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ABSTRACT 

The tectonic region that encompasses Southwestern Montana is a petrologically complex area 

containing several batholiths and thrust faults, underlined by Precambrian basement rock and capped 

by sedimentary rocks. Intrusive volcanism of Southwest Montana best represented by the Pioneer 

and Boulder batholiths is a product of the eastward subduction of the Farallon Plate underneath 

the North American Plate during the Mesozoic time. Geochemical modeling made evident that 

the Pioneer and Boulder batholiths have a comagmatic relationship. This conclusion is derived 

from variation, spider and REE diagrams along with petrographic and geochemical models. The 

intrusion of these batholiths is likely related to the emplacement of a detached portion of the 

Idaho batholith known as the Sapphire block. Future models that are outside of the scope of this 

research must consider the evidence proposed in this document to produce an overarching model 



for the intrusion of the Pioneer and Boulder batholiths in the incredibly dynamic tectonic setting 

of the Mesozoic. 
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1 INTRODUCTION  

The intrusive volcanism of Southwest Montana best represented by the Pioneer and Boulder 

batholiths, is a product of the eastward subduction of the Farallon Plate underneath the North 

American Plate during the Mesozoic. The emplacement of these batholiths is related to a 

detached portion of the Idaho batholith known as the Sapphire Block. In the following pages of 

this document, I will present evidence that is consistent with the Pioneer and Boulder batholiths 

sharing a magmatic source that was affected by crystal fractionation processes.  

In continental arc settings, processes such as partial melting of continental crust (White and 

Chappell, 1983; Vielzeuf and Holloway, 1988), assimilation of continental crust and 

fractionation are quite common (DePaolo, 1981; Hildreth and Moorbath, 1988). 

 These processes make subduction zones environments where the exchange of mantle and 

crustal material is possible. This exchange plays a central role in the evolution of the continental 

crust and the Earth’s mantle. The mantle and crustal components of this exchange are the 

subducting oceanic crust (and overlying sediment) along with the peridotites within the mantle 

wedge. This process initiates when fluids from the dewatering subducted sediments and 

hydrothermally metamorphosed crustal materials are fluxed into mantle rocks triggering melting 

(Davies and Stevenson 1992; Forneris and Holloway 2003; Grove, et al. 2002; Schmidt and Poli 

1998; Tatsumi and Eggins 1995; Ulmer 2001). Mantle decompression may aid this process from 

subduction-induced corner flow in the mantle wedge (Elkins-Tanton, et al. 2001; Hasegawa and 

Nakajima 2004; Sisson and Bronto 1998). The resulting primary magmas are subsequently 

transferred into the overlying crust where AFC (Assimilation, Fractional Crystallization) 

(DePaolo 1981) and mixing processes are responsible for the chemical variety observed on 

continental arcs. 
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Magmatism in Southwestern Montana and Idaho started ~100 Ma and stopped at around 40 

Ma. This determination is best represented by a few reliable ages that have been calculated for 

the Idaho batholith (Armstrong, Taubeneck, & Hales, 1977; Mcdowell & Kulp, 1969). The Idaho 

batholith has a complex structure, composition, and history and is believed to have been 

emplaced from 100 to 44 Ma (Mueller & Shuster, 1995). Ages calculated for the Pioneer and 

Boulder batholiths fall within this period and are associated with magmatism during the Late 

Cretaceous time, both of these batholiths are thought to have emplaced between 78 and 65 Ma 

(du Bray et al., 2012; Lund et al., 2002).  

The batholiths of Southwestern Montana have been analyzed in many studies detailing 

duration of magmatism, petrology of constituent plutons, and their relations to nearby volcanic 

rocks (Bennett, 1980; du Bray, Aleinikoff, & Lund, 2012; Foster, Mueller, Heatherington, 

Gifford, & Kalakay, 2012; Hamilton & Myers, 1974; Hammarstrom, 1982; Hyndman, Talbot, & 

Chase, 1975; Mueller & Shuster, 1995). Even with the plethora of studies, many questions 

remain related to the emplacement processes and the development and growth of these batholiths 

and the magmatic relationship between these plutons.  

Correlation of the different batholiths in the area is still a controversial topic. The Boulder 

and the Pioneer batholiths seem to be over 25 km east of where geologists believe they should 

have been emplaced. The emplacement of these intrusive bodies appears to be directly related to 

the detachment of a large crustal block from the rising Idaho batholith infrastructure. This 10- to 

15-km thick block is known as the Sapphire block. It seems no coincidence that the Boulder 

batholith and related plutons are the only large Cretaceous calc-alkaline plutons to occur within 

the overthrust belt and that they are closely related spatially to the Sapphire block (Hyndman et 

al., 1975).  
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The central hypothesis of my project is that the Pioneer and Boulder batholiths are derived 

from the same magma source, but their chemical composition reflects different evolutionary 

stages in the liquid line of descent. I will show that the chemistry of the Boulder batholiths could 

be reproduced by fractionation of principal mineral species from a single parental basalt found in 

the Pioneer batholith sample suite.  

