting at different wavelengths. As 

luciferases do not require post-translational modifications for activity and are not toxic to cells even at 

high concentrations, these enzymes have been successfully exploited as reporters in a variety of 

ultrasensitive cell-based assays (Cevenini et al., 2013; Ekström et al., 2013). The possibility to tune 

luciferase emission properties such as emission wavelength and kinetics or thermo- and pH-stability 

(Michelini et al., 2009) via random or site-directed mutagenesis opens the avenue to significantly 

improve P. falciparum HTS luciferase assays, so far restricted to the use of the Photinus pyralis wild type 
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enzyme (Che et al., 2012; Hasenkamp et al., 2012; Adjalley et al., 2011; Lucantoni et al., 2013; Tanaka et 

al., 2013).  Improvements can be achieved by combining luciferases emitting at different wavelength 

under the control of different regulatory sequences to monitor multiple molecular targets or signaling 

events, resulting in increased information from the same cell/well and reduced assay cost/time. Also, 

the introduction of a second, constitutively expressed luciferase in the same cell can provide an internal 

viability control to correct the analytical signal, improving assay reliability and robustness.   Moreover, 

the possibility to monitor in real-time the BL signal emitted by a single parasite by non- invasive BL 

imaging offers tremendous potential for clarifying mechanisms of action of target drugs. 

 

In this work the combination of multicolor bioluminescence and use of an optimized luminogenic 

substrate are reported for the first time in P. falciparum to quantitatively and simultaneously assess the 

viability of parasites at different developmental stages in a format scalable to HTS and to introduce 

single-cell imaging methodology in the study of this parasite. 

 

Experimental section 

Parasite cultures and transfection. The P. falciparum 3D7A line (Walliker et al., 1987) was cultured in 

human 0+ erythrocytes, kindly provided by Prof. G. Girelli, Dipartimento di Biopatologia Umana, 

University of Rome ‘‘La Sapienza”, at 5% haematocrit under 5% CO2, 2% O2, 93% N2 (Trager and Jensen 

1976). Cultures were grown in medium containing RPMI 1640 medium (Gibco) supplemented with 25 

mM Hepes, 50 µg/ml hypoxanthine, 0.25 mM NaHCO3, 50 µg/ml gentamicin sulphate and 10% pooled 

heat-inactivated 0+ human serum. Ring stage parasites at 3–5% parasitaemia were transfected by 

electroporation with 80–100 µg of transfection vectors using the following conditions: voltage, 0.31 kV; 

capacitance, 960 µF; resistance to infinity (Fidock and Wellems 1997). Following transfection, parasites 

were maintained in drug free medium for 24h; at this time, positive selection was initiated by the 

addition 1.2 µg/ml of blasticidin (BSD) to select the parasites stably maintaining the episomal constructs. 

Production of transgenic lines with stably integrated luciferase cassettes in the pfelo1 locus was 

attempted equipping the luciferase cassettes with pfelo1 homology regions for Zinc Finger Nuclease 

(ZFN)-mediate genome editing (Straimer et al., 2012). The episome-containing transgenic parasites were 

transfected with ZFN expression plasmid and double selection started after 24h by adding 1.2 µg/ml of 

BSD and 2.5nM WR99210. After 7 days of selection, parasites were allowed to recover in the absence of 

any drug. Southern blot analysis of the resulting para-sites with pfelo1- and bsd-specific probes on 

parental parasites and on parasites containing the episomal plasmids before and after transfection of 

the ZFN plasmids revealed however that successful disruption of the pfelo1 locus was mediated by 

integration of the entire plasmid via homologous recombination through the pfelo1 3’ homology region. 

 

Plasmid construction. The multistep procedure to obtain pCR2.1 vectors carrying myc-tagged 

luciferase expression cassettes equipped with Bbx1 attB sites under the expression control of the pfs16 

regulatory regions was as follows. First, attB-site adaptor, flanked by HindIII-SacI restriction site, was 

obtained by annealing oligonucleotides #1-attBsite-dir (all oligonucleotides used in this work are listed in 

Supplementary Table S1) and #2-attBsite-rev , digested and inserted into the HindII-SacI digested 

pCR2.1, producing pCR2.1-attB plasmid. Upstream pfs16 regulatory regions were PCR amplified with 
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primer pairs #3-pfs16-5'UTR-dir and #4-pfs16-5'UTR-rev for PpyWT, PpyRE10, PpyGRTS, and LitRE6, and 

primers #3-pfs16-5'UTR-dir and #5-pfs16-5'UTR-rev2 for CBG99 and CBR, and cloned into SacI-BamHI 

digested pCR2.1-attB after SacI-BamHI digestion, producing pCR2.1-attB-5’pfs16A and pCR2.1-attB- 

5’pfs16B. The above different reverse primers were needed to introduce a myc-tag sequence in frame 

with downstream luciferases to be cloned. Downstream pfs16 regulatory regions were PCR amplified 

with primers #6-pfs16-3'UTR-dir and #7-pfs16-3'UTR-rev and cloned into pCR2.1-attB-5’pfs16 after XbaI-

ApaI digestion, producing pCR2.1-attB 5’-3’pfs16A and pCR2.1-attB 5’-3’pfs16B. PpyWT, PpyRE10, and 

PpyGRTS, from pGEX expression plasmid were inserted into pCR2.1-attB-5’ 3’pfs16A via BamHI-NotI 

cloning; LitRE6, from pCMV plasmid was inserted into pCR2.1-attB-5’ 3’pfs16A via BamHI-XbaI cloning. 

CBG99 and CBR were obtained from pCBG99-basic and and pCBR-basic vectors (Promega) and cloned 

into pCR2.1-attB-5’ 3’pfs16B via NcoI-XbaI. 

The procedure to produce constructs able to mediate the chromosomal integration of the luciferase 

cassettes was as follows. First, a unique HindIII site in the pDC2 backbone site was disrupted by HindIII 

digestion and a Klenow fill-in reaction. An attB site was inserted by overlapping PCR between pfelo1 

gene homology regions (HRs) as follows. As above, a HindIII site in pfelo1 HR-I was mutated by 

amplifying HRI using primers #8-pfelo1HR-I-dir and #9-pfelo1-HR-I-rev1, ligating it into pGEM-T plasmid 

(Promega). The resulting plasmid was linearised by HindIII digestion, filled-in with Klenow polymerase, 

re-ligated and used as template for PCR amplification with above primer #8-pfelo1HR-I-dir and #10-

pfelo1-HR-I-rev2. The latter contained, in 5’ to 3’ direction, stop codon, HindIII and attB sites. HR-II PCR 

amplification was performed with primers #11-pfelo1-HR-II-dir and #12-pfelo1-HR-II-rev. The former 

contained, 5’ to 3’, attB and HindIII sites. HR-I and HR-II PCR products were gel purified and mixed 

together in a PCR mix lacking primers and subjected to 5 cycles of amplification to generate a full-length 

HR-I-HindIII-attB- HindIII -HR-II template. Then, above primers #8-pfelo1HR-I-dir and #12-pfelo1-HR-II-

rev were added to get the final PCR product, which was digested with ApaI-BamHI, gel purified and 

inserted into AvrII-BamH I digested pDC22-(mutHindIII) vector, producing the pfelo1-attB donor plasmid. 

Digestion of the latter plasmid with HindIII released the attB site which was replaced by the HindIII-

HindIII attB-containing luciferase cassette from the pCR2.1 vectors (Figure 1). 
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Figure 1. Representative map of the plasmids containing the luciferase reporter genes under the expression control of the 

P. falciparum gametocyte-specific gene pfs16. Representative luciferase coding sequence (Luc) flanked by promoter and 3’ 

untranslated region (3’UTR) of gene pfs16. Homology regions (HR) I and II of gene pfelo1. Coding sequence of the blasticidine 

S-deaminase (BSD) gene flanked by promoter of the P. chabaudi dihydrofolate reductase-thymidylate synthase  gene (PcDT) 

and the 3’UTR of the P. falciparum histidine rich protein 2 gene (hrp2). 

 

Plasmid copy number determination by SYBR-Green Real-Time PCR. The bsd selectable marker 

(primers #13-bsd-fw and #14-bsd-rev) was used along with the pfeba175 gene (primers #15-pfeba175-

fw and #16-pfeba175-rev) as a control for genome numbers. Genomic DNA was extracted from asexual 

cultures of episomal transfectants expressing the different luciferases alongside with parental 3D7 

parasites using the Bioline Blood DNA kit. DNA (50ng in 2l) was added to a 13l PCR mix containing 

3.7l water, 7.5l PCR Sybrgreen Master Mix and 0.9l of each primer (final concentration 300nM). 

Real-time assays were performed using ABI Prism 7500 Real-time PCR System (Applied Biosystems, 

Foster City, CA) and 7500 Software v2.0.5. The PCR parameters were as follows: 20 sec at 95°C followed 

by 40 cycles of 95°C for 15 sec and 58°C for 30 sec. Fluorescent product was detected at the last step of 

each cycle. Plasmid copy numbers were determined against reference amplification titration curves of 

plasmid (102 to 107 copies) in 25ng of 3D7 genomic DNA for bsd and of 3D7 genomic DNA (1.25 to 

100ng) in 107 plasmid copies for eba175. All samples and controls were run in triplicate, normalized as 

plasmid copy number/genome and expressed as fold variation compared to PpyWT luciferase (Figure 2). 

 
Figure 2. Relative copy number of the six luciferase expression plasmids in the P. falciparum transgenic lines. SYBR-Green 

Real-time PCR experiments were performed as described, amplifying the plasmid bsd and the parasite pfeba175 gene 

sequences to determine plasmid copy number per parasite genome. Results of two independent experiments are expressed 

as fold over the PpyWT plasmid copy number (mean ± SD). 

 

Southern blot analysis. Genomic DNA from the different parasite lines was analyzed as follows. 

Genomic DNA samples, 3g, were digested with AflII and EcoRI, electrophoresed on a 0.8% agarose gel 

and transferred onto a Nytran nylon membrane. Hybridization of the membrane was performed at 54°C 

with a 639 bp [32P]-labeled pfelo1 probe that was PCR amplified from 3D7 genomic DNA using primers 
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#17elo1probe-fwd and #18elo1probe-rev. The membrane was stripped in hot 0.1% SDS and hybridized 

at 54°C with a 389 bp [32P]-labeled bsd probe amplified by PCR with primer #19bsd-probe-fw and 

#20bsd-probe-rev from plasmid pDC2-elo1-CBG99 (Figure 3). 

  
 

 
Figure 3. A) Southern blot analysis of genomic DNA extracted from parasites of the parental line 3D7, of the 3D7 derived 

line episomally maintaining the pfs16-CBG99 plasmid and of the parasite line after single crossover plasmid integration. 

Genomic DNAs were digested with AflII and EcoRI. B) Diagram of the pfs16-CBG99 integration plasmid, of the target pfelo1 

locus and of the resulting modified locus. 

 

P. falciparum gametocyte drug treatments. Drug assays were performed on gametocytes at different 

stage of maturation. For early (stage II) gametocytes, induced cultures were treated 48h with 50mM N-

acetyl-glucosamine (NAG) to eliminate asexual stages before drug treatment. Late (IV-V) stage 

gametocytes had been NAG-treated 96h at the onset of gametocytogenesis and then allowed to mature. 

Drug treatments were performed in 100µl final volume in 96w culture plates at a final hematocrit of 1%. 

In these cultures gametocytemias were routinely ranging from 1 to 2.5% for episomal transgenic 

parasites and from 2 to 3.5% for 3D7elo1-pfs16-CBG99. Drugs were dissolved in dimethyl sulfoxide 

(DMSO), except for chloroquine, which is soluble in water. Control samples were treated with DMSO at 

the highest concentration present in treated samples, which never exceeded 0.1%. 

 

Immunofluorescence analysis.  Mixed stage gametocyte smears were fixed with acetone for 5 min at 

room temperature, blocked with PBS/3% BSA for 30 min and incubated with a rabbit anti-Pfg27 
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antibody (Olivieri et al., 2009)(1:500 in 1xPBS 2% BSA) to label all gametocytes and with a mouse anti-

myc antibody (ab32, Abcam) (1:200 in 1xPBS 2% BSA). After incubation and washes in 1XPBS, slides 

were incubated with a 1:200 dilution of affinity purified, rhodamine-conjugated and FITC-conjugate 

secondary antibody against rabbit and mouse IgG respectively (Figure 4). 

 
Figure 4. Immunofluorescence analysis of 3D7elo1-pfs16-CBG99 gametocytes. Immunofluorescence analysis of 3D7elo1-

pfs16-CBG99 gametocytes with antibodies specific for the Myc tag sequence fused to the CBG99 luciferase and for the 

gametocyte-specific protein Pfg27. Magnification bar is 10μm. 

 

Luciferase assays. Comparison of luciferase activities from the six episome-expressing transgenic 

parasites was performed on stage III gametocytes after Percoll purification (Carter et al., 1989). Frozen 

aliquots of equal numbers of gametocytes were resuspended in ice with 100µl of PBS just prior to 

luminometric measurements, transferred to 96w white plates, and 100µl of Britelite™ plus Reporter 

Gene Assay System (Perkin-Elmer) added. Total light outputs were recorded using a Microplate 

Scintillation and Luminescence CounterTopCount NXT™ (Perkin-Elmer) over a 20min-period in 3sec-

intervals. Equivalent samples were also read using a Varioskan Flash multimode reader (Thermo Fisher). 

Luminescence measurements were expressed as signal to noise ratio with respect to untransfected 3D7 

control parasite samples. 

 Commercial substrates Britelite™, Neolite™ and Steady-lite™ were from PerkinElmer, One-Glo™, 

Steady-Glo® and Bright-Glo™ from Promega. Frozen pellets of gametocyte expressing CBG99 luciferase 

were used to compare bioluminescence emission kinetics. Briefly, 100µl of the same aliquot of 

resuspended gametocytes were transferred to a 96-well white microtiter plate and 100µl of each 

substrate were added simultaneously with a multichannel pipette. Bioluminescence emissions were 

acquired for 45min with 300ms integration time using a Varioskan reader.  All samples were tested in 

triplicate and performed at least three times. Luciferase assays after drug-treatment experiments were 

performed after transferring samples to 96-well white microplates. Different D-luciferin concentrations 

and buffer compositions were tested and the optimal substrate was 0.5mM D-luciferin (final 

concentration) in citrate buffer 0.1M, pH 5.5. Substrate (1mM D-luciferin) was added directly to the 
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samples at a 1:1 ratio and plates were read within 2 min after addition. Luminescence measurements 

were performed as described above. 

 

Bioluminescence single-cell imaging. Single cell bioluminescence imaging was performed on control 

(DMSO 0.1%) or drug treated gametocytes (epoxomicin 100nM, chloroquine 500nM). After 48h 

incubation, gametocytes (100µl at 0.1% HCT) were transferred to a clear bottom 96-well microplate 

(ibidi GmbH) coated with Cell-Tak cell and tissue adhesive (BD Biosciences) according to manufacturer’s 

instructions and allowed to adhere for 30min at 37°C. BL imaging was performed using an inverted 

microscope (Olympus CK40) connected to an electron multiplying charge coupled device (EM-CCD) 

camera (ImagEM-X2, Hamamatsu). BL images were acquired for 10 minutes with 40X objective (UApo, 

Olympus) after addition of 100µl of D-luciferin 1mM. All the setup was enclosed in a custom-built dark 

box to shield from ambient light. Images were processed with HCImage software (v4.1.5.12, 

Hamamatsu) applying a cosmic ray removal option (threshold 10,000) and brightness/contrast adjusted 

with normal linear function. 

 

Dual-luciferase gametocyte assays. The dual-reporter assays have been performed using CBG99 and 

CBR expressing parasites (1% hematocrit), at stage II and stage V of development, mixed in a 1:10 ratio, 

respectively, in order to compensate for the different BL signals from the two enzymes. Gametocyte 

mixed populations were seeded in 96-well plate and treated for 48h with 500nM chloroquine (CQ), 

100nM epoxomicin (Epoxo) or DMSO 0.1% (control). By adding BL substrate emissions kinetics were 

acquired for 15min (300ms integration time) with Varioskan Flash using both F545 (510-580nm) and 

F615 (590-640nm) high transmittance band-pass emission filters. Raw BL intensities taken from 5 to 10 

min were elaborated with ChomaLuc™ calculator19 to unmix BL emission (corrected BL) of the green- 

and red-emitting gametocytes. The mean value of each corrected BL kinetic is plotted and normalized 

with respect to DMSO control. 

