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ABSTRACT 

Liver Receptor Homolog 1 (LRH-1) is a nuclear receptor whose dysfunction is affiliated 

with diseases such as diabetes and cancer.  Recent investigations demonstrate that higher levels 

of activation and modulation of its activity can be achieved through its interaction with 

phospholipids (PLs) and synthetic small molecules.  We employed molecular dynamics (MD) 

simulations to understand more about the structural basis of LRH-1’s activity when bound to 

small molecule agonist RJW100 as well as the RJW100 derivative 65endo.  We find that 

RJW100 and derivative 65endo can trigger allosteric communication in LRH-1 despite the 

RJW100 scaffold inducing motions that differ from those induced by PLs.  We also provide 

supporting evidence that a key threonine residue and a water network are important for 

RJW100’s ability to activate LRH-1.  Finally, in a campaign to identify new LRH-1 lead 

compounds, virtual screening was performed against RJW100, 65endo, and a second RJW100 

derivative, 8AC.   
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1 INTRODUCTION 

Liver Receptor Homolog 1 (LRH-1) belongs to the subfamily V of nuclear receptors 

(NR5A).  Like many other nuclear receptors, LRH-1 functions as a transcription factor [1]. 

LRH-1 has been shown to be important in regulating many metabolic processes.  Of special 

importance is the association of its dysregulation with metabolic disorders and cancers.  This 

primarily occurs through its role in facilitating the transcriptional activity of metabolic genes 

involved in gluconeogenic pathways such as fatty acid synthase and glucocorticoid kinase [1].  

It also plays a pivotal role in the regulation of genes involved in cellular differentiation and is 

consequently implicated in several cancers.  LRH-1’s transcriptional activity is modulated 

through several mechanisms which include ligand binding, post-translational modifications, and 

binding to co-activating and repressing proteins (Fig. 1.1) [2].   

1.1 LRH-1 Dysregulation and Disease  

LRH-1 has been linked to liver disease through its role in the regulation of glucose 

metabolism.  It is highly expressed in liver and is known to directly influence the synthesis of 

bile acids by promoting increased expression of Cytochrome p450s, namely Cyp7a1 and Cyp8b 

[2] and other targets that control cholesterol uptake.  Its regulation of glucose metabolism stems 

from its role in regulating expression glucokinase enzyme.  LRH-1 knockout mice have 

diminished ability to induce glycolysis as well as glycogen and fatty acid synthesis [3].  

Treatment of LRH-1 with phospholipid DLPC has been shown to have anti-diabetic 

effects in mice [3].  LRH-1 is known for its role in regulating intermediary glucose metabolism 

through its regulation of genes such as glucokinase [4].  LRH-1 has also been linked to pathways 

involved in resolving Endoplasmic Reticulum [ER] stress with some recent findings suggesting 

that diabetes is sometimes associated with unresolved ER stress [5].  LRH-1 is known for 
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promoting embryonic development [1].  Its involvement in such processes makes it unsurprising 

that its dysregulation can result in various cancers including pancreatic, lung, intestinal, and 

breast cancer [1,6,7,8,9,10, 11] where LRH-1 has been found to be abnormally expressed in 45% 

of breast carcinomas [6].  

1.2 Allostery: A Brief Overview 

Allostery is defined as the interaction of two topologically distinct sites as triggered by a 

binding event at one of the sites [12].  Models of allostery that account for the dynamical 

behavior of macromolecules have been developed [13].  Among them is the ensemble model of 

allostery [14] which proposes that all proteins exhibit an ensemble of conformations and that 

introduction of a perturbation (such as ligand binding) triggers a shift in the population 

distribution of the ensemble [14].  Allosteric phenomena are often associated with large 

conformational changes, however there are several cases where more subtle motions are 

responsible for allosteric communication within a macromolecular system [15].  Use of a 

network theory framework provides us with tools to account for how smaller changes contribute 

to allosteric phenomenon [16,17,18,19]. 

Allosteric targeting provides a promising alternative to targeting orthosteric binding sites.  

This especially applies to cases in which a family of enzymes or receptors have a highly 

conserved orthosteric site.  Allosteric sites within proteins of the same family or subfamily are 

typically less conserved than the corresponding orthosteric site and present an opportunity to 

achieve selective targeting [20].  This approach also has the advantage of modulating a target’s 

activity as opposed to completely abolishing it [20].    
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1.3 Structural Features of LRH-1  

Like other nuclear receptors [21], LRH-1 functionality is largely modulated via its 

interaction with a suite of small co-regulating peptides capable of either repressing or activating 

LRH-1’s regulation of transcriptional activity.  Our investigations focus on LRH-1’s interactions 

with the co-activator Transcription Intermediary Factor 2 (TIF2. Aliases include GRIP2 and 

SRC2).  TIF2 is a co-activating peptide which typically recognizes nuclear receptors in a ligand 

dependent manner [22].  Co-regulating peptides such as TIF2 exploit LXXLL motifs to access 

the N-terminal binding clefts of LRH-1 which is consistent with recognition motifs of other 

nuclear receptors such as Retinoid X Receptor (RXR) [23].  Several important conformational 

changes occur upon ligand binding to nuclear receptors such as the reorientation of Helix 12, the 

Activation Function Helix (AF-H).  This reorientation facilitates the completion of a 

hydrophobic binding surface for co-regulator proteins [24].  However, a full understanding of 

how ligand binding facilitates transcription activating states of LRH-1 has yet to be achieved.  

The ligand binding pocket (LBP) includes helices 2 and 3 along with the β-sheet-H6 Region (β-

H6, yellow) which encompasses β-sheets 1 and 2 as well as helix 6.  These two regions 

combined in addition to helices 5 and 10 comprise the Alternate Function (AF) domain whereas 

regions of LRH-1 engaging the co-regulator (purple) are designated as the Activation Function 

Domain (AF2) (Fig. 1.2) [23].  

1.3.1 Features that Allow for Ligand Independent Activation of LRH-1  

LRH-1 can upregulate transcription in absence of a ligand and studies with murine LRH-

1 revealed an empty ligand binding pocket (LBP) [24].  These studies highlighted key structural 

differences from ligand activated nuclear receptors.  These differences include features that 

allow for post-translational modifications such as phosphorylation and sumoylation [24,25,26].  
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They also include an extended and rigid Helix 2 that packs against Helix 3 in LRH-1.  Retinoid 

X Receptor and many other nuclear receptors feature Helices 1 and 2 that are separated by a 

highly disordered flexible loop [24].  Helix 1 in LRH-1 is positioned closer to Helix H9, 

strategically placing an N-terminal proline residue on a different face of H1 than homologous 

receptors.  These differences are proposed to result in more extensive contacts between Helix 1 

and other portions of the protein, which is thought to be crucial to LRH-1’s constitutive 

activation and recruitment of co-activating peptides in the absence of a ligand [24].   

However, the study also foreshadowed future findings that LRH-1 is responsive to ligand 

binding.  An overlay of LRH-1 on top of RXR (Fig. 1.3) demonstrates that mLRH-1’s activated 

conformation was similar to ligand activated RXR.  This suggested that LRH-1 was at least 

capable of accommodating sizeable ligands such as retinoids and cholesterol derivatives [24].  

However, the ligand independent nature of activation was reaffirmed through evidence derived 

from mutagenesis studies.  Methionine and Tryptophan mutants were made of LBP inner facing 

residues Ala368 from H1 and Ala532 from H11.  These mutations were selected to impair 

binding of ligands to the LBP. The results showed enhanced LRH-1 facilitated transcription of 

SHP in both Ala532 mutants where LRH-1 retained the ability to recruit co-repressing peptides 

in the absence of a ligand [24].   

Further mutagenesis experiments provided evidence that Helix 2 may play a significant 

role in co-regulator recruitment.  Mutation of three glutamine residues led to diminished activity 

of LRH-1 as well as diminished responsiveness to co-regulators TIF2 and SHP [24].  It is 

speculated that H2’s importance rests in its ability to assist in stabilization of the AF-H [24]. 

LRH-1’s co-regulator binding cleft may not be optimized for recruitment of co-activators 

such as TIF2.  Notably, LRH-1 has many features that differentiate its co-activator binding cleft 
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from others including an AF-H with bulkier residues and variants of residues that contribute to a 

charged clamped interaction between the AF-H and co-regulator proteins in other nuclear 

receptors.  One such example is Gln398 of LRH-1 which aligns with lysine or arginine residues 

found in other receptors.  This difference may be associated with the reduced ability of LRH-1 to 

discriminate between co-activators and repressors versus other nuclear receptors.  Mutagenesis 

studies replacing bulkier residues of LRH-1’s AF-H with the smaller residues found in RXR 

resulted in increased transcriptional activity in response to over-expression of common co-

activator proteins [24].  

1.3.2 Discovery of Ligand Activation   

Despite originally having been thought to be an orphan nuclear receptor, evidence showed 

that it is not when phospholipids (PLs) were identified in LRH-1’s LBP indicating that LRH-1 

may be a lipid metabolism sensing receptor [27].  Treatment of mice with 

dilauroylphosphatidylcholine (DLPC) resulted in lower serum glucose levels [3].  DLPC binds 

LRH-1’s LBP with a unique binding mode (Fig. 1.4) which features the insertion of the fatty acyl 

tail into the interior of the protein exploiting several hydrophobic contacts as well as the 

placement of polar head group near the “mouth” of the protein which is solvent exposed.  The 

polar head group participates in key polar contacts with Tyr516 and Lys520 [28].   

LRH-1 discriminates by tail-length more so than headgroup composition [29].  As shown 

in Figure 1.5, LRH-1 can bind many types of PL headgroups but displays a clear preference for 

medium fatty acyl tail lengths, lengths between 8 and 16 carbons [29].   