 

Figure 1 Tectonic map of western Montana. Location of the Idaho, Pioneer, and Boulder 

batholiths modified from Foster et al., 2012. Thrust sheets west of the Boulder batholith are part 

of the Sapphire Block that detached along the Bitterroot detachment zone. 

 

The overarching goal of my project is to document the nature of magmatism in the Pioneer 

batholith and compare it to the magmatism that produced the Boulder batholith to test chemical 
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variation models that could reproduce the chemical diversity. To test these models, I have used 

geochemical data of whole rock samples and petrographic analyses from the Pioneer and 

Boulder batholiths. As previous authors, I have determined that the batholiths show a typical 

subduction zone signature with a continental crust involvement with the production of these 

massive bodies (du Bray et al., 2012; du Bray, Lund, Tilling, Denning, & DeWitt, 2009; Foster 

et al., 2012; Lund et al., 2002). More importantly, my analyses show that crystal fractionation is 

a dominant process in the creation of the magmatic diversity found in these plutonic bodies.   

A pending task for future research is to correlate my petrogenetic model to cortical models 

post-Sapphire block emplacement for the region. Such a correlation will enrich our current 

understanding for the emplacement of large intrusive bodies with a synchronous magmatic 

evolution. 
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Figure 2 Sample location map. 

Map of sample locations, green symbols are from Pioneer batholith, red and purple are 

from the Boulder batholith. Purple samples coming from du Bray et al., 2012. 

 

2 TECTONIC SETTING 

The tectonic region that encompasses the Pioneer batholith, Boulder batholith, and the Idaho 

batholith is a petrologically complex area containing several batholiths and thrust faults, underlined 

by Precambrian basement rock and capped by sedimentary rocks (Figure 1). Presented in this 

chapter, is a brief description of the tectonic context and history. 

2.1 Tectonic Context 

Southwestern Montana is in a location that was near the western border of the North 

American continent and the Pacific Ocean during Cretaceous time. The North American 
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Cordillera forms its western border, and the Missouri Plateau borders it to the east. This area is 

transected by several strike-slip and thrust faults. A succession of uplifted blocks that are 

characteristically cored by Precambrian metamorphic and igneous rocks, bordered and partially 

covered by Paleozoic and Mesozoic strata, and divided by intermittent basins of Tertiary and 

Quaternary deposits, characterizes this area (James & Hedge, 1980). 

One problem associated with the emplacement of these batholiths is how could they be 

emplaced in a region where crustal shortening, not extension is occurring. The processes leading 

to the movement of a large intrusive body upward through the crust while creating sufficient 

room for itself are far from clear. Plate motions, magma moving down deviatoric stress 

gradients, and the development of structures in an anisotropic material are few factors that may 

drive the ascent of magma and emplacement (Paterson & Fowler, 1993). Stoping and roof uplift 

are two other processes that can lead to pluton emplacement in areas of crustal shortening. The 

changing tectonic setting of the area may also be a factor leading to emplacement of the 

batholiths. During Mesozoic time convergence was predominant in the region which later 

evolved to an extensional setting in late Cenozoic time (Norman & Leeman, 1989). Another 

factor leading to emplacement are frontal thrust ramps; thrust ramps facilitate pluton 

emplacement by providing space at thrust ramp tops (Kalakay, John, & Lageson, 2001). These 

thrust ramps are located in the Sevier orogenic belt and were created in Mesozoic time during 

overall regional contractional deformation (Kalakay et al., 2001).  

The batholiths of this region are chemically unique, specially when compared to the 

Precambrian basement rocks that they are intruding through. The most abundant Precambrian 

rocks are feldspathic gneiss which are interlayered with amphibolite and metasedimentary rocks 

(James & Hedge, 1980). The metamorphic event affecting these rocks was dated at 2.76 Ga 
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during the Archean time (James & Hedge, 1980). The metasedimentary rocks are believed to 

have been deposited around 3 Ga based on Sr isotopic ratios and analogy with similar strata in 

the Beartooth Mountains to the east (James & Hedge, 1980). 