 

# Name Sequence (5’-3’) Sites 

1 attB site dir ggggaagcttCGGCTTGTCGACGACGGCGGTCTCCGTCGTCAGGATC

ATCgagctcgggg 

HindIII-SacI 

2 attB site rev ccccgagctcGATGATCCTGACGACGGAGACCGCCGTCGTCGACAAG

CCGaagcttcccc 

HindIII-SacI 

3 pfs16 5' UTR dir ggggGAGCTCCTACTGTACTTTTTTTTGGAC SacI 

4 pfs16 5' UTR rev1 ggggGGATCCCCATGGTAGGTCTTCTTCTGATATTAGTTTTTGTTC

CATGTTGAAGAAAGTATAAATAGAAAAATGGC 

BamHI 

5 pfs16 5' UTR rev2 ggggGGATCCCCATGGtTAGGTCTTCTTCTGATATTAGTTTTTGTTC

CATGTTGAAGAAAGTATAAATAGAAAAATGGC 

BamHI 

6 pfs16 3' UTR dir ggggTCTAGAGATGAAGGAGACGAAGGAGATG XbaI 

7 pfs16 3' UTR rev gggggggcccaagcttTATTTAGAGGTGAGGACTATG ApaI 

8 pfelo1 HR-I dir ggggatccACATGAATAAACTATTCACCCC BamHI 

9 pfelo1 HR-I rev1 TCCACACGTATATATCGGAGG  

10 pfelo1 HR-I rev2 GATCCTGACGACGGAGACCGCCGTCGTCGAAAGCCGAAGCTTCT

Atccacacgtatatatcggagg 
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11 pfelo1 HR-II dir GTCGACGACGGCGGTCTCCGTCGTCAGGATCATCGCGGAAGCTT

atttggtacagttggattatgg 

 

12 pfelo1 HR-II rev TCGGGCCCGATTGCTTTTTCATTTTTTCCCTC ApaI 

13 bsd fw TTGTCTCAAGAAGAATCCAC  

14 bsd rev TAGAGAGAGCTGCGCTGGCG  

15 pfeba175 fw TGGATAACACCAGTGAAGAAACTACAG  

16 pfeba175 rev CAATATCTTCATATTCCTTAGTAAGCG  

17 elo1probe-fwd ACAGGCCGAGAAAATAAAGGAGAATGGC  

18 elo1probe-rev CGGCATCTTGTTCTTGTACCATACAATG  

19 19bsd-probe-fw GCACCTTTGTCTCAAGAAGAATCCACCC  

20 19bsd-probe-rev GCCCTCCCACACATAACCAGAGGGCAGC  

 
Table 1. List and sequence of the oligonucleotide primers used in the work.  

 

  

Results and discussion 

Expression of green- and red- emitting luciferases in P. falciparum.  A panel of six ATP-dependent 

luciferases derived from different bioluminescent species or obtained by rational mutagenesis were 

selected according to their enzymatic properties (Table 1) and expressed for the first time in the malaria 

parasite. The repertoire of luciferases used so far as reporters in malaria parasites is to our knowledge 

restricted to the Renilla and the P. pyralis enzymes, with only the latter luciferase being used in HTS and 

live imaging applications. Selected luciferases were the green wild-type Photinus pyralis enzyme 

(PpyWT) (Branchini et al., 2007), a red-shifted emission variant (PpyRE10) (Branchini et al., 2010), a 

mutant with green-shifted emission and increased thermal stability (PpyGRTS) (Branchini et al., 2007), a 

red-emitting variant of the firefly Luciola italica (LitRE6) (Maguire et al., 2012), and the green- and red-

emitting luciferases from the click beetle Pyrophorus plagiophthalamus (CBG99 and CBR) (Wood et al., 

1989). 

P. falciparum parasites were transfected with plasmid constructs in which the promoter and 3’ 

untranslated region (UTR) of the gametocyte specific gene pfs16 (Figure 1) were used to specifically 

drive cytoplasmic expression of the above luciferases from the onset of sexual differentiation (stage I) 

through the ten-day long maturation to stage V gametocytes (Hawking et al., 1971). Six transgenic 

parasite lines were selected for blasticidin resistance and real-time PCR experiments determined that 

plasmid copy number differed at most twofold between these lines (Figure 2). 
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Reporter gene 

(Organism) 

In vitro BL 

emissiona 

(λmaxnm) 

Half-life 

(37°C) 

pH       dependent 

emission 

Half bandwidth 

(nm)b 

PpyWT 

(Photinus pyralis) 

557 0.26 h Yes 66 

PpyGRTS 

(Photinus pyralis) 

548 10.5 h No 62 

PpyRE10 

(Photinus pyralis) 

617 3.6 h No 42 

LitRE6 

(Luciola italica) 

610 9.6 h No 70 

CBG99 

(Pyrophorus      

plagiophthalamus) 

537 > 5 h No 65 

CBR 

(Pyrophorus    

plagiophthalamus) 

613 > 5 h No 62 

a 
Bioluminescence emission spectra measured in Hek293 cell lines.  

b 
Bandwidths (nm) of emission spectra were measured at 50% of the intensity at the maximum wavelength. 

 

Table 2. Properties of luciferases selected for expression in Plasmodium falciparum. 

 

In order to identify the most active luciferases in view of the development of a dual-color assay, BL 

emissions were measured from equal number of purified stage III gametocytes of the six transgenic 

lines. The comparison of the BL signals from the different luciferase-expressing gametocytes revealed in 

our hands that the green- and the red-emitting P. plagiophthalamus enzymes provide BL signals 

significantly higher than the other tested luciferases and display stable emission kinetics (Figure 5a). 

Although the emission spectra of these luciferases show a remarkable overlap, the distance between 

the two λmax of approximately 76nm, combined with the use of appropriate emission filters and a 

spectral unmixing algorithm (Almond et al., 2003), are adequate to successfully establish a dual-

luciferase gametocyte assay in which contribution of each luciferase can be sensitively and robustly 

determined. In addition, these reporters exhibit pH-independent emission and glow-type emission 

kinetics, making them the best candidates for the implementation of the dual-color assay. 
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Figure 5. Luciferase selection and characterization (a) BL emission intensities of same amount (2.5x10
5
) of purified stage 

III transgenic gametocytes expressing the luciferases indicated (with Britelite
™

substrate). (b) Normalized emission kinetics 

obtained with CBG99 expressing gametocytes (4x10
4
 gametocytes/well) using different commercial substrates. (c) 

Comparison of BL intensities and kinetic profiles obtained with transgenic gametocytes expressing CBG99 or CBR luciferase 

using Britelite
™

 or D-luciferin substrates. In (b) and (c) the highest BL signal is set as 100%. 

 

Improvement in luciferase assay performance on the non-proliferating parasite sexual stages. The 

need to identify novel drugs active against P. falciparum gametocytes recently prompted much work to 

establish cell-based assays against such parasite stages. To improve current assays, the effect of several 

BL commercial substrates on the assay analytical performance was evaluated. Emission kinetics of the 

gametocyte-expressed CBG99 luciferase in a 45-minute window showed that the highest and most 

stable BL signal was obtained using Britelite™ (Figure 5b). However, as commercial substrates generally 

contain additives (luciferase inhibitors, lysing components, ATP) to enhance and stabilize the 

bioluminescent signal, a home-made D-luciferin solution was developed as an alternative substrate to 

better reflect the viability of the gametocytes in drug screening assays, avoiding artifactual BL emission 

in the treated cells. Gametocytes expressing the CBG99 or the CBR luciferase were incubated with 

Britelite™ or with a formulation of 0.5mM D-luciferin dissolved in 0.1M citrate buffer pH 5.5, optimized 

to enter cells in other eukaryotic and in prokaryotic systems (Michelini et al., 2008). Although the non-

lysing D-luciferin substrate produced a lower BL signal than Britelite™, a stable signal was obtained from 

5 to 15 minutes after substrate addition, with only 5% variability over 10 min (Figure 5c). In order to 

directly compare the performance of Britelite™ and D-luciferin substrates in faithfully monitoring 

parasite viability exposed to drug treatment, synchronous unpurified cultures (1% hematocrit, 2% 

gametocytemia) of stage II and stage IV gametocytes expressing CBG99 or CBR were exposed for 48h to 

a 100nM concentration of the reference gametocytocidal drug epoxomicin (Czesny et al., 2009).  

Results showed that the decline in luciferase activity in the drug-treated gametocytes was 

significantly more pronounced using the D-luciferin substrate than Britelite™ in both gametocyte stages 

for both parasite lines (Figure 6a,b). At 48h, with D-luciferin, residual luciferase activity was virtually 

absent or <1% in early and late gametocytes respectively, whereas with Britelite™ it was 37±5% in early 

gametocytes and respectively 57±4% and 72±6% in the CBR- and CBG99-late stages. The robustness of 

this determination was indicated by a cumulative assay Z’-factor (Zhang et al., 1999) of 0.92±0.09 and 

was confirmed by the comparable epoxomicin IC50 values on early and late gametocyte stages obtained 

with the commercial and the D-luciferin substrates (12.5±0.4 nM and 14.3±0.6 nM with D-luciferin and 

Britelite, respectively, on early and 10.7±0.8 nM and 10.1±0.5 nM with D-luciferin and Britelite, 

respectively, on late stages) (Figure 6c). Compared to the assays traditionally used to identify 

compounds blocking the multiplication of the parasite asexual stages, gametocyte assays face the 

challenge to reliably measure the ability of compounds to inhibit development or metabolism of such 

non-proliferating parasite stages. Low Z’ factors, narrow dynamic ranges and/or extended assay times 

are commonly reported in current gametocyte cell-based assays measuring gametocyte-expressed 

fluorescent or luciferase reporters (Adjalley et al., 2011; Lucantoni et al., 2013; Buchholz et al., 2011; 

Wang et al., 2014), endogenous ATP levels (Lelièvre et al., 2012), activity of gametocyte enzymes 

(D’Alessandro et al., 2013) or redox dependent dye fluorescence (Tanaka et al., 2011; Duffy and Avery 

2013). Such suboptimal performances are largely due to the persistence or slow decay of the above 
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reporters or signals in the non-dividing gametocytes, even when they are affected by the compound 

treatment. 

 

 

 
 

Figure 6. Bioluminescence in control and drug treated P. falciparum gametocytes (a) D-luciferin and Britelite
™

 

performances in drug treatment assay. Bioluminescence from early stage gametocytes expressing CBG99 (left) and CBR 

(right) measured with D-luciferin (-●-) and Britelite
™

(-▲-) at t=0, t=24h and t=48h. (b) Same experiment on stage IV 

gametocytes. Results are expressed as drug/DMSO ratio. Statistics are performed with the GraphPad Prism software. (c) 

Comparison of D-luciferin and Britelite™ performances in dose-response gametocytocidal assays. Early (left) and late (right) 

stage gametocytes expressing the CBG99 luciferase were treated for 72h with increasing doses of epoxomicin (0-90nM) 

before luciferase activity was measured with 0.5mM D- luciferin and Britelite™. IC50 values were calculated using the 

GraphPad Prism software. 

 

The replacement of commonly used cell-lysing BL substrates with a formulation of non-toxic, non-

lysing D-luciferin substrate solution resulted in assays where the BL signal rely both on the expression of 
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the luciferase reporter and, importantly, on the use of the parasite endogenous ATP, thus reliably 

reflecting the viability of the treated and untreated gametocytes. This improvement results in a cost-

effective and less time-consuming protocol able to measure the drop to background level in gametocyte 

viability produced by epoxomicin in only 48h whereas as long as 144h are required in similar assays 

based on the gametocyte endogenous lactate dehydrogenase activity (D’Alessandro et al., 2013). Such 

an improvement was observed not only on the immature gametocytes but also on the late sexual 

stages, the ones freely circulating in the blood stream ready for uptake by the mosquito bite, whose 

apparently quiescent metabolic state makes the identification of inhibitory compounds particularly 

challenging. 

 

Single cell bioluminescence imaging in live P. falciparum parasites. The possibility to use a non-

lysing D-luciferin substrate to produce a BL signal from whole living parasites was here exploited to 

introduce BL imaging at the single-cell level, unprecedented in malaria parasites, to visualize live 

gametocytes of different stages. In order to perform these experiments a parasite line stably expressing 

the CBG99 luciferase from an integrated chromosomal locus was produced. A derivative of the P. 

falciparum 3D7 line was generated in which diagnostic Southern blot analysis (Figure 3) confirmed the 

integration of the pfs16-CBG99 cassette in the P. falciparum locus encoding the fatty acid elongase-1, 

pfelo1, dispensable for gametocyte, mosquito and liver stage development (Kumar and Fidock, 

unpublished observations). Immunofluorescence experiments on gametocytes of this line, named 

3D7elo1-pfs16-CBG99, confirmed that the Myc-tagged luciferase reporter can be readily detected in 

>80% of the gametocytes (Figure 4).  

Stage IV gametocytes from the 3D7elo1-pfs16-CBG99 line, immobilized in 96w plates, were incubated 

with 0.5mM D-luciferin and imaged with an optical microscope connected to an EM-CCD camera. 

Individual bioluminescent live gametocytes could be readily imaged and clearly distinguished from 

uninfected red blood cells (Figure 7a), representing to our knowledge the first report of single-cell BL 

imaging in a protozoan species. Stage IV gametocytes were then treated for 48h with 100nM 

epoxomicin, with 500nM chloroquine, which on such stages has a limited activity at high concentration, 

or with the DMSO vehicle. In this experiment no bioluminescent cells were detectable in the epoxomicin 

treated wells, weak BL signals were seen from gametocytes treated with chloroquine, whereas strong 

signals were detected on the metabolically active control parasites (Figure 7b). The failure to detect BL 

signals from morphologically recognizable gametocytes after drug treatment clearly indicates that the 

BL imaging signal is diagnostic of the viability of such cells. These results further confirmed that the use 

of a non-lysing D-luciferin substrate greatly improves the reliability of measuring luciferase reporter 

activity in the assessment of parasite viability. 
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Figure 7. (a) Single gametocyte bioluminescence imaging of 3D7elo1-pfs16-CBG99 DMSO-treated gametocytes (60x 

objective, 10min acquisition). Magnification bar is 10 µm. (b) BL imaging of control (0.1% DMSO) and drug-treated stage IV 

gametocytes (500nm chloroquine (CQ) and 100nM epoxomicin) (40x objective, 10min acquisition). Parts of the photographs 

showing representative gametocytes in the bright field and in the BL images are enlarged. Magnification bar is 10μm. 

 

Imaging approaches based on the detection of transgenic BL cells are widely used in several biological 

systems, and have been exploited also in protozoan unicellular parasites such as P. falciparum, P. 

berghei, Trypanosome cruzi and Leishmania to detect parasite infections in whole animals. The 

availability of several luciferase variants whose emissions are optimized for detection from deep tissues 

is currently improving the sensitivity of such approaches to describe the patterns of sequestration in 

natural or engrafted mouse tissues by populations of parasites (Claser et al., 2014; Vaughan et al., 2012; 

Lewis et al., 2014; Taylor et al., 2014). 

 

Development and validation of a dual-color stage-specific luciferase assay.  To fully exploit the 

potential of multicolor bioluminescence, the selected green and red luciferases were combined to 

develop a dual-color assay to quantitatively measure stage specific effects of drugs on gametocytes at 

different developmental stages. Only one report in the rodent P. berghei parasites describes a dual 

luciferase assay exploiting the fact that the two enzymes require different luminogenic substrates  (Helm 

et al., 2010), whereas our approach is based on the use of the same BL substrate and on the ability to 

quantitatively distinguish the simultaneous emissions of two reporters at different wavelengths. 