1.3.3 Allosteric Communication and PL Induced Dynamics in LRH-1 

LRH-1 activates transcription upon binding medium-tailed PLs such as DLPC and 

represses transcription upon binding of select long-tailed PLs.  Computational studies suggest 



18 

that LRH-1 ligand binding increases co-activator access by triggering an allosteric pathway that 

allows for communication between the LBP and the Activation Function region primarily 

through Helix 5 which bridges the two remote regions of LRH-1.  This allosteric communication 

is characterized by the highly correlated motions that take place between the two regions upon 

ligand binding. In the presence of phospholipids, notable structural changes occur at both the 

ligand binding pocket and the co-regulator binding cleft.  The statuses of the LBP and the co-

regulator binding cleft can either be in agreement or disagreement [29].  An agonist bound to 

LBP and co-activator bound in co-regulator binding cleft would characterize statuses in 

agreement whereas an agonist bound LBP with a co-repressor bound would characterize 

disagreeing statuses. 

LRH-1’s ability to selectively bind co-regulators is in part dictated by whether the 

statuses of the two regions agree or disagree with one another [29].  Crystal structures from 

various LRH-1 complexes demonstrate a possible association.  One indication of this link is the 

fidelity of the charge clamp interaction in transcription repressing structures.  De-activated LRH-

1 bound to Small Heterodimer Partner (SHP) a co-repressing protein and Escherichia coli (E. 

coli) PLs at the LBP as well as apo LBP features an intact charge clamp interaction between SHP 

and the AF-H [28,29,30].  LRH-1·TIF2 when complexed with DLPC (agreement status) features 

a diminished distance between LRH-1’s Glu534 and TIF2 versus activated structures with 

disagreeing statuses as well as the more optimal positioning of Glu534 that allows for the contact 

with TIF2 (Figure 1.6). 

Principle Component Analysis (PCA) demonstrated that DLPC induced a notable 

“breathing” motion at the mouth of LRH-1 (PC2) and between H10 and H9 (PC1).  This is 

consistent with Hydrogen Deuterium Exchange mass spectrometry studies that show that β-H6 is 
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more dynamical than when LRH-1 is bound to longer tailed PLs [29].  This finding also extends 

to potentially antagonistic PLs (E. coli PLs) that induce structural changes more associated with 

the inactivated conformation [29].  A crystal structure was identified with LRH-1 in complex 

with E. coli PLs and a fragment of SHP.  This complex appears to place the opening of the LBP, 

including H2, H3 and β-H6 region in a more open conformation than the TIF2 bound complex 

(Fig. 1.6A).  In addition, H9 and H10 assume a more open conformation in the deactivated 

structure.  When the Principal Components are plotted against each other, the DLPC-bound 

structure exhibits a single density-populated cluster of conformational subspace along PC2 

whereas activated LRH-1 with disagreeing statuses (Fig. 1.7, C versus D) seems to feature two 

clusters along PC2 [29].  The results suggest that agreement status of the two remote domains 

influence the topology of the co-regulator binding cleft, which could in part explain variances in 

co-regulator selectivity.  

Dynamical Network Analysis results (via suboptimal path analysis) showed that, when 

bound to PLs, agreement statuses did correlate well with the amount of communication (in this 

case the number of suboptimal paths) between the LBP and the co-regulator binding cleft.  

Figure 1.8A demonstrates how DLPC binding to LRH-1·TIF2 induces much stronger 

communication in comparison to the E. coli PL binding where one sees a diminished number of 

suboptimal paths travelling between the two remote regions [29]. 

1.3.4 Insight Gained in Early Drug Discovery Efforts  

GSK8470, a small molecule agonist of LRH-1, provided interesting structural 

information and served as a template for future candidates [31].  An X-ray crystal structure with 

LRH-1·TIF2 and GSK8470 in complex reveals a mode of binding that exploits hydrophobic 

contacts.  Among these hydrophobic contacts is a face to face pi-pi interaction between the 
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aniline moiety of GSK8470 and His390 (Fig. 1.9) [31].  Attempts to derivatize this lead 

compound led to discovery of another agonist, RJW100 which features a hydroxyl functionality 

on the bicyclic core of the molecule [30].  

RJW100 was crystallized with LRH-1·TIF2 (Fig. 1.10) as well and its binding mode 

contains several features that differentiate it from GSK8470 [31].  The proposed pi-pi interaction 

is preserved, but instead has an edge-face configuration.  Of note is a potential water-mediated 

interaction between the hydroxyl of RJW100 and Thr352.  This interaction suggests that addition 

of a polar moiety to the original scaffold induces productive allosteric communications between 

the LBP and the co-regulator binding cleft.  

1.3.5 Current Experimental Insight into Activation of LRH-1 by Synthetic Agonists. 

Studies have attempted to elucidate the structural basis of small molecule activation of 

LRH-1 [32].  RJW100 destabilized helices 10 and 3, and stabilizes AF-H.  Despite the stability 

of the AF-H, Glu534 becomes disordered in comparison to DLPC bound LRH-1 (Fig. 1.11) [32].  

This implies that RJW100 is unable to achieve selective co-activator recruitment as well as 

DLPC.  Key placement of structural waters likely plays a role in the binding of LRH-1 by small 

molecules.  Mutagenesis studies reveal a diminished ability of RJW100 to activate LRH-1 upon 

T352V mutation (Fig. 1.12) to disrupt the water network.  Simulations additionally demonstrate 

the stability of crystallographic waters within the LBP of wildtype (wt) LRH-1 as well as 

destabilization in the mutant [32].   

Two RJW100 derivatives, 65endo and 8AC have been synthesized.  65endo replaces the 

hydroxyl functional group with a sulfonamide whereas 8AC retains the hydroxyl group while 

extending and capping the aliphatic tail with a polar ester group (Fig. 1.13).  Both compounds 

were designed strategically to enhance bio-availability and to exploit key structural features of 
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LRH-1 to trigger increased transcriptional activity relative to RJW100.  RJW100’s hydroxyl 

group was replaced with a sulfonamide yielding 65endo.  This modification was intended to 

enhance binding to the polar patch within LRH-1’s LBP.  The incorporation of the ester 

functional group to yield 8AC was intended to allow for contacts at the mouth of the binding 

pocket (mimicking PL agonists such as DLPC) while maintaining contacts within the interior via 

the hydroxyl group.  
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Figure 1.1. Mechanisms for regulating LRH-1 activity. 

LRH-1-mediated transcriptional activity can be modulated through several 

mechanisms including ligand binding, post-translational modifications, co-

activator binding, and co-repressor binding.  LRH-1 activation facilitates 

transcription of genes involved in several processes including metabolism, 

cell growth, and cell differentiation.  Figure has been adapted with permission 

from Nadolny, C. and X. Dong, Liver receptor homolog-1 (LRH-1): a 

potential therapeutic target for cancer. Cancer Biol Ther, 2015. 16(7): p. 997-

1004. 
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Figure 1.2. Ribbon diagram highlighting key structural features of LRH-1.   

Yellow, β-H6 region and Activation Function Helix (AF-H). Blue, H2 and H3. Purple, Co-

regulator either co-activator TIF2 or co-repressor SHP. (pdb 4DOS) [32]. 
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Figure 1.3. Overlay of LRH-1 onto Retinoid X Receptor (RXR). 

LRH-1 (orange) shares many topological features with RXR (blue), but 

notable differences include an elongated Helix 2.  This figure has been 

adapted with permission from Sablin, E.P., et al., Structural Basis for Ligand-

Independent Activation of the Orphan Nuclear Receptor LRH-1. Molecular 

Cell, 2003. 11(6): p. 1575-1585. [28] 
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Figure 1.4. Structures of LRH-1·TIF2 in complex with agonist DLPC. 

A) Ribbon Diagram of LRH-1·TIF2 complexed with DLPC (within green electron density) 

(pdb 4dos).  B) DLPC and sidechains lining LRH-1 LBP. Figure has been reproduced with 

permission from Musille, P.M., et al., Antidiabetic phospholipid-nuclear receptor complex 

reveals the mechanism for phospholipid-driven gene regulation. Nat Struct Mol Biol, 2012. 

19(5): p. 532-7, S1-2. [22] 
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Figure 1.5. Measurements of LHR-1 Phospholipid binding preferences. 

A) Binding data from investigations of PL headgroup preferences of LRH-1.  B) Binding 

data investigating fatty acyl tail length preferences of LRH-1.  C) Structure of DLPC. 

Binding assays results are derived from competition assays described in [29]. This figure 

has been adapted from Musille, P.M., et al Unexpected Allosteric Network Contributes to 

LRH-1 Co-regulator Selectivity. J Biol Chem, 2016. 291(3): p. 1411-26. [29]  
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Figure 1.6.  Ribbon diagrams of LRH-1·TIF2 systems with varied LBP status.  

A) LRH-1 bound to TIF2 co-activator (green) and DLPC, an agreement state.  Red dashed 

lines indicate distance between E534 in the Activation Function Helix and Tif-2. B) apo 

LRH-1 bound to TIF2 co-activator (green) where black dashed lines indicate distance 

between E534 in the Activation Function Helix and Tif-2.  DLPC binding increases the 

width of at the mouth of the LBD. Figure has been adapted from Musille, P.M., et al., 

Unexpected Allosteric Network Contributes to LRH-1 Co-regulator Selectivity. J Biol 

Chem, 2016. 291(3): p. 1411-26. [29]  
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Figure 1.7. Correlated motions in LRH-1 when bound to Phospholipids. 