 

2.2 General Tectonic History 

The southwestern area of Montana from Late Paleozoic to Late Cretaceous time was 

located under an epicontinental sea which stretched from the Arctic Ocean down to the Gulf of 

Mexico, and in places was as much as 1,000 miles wide (Algeo & Heckel, 2008; Gill & Cobban, 

1973). This Cretaceous sea was bordered on the west by the Cordilleran Highland which 

separated it from the Pacific Ocean and supplied the sediment deposited in it (Gill & Cobban, 

1973). Upper Cretaceous Elkhorn Mountains Volcanics was the dominant source of sediment 

along its western shore, which consisted of clastic and pyroclastic material (Gill & Cobban, 

1973). The Cretaceous sea stretched as far east as present-day Iowa which was the location of a 

stable platform of the Eastern United States (Gill & Cobban, 1973).  

These shallow inland seas accumulated clasts that formed sedimentary rocks which 

amassed to a thickness of several thousand feet in southwestern Montana. As the Farallon plate 

collided with the west coast of North America, it compressed the western edge of the North 

American continent and led to the formation of the Rocky Mountains. The North American 

continent began to rise, resulting in the retreat of these seas. The thickening of the western edge 

of the North American continent, caused by the subducting Farallon plate, led to its instability. 

Thick slices of unstable sedimentary veneer moved eastward along thrust faults creating a broad 

highland which sets the stage for the later formation of the overthrust belt. The formation of the 

batholiths in this region is another factor leading to crustal bulging and the instability of the 
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sedimentary surface covering this area. This overthrust belt forms the eastern front of the Rocky 

Mountains from near Helena to the Canadian border. This led to the exposure of Precambrian 

rocks known as the Belt Supergroup as the younger sedimentary rocks were displaced.  

Thrusting associated with the Laramide and Sevier orogenies caused compressional 

deformation and created considerable relief during the late Mesozoic and earliest Cenozoic eras 

(Norman & Leeman, 1989). This now thrusted and folded region of SW Montana was later filled 

with sediment known as the Renova Formation during Oligocene and early Miocene time; 

creating the present terrain of ridges of tilted sedimentary rocks with alternating valleys of 

deposited sediments. 

In this region, magma formed due to the subduction of the Farallon plate between 100 and 

70 million years ago (Ma). This Cretaceous age subduction of the Farallon plate led to back-arc 

magmatism which eventually formed several of the batholiths in this region of the United States’ 

northern Cordillera (du Bray et al., 2012; Norman & Leeman, 1989). Some studies have shown 

that magma was produced by large-scale mixing of Precambrian crust with subduction-related 

magmas (Norman & Leeman, 1989). Oceanic-type mantle variably modified by subduction, and 

continental crust and subcontinental lithospheric mantle have been identified as possible sources 

for the batholiths (Norman & Leeman, 1989). Magmatism happened during the transition from 

Mesozoic plate convergence to middle and late Tertiary crustal extension in the western United 

States (Norman & Leeman, 1989). This change from subduction-related compression to 

extension-related magmatism contributed to the evolving thermal regime in the crust and mantle 

(Norman & Leeman, 1989).  

The Farallon plate which was located between the Pacific plate and the North American 

plate has been mostly consumed due to subduction at its boundary with the North American plate 
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(Atwater, 1970). The late Mesozoic Sevier and Laramide orogenies are associated with the 

collision of the Farallon plate and the North American plate. Some of the processes responsible 

for this orogeny are still puzzling (English & Johnston, 2004).   

This subduction-related trench was active until about 29 Ma (million years ago) and is 

mainly associated with the Laramide orogeny occurring in Cretaceous – Tertiary time (Atwater, 

1970). The Laramide orogeny, occurring 80 - 55 Ma, is associated with the thick-skin tectonics 

that gave rise to the Rocky Mountains fold-and-thrust belt, characterized by asymmetric 

fractured uplifts and depressions oriented crudely parallel to the continental margin (English & 

Johnston, 2004). The Laramide orogeny postdates the Jurassic and late Early Cretaceous 

accretion of the terranes that constitute much of the North American Cordillera (Dickinson & 

Lawton, 2001).  

The Mesozoic batholiths are located west of the Sevier belt, and younger batholiths are 

found to its east.  During Paleogene time a lull in arc magmatism was accompanied by the 

distinct migration of the inland boundary of arc activity far into the eastern Cordillera where 

Laramide deformation was simultaneously in development (Dickinson & Snyder, 1978). The 

simultaneous decline and migration of the arc magmatism from west to east seem to be directly 

connected to the consumed slab descending beneath the continent at a shallower angle 

(Dickinson & Snyder, 1978).  