A sensitive and robust dual-color assay ideally requires two luciferases with comparable BL intensities 

and virtually non-overlapping emission spectra. Our test of different novel luciferases in P. falciparum 

was motivated by the fact that the significant red-shift emission, caused by slight pH and temperature 

changes, of the green PpyWT luciferase (Michelini et al., 2008), makes this reporter unsuitable for dual-

color assays. Although the firefly red-emitting mutant PpyRE10, with the longest emission wavelength 

(λmax=617nm) and the narrowest emission spectrum (half bandwidth of 42 nm), would have 

represented the ideal red-emitting partner of the green-emitting CBG luciferase (λmax=537nm), the 

better performance of the CBR luciferase led us to develop the dual color BL assay with the P. 

plagiophthalamus enzymes. 
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Experiments were preliminarily performed to achieve an efficient spectral unmixing of the CBG99 and 

the CBR luciferase BL emissions. A green F545 (510-580 nm) and a red F615 (590-640 nm) high-

transmittance bandpass emission filters were used for the simultaneous BL acquisition. The F545 filter 

allowed acquisition of about 65% of the CBG and only 5% of the CBR luciferase emission, whereas with 

the F615 filter about 70% of the red luciferase and 16% of the green one were detected (Figure 8).  

 

                                   
Figure 8. Bioluminescence emission spectra of the CBG99 (solid line) and CBR (dashed line) luciferases. Wavelengths 

intervals of the green F545 (510-580 nm) and red F615 (590-640 nm) bandpass filters used for the simultaneous acquisition 

of the two selected luciferases with Varioskan luminometer were highlighted. The F545 allows to acquire about the 65% of 

the CBG and only the 5% of the CBR luciferase emission, whereas the F615 filter detect about the 70% of the red luciferase 

and the 16% of the green one. Due to this significant overlap between BL emissions, the introduction of a spectral unmixing 

algorithm (such as Chroma-Luc™ calculator) is needed for quantitative and reliable luciferase activity determination. 

  

Thanks to a spectral unmixing algorithm (Chroma-Luc™ calculator) (Almond et al., 2003) the overlap 

between BL emissions can be reliably calculated to achieve a quantitative determination of the specific 

BL contributions of the individual luciferases. Dual-color BL assays were then performed, with the above 

filter pair, on samples containing different proportions of CBG99- and CBR-expressing gametocytes. 

Results confirmed that the activities of the two luciferases within mixed gametocyte populations can be 

accurately quantified from the corrected green and red light emissions simultaneously recorded from 

the same well (Figure 9).  
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Figure 9. Spectral unmixing of CBG99- and CBR-luciferase expressing gametocytes. CBG99 and CBR expressing 

gametocytes were mixed in different proportions corresponding to the indicated percentages of CBG/CBR luciferase 

activities. BL acquisitions were performed with Varioskan luminometer using the F545 and F615 filters. Raw BL emissions 

were elaborated with the ChromaLuc™ calculator spreadsheet to extract the corrected BL emissions, i.e. the contribution to 

the total light output of the green and red light emitting gametocytes. The relative CBG99/CBR combinations were chosen to 

mimic effects of compounds active on both stages or active mainly on one stage, leading to inhibition thresholds of 50% or 

75%, typically used in hit compound identification. 

 

The ability of the dual-reporter assay to measure stage-specific drug effects was validated treating for 

48h mixtures of stage II and of stage V gametocyte cultures with 500nM chloroquine, virtually inactive 

on mature gametocytes (Maguire et al., 2012), or 100 nM epoxomicin, killing all sexual stages (Czesny et 

al., 2009). 

The dual assays calculated the specific emissions of the CBG99 and the CBR luciferases, which were 

respectively produced by early and by late gametocytes in one experiment (Figure 10 a) and by late and 

by early stages in the reciprocal experiment (Figure 10b). Results were that neither luciferase showed 

any activity after epoxomicin treatment, confirming that this drug efficiently killed both gametocyte 

stages. By contrast, in chloroquine-treated parasites only a minor decrease in activity was measured for 

either the red or the green luciferase when these were produced by the chloroquine-insensitive mature 

gametocytes, whereas a dramatic drop in activity of both luciferases was observed when these were 

expressed by the early gametocytes. The dual assay was also performed comparing the D-luciferin and 

the Britelite™ substrates, further supporting that assays using the non-lysing D-luciferin substrate 

formulation more faithfully reflect the differential stage-specific activity of these drugs and assess 

parasite viability (Figure 4c). Drugs killing all gametocyte stages or differentially active against immature 

and mature sexual stages validated the ability of the dual-color assay to quantitatively measure such 

stage-specific effects. The calculated assay Z’ factor of 0.71±0.03 indicated an excellent robustness for 

scaling up to HTS formats. The use of a dual-color BL assay to monitor different parasite sexual stages 

provides a proof of principle that this approach can be used on other parasite stages, which has relevant 

implications for future strategies in the frame of malaria eradication. 
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Figure 10. Dual-color gametocyte assay validation. (a) Dual-luciferase assay with early and mature gametocytes 

respectively expressing the CBG99 (green bar) and the CBR luciferase (red bar). BL intensities were acquired with a Varioskan 

luminometer using F545 and F615 optical filters. Raw BL measurements were spectrally unmixed with Chroma-Luc
™

 

calculator and normalized with respect to DMSO control. (b) Reciprocal dual-color assay with mature and early stage 

gametocytes expressing the CBG99 and the CBR luciferase respectively. (c) Comparison of Britelite
™

 and D-luciferin 

performance in an independent dual-color assay using CBG99 mature stage and CBR early stage gametocytes. 

 

Conclusion 

In this work we developed a robust, cost-effective, and reliable dual-color gametocyte assay that 

exploits, for the first time in malaria, the potentiality of multicolor bioluminescence. The assay provided 

superior analytical performance in comparison to previously reported assays with the potential of 

improving current drug screenings in terms of cost, time and sensitivity. We envisage that the same 

approach could be easily applied to develop new screening assays for identifying antimalarial drugs 

targeting different parasite stages. Besides, this methodology can be used for instance to simultaneously 

compare expression of stage-specific gene products, measure distinct cellular pathways, or evaluate the 

activity of an inducible or treatment-responsive promoter compared to a constitutive internal viability 

control, respectively driving the expression of the two luciferases in the same parasite. 

Moreover, the single-cell BL imaging of the human malaria parasite P. falciparum opens the 

possibility to monitor in real time individual luciferase-expressing parasites in their stage-specific 

functional interactions with host tissues and cells and to assess how distinct cell types affect viability of 

specific parasite stages in in vitro and ex vivo settings. The concomitant significant development of 

affordable plate readers with customizable technical modules dedicated to multiplexing and BL imaging 
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will greatly facilitate the applicability of the approaches presented here both in the study of and in the 

fight against this deadly parasite. 
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Abstract: Killing the terminally differentiated mature (stage V) gametocytes of Plasmodium 
falciparum, responsible for humans to mosquitoe parasite transmission, is essential for malaria 
eradication. The non-dividing nature and the apparently low metabolism of these stages makes it 
challenging to identify targetable cellular processes and to reliably measure sensitivity to compounds of 
late gametocytes in drug screenings. 

A P. falciparum line was developed in which the potent click beetle luciferase CBG99 is 
chromosomally integrated and transcriptionally regulated by the PFL1675c parasite promoter. This 
sequence was functionally selected for efficiently and specifically activating reporter expression in stage 
V gametocytes. Bioluminescence of mature gametocytes from this line is measured with a novel 
luciferase protocol using a non-lysing, ATP free D-luciferin substrate formulation. This improved assay 
sensitively and reliably monitors gametocyte viability and sensitivity to compounds. 

The fact that the pro-oxidant drug methylene blue (MB) efficiently inhibits gametocyte development 
and transmission drove our attention to targeting the poorly described redox equilibrium of late 
gametocytes and to investigate MB mode of action. Drugs and compounds described to unbalance the 
parasite redox equilibrium in asexual parasites were tested alone and in combination with MB and IC50 
were measured on mature gametocytes. These experiments revealed that inhibitors of the parasite 
penthose phosphate pathway, producing most of the infected erythrocyte NADPH, are virtually 
ineffective on late gametocytes but, intriguingly, they potently synergize MB activity against these 
parasites. 

This work identifies redox equilibrium as a promising drug target in mature gametocytes. Measuring 
gametocyte sensitivity to different pro-oxidant drug combinations will drive the design of the most 
appropriate transmission blocking treatment(s). 

 

Introduction 

Malaria is the most severe parasitic mosquito-borne disease, with an enormous burden for human 

population, especially for poor communities in endemic countries.  
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According to the last estimates, 200 million cases of malaria occurred globally in 2013 leading to 600 

000 deaths, mostly caused by the parasite Plasmodium falciparum, with 90% of the cases located in 

Africa and with 78% of the annual deaths occurring in children aged under 5 years, with pregnant 

women at higher risk (WHO World Malaria Report 2014). 

The symptoms of the disease are due to the asexual cycle of P. falciparum parasites, causing fever, 

anemia, acidosis, renal failure and cerebral and placental malaria, with the latter symptoms causing 

coma and death, and mother and fetal death, respectively, in the most serious cases (Tilley et al; 2011). 

Responsible of parasite transmission from the human host to the Anopheles mosquito vector are the 

mature gametocytes, the sexual parasite forms that, in P. falciparum, develop in 10-12 days in the 

human host and, once ingested with the blood meal, are activated to become female and male gametes 

into the mosquito midgut, where fertilization and subsequent maturation of the zygote occur. The 

zygote produces an ookinete, which further transform into an oocyst, leading to sporozoites ready to 

infect another human host during the next mosquito bite.  

The necessity of eradicating P. falciparum malaria in the World has been recently focusing the 

attention on finding drugs able to kill the transmittable mature gametocytes. An obstacle along this path 

proved to be that, in contrast to asexual parasites and, partly, to early stage gametocytes, mature 

gametocytes are insensitive to virtually all anti-malarial drugs (Adjalley et al. PNAS 2011), possibly 

because they appear as quiescent, low metabolically active cells (Delves et al. 2013, Sinden et al. 1978). 

With the exception of primaquine, that desides killing P. vivax asexual stages is active also on P. 

falciparum gametocytes, although it is not totally safe in humans (Butterworth et al., 2013) and the only 

drug described to be efficiently active against P. falciparum gametocytes at different matration stages is 

methylene blue (MB) (Adjalley et al. 2011). MB is a heterocyclic aromatic compound whose mechanism 

of action against the malaria parasites is controversial with the most commonly accepted model being 

that this molecule acts as a redox cycler, accepting electrons from the flavoprotein glutathione 

reductase (GR) (Ehrhardt et al., 2013) . GR is responsible for the production of the reducing agent 

glutathione, whose pathway is very important for the parasite detoxification from the free oxygen 

speciesmainly deriving from hemoglobin digestion in the infected red blood cell (Tripathi et al., 2007), 

described to occur in all asexual stages of P. falciparum and also during gametocyte development, until 

the gametocyte reaches stage IV of maturation (Hanssen et al., 2012).   

The fact that the pro-oxidant drug MB efficiently inhibits gametocyte development and parasite 

transmission to the vector drove our attention to the poorly described redox equilibrium of late stage 

gametocytes as a promising new target, and to investigate the mode of action of MB.  

The non-dividing nature and the apparently low metabolism of mature gametocytes make it 

challenging to identify targetable cellular processes in these cells. In addition, the same features make it 

difficult to reliably measure sensitivity to compounds of late gametocytes in drug screenings. To 

overcome this problem, and to develop a tool enabling to investigate this and other similar questions on 

late gametocyte drug sensitivity, we developed a transgenic line in which the potent click beetle 

luciferase CBG99 (Cevenini et al., 2014) is chromosomally integrated and transcriptionally regulated by a 

newly identified late gametocyte-specific promoter. This sequence was functionally selected for 

efficiently and specifically activating reporter gene expression in stage V gametocytes.  
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Use of this transgenic line enabled us to quantitatively measure effects on mature gametocytes of a 

panel of drugs and compounds described to unbalance the parasite redox equilibrium in asexual 

parasites. Effects of combination of compounds, targeting different enzymes involved in redox balance, 

were also investigated. This work leads to reveal that the action of MB on stage V gametocyte can be 

potently synergized by simultaneously inhibiting the pentose phosphate pathway. 

 

Materials and Methods 

Parasite cultures and transfections. The P. falciparum 3D7A (Walliker et al., 1987) and NF54attB 

(Adjalley et al., 2011)  lines were cultured in human 0+ erythrocytes, kindly provided by Prof. G. Girelli, 

Dipartimento di Biopatologia Umana, University of Rome ‘‘La Sapienza”, at 5% haematocrit under 5% 

CO2, 2% O2, 93% N2 (Trager et al., 1976). Cultures were grown in medium containing RPMI 1640 

medium (Gibco) supplemented with 25 mM Hepes, 50 µg/ml hypoxanthine, 0.25 mM NaHCO3, 50 µg/ml 

gentamicin sulphate and 10% pooled heat-inactivated 0+ human serum. Ring stage parasites at 3–5% 

parasitaemia were transfected by electroporation with 80–100 µg of transfection vectors using a BioRad 

electroporator with the following conditions: voltage, 0.31 kV; capacitance, 960 µF; resistance to infinity 

(Fidock et al., 1997).  

Production of the transgenic lines expressing GFP under control of candidate gene regulatory 

sequences (Upregulated in Late Gametocytes, ULG) carried by episomal plasmids was obtained by 

transfecting the P. falciparum 3D7A with the pASEX-ULG-GFP plasmids described below and in Figure 1. 

Following transfection, parasites were maintained in drug free medium for 24h; at this time, positive 

selection was initiated by adding 2.5 nM WR99210. 

 

 
Figure 1. Map of a representative pASEX-ULG-GFP plasmid containing the GFP reporter gene flanked by the P. falciparum 

ULG upstream and downstream regulatory regions. The plasmid contains the human dihydrofolate reductase (hDHFR) gene, 
flanked by the calmodulin (CAM) promoter and the histidine rich protein 2 (hrp2) gene 3’ UTR as the WR99210 selection 
marker. The rep20 sequence facilitates plasmid segregation in daughter cells (O’Donnell  et al., 2002). 

 

Production of the transgenic line with a stably integrated CBG99 luciferase under the expression 

control of the pfULG8 regulatory regions was obtained transfecting plasmid pCR2.1-attP-FRT-
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hDHFR/GFP-ULG8-CBG99 (Figure 2), which contained an attP site for Bbx1 mediated integration 

(Nkumah et al., 2006) in the parasite line NF54attB of P. falciparum. These parasites contain a Bbx1 attB 

site in the cg6 gene. Plasmid pCR2.1-attP-FRT-hDHFR/GFP-ULG8-CBG99 was co-transfected with a 

plasmid expressing the integrase gene (pINT plasmid; Adjalley et al., 2011). Double selection started 24h 

after transfection by adding 250 μg/ml of G418 and 2.5nM of WR99210. After 6 days of double 

selection, parasites were treated only with 2.5nM of WR99210 and after other 3 days parasites were 

allowed to recover in the absence of any drug. 

 

 
Figure 2. Map of the pCR2.1-attP-FRT-hDHFR/GFP-ULG8-CBG99 plasmid. The plasmid contains the CBG99 luciferase gene 

flanked by the P. falciparum ULG8 upstream and downstream regulatory regions, the selection cassette constituted by the 

hDHFR (human dihydrofolate reductase) coding sequence fused to that of the GFP (Green Fluorescent Protein) gene, flanked 

by the calmodulin promoter (CAM) and the histidine rich protein 2 (hrp2) gene 3’ UTR. The FRT sequences flanking the 

selection cassette enable the removal of the selection cassette using the FLP recombinase enzyme (van Schaijk et al., 2010). 

The attP site mediates the integration of the plasmid into an attB site through activity of a Bbx-1 integrase enzyme (Adjalley 

et al., 2011). 

 

Plasmid construction. The multistep cloning strategy to obtain the pASEX-ULG-GFP vectors carrying a 

GFP expression cassette under the ULG regulatory regions was as follows. The pASEX-GFP plasmid  The 

downstream regulatory regions of genes pfs28, mal8p1.16 and ULG1-8 were PCR amplified using the 

primer pairs #3 and #4,#7 and #8#11 and #12,15 and #16,#19 and #20, #23 and #24, #27 and #28, #31 

and #32, #35 and #36, #39 and #40 in Table 1. 