A) Principal Component Analysis of LRH-1 systems Principal Component 1 

(PC1) features an opening motion of the activated state at Helix 8 and 9 versus 

de-activated state.  B)  Principal Component 2 (PC2) features an opening motion 

at the opening of LRH-1’s Ligand Binding Pocket of the activated form of LRH-

1.  In both PCs, transcription activating structures (green) have larger interhelical 

distances (between Helices 8 and 9 in PC1, and helices 2 and 6 in PC2) than 

repressed (red) structures.  C) Principal Component 1 and 2 plotted against each 

other for LRH-1·Tif-2 complexed to DLPC.  D) LRH-1·Tif-2 complexed to an 

E.coli Phospholipid [11].  The higher the density, the more frames (out of 10000) 

characterized as occupying the indicated region of conformational subspace. This 

figure has been adapted from Musille, P.M., et al., Unexpected Allosteric 

Network Contributes to LRH-1 Co-regulator Selectivity. J Biol Chem, 2016. 

291(3): p. 1411-26 [29]. 
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Figure 1.8. Allosteric communication between β-H6 and co-activator TIF2. 

A) Suboptimal Paths (blue) that occur upon binding of DLPC to LRH-1·TIF2 

complex (pdb 4DOS).  B) Suboptimal Paths (blue) that occurs upon the binding of 

E. coli phospholipids to LRH-1·TIF2 complex. Figure has been adapted from 

Musille, P.M., et al., Unexpected Allosteric Network Contributes to LRH-1 Co-

regulator Selectivity. J Biol Chem, 2016. 291(3): p. 1411-26. [29] 
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Figure 1.9. Ribbon diagram featuring structure of LRH-1·TIF2 complexed to 

GSK8470.  

Crystal Structure of GSK8470 bound to LRH-1 (pdb 3PLZ) His390 is labelled to 

emphasize a potential face to face interaction between the aniline moiety of GSK8470 

and His390 [31]. 
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Figure 1.10.  Ribbon diagram featuring tructure of LRH-1·TIF2 in complex 

with RJW100.  

Crystal structure featuring RJW100 bound to LRH-1(pdb 5L11). Distances are 

displayed in blue to highlight a potential water-mediated contact between the 

hydroxyl function of RJW100 and Thr352 of LRH-1. His390 is labelled to 

emphasize a potential contact with the arene group of RJW100 [32]. 
 

 



32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.11.  Experimentally measured dynamical and thermodynamic profile of 

LRH-1·TIF2 when complexed to DLPC and RJW100.  

A) Hydrogen deuterium exchange mass spectrometry data.  The scale is colored by % 

exchange with deuterium.  Stability decreases as % deuterium exchange increases.  B) 

Melting temperature as a function of % protein unfolded.  Figure has been adapted from 

Mays, S.G., et al., Crystal Structures of the Nuclear Receptor, Liver Receptor Homolog 1, 

Bound to Synthetic Agonists. J Biol Chem, 2016. 291(49) p.25281-25291 [32] 
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Figure 1.12.  Measurement of activity levels and thermostability of LRH-1·TIF2 systems 

complexed with small molecule agonists.   

A) LRH-1·TIF2 activity levels measured in Relative Light Units (RLU). Solid black (wildtype), 

green (T352V mutant), blue (H390A mutant). Dashed black (A349F mutant).  B) Comparing 

thermostability of wildtype LRH-1·TIF2 to T352V mutant when bound to agonists GSK8470, 

RJW100, and endo-RJW100. Figure has been adapted from Mays, S.G., et al., Crystal Structures 

of the Nuclear Receptor, Liver Receptor Homolog 1, Bound to Synthetic Agonists. J Biol Chem, 

2016. 291(49) p. 25281-25291 [32]. 
 

 



34 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 1.13.  Ribbon diagram featuring the structure of LRH-1·Tif-2 in 

complex with RJW100 derivatives. 

A) LRH-1 bound to 8AC. B) LRH-1 bound to 65endo. 
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2 METHODS AND MATERIALS  

2.1 Virtual Screening 

2.1.1 Tanimoto Scoring with ROCS and EON 

A portion of our drug discovery efforts employed ligand based virtual screening 

techniques to identify new scaffolds that can bind to the same pocket with similar overall shape 

and charge distribution.  An ensemble of ligand conformations was generated for all compounds 

in NCI database through the program OMEGA [1], and the query molecules (binding poses of 

each agonist as found in LRH-1·TIF2 X-ray crystal structures) and generated conformers are 

aligned and scored with ROCS [2].  After structural alignment, EON [3] can be used to compare 

electrostatic potential maps of the same molecules using Tanimoto measurements to aid in 

discovery of potential agonists.  

𝑆ℎ𝑎𝑝𝑒 𝑇𝑎𝑛𝑖𝑚𝑜𝑡𝑜 =
𝑆ℎ𝑎𝑝𝑒 𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝐴,𝐵)

𝑆ℎ𝑎𝑝𝑒(𝐴)+𝑆ℎ𝑎𝑝𝑒(𝐵)+𝑂𝑣𝑒𝑟𝑙𝑎𝑝 𝑆ℎ𝑎𝑝𝑒(𝐴,𝐵)
   Eq. 2.1 

 

𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 𝑇𝑎𝑛𝑖𝑚𝑜𝑡𝑜 =
𝐸𝐹𝑖𝑒𝑙𝑑 𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝐴,𝐵)

𝐸𝑓𝑖𝑒𝑙𝑑(𝐴)+𝐸𝑓𝑖𝑒𝑙𝑑(𝐵)+𝐸𝑓𝑖𝑒𝑙𝑑(𝐴,𝐵)
    Eq. 2.2 

Tanimoto measurement is used in the comparison of sets of 3D parameters, and it involves 

comparing the overlap of those properties.  Shape functions (volumes) for A and B are compared 

with the overlap between the two shape functions after alignment to give Shape Tanimoto values 

which approach 0.0 for dissimilar and 1.0 for identical (eq. 2.1) [2].  Eon Tanimoto (eq. 2.2) uses 

Poisson-Boltzmann electrostatic field functions to compare A and B assigning a penalty for 

compounds with fields with opposite signs, such that the minimum score is -1/3 in the case of a 

field with perfectly opposite electrostatic fields [3].   
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2.1.2 Molecular Docking 

Docking considers both the shape, electrostatics, bond length, bond angles, and Van der 

Waals forces of a small molecule and attempts to find the most energetically favorable binding 

pose within a user-specified search region.  One drawback of standard small molecule docking is 

that it cannot account for how motions within the region of interest can affect binding of a 

molecule as well as an intrinsic difficulty in accounting for solvation patterns and the role of 

solvent in binding [4].  Autodock vina [5] was employed to score top ranking compounds 

resulting from our ligand based virtual screening efforts.  Given the high volume of compounds 

(10,000 per lead), this study was limited to rigid docking to the ligand binding domain of LRH-1.   

2.2 Molecular Dynamics 

Molecular Dynamics (MD) simulation is a very powerful tool often applied for 

investigation of biological and biochemical systems.  These simulations reveal conformational 

and dynamic characteristics at the atomic level, assisting in the interpretation of data obtained 

from experiments. 

2.2.1 Amber Force Field 

The potential energy (V) in MD simulations is a function of the molecular parameters to 

describe intra- and inter- molecular forces between atoms in the system.  To make computational 

calculations tractable, approximations are made to construct a force field, which ultimately 

consists of several terms to describe the contributions of bonding and non-bonding interactions 

to the potential energy as demonstrate below [6]: 

V(R)total = V(R)bonded + V(R)non-bonded    Eq. 2.3 

The bonded interactions correspond to bond length, angle, and torsion.  The non-bonded terms 

include both Columbic potential to account for electrostatic interactions and the Lennard-Jones 
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(LJ) potential to describe van der Waals interactions.  Forcefield parameters are experimentally-

derived or calculated using ab initio methods [7].  For example, The Amber Forcefield which is 

described as [6]: 

𝑈(𝑟1,⋯ , 𝑟𝑁) = ∑
𝑘𝑟

2
(𝑟 − 𝑟𝑒𝑞)

2
𝑏𝑜𝑛𝑑𝑠 + ∑

𝑘𝜃

2
(𝜃𝑖 − 𝜃𝑖0)

2
𝑎𝑛𝑔𝑙𝑒𝑠 + ∑

𝑉𝑛

2𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑠 [1 + cos (𝑛𝜃  −

𝛾𝑖] + ∑ [(
 𝐴𝑖𝑗

𝑅𝑖𝑗
)
12

− (
  𝐵𝑖𝑗

𝑅𝑖𝑗
)
6

] +𝑖<𝑗 ∑ 𝑘
𝑞𝑖𝑞𝑗

𝜀 𝑅𝑖𝑗
𝑎𝑡𝑜𝑚 𝑝𝑎𝑖𝑟𝑠      Eq. 2.4 

The above potential energy function includes the first four terms for intra-molecular 

interactions and the last two terms for inter-molecular interactions.  Parameters 𝐾r, 𝐾θ,, and Vn  are the 

associated force constants for bond, angle, and torsion terms.  𝑟 – 𝑟i represents the change in bond 

length from its equilibrium length, 𝜃 − 𝜃i the angle from equilibrium between three 

consecutive atoms, the third term (n) the multiplicity, 𝜙 the dihedral angle, 𝛿 the phase shift, and 

𝜑 – 𝜑i describes the deviations of the out-of-plane angle from an equilibrium angle [7]. 

The very last two terms describe intermolecular non-bonded interactions.  The first term 

of intermolecular non-bonded interactions employs the Lennard-Jones (LJ) to account for the 

attractive and repulsive forces between two particles [7], where rij is the distance between 

these two particles, A is the attractive force, B the repulsive force Lennard-Jones well depth, and  

Rij is the distance between two particles at the minimum potential which has been fitted from 

experiment data or quantum calculations.  The second term employs a Coulombic potential to 

describe electrostatic interaction, where 𝑟ij is the distance between atom 𝑖 and 𝑗, 𝑞i and 𝑞j are the 

point charges of them respectively, and 휀i is the effective dialectic constant (permittivity of free 

space) [7]. 
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2.2.2 Newton’s Equations 

 After the determination of initial coordinates and velocities for a system of all atoms, a 

set of classical Newton’s equations of motion (eq. 2.5) are integrated using numerical methods to 

obtain a trajectory charting the systems’ motions over a user specified time period. 