 

# Primer name Sequence (5’-3’) Sites 

1 pfs28 upstream sequence dir gggCTCGAGATATATATTTTAAATGGTAAATTATCAAGG XhoI 

2 pfs28 upstream sequence rev gggCCCGGGTGTATTCATTGTATAAAAAACTAAAAAATATAAAATAATAAG XmaI 

3 pfs28 downstream sequence dir gggACTAGTATATATATATATATATATAGTCATATGATTTGC SpeI 

4 pfs28 downstream sequence rev gggGCGGCCGCATTTTTATGAATATATATACTCAACC NotI 

5 mal8.p1.16 upstream sequence dir gggCTCGAGTCTCTATATACTATGGAATATGTGC XhoI 

6 mal8.p1.16 upstream sequence rev gggCCCGGGTCTTAACATTGCGTGGGATTAATATTTTAATG XmaI 
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7 mal8.p1.16 downstream sequence dir gggACTAGTCAAAAAAAAATAAAATTTGAATAAATTGG SpeI 

8 mal8.p1.16 downstream sequence rev gggGCGGCCGCACAAATGTAATCAATGATTATATGAAGTGGG NotI 

9 ULG1 upstream sequence dir gggCTCGAGGGAAGTAAAAGATAAAGAAAGTGAACG XhoI 

10 ULG1 upstream sequence rev gggCCCGGGATAATTCATTACTAGGAATTATAAAAG XmaI 

11 ULG1 downstream sequence dir gggACTAGTAAAGAAATTCGTATAAAAATATTTATGTTGC SpeI 

12 ULG1 dowstream sequence rev gggGCGGCCGCATTATATACATACTTCAAAATATACG NotI 

13 ULG2 upstream sequence dir gggCTCGAGCGTTTTTTAAATGGTTATTAGAAAATCCG XhoI 

14 ULG2 upstream sequence rev gggCCCGGGACTTTCCATGTCTGTTCTGTTCTGTTATGTTATC XmaI 

15 ULG2 downstream sequence dir gggACTAGTGATGGAAGAATATTATATGAGTG SpeI 

16 ULG2 dowstream sequence rev gggGCGGCCGCAAAAACCACGAATAAATAATACGCC NotI 

17 ULG3 upstream sequence dir gggCTCGAGTTAATAAAGCTTGTTCATAATTTCTAGG XhoI 

18 ULG3 upstream sequence rev gggCCCGGGCGATTTACTTGCAGGTAATGTAGCCATTTG XmaI 

19 ULG3 downstream sequence dir gggACTAGTTAAGATATAATTCTTGAATAGAACAGC SpeI 

20 ULG3 dowstream sequence rev gggGCGGCCGCTTTTTCAAAATGTCTATAAAGAGC NotI 

21 ULG4 upstream sequence dir gggCTCGAGGCCTCTTTATATCCATCACATCCATTAGC XhoI 

22 ULG4 upstream sequence rev gggCCCGGGGTTAAACATTTTTACTATAATTAAAATTAAC XmaI 

23 ULG4 downstream sequence dir gggACTAGTGGAAAGAAGATAATAAAATGATG SpeI 

24 ULG4 dowstream sequence rev gggGCGGCCGCGATAATATACAAAACAATCGTGAGG NotI 

25 ULG5 upstream sequence dir gggCTCGAGTTCACTATATTAAAGTGGAAGACTCC XhoI 

26 ULG5 upstream sequence rev gggCCCGGGATACATCATGTACAGAAATAATGGAATGACAG XmaI 

27 ULG5 downstream sequence dir gggACTAGTAAGGTCATATAAAAAGGAAATATAAAAATTAC SpeI 

28 ULG5 dowstream sequence rev gggGCGGCCGCATTGTTTTTATTTTTATCCCTAGGG NotI 

29 ULG6 upstream sequence dir gggCTCGAGCCAGAACAAAATAAAAGACTGAACAAGG XhoI 

30 ULG6 upstream sequence rev gggCCCGGGGCGAAACATTTTTTTATTAAATAAAAATAGGAACAATTAG XmaI 

31 ULG6 downstream sequence dir gggACTAGTTTATATTCATTTTAATAAATTATGAAAAATAGTGG SpeI 

32 ULG6 dowstream sequence rev gggGCGGCCGCTGTAAAGGTGCTTGTGAAGGATTTTGCGC NotI 

33 ULG7 upstream sequence dir gggCTCGAGATACATATAATACAAAATTTACGCACC XhoI 

34 ULG7 upstream sequence rev gggCCCGGGATAGGACATCTTAAAATTATATTGTATATATATGACAG XmaI 

35 ULG7 downstream sequence dir gggACTGAGCATTTTATACGATAAAATGTATAAGATTATG SpeI 

36 ULG7 dowstream sequence rev gggGCGGCCGCTCCTAAATATACAGTGTGTATACTACCC NotI 

37 ULG8 upstream sequence dir gggCTCGAGCAACAGTAAAAATAAATGAATAAAAAAACC XhoI 

38 ULG8 upstream sequence rev gggCCCGGGGAAAGACATTTCAAAAAAATATAAAAAAAATTAC XmaI 

39 ULG8 downstream sequence dir gggACTAGTTATATATAATACAATACAATATATTATACC SpeI 

40 ULG8 dowstream sequence rev gggGCGGCCGCAAATTATATTTATTATATATTTTGAGATAGCC NotI 

 
Table 1. List of primers used to amplify the ULG upstream and downstream regulatory regions. 
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 These PCR amplification products (sizes and gene names are indicated in Table 2) were cloned into a 

SpeI-NotI digested pASEX-GFP plasmid (Pace et al., 2006), producing intermediate pASEX-GFP constructs 

containing these downstream late regulatory regions. The upstream genomic regions of the pfs28, 

mal8p1.16 and ULG1-8 genes were PCR amplified using the primer pairs #1 and #2, #5 and #6, #9 and 

#10, #13 and #14, #17 and #18, #21 and #22, #25 and #26, #29 and #30, #33 and #34, #37 and #38 of 

Table 1. These fragments (sizes and gene names are indicated in Table 2) were cloned into the above 

intermediate plasmids after XhoI-XmaI digestion to produce the final pASEX-ULG-GFP, pASEX-pfs28-GFP 

and pASEX- mal8p1.16-GFP constructs. 

 

Gene name Code Bp upstream 
region 

Bp downstream 
region 

PF3D7_1030900/pfs28 - 1620 670 

PF3D7_0828000/mal8p1.16   - 1519 784 

PF3D7_1338800 /mal13p1.195 ULG1 1529 718 

PF3D7_1362600/mal13p1.312 ULG2 1340 668 

PF3D7_0816800/mal8p1.76 ULG3 1608 815 

PF3D7_0303900/pfc0176c ULG4 1590 835 

PF3D7_0506400/pfe0315c ULG5 1387 835 

PF3D7_1214500 /pfl0700w ULG6 1466 691 

PF3D7_1221400/pfl1030w  ULG7 1700 769 

PF3D7_1234700/pfl1675c ULG8 1034 661 

 
Table 2. Names and sizes of the regulatory regions selected.  

 

The multistep cloning strategy to obtain the PCR2.1-attP-FRT-hDHFR/GFP-ULG8-CBG99 plasmid was 

as follows. The pCR-2.1-pfs16-CBG99 plasmid (Cevenini et al., 2014) was digested with NcoI-XbaI and the 

NcoI site was blunted by fill in using the Klenow polimerase according to manufacturer instructions 

(New England Biolab) to remove the CBG99 luciferase coding sequence, which was inserted in the SmaI-

SpeI digested pASEX-ULG8-GFP plasmid to replace the GFP coding sequence and to produce plasmid 

pASEX-ULG8-CBG99. The hDHFR/GFP selection cassette flanked by the FRT sites was obtained digesting 

with SmaI-ScaI plasmid MV129-Pf36p-DXO-hDHFR-GFP (van Schaijk et al., 2010) and was inserted into a 

SnaBI-EcoRV digested pCR2.1-attP plasmid (Nkrumah et al. 2006) to produce plasmid pCR2.1-attP-FRT-

hDHFR/GFP. Finally, the pASEX-ULG8-CBG99 plasmid was digested with XhoI-NotI and the ULG8-CBG99 

cassette was inserted into the XhoI-NotI digested pCR2.1-attP-FRT-hDHFR/GFP plasmid, forming the 

pCR2.1-attP-FRT-hDHFR/GFP-ULG8-CBG99 plasmid. 

 

Southern blot analysis. This is still ongoing at Columbia University of New York.  
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Time course of CBG99 luciferase activity in gametocyte development. The NF54-cg6-hDHFR/GFP-

ULG8-CBG99 parasite culture was induced to undergo gametocyte production by parasite overgrowth. 

At 48h after N-acetyl-glucosamine (NAG) treatment to eliminate residual asexual stage parasites, stage 

I/II gametocytes were partially purified from uninfected erythrocytes with a 60% Percoll density gradient 

centrifugation (Kariuki et al., 1998) and were incubated in complete medium until maturation.  Aliquots 

of 1x105 purified gametocytes from stage I/II to stage V were collected and frozen daily for a total of 13 

days. To measure bioluminescence, the gametocyte pellets were resuspended in 100μl of 1X PBS 

supplemented with protease inhibitors (CompleteTM) and, after the addition of 100μl of BriteLite PlusTM 

substrate (Perkin Elmer), luciferase activity of each sample was measured for 30 seconds on a Lumat LB 

9501 Tube Luminometer.     

 

Luciferase assays on stage V gametocytes. Gametocytes from the NF54-cg6-hDHFR/GFP-ULG8-

CBG99 culture at stage V of maturation were exposed to different concentration of different 

compounds. Asexual cultures grown under conditions to induce gametocyte production were treated 

with N-Acetylglucosamine (NAG) for 96 hours at the onset of gametocytogenesis to clear asexual 

parasites. After NAG treatment gametocytes were purified from uninfected erythrocytes on MACS 

Separation Columns CS (Miltenyi Biotec) and allowed to mature. To calculat the IC50s, compounds (Table 

3) serial dilutions were prepared and dispensed in 96-well plates in a final volume of 100 µL per well. 

Synchronous 1 × 105 stage V gametocytes (day X after NAG) were re-suspended in 100 µL of complete 

medium and incubated with the compounds at 37°C for the time indicated. To calculate the IC50 of MB 

on mature gametocytes in presence of a fixed dose of different compounds, MB was dispensed in 96-

well plates as described above. Synchronous 1 × 105 stage V gametocytes were re-suspended in 100 µL 

of complete medium with 1µM of the different compounds and incubated with MB at 37°C., cell viability 

was evaluated by measuring luciferase activity of each sample for one second on a Varioskan™ Flash 

Multimode Reader (Thermo Scientific) after addition of 0.5 nM of D-Luciferin. The percentage viability 

was calculated as a function of drug concentration and curve fitting was obtained by non-linear 

regression analysis (GraphPad Prism 6.0). 

 

Code Name 

MB Methylene  blue 

ML304 (R)-N-((1-ethylpyrrolidin-2-yl)methyl)-4-methyl-11-oxo-10,11-
dihydrodibenzo[b,f][1,4]thiazepine-8-carboxamide  (PfGluPho inhibitor) 

JB047 Plasmodione  (P_TM29) 

MB030 6-fluoro-analogue of P_TM29 

MB017 Benzoylmenadione (P_TM29 metabolite I) 

M5 Menadione derivative (GR inhibitor) 

P_TM22 Menadione derivative (GR inhibitor) 

Paracetamol Acetaminophen (GSH depletor) 

Ascorbic  acid Vitamin C 
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AG16 Nam-based dual drug affecting the NADPH balance 

 
Table 3. List of codes and full names of the compounds used in this study. 

 

Results 

Development of a P. falciparum reporter line expressing luciferase specifically and efficiently in 

mature gametocytes.  To functionally identify parasite regulatory regions able to efficiently and 

specifically upregulate gene expression in late gametocytes, quantitative microarray data from time 

courses of asexual and sexual development were inspected (Le Roche et al., 2003; Young et al., 2005) 

(Figure 3). Pairs of upstream and downstream genomic regions were selected from eight genes whose 

transcripts preferentially accumulated in late stage gametocytes, which were called ‘Upregulated in Late 

Gametocytes’ (ULG1-8). Flanking regions were also obtained from genes pfs28 (Eksi et al., 2008) and 

mal8p1.16, encoding a rhomboid protease (Adjalley et al., 2011), as these are the only two genes whose 

promoters have been used so far to express reporter genes in P. falciparum late stage gametocytes. Ten 

plasmids were altogether produced as described in Materials and methods (Table 1, Figure 1, Table 2) in 

which the above parasite regulatory sequences were used to drive GFP expression from episomal 

plasmids transfected in ten 3D7 derivative lines. FACS analysis of GFP expression in early and late stage 

gametocytes of the transgenic lines revealed that the pfULG8 regulatory regions combined the highest 

degree of stage specificity with the highest efficiency of expression compared to the genomic flanking 

regions from the other ULG candidates and importantly performed better than both reference late 

gametocyte promoters pfs28 and mal8p1.16. In the pfULG8-GFP gametocytes GFP expression increased 

five-fold in late stage V compared to the immature stage II/III gametocytes (Figure 4a). 

 

 
 
Figure 3. Transcript abundance of the eight ULG candidate genes and of the pfs28 and the mal8p1.16 genes mRNAs 

during the asexual cycle and gametocytogenesis. Microarray expression values (Match-Only Integral Distribution, MOID) are 
compiled from the time course analysis described in Le Roch et al., 2003 and Young et al., 2005. Parasite stages are ER: early 
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rings, LR: late rings, ET: early trophozoites, LT: late trophozoites, ES: early shizonts, LS: late shizonts, GC 1-13: 
gametocytogenesis day 1-13.   

 

      The ULG8 gene regulatory regions were therefore used to obtain a parasite line in which they 

could similarly regulate expression of a luciferase reporter, in this case stably integrated in the parasite’s 

genome. The ULG8 regions were engineered to flank the Phyrophorus plagiophthalamus CBG99 

luciferase gene as described, which was recently shown to be a potent bioluminescent reporter in all 

gametocyte stages (Cevenini et al., 2014). To produce such reporter line the plasmid containing the 

ULG8-CBG99 expression cassette was inserted into the cg6 gene of a P. falciparum  NF54attB line, by the 

co-transfection of this plasmid with a plasmid expressing the integrase of the Bxb1 mycobacteriophage 

(Nkrumah et al., 2006), generating the NF54-cg6-hDHFR/GFP-ULG8-CBG99 line (Figure 4b). To evaluate 

the reporter activity of the newly generated line, gametocytogenesis was induced and luciferase activity 

was measured daily on gametocytes from stage II to stage V. The profile of bioluminescence from the 

synchronized gametocytes clearly showed a significant increase in luciferase activity starting from the 

appearance of stage V gametocytes (Figure 4c). As in the ULG8-GFP gametocytes, the NF54-cg6-

hDHFR/GFP-ULG8-CBG99 line, where the luciferase cassette is chromosomally integrated, showed a 

similar stage specificity of reporter activation in late sexual stages, with a similar five-fold increase in 

luciferase activity compared to the immature (stage II-III) gametocytes. Importantly to the use in 

compound screenings, the kinetic analysis of luciferase expression in stage V gametocytes from this line 

is characterized by a high stability, over 60 minutes (Figure 4d).  

 

 
 Figure 4. Development of a P. falciparum reporter line expressing luciferase specifically and efficiently in mature 

gametocytes. (a) Histograms representing the Mean Fluorescent Intensity (MFI) of the GFP reporter expressed under control 

of the ULG, the pfs28 and the mal8p1.16 regulatory regions in early (stage II/III) and late (stage V) gametocytes . (b) Structure 

of the ULG8-CBG99 luciferase cassette integrated in the cg6 gene of the NF54
attB

 P. falciparum line. From left to right, attL: 

attB/attP sequence resulting from the Bbx-1 mediated recombination of the attP-containing plasmid into the cg6 attB site 
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(Nkrumah et al., 2006); FRT: FLP recognition sequence; CAM: calmodulin; hDHFR: human dihydrofolate reductase; GFP: green 

fluorescent protein; hrp: histidine rich protein; attR: attP/attB sequence resulting from the Bbx-1 mediated recombination of 

the attP-containing plasmid into the cg6 attB site.  (c) CBG99 luciferase activity during gametocytogenesis of the transgenic P. 

falciparum line expressing the CBG99 luciferase under control of the ULG8 regulatory regions. (d) Kinetics of luciferase 

activity of the CBG99 reporter produced in stage V gametocytes of the NF54-cg6-hDHFR/GFP-ULG8-CBG99 line . 

 

Assessment of the activity of drugs affecting the redox equilibrium on P. falciparum mature 

gametocytes. As Methylene blue (MB), a compound described to perturb the parasite redox 

equilibrium, was reported to block P. falciparum transmission killing mature gametocytes (Adjalley et al., 

2011), we evaluated its action with the newly established assay described above, and we investigated 

the activity of additional drugs and compounds described to affect different aspects of the redox 

equilibrium of the human malaria parasite (Table 3).  

One compound was described to specifically inhibit the glucose-6-phosphate dehydrogenase 6-

phosphogluconolactonase (PfGluPho), a bifunctional enzyme that catalyses the first two steps of the 

pentose phosphate pathway (PPP), responsible for the production of most of the NADPH in erythrocytes 

infected by asexual parasites. This probe, the (R)-N-((1-ethylpyrrolidin-2-yl)methyl)-4-methyl-11-oxo-

10,11-dihydrodibenzo[b,f][1,4]thiazepine-8-carboxamide (ML304) shows >420 fold selectivity against 

the human G6PD and a micromolar activity against asexual P. falciparum parasites (Maloney et al., 

2010).  

The activity of MB and ML304 on mature P. falciparum gametocytes after a 24h treatment was 

markedly different, as we observed an IC50 of 4.65 μM for MB and of 65μM for ML304 (Figure 5a, b). 

Intriguingly, when an MB dose response curve was obtained on mature gametocytes in presence of a 

fixed concentration of 1μM of ML304 we observed a 20-fold decrease in the IC50 of MB compared to 

that of MB alone, suggesting a synergistic activity of the two compounds on stage V gametocytes of P. 

falciparum (Figure 5c).  
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Figure 5. Dose response curves on treated stage V gametocytes and IC50s values of  a. ML304, b. Methylene Blue and c. 

Methylene Blue and 1microM ML304.  

 

We tested the activity on mature gametocytes of other compounds known to kill asexual blood 

stages of P. falciparum by unbalancing the redox equilibrium as described in Table 3. 

Dose response curves obtained with these compounds on mature gametocytes after 24 hours of 

treatment showed that none of them had any obvious activity on mature gametocytes (Figure 6 a-h).  
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Figure 6: Dose response curves on stage V gametocytes after treatment with different compounds known to perturb the 

redox equilibrium of P. falciparum asexual stages by different mechanisms (listed in Table 3).  

To investigate possible synergistic actions of the above compounds with MB, as it was the case for 

ML304, we produced dose response curves of MB in presence of these compounds at a concentration of 

1μM. In these experiments we observed that the IC50 values of MB in combination with the different 
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compounds didn’t decrease compared to the IC50 of MB alone, indicating that none of them was 

producing synergistic effects with MB (Figure 7a-i). 
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Figure 7: Dose response curves of MB on stage V gametocytes alone or in combination with a fixed dose (1 μM) of 

compounds known to perturb the redox equilibrium of P. falciparum asexual stages. n.d.: not determined.    

In fact, it was noticeable that some of the combination treatments appeared to decrease MB activity, 

making it impossible to determine the MB IC50, and suggesting that they had an antagonistic effect on 

MB activity. Further analysis will elucidate this possibility.  

Discussion and conclusions 

This work aimed to study the poorly described redox equilibrium of mature gametocytes as a 

promising new target for anti-transmission drugs and to investigate the mode of action of MB. 

After the first evidence that MB is a potent antimalarial, with an IC50 in the nanomolar range on 

asexual blood stages (Atamna et al., 1996), this compound was described as an active inhibitor of the P. 

falciparum glutathione reductase (GR) (Farber et al., 1998). Subsequently, the interaction of MB with 

the human or Plasmodium GR was better elucidated, describing MB as a redox cycling substrate of the 

P. falciparum GR enzyme (Buchholz et al., 2007) whose activity catalyzed the reduction of MB by 

NADPH. The resulting reduced form of MB is then oxidized by O2. These reactions lead to the production 

of reactive oxidative species, such as H2O2, which are toxic for the parasite.  Furthermore, they lead to 

the consumption of both O2 and NADPH. In P. falciparum most of the NADPH is produced by the 

bifunctional enzyme glucose-6-phosphate dehydrogenase 6-phosphogluconolactonase (PfGluPho) 

(Preuss et al., 2012), which catalyzes the first two steps of the pentose phosphate pathway (PPP) (Preuss 

et al., 2012). This enzyme is structurally different from its human counterpart glucose-6-phosphate 

dehydrogenase (G6PD) (Preuss et al., 2012). NADPH is used by the parasite to counteract its oxidative 

stress: it is used by GR to reduce glutathione that, once reduced (GSH), participates in many 

detoxification cellular pathways (Tripathi et al., 2007; Gallo et al., 2009; Jortzik and Becker 2012). Most 

of the toxic oxygen species derives from parasite’s hemoglobin digestion (Tripathi et al., 2007), 

described to occur in all asexual stages of P. falciparum and during gametocyte development, until the 

gametocyte reaches stage IV of maturation (Hanssen et al. 2012).   

Although redox metabolism of the malaria parasite is not expected to be active in mature 

gametocytes, considering that hemoglobin digestion doesn’t occur in this stage of gametocytogenesis, 

indirect evidence that some level of redox activity occur also in this stage has been provided (Tanaka 

and Williamson 2011). 
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  To further support the hypothesis that redox metabolism is active in late gametocytes is the 

observation that MB is active not only against asexual blood stage parasites and early stage gametocytes 

but also against stage V gametocytes (Adjalley et al., 2011). The rationale of our effort to elucidate the 

mechanism of action of MB on mature gametocytes was that this work could reinforce the evidence of 

an active redox metabolism in this stage, importantly resulting in making this metabolic pathway an 

attractive target for anti-transmission drugs.  

For this purpose we used the newly developed NF54-cg6-hDHFR/GFP-ULG8-CBG99 transgenic line 

that expresses the potent Phyrophorus plagiotalamus CBG99 luciferase gene (Cevenini et al., 2014) 

under control of the regulatory regions of gene PFL1675c to upregulate its expression in late stage of 

gametocytogenesis. These regulatory regions were selected from a functional analysis of different 

candidates as so far none of the P. falciparum transgenic lines expressing reporter genes during 

gametocytogenesis had the feature of specifically upregulating reporter expression in mature 

gametocytes. The line we developed for this work is therefore uniquely suitable for performing cell-

based assays specific to test the activity of compounds against mature gametocytes by bioluminescence. 

We decided to test different compounds described to perturb the redox metabolism of P. falciparum 

asexual blood stages and to investigate their activity alone and in combination with MB. These included 

two compounds described to affect the NADPH balance (ML304 and AG16, the former blocking the 

activity of the PfGluPho (Maloney et al., 2010)); three compounds of the family of benzoylmenadione 

(JB047, MB030 and MB017) which, as MB, act as redox cycler for the GR enzyme (Muller et al., 2011; 

Ehrhardt et al., 2013; Bielitza et al., 2015); two menadione derivative compounds (M5 and P_TM22), 

which act as GR inhibitor  (Biot et al., 2004; Muller et al., 2011); paracetamol, which is a glutathione 

depletory, and ascorbic acid.  

Results of assays where mature gametocytes were exposed to the individual compounds showed 

that, after a treatment of 24 hours, the only compound that showed an IC50 below 10 µM was MB (IC50 = 

4.65 µM). Also when tested in single 1 microM dose in combination with MB these compounds didn’t 

decrease MB IC50, with the remarkable exception of ML304, that was able to decrease the IC50 of MB of 

about 20 fold. This dramatic decrease suggests that ML304 ability to affect NADPH levels helps MB 

activity as a redox cycler, which highlights the presence of an active redox metabolism in the mature 

transmission stages of P. falciparum and also suggests that the mechanism of action of MB in these 

stages is similar to that active in asexual blood stages.  

The fact that ML304 alone has almost no effect on mature gametocytes compared to its ability to kill 

asexual blood stages with IC50 values of about 600nM can be explained considering that the PfGluPho, 

the ML304 target, is a key enzyme providing precursors of nucleic acid biosynthesis, a pathway 

necessary for the asexual replicating parasites and unnecessary for the non-replicating mature 

gametocytes.  

The fact that the other compounds tested alone didn’t show any activity against P. falciparum mature 

gametocytes could be explained considering that these are less active against the parasite’s asexual 

blood stages compared to ML304 (Muller et al., 2011; unpublished results). These compounds did not 

show any ability to synergize the activity of MB and in some cases they even appeared to act as MB 

antagonists. This feature, as in the case of M5, could be due to compound ability to inhibit GR (Bielitza 
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et al., 2015), preventing in this way its role in reducing the redox cycler MB and producing the toxic 

oxygen species active in killing the parasites. 

In conclusion, this work reveals with the use of a specific cell-based assay that activity of the redox 

cycler compound MB can be potentiated by co-treating P. falciparum late gametocytes with another 

compound reducing level of a critical effector of parasite detoxification pathways such as NADPH. These 

results confirm and expand the notion that redox metabolism is active on mature gametocytes and that 

its importance as a drug target is not restricted to asexual stages or immature gametocytes. The 

demonstration that it can be targeted by combination of drugs affecting synergistically different 

pathways of the parasites’ redox equilibrium gives an important opportunity for the development of 

new P. falciparum anti-transmission drugs.   
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Abstract: ACT-451840 is a piperazine-containing antimalarial compound developed by Actelion 

Pharmaceuticals Ltd. with support from the Medicines for Malaria Venture. This compound is an 

exquisitely potent inhibitor of Plasmodium falciparum asexual (IC50 <1 nM) and sexual (IC50 < 4 nM) 

blood stage parasites. Single-step drug-selection studies yielded resistant asexual blood stage parasites 

with 3 to 100-fold shifts in IC50 values compared to the sensitive parental line. Whole-genome tiling 

arrays and Illumina-based sequencing of ACT-451840-selected mutants led us to identify single 

nucleotide polymorphisms (SNPs) in pfmdr1. This gene encodes a digestive vacuole (DV)-resident 

membrane protein known to alter susceptibility to a variety of antimalarials, whose modes of action are 

related to inhibition of heme detoxification inside the DV. Using CRISPR-Cas9 based pfmdr1 gene 

editing, we confirmed that PfMDR1 point mutations mediated resistance. Parasites harboring distinct 

mutations were found to have a slight fitness cost in vitro. We also observed potent activity of ACT-

451840 on mature P. falciparum gametocytes. Unexpectedly, stage V gametocytes harboring Cas9-

introduced pfmdr1 mutations acquired resistance to this compound, suggesting that PfMDR1 can impart 

resistance to compounds active against mature gametocytes. The potent asexual and gametocytocidal 

properties of this compound merit further investigation.  
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Introduction 

Malaria exacts a large toll globally, and is a significant burden in developing countries. This infectious 

disease has a reported incidence of 198 million world-wide, and claims 584,000 lives per year, mostly 

children under the age of five (WHO, 2014). Artemisinin-based combination therapies are currently 

recommended as first-line treatment for uncomplicated P. falciparum malaria infections (WHO, 2015). 

Alarmingly, there have been reports that patients treated with artemisinin monotherapy or artemisinin-

combination therapy in Western Cambodia, the Thai-Myanmar border, and across Myanmar show a 

delay in parasite clearance (Dondorp et al., 2009; Phyo et al., 2012; Tun et al., 2015; Ashley et al., 2014), 

which has been interpreted to signify the emergence of artemisinin resistance. Mutations in the kelch 

propeller domain (PF3D7_1343700) were identified in whole-genome sequencing of a lab-derived 

artemisinin-resistant strain and Cambodian parasite isolates (Ariey et al., 2014), and proved to confer 

resistance to artemisinin by genetic manipulation (Straimer et al., 2015). In light of these reports, it is 

imperative to innovate our antimalarial drug pipeline to produce drugs that have a novel mechanism of 

action.  

ACT-451840 is a potent piperazine-containing compound that targets all three stages (rings, 

trophozoites, and schizonts) of blood-stage asexual parasites (LeBihan et al., manuscript in preparation). 

This promising compound shows a good safety and tolerability profile, and there were no serious 

adverse events in Phase I clinical trials (Bruderer et al., 2015). We sought to determine its mode of 

action to explore how best to pair this agent in combination therapy should it advance clinically. 

In previous work, PfMDR1 was shown to bind ACT-213615 (a preceding compound in this chemical 

family) in heterologous expression assays, and was implicated in modulating parasite susceptibility to 

this compound (Brunner et al., 2013). PfMDR1 is a 162254 Da multimembrane-spanning protein 

member of the ATP-binding cassette (ABC) superfamily that resides on the digestive vacuole (DV) 

membrane. The protein is composed of two halves, each containing six transmembrane domains (TMD) 

and one nucleotide-binding domain (NBD). The NBD is situated in the parasite cytoplasm, and because 

ATP conversion happens in the cytoplasm, it is thought that this ABC transporter facilitates solute 

movement into the DV. The active site of PfMDR1 can bind and transport a variety of substrates that are 

structurally and functionally diverse (Higgins  2007), and is reflected by PfMDR1’s ability to mediate 

resistance to a variety of antimalarials, including lumefantrine, mefloquine, artesunate, quinine, and 

chloroquine (Reed et al., 2000; Sidhu et al., 2006; Veiga et al., 2011; Sanchez et al., 2008).  

In this study, we identify and confirm the role of PfMDR1 in ACT-451840 resistance. Our results 

reinforce the central role of PfMDR1 in mediating sensitivities to drug in both asexual and sexual 

parasite stages. 
 

Experimental Procedures 

Generation of ACT-451840-resistant parasites. Dd2, 7G8, and NF54 strains were cultured at 4% 

hematocrit as previously described (Fidock et al., 1997). Clonal lines of all three strains were subjected 

to single-step selection. NF54 was also subjected to step-wise selection. For single-step selections, 

parasites were cultured in 1.7 nM ACT-451840 (7G8, 6 × IC50) or 2.7 nM ACT-451840 (Dd2, 4 × IC50 and 
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NF54, 5 × IC50). Parasites ranging from 2 × 104 to 2 × 109 were exposed to media containing appropriate 

drug concentrations. For the first six days, media was changed every 24 hours and parasitemia closely 

monitored, ensuring against parasite overgrowth. Then, media was changed every 48 h and cultures 

were monitored for any parasite recrudescence. The experiment was carried out to 60 days, or until 

parasites recrudesced, whichever was earlier. For the step-wise selection, parasites were exposed to 1 × 

IC90. At each step, when parasites recrudesced, drug concentration was increased two-fold to a final 

concentration of 16 × IC90 (12.8 nM). 

 

Whole Genome Microarray. Parasite genomic DNA were prepared and hybridized to Affymetrix Pf 

microarray chips as described (Dharia et al., 2009). The PfGenominator software was used to extract 

meaning from raw data. SNP detection for Dd2 samples was set with a cut off for the p-value of 10-5. 

SNP detection for 7G8 and NF54 samples were decreased to a cut off p-value of 10-8. 

 

In vitro assessment of resistance levels. To determine the level of ACT-451840 resistance generated, 

ACT-451840-resistant parasite lines were subjected to in vitro SYBR-green-based drug assays as 

described in (Ekland et al., 2011), except that parasites were assayed at 72 h post-drug exposure. IC50 

values were obtained by non-linear regression analyses (GraphPad Prism 6.0). 

 

Whole Genome Microarray. Genomic DNA isolated from parental and ACT-451840-resistant lines in 

7G8, Dd2, and NF54 using phenol-chloroform extraction was fragmented and hybridized against a P. 

falciparum microarray containing 4.8 million tiled 25-mer probes (Dharia et al., 2009). The 

PfGenominator software was used to extract meaning from raw data. SNP detection for Dd2 samples 

was set with a cut off for the p-value of 10-5. SNP detection for 7G8 and NF54 samples were decreased 

to a cut off p-value of 10-8. 

 

Whole Genome Sequencing. Genomic DNA isolated from parental and ACT-451840-resistant lines 

using phenol-chloroform extraction was fragmented by sonication, and subjected to paired-end 

Illumina-based multiplex sequencing according to manufacturer’s protocol. 