𝐹 = 𝑚𝑎 = 𝑚
𝑑  

2𝑅

𝑑𝑡 2
    Eq. 2.5 

In the eq. 2.5, 𝐹 is the force acting on an atom, 𝑚 is the mass of the atom, 𝑎 is the acceleration, 

and R is the position of the atom. The acceleration may also be expressed as the second 

derivative of the position of the atom with respect to time, 𝑡.  Force can be rewritten as the 

gradient of potential energy: 

 

           Eq. 2.6  

Combination of eq. 2.5 and eq. 2.6 leads to equation 2.7 which describes of the relationship of 

the derivative of the potential energy to changes in position with respect to time: 

 

                                                              −
𝑑𝑈

𝑑𝑅
= 𝑚

𝑑  
2𝑅

𝑑𝑡 2
    Eq. 2.7 

Once forces acting on atoms are calculated, the accelerations of all atoms can be obtained along 

with new positions and velocities derived within a short timestep.  The potential energy function 

is used to calculate the forces on the atom in accordance to new positions.  All data is saved over 

a specified time interval allowing for creation of a simulation trajectory.  The fastest motions of 

macromolecular systems correspond to about 10 fs, so a timestep on the order of the fs is usually 

chosen [8]. 

  To reduce computational expenses the SHAKE [9] algorithm constrains bonds 

associated with hydrogen in the system.  This method uses the Verlet integration algorithm [10] 
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which employs the Taylor Expansions shown in eq. 2.10 and 2.11: 

𝑟𝑛+1 = 𝑟𝑛 + 𝑣𝑛∆𝑡 +
1

2
(
𝐹𝑛

𝑚
) ∆𝑡2 + 𝑂(∆𝑡3)     Eq. 2.8 

     

                        𝑟𝑛−1 = 𝑟𝑛 − 𝑣𝑛∆𝑡 +
1

2
(
𝐹𝑛

𝑚
) ∆𝑡2 − 𝑂(∆𝑡3)   Eq. 2.9 

 In equations 2.10 and 2.11, r is the position at the nth timestep, rn is the position at its previous 

timestep, and 𝑟n+1 is the position at its next timestep.  Ο(Δt3) is the function of ∆𝑡 with n order or 

higher order. When 2.10 and 2.11 are summed one obtains equation 2.12: 

      𝑟𝑛+1 = 2𝑟𝑛 + (
𝐹𝑛

𝑚
)∆𝑡2 + 𝑂(∆𝑡4)    Eq. 2.10 

The current position and force exerted on an atom at nth timestep as well as its previous position 

at nth -1
 
timestep is then used to update to a new atomic position at the nth +1

 
timestep [10]. 

2.2.3 Long Range Interactions  

Dealing with long range interactions is difficult, especially with respect to Coulombic 

interactions where applying hard cut-offs introduces discontinuities into the forcefield 

calculations that can produce artifacts in simulations [11]. 

𝐸𝑑𝑖𝑟 = −
1

2
∑ ∑  𝑁

𝑖,𝑗=1𝑛
𝑞𝑖𝑞𝑗erf (𝐵|𝑟𝑗−𝑟𝑖+𝑛|)

|𝑟𝑗−𝑟𝑖+𝑛|
   Eq. 2.11 

                                              𝐸𝑟𝑒𝑐 =
1

2𝜋𝑣
∑

𝑒
(
𝜋2𝑚2

𝛽 2
)

𝑚2 
𝑆(𝒎)𝑆(−𝒎)𝑚≠0    Eq. 2.12                

𝐸𝑑𝑖𝑟 = −
1

2
∑ ∑  𝑁

(𝑖,𝑗)=𝜖𝑀𝑛
𝑞𝑖𝑞𝑗 erf(𝐵|𝑟𝑗−𝑟𝑖|)

|𝑟𝑗−𝑟𝑖|
−

𝛽

√𝜋
∑ 𝑞𝑖

2𝑁
𝑖=1   Eq. 2.13  

 𝛽 represents the Ewald parameters, 𝑉 is the volume of the unit cell, 𝑚 is a lattice vector (m1, 

m2, m3) in reciprocal space, and 𝑆( m ) is the lattice structure factor. 

                                           𝑆(𝒎) =  ∑ 𝑞𝑗𝑒
(2𝜋𝑖𝒎∙𝑟𝑗)𝑁

𝑖=1 `   Eq. 2.14 
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The scale of Ewald summation is O(N
2

), where N is the number of atoms in the system.  

The Particle Mesh Ewald (PME) method reduces computational expenses by decreasing the scale 

of Ewald summation to O(Nlog(N) [11].  In PME, a three-dimensional grid is placed over the 

system, atomic charges are mapped to the grid, and then fast Fourier transforms are used to sum 

these grid points [11]. 

2.2.4 Controlling Temperature using Langevin dynamics 

In MD simulations, the total energy of the system is conserved.  When the total number 

of atoms (N) and the volume of the unit cell (V) are fixed, the MD simulation is 

considered being conducted in what is called a microcanonical ensemble, a collection of 

different microstates belonging to the same macroscopic system.  MD simulations can also be 

conducted in NVT characterized by fixed atom number, volume, and temperature or NTP 

ensemble which is characterized by fixed atom number, temperature, and pressure.  In each case, 

temperature control is required and these investigations use Langevin dynamics to keep all 

systems at a constant temperature [11]. 

  This method assigns a random force and a friction force for each step which is then 

related to fluctuation-dissipation theorem [12] to ensure sampling of the NVT data. The 

dynamics of atoms are described by Langevin’s equation [11] which is represented by the 

following equation: 

                                                               𝑚𝑟�̈� = −∇𝑈 − 𝑚Γ�̇�𝑖 + 𝑊𝑖(𝑡)   Eq. 2.15 

where 𝑚 is the mass of the particle, 𝑈 represents the particle interaction potential, 𝛤 is 

determined from a Gaussian distribution, and 𝑊i(𝑡) changes with a given temperature and times 

steps. 
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2.2.5 Pressure control 

The NPT ensemble portion of the simulation allows the volume to fluctuate but fixes the 

pressure.  

      𝑃 =
2

3𝑉
(𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐 +  𝛯)   Eq. 2.16 

The virial theorem is employed to calculate pressure [13]. 𝑉 is the volume of the unit box, 𝐸kinetic 

is the kinetic energy, and 𝛯 is the inner virial tensor for pair-additive potentials defined by 

equation 2.19: 

𝛯 =  −
1

2
∑ 𝑟𝑖𝑗 ∙𝑓(𝑟𝑖𝑗)𝑖<𝑗         Eq. 2.17 

 Here, 𝑓(rij) is a force on particle i induced by particle j, and 𝑟ij   is the distance between the two 

particles.  When the system is treated in an isotropic manner, the pressure becomes a scalar and 

can be expressed as [13]:  

      𝑃 =
𝑇𝑟(𝑃)

3
      Eq. 2.18 

Adjusting the inner virial 𝛯 by scaling distances of the inter particle allows for the 

correction of the Pressure during the simulation.  A piston (𝜎) introduced into the equation of 

motion for each atom facilitates variation of the volume of the unit cell when employing a Nosé-

Hoover Langevin piston barostat [13].  

2.3 MD Analysis Techniques 

2.3.1 Principal Component Analysis(PCA) 

Principal Component Analysis is a statistical technique that serves to reduce the 

dimensionality of data needed to describe motions in proteins.  Principal Component Analysis 

involves construction of a covariance matrix from atomic coordinates with covariance being 

defined using the following equation: 
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𝐶𝑖𝑗 = (𝑟𝑖⃗⃗ (𝑡) − 〈∆𝑟𝑖⃗⃗ (𝑡)
 〉)(𝑟�⃗⃗� (𝑡) − 〈∆𝑟�⃗⃗� (𝑡)

 〉)    Eq. 2.19 

 Where Cij is the covariance between atoms i and j, 𝑟  is the displacement of atoms i and j, 〈 〉 is 

represents a time averaged value.  This value is positive when the atoms (or degrees of freedom) 

move in the same direction, negative when they move in opposite directions and is zero when 

these motions are independent from each other.  The covariances are placed into a matrix which 

is then diagonalized.  The eigenvectors (modes) derived from this process are then ranked by 

their associated eigenvalues.  The eigenvectors describe the motions (directionality) of degrees 

of freedom within the system whereas the eigenvalues describe the magnitude of the covariances 

[14].  With this method, the first few modes typically describe a substantial portion of the 

protein’s longest timescale motions which, for many systems, are those of the highest biological 

relevance [14].   

2.3.2 Dynamical Network Analysis 

To investigate allosteric communication between the Ligand Binding Domain and the co-

activator Tif-2 in the presence of RJW100 and its derivatives, we employed Dynamical Network 

Analysis.  Dynamical network analysis employs graph and network theory to describe 

coordinated motions within each system.  Nodes selected for these studies were non-adjacent 

alpha carbons, Cα.  Edges are drawn between each of the nodes based upon a distance matrix 

constructed per frame of the simulation.  Within the distance matrix, edges are drawn between 

atoms that are within 4.5A of each other for 75% of the simulation’s duration.  The edge 

distance, dij, is determined by the log of pairwise correlations, -log[Cij], where Cij is described by 

the following equation: 

𝐶𝑖𝑗 =
〈∆𝑟𝑖⃗⃗⃗  (𝑡)∙∆𝑟𝑗⃗⃗  ⃗(𝑡)〉

√〈∆𝑟𝑖⃗⃗⃗  (𝑡)2〉〈∆𝑟𝑗⃗⃗  ⃗(𝑡)2〉
    Eq. 2.20 
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where:  

 ∆𝑟𝑖⃗⃗ (𝑡) =  𝑟𝑖⃗⃗ (𝑡) − 〈∆𝑟𝑖⃗⃗ (𝑡)
2〉   Eq. 2.21 

With ∆𝑟𝑖⃗⃗ (𝑡) being the position of the atom that corresponds to the ith node [15]. 

2.3.2.1 Suboptimal Paths 

These are paths most frequently used to transmit a signal.  However, certain perturbations 

to the structure (changes to the environment) can result in the protein re-organizing itself in a 

way that creates another set of slightly longer paths (suboptimal paths) to transmit a signal.  This 

is primarily why we employ suboptimal paths in these investigations.  These pathways are likely 

to be very responsive to the binding of different effectors (small molecule agonists) which 

function as the source of perturbation to the system that induces rewiring [16]. 

2.3.3 Grid Inhomogeneous Solvation Theory 

To further explore the potential role of crystallographic water molecules located in LRH-

1’s ligand binding pocket, we employed a method called Grid Inhomogeneous Solvation Theory 

(GIST) to probe the energetics of the water [17].  GIST allows a user to explore a specific area of 

interest within the protein whose solvent dynamics one is interested in.  Changes in solvation 

patterns are often a key component of ligand recognition motifs.  In this investigation, we sought 

to determine whether key water molecules located in the binding pocket along with RJW100 

were not only dynamically stable as demonstrated by our collaborators, but energetically stable.  

Such stability would hint at a potential contribution in LRH-1’s ability to recognize ligands.   

  This method discretizes equations of Inhomogeneous Solvation theory onto a grid in a 

volume of interest.  Localized entropies, enthalpies, and free are calculated within each voxel. 
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  Inhomogeneous Solvation Theory transforms integrals over molecular coordinates to 

integrals over distribution functions yielding expressions for various thermodynamic quantities 

expressed in terms of correlation functions [17].   

 These quantities ultimately contribute to the following expression: 

    ∆G= ∆Esw+∆Eww+∆STrans+ ∆Sorient    Eq. 2.22 

This theory calculates solvation entropies in the following way: 

∆Ssolv = ∆Sww+ ∆Ssw     Eq. 2.23 

ΔSsw describes solute-water (sw) correlations and ΔSww water-water (ww) correlations.  The 

solute-water term is defined as: 

𝑆𝜔(𝒓) ≡
−𝑘𝐵

8𝜋2 ∫𝑔𝑠𝑤(𝒓, 𝜔) lng𝑠𝑤(𝒓,𝜔)𝒅𝒓𝒅𝜔  Eq. 2.24 

This truncation only accounts for solute water correlations.  KB is Boltzmann’s constant, gsw (r,ω 

) describes the solute water pair correlation with the solute as the frame of reference.  1/ 8π is the 

normalization factor of the orientation integrals [17].  

One may approximate ΔSsolv as ΔSsw because the correlation integral g approaches unity 

for bulk solvent, and the solute-solvent correlation function approaches unity with increasing 

distance from the solute as well.  Given this, the integrand decays to zero as distance increases 

between the solvent and solute and thus reasonable to treat Ssolv as a local integral around the 

solute [17].   

This allows the solute-water term to be broken down into orientational and translational 

entropies: 

∆Ssw = ∆STrans+ ∆Sorient    Eq. 2.25 
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Gist calculates these values by analyzing a volume that includes solute and a solvent region of 

interest.  It discretizes these values into grid boxes k of volume Vk centered on a location rk.  

Translational entropies can be calculated as follows: 

∆𝑆𝑠𝑤
𝑡𝑟𝑎𝑛𝑠(𝒓𝑘) ≡ −𝑘𝐵𝜌0 ∫𝑔 (𝒓𝒌) ln 𝑔 (𝒓)𝑑𝒓   Eq. 2.26 

Where this integral is over gridbox k and g(r) is treated as uniform over each grid box, and  𝜌0 is 

the density of oxygens per voxel, where g(rk) is estimated based upon the amount of simulation 

frames through the following equation:  

𝑔 (𝒓𝒌) =
1

𝜌0𝑁𝑓
∑

𝑛𝑖,𝑘

𝑉𝑘

𝑁𝑓

𝑖=1
     Eq. 2.27 

Here Nf is the frame indexing and nik is the number of waters per within box k per frame.  

The total translational entropy is calculated via summation of ∆𝑆𝑠𝑤
𝑡𝑟𝑎𝑛𝑠(𝒓𝑘) : 

∆𝑆𝑠𝑤
𝑡𝑟𝑎𝑛𝑠 = ∑∆𝑆𝑠𝑤

𝑡𝑟𝑎𝑛𝑠(𝒓𝑘)     Eq. 2.28 

Orientational entropies are calculated via the following equation: 

∆𝑆𝑠𝑤
𝑜𝑟𝑖𝑒𝑛𝑡(𝒓𝑘) ≡ 𝜌0 ∫ 𝑔(𝒓) 𝑆𝜔(𝒓𝑘)𝑑𝒓

 

𝑘
   Eq. 2.29 

With Sω, the localized orientational entropies described as the following: 

𝑆𝜔(𝒓𝒌) ≡
−𝑘𝐵

𝑉𝑘8𝜋2 ∫  
𝑘
∫ 𝑔𝑠𝑤(𝜔|𝒓) ln[𝑔𝑠𝑤(𝜔|𝒓)]𝒅𝝎𝑑𝒓

 

𝑟
  Eq. 2.30 

and total orientational entropy described like so: 

∆𝑆𝑠𝑤
𝑜𝑟𝑖𝑒𝑛𝑡 = ∑ 𝑛𝑘,𝑎𝑣𝑔𝑆𝑘

𝜔
𝑘 `    Eq. 2.31 

where 𝑛𝑘,𝑎𝑣𝑔 is the mean number of water molecules found in box k per frame of the simulation: 

𝑛𝑘,𝑎𝑣𝑔 = ∑
𝑛𝑖,𝑘

𝑁𝑓

𝑵𝒇

𝒊=𝟏
     Eq. 2.32 

These values in combination with calculated energies summed over grid box k as described by 

the equation below: 
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∆𝐸𝑠𝑤
 = ∑ 𝐸𝑠𝑤(𝒓𝑘)      Eq. 2.33 

Where: 

𝐸𝑠𝑤(𝒓𝑘) =  ∫ ∆𝐸𝑠𝑤
𝑙𝑜𝑐(𝒓)𝑑𝒓 

 

𝒌
    Eq. 2.34 

can be used to calculate free energy values as described in [17]. 

2.4 Experimental Procedure 

Model Construction 

LRH-1·TIF2 complexes bound to agonists RJW100 (pdb 5L11) and 65endo were 

constructed.  The crystal structures for these complexes were provided by the Ortlund group at 

Emory University.  Chimera modeler was employed to model in the density between residues 

527 and 530 using pdb 4DOS as the template structure.  

 MD Simulations and Selected Analysis Techniques 

Wildtype LRH-1·TIF2 systems complexed with RJW100 and 65endo were simulated. In 

addition, we simulated a T352V mutant of LRH-1·TIF2 complexed with RJW100.  All systems 

were solvated in a 0.15M NaCl, TIP3P waterbox with 10Å distances between the edges of the 

solute and the box. Simulations were run using pmemd in Amber14 [6] with the amber ff14SB 

and the general amber force field (GAFF) which is designed to parameterize organic molecules 

(drug-like compounds which contain O, S, N, P, H, and C) [18].  Key torsions in each ligand 

were optimized in Guassian 09 [19].  Point charges were assigned to each agonist using 

Antechamber in Ambertools and the AM1-BCC charge model.  Bonded and short-range 

interactions were evaluated every 2fs, with long-range electrostatics evaluated with Particle 

Mesh Ewald method [11].  Short-range nonbonded interactions were evaluated using a 10Å 

cutoff.  SHAKE [9] was employed to fix bonds between hydrogens and heavy atoms.  Each 

system was subjected to 20,000 steps of minimization with the first 200 cycles employing 
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steepest decent and the remaining switching to conjugate gradient minimization.  This process 

was evenly split (10,000 steps each). Solvent molecules were first minimized followed by the 

whole system.  This was then followed by 500ps of dynamics in the NVT ensemble, during 

which the system was heated from 0 to 300 K with positional restraints applied to the solute 

(protein and small molecules).  Finally, 8 NPT ensemble simulations were performed at 1atm for 

2ns each, with each stage releasing the positional restraints, first on the protein, followed by each 

agonist.  Sidechains were released before backbone atoms. 200ns of unrestrained NPT was 

performed.  PCA and Dynamical Network analysis was performed on 10000 evenly spaced 

frames from the simulations and GIST was performed on 1000 frames of the same simulation. 

           Principal Component Analysis was performed on all backbone heavy atoms of LRH-1 

bound to RJW100 and Tif-2 (pdb 5L11).  Dynamical Network Suboptimal path analysis was 

limited to non-adjacent alpha Carbons (Cα) for the complexes bound to RJW100 and 65endo.  

The offset employed for suboptimal path generation was set to 50.  

           GIST Analysis involved placement of a Grid over LRH-1·Tif-2 and RJW100 with 

dimensions of 106 Ȧ3, with 0.5Ȧ spacing per voxel.  The grid was centered on the geometric 

center of RJW100.  One analysis of energetics restricted the area of interest to those within a 

4.5�̇� volume of agonist RJW100 using the procedure described in [17].  Another analysis was 

performed by grouping solvent properties in the region of interest as described in [17].  In this 

case, analysis was performed by imposing restrictions only including solvent with a water 

density(gO) above 1.0 and total (summed water-water and water-solute) enthalpy value less than 

-0.5 kcal/mol/Ȧ3 and integrating (summation of grid voxels) to find thermodynamic values as 

described in [17].  From here, thermodynamic values were derived for regions corresponding to 

water molecules of interest.   
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Virtual Screening Protocol 

Our virtual screening protocol is outlined in scheme 1.  Crystal structure binding poses of 

RJW100, 65endo, and 8AC served as templates.  Openeye OMEGA was employed to generate 

conformers for each template [1].  All templates were screened with ROCS based upon shape 

overlap with NCI database compounds.  The top 10000 were scored using Tanimoto Combo 

score and then docked to LRH-1 with Autodock vina [5].  Derivatives 8AC and 65endo are more 

polar and thus were also screened for electrostatic similarity after screening for shape similarity.  