 

PfMDR1 allele typing. Genomic DNA was obtained from parasites using QIAGEN DNeasy Blood & 

Tissue Kit, according to manufacturer’s protocol. pfmdr1 was PCR amplified and sequenced. 

 

Fitness Assays. ACT-451840-resistant lines and the wild-type counterparts were mixed in a 1:1 ratio. 

Genomic DNA was harvested regularly every 2 to 3 days, using QIAGEN DNeasy according to 

manufacturer’s protocol. The proportion of wild-type to mutant parasite was determined by 

pyrosequencing polymorphic pfmdr1 sites (Zhou et al., 2006). Single nucleotide polymorphisms within 

codons 807, 841, and 921 of pfmdr1 were examined in Dd2, 7G8, and NF54 pairs, respectively. 

Pyrosequencing was performed on a Qiagen Pyrosequencing PSQ 96. 

 

Introduction of pfmdr1 mutations via CRISPR-Cas9. The pDC2-CAM-Cas9-hDHFR-chRNA plasmid 

contained the guide RNA, the Cas9 enzyme, and the hDHFR selectable marker. The cognate pDC2-cam-



101 
 

T7RNAPol-bsd-pfmdr1M841I/M924I plasmid contained a template with silent mutations at the guide RNA, 

the M841I/M924I mutations, and the blasticidin selectable marker. NF54 parasites co-transfected with 

the pDC2-CAM-Cas9-hDHFR-chRNA and pDC2-cam-T7RNAPol-bsd-pfmdr1 plasmids were cultured under 

2.7 nM ACT-451840 for 60 days, or selected with 2.5 nM WR99210 and 2 µg ml-1 blasticidin for 6 days, 

then cultured in drug-free media. 

 

Gametocyte susceptibility to ACT-451840. Gametocytes from Dd2 MDR1 WT, Dd2 MDR1 A807V, 

NF54 MDR1 WT, and NF54 MDR1 Cas9M841I/M924I at different stages of maturation were exposed to 

different concentrations of ACT-451840. For early (stage II) gametocytes, induced cultures treated for 48 

hours with 50 mM N-acetyl-glucosamine (NAG; Sigma Aldrich) to eliminate asexual stages were then 

purified from uninfected erythrocytes with a 60% Percoll density gradient centrifugation (Kariuki, 1998). 

Mature (stage V) gametocytes were NAG-treated for 96 hours at the onset of gametocytogenesis, 

purified from uninfected erythrocytes on MACS Separation Columns CS (Miltenyi Biotec) and then 

allowed to mature. ACT-451840 was dispensed in 96-well plates and serial dilutions were prepared in a 

final volume of 100 µL per well. Synchronous 1 × 105 early and late stage gametocytes were re-

suspended in 100 µL complete medium, and incubated with the drug at 37°C. The compound was 

washed out 48 hours later, and after an additional 72 hours, cell viability was measured using a parasite 

lactate dehydrogenase (pLDH) assay {D'Alessandro, 2013 #16}. The percentage viability was calculated 

as a function of drug concentration and curve fitting was obtained by non-linear regression analysis 

(GraphPad Prism 6.0).  

 

Transmission electron microscopy. Gametocytes at stages IV and V of maturation were Percoll-

purified and processed as described (Kariuki, 1998). Cells were fixed with 2.5% glutaraldehyde, 2% 

paraformaldehyde and 2 mM CaCl2 in 0.1 M sodium cacodylate buffer (pH 7.4) overnight at 4°C. 

Parasites were washed in cacodylate buffer and postfixed with 1% OsO4 in 0.1 M sodium cacodylate 

buffer for 1 hour at room temperature, treated with 1% tannic acid in 0.05 M cacodylate buffer for 30 

min and rinsed in 1% sodium sulphate in 0.05 cacodylate for 10 min. Fixed specimens were washed, 

dehydrated through a graded series of ethanol solutions (30 to 100% ethanol) and embedded in Agar 

100 (Agar Scientific Ltd., U.K.). Ultrathin sections obtained by a MT-2B Ultramicrotome (UC6 - Leica) 

were stained with uranyl acetate and lead citrate and examined by an EM 208 Philips electron 

microscope. 

 

LysoTracker staining. Gametocytes at stage II/III of maturation were purified from uninfected 

erythrocytes on MACS Separation Columns CS (Miltenyi Biotech). 1 × 105 gametocytes at stage II, III, IV 

and V were loaded with 100 nM of the acidotropic fluorescent dye LysoTracker Red DND-99 in complete 

medium and incubated for 2 hours at 37°C. During the last 15 minutes 10 µg ml-1 of Hoechst 33258 were 

added for nuclei staining. The parasites were washed twice and a Leica DMRB microscope was used to 

visualize live samples. Fluorescence images were acquired using a Leica DFC340 FX camera through a 

Leica PL FLUOTAR 100x objective. Filters used to detect LysoTracker Red DND-99 were: EX: 515-560, EM: 

590 long-pass filter. Filters used to detect Hoechst 33258 were: EX: 340-380, EM 425 long-pass filter.  
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Results 

Generation of ACT-451840-resistant parasites. ACT-451840 is a potent inhibitor of both multi-drug 

resistant and sensitive P. falciparum strains, with IC50 values in the low nanomolar range (7G8: 0.3 nM; 

Dd2: 0.7 nM; NF54: 0.6 nM). To select for resistance, we subjected these P. falciparum strains at a range 

of inocula (2 × 106 – 2 × 109) to constant selective pressure at 4-6 × IC¬¬50 concentrations. For Dd2 we 

also tested inocula of 2 × 104 and 2 × 105 parasites. The minimum inoculum for resistance (MIR) for 7G8 

and NF54 was determined to be 2 × 107 (2 of 3 flasks in each experiment), whereas the MIR for Dd2 was 

106 (1 of 6 flasks). Parasites were recovered after 17–22 days, although parasites were also seen to 

emerge as late as day 61 (Table S1). NF54 was also subjected to step-wise selection in which parasites 

were exposed to 1 × IC90 (0.8 nM). When parasites recrudesced and grew to ≥ 3% parasitemia at this 

concentration, drug pressure was increased by a factor of 2, until a final concentration of 16 × IC90. 

Parasites that recrudesced at 16 × IC90 (12.8nM) were selected for further analyses.  

 

Whole-genome Pf tiling microarray and Illumina-based paired-end genome sequencing identify 

PfMDR1 mutations. Genomic DNA isolated from parental and ACT-451840-resistant lines in 7G8, Dd2, 

and NF54 using standard phenol-chloroform extraction was fragmented by DnaseI treatment and 

hybridized against a P. falciparum microarray containing 4.8 million tiled 25-mer probes (Dharia et al., 

2009). This work identified a whole host of SNPs in PF3D7_0523000 (multidrug resistance protein, 

PfMDR1) in mutant lines on all strain backgrounds (7G8, Dd2 and NF54). These SNPs were confirmed by 

Sanger sequencing. We note that the multidrug resistant Dd2 strain has three copies of pfmdr1, whereas 

the drug-resistant 7G8 and drug-sensitive NF54 strains carry a single copy. These novel pfmdr1 

mutations were all distinct from mutations at amino acid positions 86, 184, 1034, 1042, and 1246 that 

are frequently observed in field isolates and that are known to modulate parasite susceptibility to 

lumefantrine and related drugs (Reed et al., 2000; Sidhu et al., 2006; Veiga et al., 2011). 

These novel PfMDR1 mutations cluster mainly in the latter half of the molecule, either in the loop 

between transmembrane domains (TMD) 5 and 6 or in TMD 6, 7, 8, 9, or 12 (Figure 1). We also observed 

that on a drug-resistant background, A807V and A807T yielded similar levels of resistance (8.0 and 8.4 

nM in 7G8 and Dd2, respectively). On a drug-sensitive background, A807P was three-fold more resistant 

than A807V (65.0 nM compared to 20.2 nM, Figure 2A and Table 1). This suggests that the level of 

resistance was dependent on the parental PfMDR1 haplotype or genetic differences elsewhere in the 

parasite genomes. 
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Figure 1. Diagram of PfMDR1: Diagram showing ACT-451840-resistance conferring mutations in PfMDR1. Common 

polymorphisms are shown in green (Dd2: N86Y) and blue (7G8: Y184F, S1034C, N1042D, D1246Y). Polymorphisms selected 

for by ACT-451840 and confirmed phenotypically by IC50 determination are indicated in red (Y290F, G297V, G316R, I321F, 

A807P, A807T, A807V, M841I, M924I, Y1076F, Y1076H); polymorphisms selected for by ACT-451840 but not confirmed 

phenotypically are indicated in orange (F74S, V326E, G379D, F806L, R921G, S1066P, T1069I, E1088K). NBD = nucleotide 

binding domain. 

 

Illumina-based paired-end whole genome sequencing did not identify SNPs in any other gene in all 

three genetic backgrounds. CNVs were not called in the whole genome sequencing due to a lack of 

sequencing depth. No CNVs were found to associate with ACT-451840 resistance in the tiling array 

analysis. 

 

Phenotyping ACT-451840 resistant parasites. Clones were obtained from a subset of resistant lines 

by limiting dilution. Dose-response assays with these resistant clones demonstrated a 11- to 100-fold 

shift compared to the parental lines (Figure 2A and Table 1). PfMDR1 G316R, A807T, and M841I 

mutations examined on the 7G8 background, which carries PfMDR1 mutations Y184F, S1034C, N1042D, 

and D1246Y, showed similar levels of resistance to ACT-451840 (8 – 9.6 nM). We saw comparable IC50 

values in mutants (MDR1 A807V, M841I, and Y1076F) on the Dd2 background, which harbors a PfMDR1 

N86Y mutation (8.4 – 10.6 nM). In the NF54 background, which has wild-type PfMDR1, we observed a 
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wide range in sensitivities to ACT-451840 with IC50 values from 6.7 nM (NF54 MDR1 I321F) to 65 nM 

(NF54 MDR1 A807P). 

 

 
Figure 2. P. falciparum resistance to ACT-451840 and ACT-213615. (A) ACT-451840 potency on 7G8, Dd2, and NF54 ACT-

451840-resistant lines. (B) Cross-resistance to ACT-213615 in ACT-451840-resistant lines. (C) ACT-451840 sensitivity displayed 

by FCB and FCB KD1 lines. Bar graphs display mean ± S.E.M. Student’s t-test was performed comparing resistant to parental 

lines, unless otherwise indicated. ** indicates P < 0.01, *** indicates P < 0.001, **** indicates P < 0.0001, and n.s. indicates 

no statistically significant difference between conditions. 

 

 

Parasite 
MeanIC50 values ± 

SEM (nM) 
Number of 
assays 

p-value Clones 
 IC50 fold 

change 

7G8 MDR1 WT 0.3 ±0.02 10 - Yes 1 

7G8 MDR1 G316R 9.4 ± 1.4 15 < 0.0001 Yes 31 

7G8 MDR1 A807T 8.0 ± 0.6 18 < 0.0001 Yes 27 

7G8 MDR1 M841I 9.6 ± 0.8 16 < 0.0001 Yes 32 

Dd2 MDR1 WT 0.7 ± 0.08 13 - Yes 1 

Dd2 MDR1 A807V 8.4 ± 0.5 20 < 0.0001 Yes 12 

Dd2 MDR1 M841I 8.6 ± 1.2 3 < 0.0001 Yes 12 

Dd2 MDR1 Y1076F 10.6 ± 2.1 5 < 0.0001 Yes 15 

NF54 MDR1 WT 0.6 ± 0.04 14 - Yes 1 

NF54 MDR1 Y290F 22.7 ± 9.1 2 < 0.0001 Yes 38 

NF54 MDR1 G297V 50.7 ± 5.0 4 < 0.0001 No 85 

NF54 MDR1 I321F 6.7 ± 0.3 3 < 0.0001 No 11 

NF54 MDR1 A807P 65.0 ± 1.7 3 < 0.0001 Yes 108 

NF54 MDR1 A807V 20.2 ± 1.4 4 < 0.0001 No 34 

NF54 MDR1 
Cas9

M841I 7.7 ± 1.6 2 < 0.0001 No 13 

NF54 MDR1 
Cas9

M924I 1.8 ± 0.3 3 < 0.0001 Yes 3 

NF54 MDR1 M841I/M924I 45.4 ± 5.9 4 0,0005 Yes 76 



105 
 

NF54 MDR1 
Cas9

M841I/M924I 38.5 ± 4.2 4 < 0.0001 Yes 64 

NF54 MDR1 Y1076H 57.1 ± 4.1 8 < 0.0001 No 95 

 
Table 1. Level of ACT-451840 resistance generated in 7G8, Dd2, and NF54 backgrounds. IC50 values were calculated from 

72 h dose-response data measured by flow cytometry of parasites stained with SYBR Green and Mitotracker Deep Red. 

Values indicate mean ± SEM, shown in nM. Significance was determined by Student’s t-test. 

 

Confirmation of PfMDR1 involvement. Prior studies with a related compound from this chemical 

series suggest that this class of agents might directly bind to PfMDR1 and thus inhibit its function 

(Brunner et al., 2013). Our results showed that resistance to ACT-451840 imparted cross-resistance to 

ACT-213615, implying that both compounds act in a similar manner (Figure 2B). We also examined ACT-

451840 potency against the parasite line FCB, which has two copies of pfmdr1, and the isogenic line FCB 

KD1, which was genetically modified to disrupt one of the two pfmdr1 copies (Sidhu et al., 2006). FCB 

KD1 was significantly more susceptible to ACT-451840 (Figure 2C), implicating a role for pfmdr1 copy 

number in modulating parasite susceptibility to this compound.  

 

CRISPR-Cas9-mediated genetic engineering. To demonstrate that mutations in pfmdr1 are sufficient 

to confer ACT-451840 resistance, we genetically engineered the PfMDR1 double mutation M841I/M924I 

into wild-type NF54 parasites. These studies utilized the CRISPR-Cas9 system (Figure 3 and Table 2), 

which has been shown to effectively edit Plasmodium spp. genomes (Wagner et al., 2014; Ghorbal et al., 

2014; Zhang et al., 2014). The Cas9 enzyme is directed to its target site via guide RNAs to allow site-

specific sequence editing. Eight different guide RNAs were chosen by visually scanning the pfmdr1 gene 

for GN18GG sequences. The distance between gRNA target sequences and the desired mutations varied 

from 15 base pairs away up to 708 base pairs away. Using tools designed by the Broad Institute and 

Harvard University, we determined that the gRNAs chosen had Doench scores between 0.094 and 0.779 

(http://www.broadinstitute.org/rnai/public/analysis-tools/sgrna-design) (Doench et al., 2014), and 

verified that these gRNAs did not have off target sites elsewhere in the genome 

(https://chopchop.rc.fas.harvard.edu/). The guide RNA is carried on a plasmid that also expresses the 

Cas9 enzyme. A separate donor plasmid carries a 1.5 kb region of homology containing silent mutations 

at the binding site to prevent Cas9 from further inducing double-stranded breaks once editing is 

successful. Plasmids with guide RNAs targeting various target Cas9 cut sites were co-transfected with 

the cognate plasmids harboring silent binding site mutations by electroporation into infected 

erythrocytes as described (Fidock et al., 1997). 

 

Table S4. Guide RNA design.

gRNA Sequence Protected sequence 2523 2772

1 GCTTATAAAGACTCAGATACAGG GCGTACAAGGATAGCGACACGGG 354 603 0.256 0 of 2

2 GATCAAGATAAAAATACCCCAGG GACCAGGACAAGAACACTCCGGG 114 111 0.383 1 of 2

3 GATGTACATTTATTAAAAACGGG GACGTGCACTTGTTGAAGACTGG 162 63 0.280 0 of 2

4 GTTAATACAGCTGCAACAATTGG GTCAACACGGCCGCGACGATAGG 264 15 0.097 0 of 2

5 GCTTCCTGTATTAAAAAACTTGG GCCTCTTGGATCAAGAACGAGGG 420 171 0.238 0 of 2

6 GCTATTGATTATAAAAATAAAGG GCGATCGACTACAAGAACAAGGG 510 261 0.094 0 of 2

7 GGATCCTTCTTAATTAAAAGAGG GGGAGTTTTTTGATCAAGAGGGG 621 372 0.779 0 of 2

8 GGAAAATTAATGTCCTTAAAAGG GGCAAGTTGATGAGTTTGAAGGG 708 459 0.215 3 of 4

Distance 

(#nt) away
Doensch 

score

Editing 

success

Initial G of GN18GG shown in red; protospacer adjacent motif shown in blue. Silent binding site substitutions shown in green.

http://www.broadinstitute.org/rnai/public/analysis-tools/sgrna-design
https://chopchop.rc.fas.harvard.edu/
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Table 2. Guide RNAs design for the CRISPR-Cas9 system. Inizial G of GN18GG is shown in red; protospacer adjacent motif is 

shown in blue; silent binding site sobstitutions are shown in green.  