To optimize overlap based on both electrostatics and structure, the top 10000 compounds in said 

cases were ranked through equal weighting and summation of associated Eon Tanimoto Combo 

and Tanimoto Combo scores [2,3].  The resulting set of compounds was also docked to 

corresponding LRH-1 structures.  Structural waters of each structure were retained to more 

accurately represent specific water contacts within the binding pocket and to reproduce the 

binding poses found in crystal structures. 
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Figure 2.1.  Protocol for Virtual Screening of LRH-1. 

OMEGA is employed to generate several conformations of compounds from 

the NCI structure database which are then screened against crystal structure 

binding poses of each agonist.  Compounds were screened against RJW100 

only using ROCS shape alignment. Screening against 65endo and 8AC 

included both ROCS shape alignment and EON electrostatic field alignment.  

Candidates were docked to LRH-1·TIF2 LBP using Autodock vina 
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Figure 2.2.  Search spaced employed for docking of candidates identified in the ligand 

based component of virtual screening. 

The search space encompasses the entirety of the LBP.  Water molecules were retained in 

the LBP. 
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3 RESULTS AND DISCUSSION 

3.1 PCA and Cross-correlation Analysis 

We conducted PCA studies on LRH-1·TIF2 in presence of RJW100.  PCA allows us to 

specifically focus on major motions that occur upon binding of RJW100.  We analyzed the first 

four modes, identifying two principle components of interest.  A breathing motion at the mouth 

(characterized by H2, H3, H7, and β-H6) of the LBP, between H2 and H6 designated as PC2, 

and a breathing motion between H8 and H9 as PC1 as implied by the porcupine plots (Fig. 3.1C, 

D).  Of note in the porcupine plots is how PC1 (Fig. 3.1C) features H2, H3, and β-H6 converging 

inward towards one another other as well as an outward swing of H9 relative to H8 which 

mimics the profile of DLPC complexed to LRH-1·TIF2 (Fig. 1.7A) [1].  Figure 3.2D shows β-

H6 and H2 and H3 swinging outward with respect to each other.  Plotting these PCs versus one 

another allows for another way to visualize the result (Fig. 3.1A).  PC1 is clustered in one region 

of the PC1-PC2 subspace around a centroid of 10 whereas PC2 is divided into two distinct 

clusters clustered around centroids of 10 and -10.  These patterns are not consistent with LRH-

1·TIF2 systems possessing an agreement status as identified in [1].  However, it is possible that 

the difference in the patterns observed reflect the differing binding modes of the compounds.  

The contacts that DLPC makes with the mouth of LRH-1’s LBD may explain the single cluster 

of PC1-PC2 conformational space (Fig. 1.7C) [1].  RJW100 does not engage in these same 

contacts and instead binds deep inside of the LBP.  This suggests that highly concentrated 

subspace at the mouth of the LBP is not a requirement in transcription-activated conformations 

when LRH-1 is bound to non-PL agonists. 

Despite the dissimilarities with PL studies, these results are consistent with hydrogen 

deuterium exchange (HDX) mass spectrometry studies comparing the dynamics of the DLPC 
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complex to RJW100 (Fig. 1.11).  In comparison to DLPC, RJW100 binding results in rapid 

exchange with deuterium in β-H6 and H10, which all contribute to the mouth of LRH-1’s 

binding pocket [2].  This rapid exchange suggests that the mouth of the LBP is more dynamical 

versus DLPC and our PCA results indicate that two distinct conformations exist about the mouth 

of the LBP.   

High levels of LRH-1-mediated transcriptional activity require selective co-activator 

recruitment and HDX studies of DLPC binding versus longer tailed PLs imply that some 

destabilization of the LBP (specifically β-H6) is associated with enhanced selectivity [3].  

Computational studies reveal that DLPC binding results in highly correlated motions between 

H4-7 and anti-correlated motions between these helices and the AF-H (Fig. 3.2A) and it is 

suggested that this profile of correlated motions predicts high levels of activation [4].  Figure 

3.1B, featuring the RJW100 complex shows a different pattern where there are no particularly 

highly correlated or anti-correlated motions between the same regions.  Instead, the cross-

correlation patterns that characterize RJW100 binding resemble systems with disagreement 

statuses (Fig. 3.2, B versus C) [1] except that motions in H3-5 and H7-9 as well as those in H1-

H3 and the AF-H are more highly correlated than those in both the Apo LRH-1·TIF2 and the 

DLPC complexed systems.  These results reinforce the idea that the profile of correlated motions 

in DLPC complexed LRH-1 are not a requirement to enhance levels of transcriptional activity 

significantly above basal levels, but instead may be an essential characteristic of activated 

structures that trigger very high levels of transcriptional activity [2].   

3.2 Investigation of Solvent Energetics within LRH-1’s Ligand Binding Pocket 

RJW100 binding affinity is largely attributed to the ability of Thr352 to anchor the ligand 

via a water-mediated contact between itself and the hydroxyl moiety of RJW100 [2].  The crystal 
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structure features four water molecules within the binding pocket, with one of the four contacting 

the ligand as described.  Our computational studies provide some preliminary evidence that the 

four proximal waters identified in the crystal structure are energetically stable in those positions 

which bolsters other studies that document their stability [2].  Grid Inhomogeneous Solvation 

Theory (GIST) [3] was employed to elucidate whether the waters molecules occupy 

thermodynamically favored positions within the LBP.  We evaluated thermodynamic parameters 

of key water molecules and Figure 3.3 demonstrates that energetically favorable positions for 

water occupancy exist in regions corresponding to the structural water molecules.  The red 

wireframes indicate regions (voxels within the grid) within LRH-1 that have ΔHsw of -1.5 

kcal/mol/�̇�3.  When GIST analysis was performed on a T352V mutant, there was complete 

absence of voxels corresponding to energetically favorable waters within the LBP.  The four 

waters labelled alphabetically are proximal to RJW100 and their thermodynamic properties are 

of high interest.  The water molecule labelled A participates in the bridging interaction between 

RJW100’s hydroxyl moiety and Thr352 so is of special interest.  

To analyze the energetics of a substantial portion of LRH-1’s LBP, solvation 

thermodynamic parameters in voxels within a distance of 4.5�̇� of RJW100 heavy atoms were 

integrated and Table 3-1 presents this data and reveals the dominance of enthalpic contributions 

to a favorable free energy (-61 kcal/mol).   
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Table 3-1 Integrated thermodynamic data of solvent within 4.5�̇� of RJW100.  

All units are in kcal/mol. 

  

ΔH  TΔS     ΔG 

-71   -10    -61 

 

The data in Table 3-2 shows a favorable Gibbs free energy for the four regions proximal 

to RJW100.  This data was obtained from a group of waters that correspond to 1.0 oxygen 

density (every voxel with density equal to or greater than bulk solvent), but had enthalpies less 

than or equal to -0.5 kcal/mol. 

 

Table 3-2 Thermodynamic data of solvent groups in closest proximity to RJW100.   

All units are in kcal/mol. 

 

 

 

 

 

 

 

 

The data indicates that these regions account for a substantial portion of the energetically 

favorable positions for water occupation within the LBP.  The favorable free energies are due to 

favorable enthalpic contributions.  Group A and D’s relative ranking can be rationalized by 

inspecting potential contacts within the binding pocket.  The structure shows that the water 

Group      ΔH TΔS ΔG 

A      -7 -1 -6 

B     -13 -2 -11 

C     -3 -1 -4 

D     -6 -1 -5 
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corresponding to group D may engage in a contact with His390 and that the group corresponding 

to A engages with Thr352 as well as RJW100’s hydroxyl moiety during the simulation.  Given 

the interactions of A, it is unsurprising that its position is at least slightly more favored than D’s.  

However, it is surprising that group A does not correspond to the region with the most 

thermodynamically favored properties.  Instead, group B does by a substantial margin having a 

free energy nearly two times more favorable than group A (-10 kcal/mol versus -5 kcal/mol).  

This is interesting considering that the water-mediated contact with Thr352 is speculated to be 

one of the most important components contributing to RJW100’s ability to bind and activate 

LRH-1.  This suggests that any water associated with the region of the LBP corresponding to B 

is better anchored than the other three sites and is also consistent with the observation that the 

water-mediated contact with Thr352 is somewhat labile.  Water molecules facilitating this 

contact are exchanged during the simulation (water leaves the position and is then replaced by 

another).   

Inspection of the X-ray crystal structure of TIF2·LRH-1 in complex with 65endo reveals 

the displacement of two of the crystallographic waters including the one that facilitates contact 

with Thr352 in the RJW100 complexed structure.  The water molecule corresponding to group B 

remains.  This observation supports the relative rankings reported in Table 3-2.  Furthermore, 

these results predict that 65endo more effectively binds to LRH-1.  Its ability to displace two of 

the water molecules implies that there are a set of compensatory interactions between 65endo 

and LRH-1’s LBP that allow for the two waters to be displaced.  The sulfonamide functional 

group replacing the hydroxyl of RJW100 extends into the space occupied by group A and C 

(with C corresponding to the least favored region among the four).  In the case that a new 
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structural scaffold is discovered to activate LRH-1, potential modifications can be explored more 

strategically based upon solvent properties as suggested in [3]. 