 

In the first set of transfections, all eight pairs of plasmids were transfected into NF54 parasites, in two 

biological replicates. These transfections were cultured in 2.7 nM ACT451840-containing media to select 

for a gain of resistance. We microscopically observed parasites in eleven of the sixteen transfections, but 

only three out of those incorporated the silent binding site mutations and the introduced mutations (~ 

20% editing efficiency). The other eight positive transfections had spontaneous mutations in pfmdr1 

resulting in amino acid substitutions at Y290F (2 transfectants), G379D, A807V, A807P, R921G, and 

S1066P (2 transfectants), but no silent binding site mutations. Of the three successful transfections, one 

was targeted to guide RNA 2 and captured only one of the mutations, M841I. The remaining two 

successful transfections were targeted to guide RNA 8 and captured both mutations M841I and M924I. 

These three transfections did not have any pfmdr1 mutations other than those introduced. 

Because of the 100% success rate observed with guide RNA 8, we selected this guide RNA to optimize 

transfection and selection parameters. To examine whether transfections required direct selection with 

ACT-451840 to incorporate these mutations, we electroporated parasites and maintained these with 2.5 

nM WR99210 and 2μg ml-1 blasticidin for six days, followed by culturing in drug-free media. One of two 

transfections was successful in capturing the binding site mutations and one of the introduced 

mutations, PfMDR1 M924I. This demonstrates that selection for plasmids alone can be sufficient to 

incorporate the desired mutations. 

To confirm that these events were dependent on Cas9 activity, parasites were transfected only with 

the donor plasmid (and not the Cas9 plasmid). Neither transfection incorporated the pfmdr1-specific or 

binding site mutations. Therefore, the gene editing we observed was dependent on Cas9. 
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Figure 3. Genetic editing via CRISPR-Cas9. (A) The Cas9 enzyme is encoded on a plasmid that also expresses the guide RNA 

and a hDHFR selectable marker. The donor plasmid contains a template with silent mutations at the guide RNA, the PfMDR1 

M841I/M924I double mutation, and the blasticidin selectable marker. (B) Electropherograms showing successful editing of 

PfMDR1 M841, M924I, and silent binding site mutations. 

 

 

We confirmed that parasites engineered with the double mutation (NF54 MDR1 Cas9M841I/M924I) 

and parasites that arose out of single-step selections harboring these mutations (NF54 MDR1 

M841I/M924I) showed similar levels of ACT-451840 resistance (Figure 2A).  

Since we have CRISPR-Cas9-generated parasites edited with M841I, M924I, or M841I/M924I, we can 

compare the contribution of each of these mutations to ACT-451840 resistance. Parasites harboring 

PfMDR1 Cas9M841I or PfMDR1 Cas9924I mutations displayed similar levels of ACT451840 resistance (7.7 

nM vs. 1.8 nM), but together the double mutation PfMDR1 Cas9M841I/M924I was synergistic in ACT-

451840 resistance (38.5 nM) (Figure 2A and Table 1). These relative ACT-451840 resistance levels 

translate to levels of cross-resistance to the related drug ACT-213615 (Figure 2B). 

 

Fitness Assays. Pyrosequencing of pfmdr1 alleles from parasites in direct co-competition assays 

between wild-type and mutant parasites showed that regardless of genetic background, the proportion 
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of wild-type allele increased over a 60-day period. The 7G8 MDR1 WT allele gained dominance over 7G8 

MDR1 M841I with an average slope of 0.52. The Dd2 MDR1 WT allele outcompeted Dd2 MDR1 A807V 

with an average slope of 0.51. On the NF54 background, we observed a lesser degree of fitness cost 

associated with incorporating M841I/M924I double mutation, for the proportion of NF54 MDR1 WT 

allele increased only slightly over the MDR1 Cas9M841I/M921 allele, demonstrating a slope of 0.13 

(Figure 4). 

Overall, wild-type parasites outgrew their pfmdr1 mutant counterparts, indicating that mutations in 

PfMDR1 at positions A807V, M841I, and M841I/M924I confer a slight fitness cost. 

 

 

 
Figure 4. PfMDR1 haplotypes that mediate ACT-451840 resistance do not outcompete wild-type alleles. Parasite fitness 

was examined in co-cultures of wild-type and mutant strains of 7G8, Dd2, and NF54. Cultures were propagated for 60 days 

and DNA was sampled every 3 to 4 days. The relative nucleotide proportions of mutant vs. wild-type alleles were determined 

by pyrosequencing. Results are shown as the proportion of wild-type parasites in the culture. Experiments were performed at 

least twice per strain. Each symbol indicates a different run. 

 

Gametocyte susceptibility to ACT-451840. Since ACT-451840 resistance is imparted by mutations in 

pfmdr1, and since the digestive vacuole is thought to be non-functional in stage V gametocytes (Hanssen 

et al., 2012), we hypothesized that ACT-451840 might be active on early but not on late gametocytes, as 

seen with chloroquine, amodiaquine, and quinine (Sinden et al., 1982; Foote & Cowman 1994; Smalley 

et al., 1977; Klein et al., 1991). To test this hypothesis, we exposed early and late gametocytes from Dd2 

MDR1 WT, Dd2 MDR1 A807V, NF54 MDR1 WT, and NF54 MDR1 Cas9M841I/M924I to various 

concentrations of ACT-451840 and measured cell viability with the parasite lactate dehydrogenase 

(pLDH) assay (D'Alessandro et al., 2013). Experiments on wild-type parasites showed that ACT-451840 

was active not only on the immature gametocytes but also on stage V gametocytes, with comparable 

IC50 values (Dd2: 1.8 nM vs. 2.1nM; NF54: 1.8 nM vs. 3.9 nM) (Figure 5). When susceptibility to ACT-

451840 in early and late gametocytes was compared between the wild-type and mutant lines, a 

dramatic increase in IC50 was measured in immature (Dd2 1.8 nM vs. 208.9 nM; NF54: 1.8 nM vs. 883.6 

nM) but also, importantly, in late gametocytes expressing mutant PfMDR1 (Dd2 2.1 nM vs. 383.0 nM; 

NF54: 3.9 nM vs. 973.6 nM) (Figure 5). This indicates that the mechanism conferring ACT-451840 

resistance in asexual stages is also responsible for the decreased sensitivity to this compound observed 

in all stages of gametocyte development.  In particular, the potent activity of ACT-451840 on stage V 

gametocytes is in sharp contrast to previous reports that mature gametocytes are generally refractory 
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to antimalarials (Peatey et al., 2009) and the involvement of PfMDR1 in this phenomenon contrasts with 

the notion that the digestive vacuole is no longer functional in stage V gametocytes. 

 

 
Figure 5. Gametocytes harboring mutant PfMDR1 haplotypes demonstrate resistance to ACT-451840. IC50 values of ACT-

451840 in (A) stage II and (B) stage V gametocytes derived from Dd2 and NF54 parental and mutant asexual blood stage 

parasites. Bar graphs display mean ± S.E.M. Student’s t-test was performed comparing mutant to wild-type lines. *** 

indicates p<0.0005. 

 

To address this point, this compartment was examined in ultrastructural sections from stage IV and 

stage V gametocytes. Results confirmed that multiple digestive vacuoles are readily detectable in the 

immature stage IV gametocytes (Figure 6A), and detection of a cytostome (see indent in Figure 6A) 

showed that at day 6-7 of sexual differentiation the erythrocyte cytoplasm surrounding the gametocyte 

is still actively endocytosed. Analysis of sections from stage V gametocytes showed that multiple 

digestive vacuoles, characterized by the presence of hemozoin crystals were readily detectable also in 

these stages (Figure 6B and C). The food vacuoles are clearly surrounded by a membrane, confirming 

that the subcellular site where PfMDR1 resides is structurally intact in these stages. 

In a complementary approach the food vacuole was visualized in live gametocytes by staining with 

LysoTracker, a dye fluorescing in acidic lysosomal vesicles used to mark the food vacuole in P. falciparum 

asexual stages (Bohorquez et al., 2012). LysoTracker fluorescence, analyzed in gametocytes from stage II 
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to stage V of development, clearly resulted to be localized in correspondence of pigment granules in all 

stages of development (Figure 6D-G). This indicates that acidic food vacuoles are present throughout 

gametocyte development, and are still detectable in stage V gametocytes. Intriguingly, in the late stages, 

areas of LysoTracker fluorescence are devoid of hemozoin pigment, which may lead to speculate of 

possible rearrangements of this compartment in stage V gametocytes. 

The above results altogether indicate that the compartment and the membranes where PfMDR1 is 

localized in asexual stages are present and maintain its characteristic acidic environment in P. falciparum 

sexual development including the stage V gametocytes. This supports the hypothesis that PfMDR1 is 

functional and mediates resistance to ACT-451840 in immature and mature sexual stages. 
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Figure 6. The digestive vacuole in gametocyte development. (A-C) Ultrastructural analysis of stage IV and stage V 3D7 

gametocytes shows the active endocytosis of infected erythrocyte cytoplasm in stage IV gametocytes (A) through a 

cytostome (indent of panel A) and the accumulation of hemozoin in membrane surrounded vesicles constituting the 

fragmented food vacuole typical of gametocytes. In stage V gametocytes the hemozoin-containing vesicles are still present 

enclosed in a membrane (B, C). The asterisk (*) indicates absence of hemozoin in digestive vacuole vesicles. C indicates 

cytostome, ER indicates endoplasmic reticulum, DV indicates digestive vacuole, and N indicates nucleus. Magnification bar: 

2μM. (D-G) LysoTracker staining of gametocytes at stage II (D), III (E), IV (F) and V (G) of maturation. A tight co-localization of 

LysoTracker fluorescence and dark haemozoin granules is evident in stage II and III gametocytes, whereas in stage IV and V 

areas of the acidic compartment are devoid of pigment granules. Magnification bar: 5 μM. 
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Discussion 

In this study, we show that PfMDR1 mediates resistance to ACT-451840, a potent piperazine-

containing molecule. PfMDR1 is known to modulate sensitivities to a variety of antimalarials such as 

lumefantrine, quinine, and artemisinin, and chloroquine (Valderramos and Fidock 2006), and 

populations of parasites have been identified around the world that have evolved resistance to these 

drugs. It is therefore noteworthy that PfMDR1 polymorphisms that confer resistance to ACT-451840 and 

compounds in this chemical class do not confer cross-resistance to mefloquine, lumefantrine, 

halofantrine, quinine, monodesethyl amodiaquine, chloroquine, monodesethyl chloroquine, or 

artesunate. Furthermore, ACT-451840-resistant parasites were not rendered more fit compared to ACT-

451840-sensitive parasites, indicating that they will likely be unable to outcompete sensitive parasites in 

the wild.  

The majority of PfMDR1 mutations in ACT-451840-pressured parasites were found in the loop 

between TMD 5 and 6 that protrudes into the DV, or in the DV-facing portions of TMD 6 to 9 and TMD 

12, suggesting that this region is important for ACT-451840 interaction. PfMDR1 is thought to orient on 

the DV membrane and efflux drug into the DV. Mutations in PfMDR1 may work to sequester drug in the 

DV and prevent its action in the cytoplasm of resistant lines, or, alternatively, PfMDR1 mutations may 

decrease drug influx into the DV-localized drug target. 

In a 3D model of PfMDR1 (Patel et al., 2013), the loop between TMD 5 and TMD 6, as well as portions 

of TMD7 and TMD8 stick out into the DV. Y290F, G297V, and G316R lie in the loop between TMD 5 and 

TMD 6. Looking at mutations on the wild-type NF54 background, we see that mutations in this region 

result in high levels of resistance (NF54 MDR1 Y290F: IC50 of 23 nM, a 38-fold increase over wild-type; 

NF54 MDR1 G297V: IC50 of 51 nM, a 85-fold increase over wild-type). Compare these values to I321F, a 

nearby mutation buried in TMD 6, which displays an IC50 of 7 nM, a mere 11-fold increase over wild-

type. 

The positional change matters, but so does the identity of the substitution. It is likely that position 

807 in TMD 7 juts out into the DV. For this position, we have produced two different mutations: NF54 

MDR1 A807P and NF54 MDR1 A807V. Although both these mutations yield resistance (a 108- and a 34-

fold increase in IC50 over wild-type values, respectively), the A807P mutation results in a three-fold 

increase in resistance compared to the A807V mutation (IC50 of 65 nM vs. 20 nM). Alanine, valine, and 

proline are all non-polar, aliphatic molecules, but proline is known to introduce kinks in the beta sheet 

structure, thus causing a conformational change that might favor sequestration of drug away from its 

target. 

The observation that hemoglobin digestion no longer takes place after gametocytes reach stage IV 

(Hanssen et al., 2012) may suggest that the digestive vacuole is not functional in stage V gametocytes. 

Indeed, pfmdr1 transcripts were found to be down-regulated in late (stage V) gametocytes, as detected 

by strand-specific RNA-seq Illumina-based sequencing (Lopez-Barragan et al., 2011). Nevertheless, a 

proteomics analysis of synchronized parasites found comparable normalized emPAI values for PfMDR1 

peptides in trophozoites, early (stage I/II) and late (stage V) gametocytes. This was in contrast to those 

of PfCRT, whose peptides were only found in trophozoites but not in sexual stages (Silvestrini et al., 

2010). Measurable hemoglobin digestion and morphological evidence of cytostomes engulfing infected 

red blood cell cytoplasm in stage II-III gametocytes (Hanssen et al., 2012; Lanfrancotti et al., 2007) and in 
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stage IV gametocytes (this work) argue for the presence of an active food vacuole in early and mid stage 

gametocytes. The observation that ACT-451840 is a potent inhibitor of early and late gametocytes, and 

that mutant PfMDR1 confers resistance in these stages was therefore not surprising. In contrast, the 

observed activity of ACT-451840 against stage V gametocytes, and the significant increase in the IC50 

values conferred to late sexual stages by the PfMDR1 mutations, either selected for or engineered in the 

parasite genome, is in contrast with the current notion that digestive vacuole activity and hemoglobin 

digestion have ceased in late gametocytes. Ultrastructural and functional evidence based on LysoTracker 

staining indicates that in stage V gametocytes this compartment is present as several acidic vesicles 

surrounded by a membrane, representing the likely cellular sites where PfMDR1 resides. The 

observation that mutant PfMDR1 is able to confer a dramatic increase in resistance to ACT-451840 in 

these stages provides strong evidence that PfMDR1 is functional on these vesicles even after the end of 

hemoglobin digestion, when this protein may play a yet to be defined function.  

These results argue against the notion that stage V gametocytes are metabolically quiescent. In this 

respect the observation that gametocytes are sensitive to inhibitors of the electron transport system 

such as antimycin A and cyanide (Krungkrai  et al., 2000), indicate that the mitochondria of late 

gametocytes are still metabolically active. 
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I performed all the experiments on immature and mature gametocytes, except for the ultrastructural 

analysis.   
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General discussion and conclusions 

 
Malaria is a parasitic disease caused by five different Plasmodium species. P. falciparum is the most 

dangerous species causing annually most of the deaths for malaria in the world (WHO, 2015). The 

spread of the disease in the tropical areas is linked to the presence of the Anopheles mosquito, the 

obliged host of the parasite and vector of the disease between the different human hosts.  

In the human host takes place the development of the parasite sexual transmission forms, the 

gametocytes, ingested by the mosquito during its blood-meal. The mechanisms driving gametocyte 

development from asexual blood stage parasites are still not completely clear, although they recently 

started to be elucidated (Kafsack et al., 2014). Gametocytogenesis takes place in 10-12 days during 

which parasites develop through five different maturation stages forming, in the first 6-7 days, 

immature gametocytes (stage I, II, III and IV) and then mature gametocytes (stage V) which, once in the 

mosquito, continue the parasite life cycle giving rise to the mosquito stages that will be injected in the 

blood of the next human host during the next mosquito bloodmeal. 