3.3 Investigation of RJW100 Induced Allosteric Communication  

We investigated the suboptimal paths generated between the LBP and TIF2 as the number 

of suboptimal paths allows us to gauge the strength of communication as well as key structural 

features contributing to communication between them.  In each figure, blue lines represent edges 

drawn between nodes (alpha carbons) in suboptimal paths.   

Our studies with LRH-1 in complex with RJW100 reveal a similar network to that 

triggered upon DLPC binding in terms of structural components traversed by the paths.  

Specifically, suboptimal paths heavily traverse helix 5.  RJW100 induces the generation of 73 

suboptimal paths (Table 3-3).  By visual inspection of Figure 3.4A, the amount of 

communication triggered is lower than DLPC complexed LRH-1·TIF2 (Fig. 3.4B), and features 

diminished contribution of helix 3 to the network.  Despite the differing structures and binding 

modes, these results suggest that non-PL activators can induce a similar communication network 

to that induced upon DLPC binding.  However, the strength of communication triggered by 

RJW100 appears to be intermediate between DLPC complexed LRH-1·TIF2 (agreement status) 

and systems with disagreement statuses such LRH-1·TIF2 complexed with E. coli PLs (Fig. 

1.8B).   

In addition to this study, we performed a suboptimal path analysis on the T352V mutant. 

Figure 3.5 features both systems and shows that the T352V mutant (Fig. 3.5B) features 

somewhat diminished communication.  While the two appear similar, data reveals that RJW100 

induces only 54 suboptimal paths in the mutant structure.  
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Table 3-3 Number of Suboptimal Paths generated upon binding of agonists. 

 Both wildtype and T352 mutant for RJW100 complexed LRH-1·TIF2 are presented. 

 

 

 

This suggests that the threonine does contribute to the ability of RJW100 to not only bind 

LRH-1, but to trigger communication.  In the context of LRH-1-mediated transcriptional activity, 

this is also consistent with studies that show diminished, but not abolished transcriptional 

activation by the T352V mutant complexed to RJW100 in comparison to wildtype LRH-1 (Fig. 

1.12).  RJW100 triggers a 2.5-fold activation in wildtype protein but this diminishes to about a 

1.7-fold activation when bound to the T352V mutant [2].   

 This result is interesting in conjunction with the analysis of thermodynamic data for key 

water molecules participating in the proposed water network.  Thr352 for example belongs to H3 

and His390 to H5, which function as the primary structural feature that propagates the signal.  

Motions at the mouth of the protein that include helices 2 and 3 may partially explain how DLPC 

is able to induce communication.  Perhaps RJW100, through its exploitation of the water 

network is also able to do this, albeit in a manner that does not result in full activation.  The 

water-mediated contact between RJW100’s hydroxyl function and Thr352 may serve to link the 

local motions at helix 3 to those at helix 5 through via the identified water network.  Given the 

indirect nature of these contacts, it is no surprise that RJW100 is unable to trigger activation as 

well as an agonistic PL such as DLPC, but these contacts may provide an alternative to DLPC’s 

binding mode that explains the relative success of the bicyclo-octene scaffolds.   

3.3.1 RJW100 Derivative 65endo Enhances Allosteric Communication 

We also probed the nature of the allosteric network in the presence of RJW100 derivative 

65endo which features a sulfonamide moiety in lieu of the hydroxyl function.  Differences 

Complex RJW100 wt           RJW100 T352V     65endo wt 

Number of SOPs 73                            54                        2375 
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between the network triggered by 65endo and RJW100 can provide rationale for future 

modifications to RJW100, producing additional compounds with increased efficacy and binding 

affinity.   

Indeed, the 65endo agonist induces a very high level of communication between the LBP 

and co-regulator binding cleft upon binding.  The communication is much stronger than that 

which occurs upon RJW100 binding as 65endo triggers 2375 suboptimal paths (Table 3-3).  This 

is corroborated by experimental evidence that 65endo increases activity of LRH-1 relative to 

RJW100.  The more polar sulfonamide group may be triggering activation by making more 

direct contacts with the polar patch within the interior of the LBP.  As shown in Figure 3.6, the 

set of suboptimal paths generated upon 65endo binding share similarities with RJW100 and 

DLPC bound systems with most of the communication being propagated through helix 5.   

However, like RJW100, the network differs from DLPC’s in that the paths generated upon 

65endo binding do not traverse helix 3.     

Analysis of frequently traversed nodes reveal many similarities but some subtle 

differences in how the signal is propagated in each small molecule bound complex as indicated 

by the histograms in Figure 3.7.  The data confirms that the signal is propagated through helix 5 

with Leu378 and Trp382 being heavily traversed in all three networks.  Both mutant and 

wildtype systems with RJW100 bound feature Arg393 as a heavily traversed node.    Arg393 is 

located closest to the LBP (Fig. 3.7D) and in both RJW100 bound systems appears to be the 

primary, if not only receptor of paths originating from β-H6.  When bound to 65endo, however, 

the data corroborates what is shown in Figure 3.6B where divergent patterns exist in paths near 

the LBP.  Data for 65endo in Figure 3.6C shows two nodes of H5 instead of a single node (as is 

the case with the RJW100 complexes) being heavily traversed, those associated with Leu391 and 
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Gln394.  However, patterns observed in paths in closer proximity to TIF2 are very similar in 

RJW100 and 65endo complexes.  Both employ Met375 and Leu378, but the 65endo complex 

features more suboptimal paths traversing Leu378 than Met375, the converse of the pattern 

observed for the RJW100 complex.  65endo binding also results in suboptimal paths that heavily 

traverse Leu391 and Gln394, a pattern not seen in either of the RJW100 complexes.  This results 

in the 65endo complex featuring an expanded profile of heavily traversed nodes.  The increased 

number of suboptimal paths generated in addition to the slightly wider distribution of heavily 

frequented nodes implies that 65endo induces a more robust profile of correlated motions and 

that there is less discrimination between nodes employed to propagate the signal.   

The crystal structure of the 65endo complex indicates a diminished distance between 

Glu534 of the AF-H and TIF2 co-activator versus RJW100 complex as shown in figure 3.8.  This 

is similar to a phenomenon observed in the DLPC complexed with LRH-1·TIF2 (Fig. 1.6) [1].  

Figure 3.8A shows that Glu534 is positioned 3.53Ȧ away from the amide bond of Leu744 in 

TIF2 and an orientation more similar to the DLPC complex (which allows for contact with TIF2) 

whereas Figure 3.8B shows the RJW100 complex with a distance of 4.36Ȧ as well as an 

orientation not conducive to making a contact with TIF2 much like systems with disagreement 

statuses. This comparison also presents another example of RJW100 binding inducing changes in 

LRH-1 that are intermediate between systems in agreement and disagreement.   

 The recurrence of certain patterns in transcription activating structures implies that the 

positioning of Glu534 in LRH-1·TIF2 crystal structures provides some predictive power in 

determining how effectively an agonist can trigger allosteric communication.  However, 

experimental data shows that the AF-H is highly dynamical in the presence of DLPC.  Because 

LRH-1 does not form a true charge clamp with co-activating peptides, it may also be instructive 



66 

to gain insight from elsewhere.  One may expect, for example, a profile of correlated motions 

that more closely resembles that of transcription activated systems with agreement statuses 

identified in [1].  Another component generally considered when investigating allostery in 

proteins is larger conformational changes whether they be large shifts in position of secondary 

structural features or reorientation of sidechains [4-6].   

 In totality, this result suggests that modifications to the RJW100 bicyclo-octene scaffold 

at the hydroxyl function could be an optimal method to design agonists that further enhance 

transcriptional activation (though modifications of this moiety require caution because it could 

destabilize the compound, which is a major drawback of GSK8470) by exploiting contacts in the 

interior of the LBP in a manner that creates more direct contacts between the agonist and LRH-1.  

Further studies could potentially explore the fidelity and organization of the water network when 

65endo is bound as the increased number of donor and acceptor atoms resulting from the 

modification not only presents the possibility of direct contacts, but water-mediated contacts as 

well.  These investigations in addition to any further studies conducted to explore coordinated 

motions such as PCA or cross-correlation analysis could serve to partially explain the enhanced 

communication observed.            

3.4 Virtual Screening  

3.4.1 RJW100 as Lead Compound Yields Hydrophobic Pharmaceutical Targets of LRH-1 

Through use of the X-ray structure provided by collaborators, we used RJW100 

complexed to LRH-1·TIF2 as a template for a shape-based virtual screening effort employing 

Openeye software.  Representative structures (top 12 highest performers as based upon 

Autodock vina docking score) are presented in Figure 3.9 below along with the docking score. 

As expected, these compounds mostly possess a polycyclic, hydrophobic core.  Many of these 
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structures have very similar scaffolds.  Specifically, 26684, 30879, and 102943 have scaffolds 

that only feature tricyclic systems linked to one another.  In addition, most of these very top 

scoring compounds in terms of donor and acceptor capabilities lack diversity.  For example, 9 

compounds only feature groups capable of accepting a hydrogen bond (109840, 119443, 114934, 

125037, 55220, 26684,1 02943, 128597, 400595).  This is unideal when seeking scaffolds with 

features highly complementary to those of the polar patch within LRH-1’s LBP, however 

molecules with any hydrogen bond acceptor or donor capabilities are more likely to bind the 

target selectively, so this is a promising result overall.  We have hope that some of the candidates 

will be revealed as bio-active in screening which would allow for scaffold hopping away from 

the RJW100 architecture.   

3.4.2 Virtual Screening of Polar Derivatives 

The structural component of our virtual screening effort for RJW100 derivatives yielded 

interesting results especially when the two derivatives are compared versus one another.  8AC 

screening resulted in subtle changes to the profile of the top performing compounds (in context 

of the docking score) shown in Figure 3.10 with two of these compounds, 26684 and 30789 

(which is nearly identical to 30798 from the RJW100 set being identical to top performers 

derived from RJW100 as lead.  The overlap in these results can at least be partially attributed the 

fact that 8AC overall, has a very similar binding mode and shape to that of RJW100.  However, 

one would expect the electrostatic profile of 8AC to be different overall, and this does seem to 

give rise to features seen in compounds such as 726771 and 719649.  These two compounds 

appear to reflect both the shape and electrostatic profile of 8AC in the sense that 8AC features 

two polar regions that are distal from one another (the hydroxyl group located within the bicyclic 

core and the ester that terminates the lipophilic tail) and 726771 and 719649 separate their most 
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polar regions by a linker.  A promising feature of this set is that 7 compounds including 368290, 

319072, 726771, 116643, 30789, 658172, and 154683 contain a mixture of hydrogen bond donor 

and acceptor atoms. 

           Top performers yielded from the screening of 65endo (Fig. 3.11) share no overlap with 

those of RJW100 or 8AC (though 116653 and 116643 are very similar), but outside of this, 

results are somewhat disappointing in terms of structural diversity.  The profile of these 

candidates is similar to the RJW100 set except that most compounds are not completely 

lipophilic (completely lacking hydrogen bond acceptors and donors).  However, five of these 

compounds are only capable of accepting hydrogen bonds: 255296, 106668, 723898, 368003, 

and 230368.  The most promising feature of this set of compounds is the inclusion of three very 

polar compounds: 375090, 291853, and 723898.   Compounds with this feature align with the 

goal to find scaffolds with high solubility.  Another key feature is the notable shift in the docking 

scores in this set of compounds to a slightly lower range indicating more favorable binding of 

these compounds relative to those in other sets.  However, great care must be taken when 

interpreting these docking scores which only serve to rank compounds relative to each other in a 

specific context.  

The protocol employed in this investigation adds complexities to interpretation of the 

results and the ability to compare between sets.  A key reason for this is the retention of the water 

molecules in the ligand binding pocket of each crystal structure (Fig. 2.1).  Typical protocols for 

rigid docking include the stripping of all water molecules, ligands, and salt molecules.  The 

arrangement of the crystallographic waters differs at least slightly in each complex (with the 

biggest difference seen in the crystal structure complexed with 65endo where two waters found 

in RJW100 complexed LRH-1 have been displaced).  We chose to retain the waters as their 
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retention resulted in reproduction of crystal structure binding poses for each ligand (with a 

somewhat disordered aliphatic tail in each case).  Given this, the scores and potential binding 

poses of compounds in each set only reflect the binding pose that can be achieved with the 

specific water arrangement associated with the LBP of the structure from which it was derived.  

 It may be possible that a new protocol could be employed where each complex is 

completely stripped before docking compounds yielded from the ligand based component of the 

screening protocol.  However, mutagenesis studies show the importance of Thr352 in activation 

of LRH-1 by GSK8470 whose binding mode features no water-mediated contacts.  This implies 

that the existence of waters in the LRH-1 LBP are important for the activation by non-PLs in 

general [3].   
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Figure 3.1. Correlated Motions in LRH-1·TIF2 when complexed to RJW100.  

A) Two chosen principal components plotted versus one another.  The higher the density, the 

more snapshots (frames out of 10000) occupying that portion of the subspace.  B) Cross 

correlation plot of LRH-1·TIF2 complexed with RJW100.  As indicated by the scale, blue areas 

indicate anti-correlated motions and red indicates correlated motions.  C) Porcupine 

representation of PC1 modes projected onto LRH-1·TIF2 structure complexed with RJW100. 

The arrowheads indicate direction of motion and length of arrows indicate magnitude of motion. 

D) Porcupine representation of PC2 modes projected onto LRH-1·TIF2 structure complexed 

with RJW100. 
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Figure 3.2. Cross Correlation plots of LRH-1·Tif-2 with varied LBP statuses. 

A) DLPC.  B) RJW100. C) Apo LBP. Figures A) and C) have been adapted from 

Musille, P.M., et al., Unexpected Allosteric Network Contributes to LRH-1 Co-regulator 

Selectivity. J Biol Chem, 2016. 291(3): p. 1411-26 [1].   
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Figure 3.3. Areas of energetically favored water-solute interactions within LRH-1·TIF2 

LBP in complex with RJW100.   

A, B, C, and D (wireframes) correspond to the regions of water density that were integrated to 

derive thermodynamic parameters in table 3.1.  The original crystal structure (pdb 5L11) of 

RJW100 bound LRH-1·TIF2 was overlaid on top of GIST [7] water density data to show the 

crystallographic waters of interest and how they correspond to these densities. 
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Figure 3.4. Comparison of Suboptimal Paths between LBD and TIF2 co-activator. 

A) LRH-1·TIF2 complexed to RJW100.  B) LRH-1·TIF2 complexed to DLPC as adapted from 

Musille, P.M., et al., Unexpected Allosteric Network Contributes to LRH-1 Co-regulator 

Selectivity. J Biol Chem, 2016. 291(3): p. 1411-26 [1].   
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Figure 3.5. Comparison of Suboptimal Paths between LBD and TIF2 co-activator. 

A) RJW100 bound LRH-1·TIF2.  B) RJW100 bound to LRH-1·TIF2 T352V mutant.   
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Figure 3.6 Comparison of Suboptimal Paths (blue) between LBD and co-activator 

TIF2(green). 

A) RJW100 complexed to LRH-1·TIF2.  B) 65endo complexed to LRH-1·TIF2. 

There is a noticeable increase in the amount of suboptimal paths available upon binding of 

65endo. 
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Figure 3.7. Heavily traversed nodes in suboptimal paths.  

A) RJW100 complexed to wildtype LRH-1·TIF2.  B) RJW100 complexed to T352V 

mutant.  C) 65endo to wildtype LRH-1·TIF2.  D) A representation of LRH-1 featuring 

helix 5, β-H6 (source), and TIF2 co-activator (sink) and sidechains of corresponding 

residues in highly traversed nodes indicated in histograms A-C.   
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Figure 3.8. Comparison of 65endo and RJW100 complexed crystal structures.   

A) 65endo complex with distance between Glu534 and TIF2 (green) co-activator peptide 

displayed in red.  B) RJW100 (cyan) complex with the distance between Glu534 and 

TIF2 co-activator peptide displayed in red. 
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Figure 3.9. Top 12 scoring candidates from the virtual screening of RJW100.  All scores 

are measured in kcal/mol. 
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Figure 3.10. Top 12 scoring candidates from the virtual screening of 8AC.  All scores are 

measured in kcal/mol. 
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Figure 3.11. Top 12 scoring candidates from the virtual screening of 65endo.  All scores are 

measured in kcal/mol 
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4 GENERAL CONCLUSIONS 

 Our computational studies synthetic agonists bound to LRH-1 agree with the 

observations of collaborators in that the structural underpinnings of their abilities to activate 

LRH-1 are much more complex than PL agonists such as DLPC.  Our initial analysis of 

correlated motions of RJW100 complexed to LRH-1·TIF2 and essential dynamics demonstrate 

that RJW100 does not induce the characteristic agreement state of the LBD and AF2 region that 

occurs upon DLPC binding.  However, despite this inability to trigger the same pattern of long 

time scale motions, it remains capable of triggering productive motions leading to a mild level of 

communication between the two remote domains in comparison to DLPC.  We provide 

additional evidence that a key residue on the interior of the LBD, Thr352 plays a role in 

facilitating an alternative mode through which an agonist such as RJW100 can activate LRH-1.  

This threonine residue seems to stabilize key crystallographic waters which are speculated to 

create the alternative mode of activation that occurs upon binding of RJW100 and similar 

scaffolds.  Our studies show that four of the waters proximal to RJW100 are thermodynamically 

stable within the binding pocket.  The energetics provide some insight into how maintenance of 

the water network is achieved when in the presence of RJW100.  Specifically, the water adjacent 

to the water that mediates contact between RJW100’s hydroxyl moiety and Thr352 may play a 

central role in maintaining this network along with Thr352.  Our studies also demonstrate that 

the T352V mutant features diminished allosteric communication upon RJW100 binding, 

consistent with diminished but not eliminated activation demonstrated in experimental studies.   

 We also provide evidence that the increased activity of polar derivative 65endo versus 

RJW100 could be partially attributed to its ability to enhance allosteric communication relative 

to RJW100.  The modification of the hydroxyl function to the sulfonamide may allow for 65endo 
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to make direct contact with residues in the LBD.  The nature of these contacts needs further 

study, but given some structural evidence contained within the crystal structure, it is possible that 

65endo induces correlated motions that are more similar to those induced by DLPC binding than 

RJW100.  This result also provides some evidence that strategic design of RJW100 derivatives 

could very well benefit from focusing upon modifications that aim to exploit features at the 

interior of the pocket. Furthermore, the information we gained from probing energetics of 

solvent within the LBP suggests that 65endo may bind more favorably to LRH-1. 

 Lastly, we developed a protocol combining ligand based and structure based methods for 

virtual screening of RJW100, derivative 65endo, and another agonist, 8AC.  The inclusion of an 

electrostatic component to the screening of the latter two appears to have aided in generating a 

somewhat different set of structures than those from RJW100, but the structural profile of the 

proposed top binding candidates could likely be improved.  Very top scoring compounds from 

docking seemed to have more architectural uniformity with RJW100 employed as lead whereas 

the 8AC seemed to be contain more structures with features that may more effectively exploit the 

polar patch in the interior of LRH-1.  Overall, 65endo surprisingly yielded a set of top 

performing compounds that did not directly overlap with the other two sets but was overall more 

similar in profile to RJW100 in some ways, but also features some compounds that are much 

more polar than those in other sets.  We await results of experimental screening of these 

compounds.  
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