Gametocytogenesis is a silent phenomenon. Gametocytes do not cause any symptoms, are 

sequestered in internal organs (Joice et al., 2014) as immature stages and, once they are mature, freely 

circulate in the human bloodstream for up to fifteen days, until they are ingested by the mosquito. 

Drugs against malaria are typically directed only against the asexual blood forms of the parasite, due 

to the intention to cure the symptoms of this lethal disease. Very recently, the word “eradicating”, 

referred to malaria, started to be pronounced. One of the mechanisms necessary to eradicate malaria is 

to block the transmission from the human host to the mosquito killing gametocytes.  

The debate on how to block malaria transmission started. The main questions regarding this point 

were as follows: 

- What stage of gametocytogenesis must be hit, the immature, the mature gametocytes or both? 

- How to determine, in vitro, if a compound is active against gametocytes? 

-How to determine if hit gametocytes are still infective to the mosquito? 

- Which compounds can be tested against gametocytes? 

Theoretically killing immature gametocytes means blocking their development to mature 

gametocytes. It should be considered that immature gametocytes are not detectable in the human 

bloodstream during malaria infection but they are sequestered in internal organs, such as the spleen, 

the liver, the lungs but mostly the bone marrow. For these reasons, some sequestered immature 

gametocytes could escape from drug treatment to be released in circulation once mature, where they 

can play their role of being directly responsible for the transmission to the mosquito. Targeting mature 

gametocytes would mean targeting the forms directly infectious to the vector, once ingested by the 

mosquito. For this reason most of the attention focused on finding compounds able to specifically kill 

mature gametocytes, decreasing the priority towards compounds able to kill both early and late stage 

gametocytes.  
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Determining if a compound or a drug is active against gametocytes is more difficult than to determine 

if it is able to kill asexual blood stage parasites. This is mainly due to the non-replicating nature of 

gametocytes. Most of drug-screening assays on asexual blood-stages are typically based on the 

incorporation of intercalant dyes or radioactive isotopes in the newly replicated parasite DNA or on the 

detection of the activity of the parasite lactate dehydrogenase (pLDH), in both cases measuring parasite 

proliferation, a parameter which cannot be used on gametocytes.  

The development of Plasmodium transgenic lines expressing reporter genes during their asexual life 

cycle changed the drug-screening assay methods. This first happened thanks to parasite transgenic lines 

expressing fluorescent proteins, as the Green Fluorescent Protein (GFP) and then thanks to parasite 

transgenic lines expressing enzymes as luciferases, able to convert the energy from using a specific 

chemical substrate (luciferin) into light, measured by a luminometer. 

P. falciparum transgenic lines improved high throughput screening assays (HTS) allowing to screen a 

large number of compounds against asexual blood stage parasites, especially as the parasite resistance 

to many common antimalarial drugs became an urgent problem and finding new active drugs is a 

priority.    

In order to perform HTS assays on gametocytes it became important how to evaluate if a gametocyte 

is dead or useless after the treatment with a specific compound, together with the necessity of making 

this evaluation fast, efficient and suitable for large scale use.  

One of the problems is that, from a morphological point of view, a dead gametocyte usually looks like 

a healthy one. From this point of view, transgenic lines expressing fluorescent proteins are not suited for 

gametocyte HTS assays, because proteins such as the GFP are characterized by a long half-life and are 

detectable also in a dead cell.  

In this scenario, enzymatic and functional or phenotypic cell-based assays have been chosen to 

develop and perform HTS assays on immature and mature gametocytes. The contribution of my 

laboratory involed the development of two enzymatic assays using transgenic gametocytes expressing 

luciferase reporter genes and one functional assay that does not need any parasite transgenic line, and 

that can be used to test compounds on lines of any genotypes, including gametocytes from drug 

resistant lines or field isolates from patients.  

The idea to develop a dual color luciferase assay stemmed from the idea that (i) it would be 

important to screen for drugs active against both immature and mature gametocytes and (ii) luciferases 

naturally exist, and can be modified to emit light at different wavelengths (i.e. different colors); in 

addition, luciferases can be also modified to have a more stable activity at a given temperature or pH. 

 In addition, we wanted to explore more bioluminescent enzymes, as only the luciferases from the 

firefly Photinus pyralis or from the sea pansy Renilla reniformis had been, until our work, commonly 

used in Plasmodium. 

We selected two luciferases from the clickbeetle Phyrophorus plagiotalamus, natural variants of this 

enzyme able to emit a red colored (CBR) or a green colored light (CBG99). When these reporters were 

transfected in the malaria parasites, these two luciferases demonstrated a higher efficiency in P. 

falciparum than the one commonly used in malaria. Put under the transcriptional control of the 

upstream and the downstream regulatory regions of the pfs16 gene, parasites express these enzymes 

during all stages of gametocytogenesis. This allowed us to mix immature gametocytes expressing CBR 
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and mature gametocytes expressing CBG99, or the opposite, in order to test at the same time the ability 

of compounds to kill gametocytes at different stages of maturation.  In this assay the viability of 

gametocytes is measured by a luminometer equipped with specific filters that specifically acquire each 

colored light (Cevenini et al., 2014) and by an algoritm that calculate the activity of the individual 

luciferases from the two population of parasites. Testing control drugs able to kill early stage 

gametocytes (e.g. chloroquine) or both early and late stage gametocytes (e.g. epoxomicin) 

demonstrated the validity of this innovative assay. 

In this work we addressed another important issue: many commercial luciferase substrate kits 

contain not only the enzyme substrate luciferin, but also lysing solutions, ATP, signal enhancers and 

stabilizers, which together increase luciferase activity. As this could possibly result in detecting luciferase 

activity also from a dead cell, we introduced the idea to use, as luciferase substrate, D-luciferin in the 

absence of any of the above substances. This was done in order to more reliably monitor the viability of 

cells that will emit light only when express the luciferase but also only when it will use its own ATP for 

luciferase activity (not the one from the kit), indicating in this way that it is alive.  

The dual color luciferase assay, together with the use of D-luciferin substrate, is very innovative in 

malaria but can be applied to many other parasites, both for applicative and fundamental research 

studies. 

The dual color assay presented above uses two different P. falciparum transgenic lines expressing 

two different luciferases under the same promoter, pfs16, active during all gametocytogenesis. To 

develop assays highly specific for late stage gametocytes, we were interested in identifing a promoter 

active only in mature gametocytes of P. falciparum.  Our purpose was to develop a transgenic line 

expressing under such specific promoter the potent CBG99 luciferase described above (Cevenini et al., 

2014).  

To identify this type of promoter from P. falciparum, we used transcriptomic analysis to select ten 

possible candidate genes whose transcripts were absent during asexual blood stages of development, 

while started to be expressed during gametocytogenesis and reached maximum accumulation in mature 

gametocytes. We were aware that from these data on mature mRNA we could not exactly know when 

the respective promoters started to be active during gametocytogenesis and also of the fact that they 

could be translationally repressed in mature gametocytes, being translated only in gametes (Mair et al., 

2006).  

We cloned the 5’ upstream and the 3’ downstream regions of the ten genes driving GFP expression in 

ten different plasmids, with which we transfected P. falciparum parasites. The evaluation of the GFP 

expression on early and late stage gametocytes allowed us to select a pair of regulatory regions (those 

of the pfl1675c/ULG8 gene) which resulted to be efficiently active only in mature gametocytes. We used 

this pair of genomic regions to drive CBG99 luciferase expression in a construct which was integrated in 

a P. falciparum locus as a chromosomally integrated cassette. Importantly, the resulting P. falciparum 

transgenic line showed the same pattern of luciferase expression and activity as the one we observed in 

the plasmid selection process for the episomally expressed GFP.  

The development of this ULG8-CBG99 transgenic line is innovative and important in HTS assays, 

giving the opportunity to test drugs and compounds specifically against mature gametocytes of P. 

falciparum, the stages directly responsible of the transmission from the human host to the mosquito.  
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We next tested if mature gametocytes, after pharmacological treatments, were still infective to the 

Anopheles mosquito. The Standard Membrane Feeding Assay (SMFA) consists in feeding mosquitoes 

with blood infected by mature gametocytes, which were previously treated with a selected drug. Seven 

to twelve days later, fed mosquitoes are dissected and examined by microscopy for the presence of 

oocysts (Mulder B et al., 1999). Although many advantages were achieved using transgenic parasites 

first expressing a GFP (Stone et al., 2014) and then expressing a luciferase (Stone et al., 2015), this assay 

is not suitable for HTS, being very laborious, time consuming and expensive. Finding an alternative assay 

is one of the priorities in the investigation for anti-transmission drugs. 

As alternative to the SMFA, functional assays evaluating the ability of gametocytes to form gametes 

after drug treatments in vitro have been developed. One of these assays is the dual gamete formation 

assay, developed in 2014 at the Imperial College of London by the group of Michel Delves (Ruecker et 

al., 2014). This assay, which is high throughput in the 96-well plate format, consists in treating mature 

gametocytes with a compound and in evaluating the ability of female gametocytes to form female 

macrogametes and of male gametocytes to exflagellate, after addition of the proper stimulus (XA, 

xanthurenic acid).  

Limitations of this assay are due to the necessity of using an antibody for detecting female gametes 

and to the difficulty and the inaccuracy in automatically counting the male exflagellation centers, which 

are visible only for a few minutes.  

We developed a functional imaging assay based on the assumption that only healthy female mature 

gametocytes are able to mature in macrogametes. This assay, developed for HTS in a 384-well plate 

format,  gives the opportunity to identify compounds active against mature gametocytes by 

automatically counting banana shape gametocytes and round shaped macrogametes, after the 

treatment with a compound and the addition of XA, using a Scan^R automated imaging cytometry 

station. Importantly this assay simultaneously identifys compounds killing gametocytes and those 

making them unable to transform into gametes. 

Although this assay was developed using a transgenic line (pfl1675c/ULG8-GFP) it does not 

necessarily need using a transgenic line. The assay was improved by staining the parasites before image 

acquisition with the fluorescent dye acridine orange (AO), an inexpensive fluorescent dye that allows the 

instrument to count fluorescent gametocytes and gametes.  

The assay, with its unique features, allows not only to test compound activity against mature 

gametocytes, but also to test their ability, after the treatment, to mature in those forms necessary into 

the mosquito to be fertilized by male microgametes. Furthermore, the assay does not need staining by 

antibody, reducing both costs and time, and does not need any transgenic line, being suitable for the 

screening of mature gametocytes from any laboratory line or field isolate. 

Importantly, all the assays mentioned above, could be used in a complementary approach to 

evaluate compounds activity in anti-transmission HTS assays, comparing the  IC50 resulting from the 

most promising compounds with the IC50 of the same compounds obtained by the SMFA, which still 

remains the best non-HTS assay for testing anti-transmission compounds. 

We demonstrated to have enough assays to test compounds against gametocytes, especially against 

mature gametocytes.  
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The next question concerned which compounds, and how many, should be tested. The assays 

described above allow testing entire libraries of compounds, being urgent the necessity to block P. 

falciparum transmission. The compounds selected by different companies, may be either or not active 

also against the asexual blood stage parasites, although those able to cure malaria symptoms were the 

first selected to be tested against mature gametocytes.  Unfortunately, most of the compounds active 

against asexual blood stage parasites and against immature gametocytes, are inactive against mature 

stage V gametocytes (Adjalley et al., 2011), and the only drug able to kill P. falciparum mature 

gametocytes (i.e. primaquine) shows side effect when used in humans. 

 One explanation for the reason why many compounds active against asexual blood stages and 

immature gametocytes of P. falciparum are inactive against mature gametocytes may resides in the 

possibility that stage V gametocytes have a different/slower metabolism than other stages of 

development of the parasites. This insensitivity against many drugs made mature stage V gametocytes 

being considered as apparently quiescent cells. Thus, finding metabolic pathways active in mature 

gametocytes means challenging the current view of their quiescence, approaching to block P. falciparum 

transmission.  

A step forward was the finding that methylene blue (MB) kills mature stage V gametocytes of P. 

falciparum (Adjalley et al., 2011). MB was demonstrated to act in asexual blood stage parasites as a 

redox cycler: it counteracts the redox balance of the parasite being reduced by the enzyme glutathione 

reductase (GR), consuming all NADPH and O2 and generating oxygen species toxic for the parasite 

(Ehrhardt et al., 2013).  

P. falciparum GR uses NADPH, mostly produced by the pentose phosphate pathway (PPP), to reduce 

glutathione, that once reduced (GSH), participate to counteract the oxidative stress deriving from the 

haemoglobin digestion of the parasite. Because of haemoglobin digestion was demonstrated not to 

occur in mature stage V gametocytes (Hanssen et al., 2012), we hypothesized that either MB has other 

mechanisms of action than the one described above, or that mature gametocytes still have active redox 

metabolic pathways to counteract oxidative stress resulting from something different from haemoglobin 

digestion.  

To understand the mechanism of action of MB on mature stage V gametocytes, we decided to use 

the Pfl1675c/ULG8-CBG99 line and the bioluminescent assay that we specific developed for mature 

gametocytes. We tested the activity of different compounds known to counteract the redox metabolism 

of the parasites both in comparison and in combination with MB. None of the compounds we tested 

was able to kill mature gametocytes after a 24 hours treatment but intriguingly the ML304 resulted able 

to synergize the activity of MB on mature stage V gametocytes, decreasing it’s IC50 of about 20 fold. The 

ML304 is a probe described to block, on asexual blood stage parasites, the activity of the P. falciparum 

glucose-6-phosphate dehydrogenase 6-phosphogluconolactonase (PfGluPho) (Maloney et al., 2010), a 

bifunctional enzyme that catalizes the first two steps of the PPP, necessary for NADPH production. This 

probe is completely inactive against the human G6PD. 

This work is still ongoing and we still have to answer many questions. So far, the results we obtained 

confirmed that the redox metabolism is still active in mature stage V gametocytes and that it is a target 

of MB also in mature gametocytes of P. falciparum. We also demonstrated that it is possible to decrease 

the IC50 of an active compound by a combination treatment on mature gametocytes (synergy).  
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In another project, we tested on both immature and mature gametocytes of P. falciparum the activity 

of a piperazine-containing compound, the Actelion-451840 (Act-451840) that showed a high activity 

against asexual blood stage parasites. David Fidock’s group found that the target of this compound is 

the multidrug resistance protein 1 of P. falciparum (PfMDR1), selecting and generating Act-451840 

resistant parasites: they observed, in asexual blood stage parasites, that the resistance was due to 

different point mutations on the gene coding for this protein. Mutations in pfmdr1, different from that 

giving resistance to the Act-451840, are associated to P. falciparum resistance to others antimalarials as 

chloroquine. 

PfMDR1 resides on the membrane of the digestive vacuole of the parasites, which is the site where 

haemoglobin digestion occurs. As mentioned above, haemoglobin digestion was demonstrated to occur 

during all asexual parasite development and during gametocytes until stage IV of gametocyte 

maturation (Hanssen et al., 2012).  

By testing the activity of Act-451840 on both early and late stage gametocytes of two different lines 

of P. falciparum (one line resistant to chloroquine and one wild-type line) we found that the drug was 

active not only against immature but also against mature gametocytes. The surprise was linked to the 

fact that we found a drug which was very active against mature gametocytes, with an IC50 comparable to 

the one shown for asexual blood stages. We demonstrated also that mutant lines in the pfmdr1 gene 

maintained resistance to the Act-451840 in both early and mature stage gametocytes, as shown for the 

asexual stage parasites. This evidence coupled to our demonstration that the site where PfMDR1 resides 

is still present in stage V gametocytes, suggested an unexpected function of the PfMDR1 protein in 

mature stage V gametocytes that could be addressed by a family of drugs against mature gametocytes.  

All this work aimed at providing significant innovations for the important necessity to find drugs able 

to block P. falciparum transmission. The development of different enzymatic and functional assays gave 

us the opportunity to test different compounds.  

An important and interesting conclusion of this long journey is a starting point: we found active 

pathways in mature gametocytes that can be suitable targets for anti-transmission drugs, challenging 

the current view of an apparently quiescence of these transmission stage parasites.  
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