2.2.1 Pioneer Batholith 

The Pioneer batholith is located in SW Montana southwest of the Boulder batholith and 

east of the Idaho batholith. It is a composite batholith consisting of Late Cretaceous igneous 

rocks exposed over an area of ~800 km2 in and around the Pioneer Mountains (Foster et al., 

2012; Hammarstrom, 1982). The age of the plutons of the Pioneer batholith emplacement spans 
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from 78 to 65 Ma (Foster et al., 2012). The batholith was emplaced into the allochthonous 

Mesoproterozoic Belt Supergroup and Paleozoic sedimentary rocks (Foster et al., 2012; 

Hammarstrom, 1982). 

The Pioneer batholith was emplaced at shallow depths within the Laramide-style 

basement uplifts and Cretaceous Sevier-style foreland fold-and-thrust belt during the diminishing 

periods of the Laramide orogeny (Foster et al., 2012; Zen, Marvin, & Mehnert, 1975). The 

shallowing of the subducting Farallon slab triggered this Late Cretaceous magmatism (du Bray et 

al., 2012; Foster et al., 2012). Mantle from the asthenosphere most likely instigated partial 

melting of the Precambrian crust in the region (Foster et al., 2012; Mueller et al., 1996). Its 

emplacement may have occurred concomitant with the final stage in the emplacement of the 

Sapphire block. 

The iSr values of the Pioneer batholith range from 0.7113 to 0.7160, indicating extended 

crustal residence times for the source materials and would seem to discount substantial mantle 

input of material to the plutonic magmas (Zen, 1996). These iSr values are different from those 

of the Boulder batholith even though rocks of the two batholiths are chemically and 

petrographically comparable; they share similar tectonic setting and history and have the same 

age range (Zen, 1996). Even with these different iSr values, Zen (1996) believed that the Pioneer 

batholith and Boulder batholith were formed from the same ultimate source.  

The Pioneer batholith is in a region where Precambrian crustal provinces converge which 

constitute a collection of Archean and Proterozoic blocks and orogenic belts that underlie the 

northern Rocky Mountains (Foster et al., 2012; Foster, Mueller, Mogk, Wooden, & Vogl, 2006). 

A relatively continuous, thick (20 – 30km), lower crustal layer underlies the craton (Foster et al., 

2012). 
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The plutons of the Pioneer batholith have a range of compositions similar to the Boulder 

batholith but include more mafic compositions. The compositions range from potassic ultramafic 

rocks, through diorite, tonalite, granodiorite, quartz monzonite and granite (Foster et al., 2012). 

 

2.2.2 Boulder Batholith 

The Boulder batholith is located due east of the northern part of the Idaho batholith and 

west of the leading edge of the Cordilleran fold-and-thrust belt (Figure 1). It is sandwiched 

between the Foreland Basin to the east and the Sapphire Block to the west.  The southern edge is 

marked by a zone of folds and faults that are related to Laramide deformation. The northeastern 

boundary of the Boulder batholith is dominated by thrusting in the Montana Disturbed Belt. A 

roof mainly composed of volcanic ejecta covers this shallow slab of granitic rocks (Hyndman et 

al., 1975).   

The Boulder batholith is a plutonic complex consisting of 15 plutons with different 

compositions. These compositions range from quartz monzonite, granodiorite, and minor 

syenogranite (du Bray et al., 2012; Hamilton & Myers, 1974). The plutonic complex of the 

Boulder batholith is transected by several Eocene rhyolitic and rhyodacitic dikes and small 

stocks related to the voluminous Lowland Creek Volcanics that cover parts of the batholith 

(Lund et al., 2002). 

The Boulder batholith was emplaced within the foreland of the Late Cretaceous fold-and-

thrust belt and the Helena embayment of the Mesoproterozoic Belt Supergroup, and reaches a 

depth of 12 to 18 km and covers about 4,000 km2 in southwest Montana (du Bray et al., 2012, 

2009; Vejmelek & Smithson, 1995). The Boulder batholith is comprised of the Butte Granite and 

a set of related less voluminous intrusions that were emplaced in the cogenetic Late Cretaceous 
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Elkhorn Mountains Volcanics and Mesoproterozoic to Mesozoic sedimentary rocks during a nine 

million year span from 81 to 72 million years ago (Ma) (du Bray et al., 2012; Tilling, 1974; 

Vejmelek & Smithson, 1995). Most of the Boulder batholith formed during two pulses of 

magmatism at about 76 Ma and 74.7 million years ago (du Bray et al., 2012). 

One major clue to the Boulder batholith’s location is believed to be provided by a detached 

portion of the Idaho batholith known as the Sapphire block. Around 80 Ma mushrooming of the 

Idaho batholith’s infrastructure caused instability in the structure which led to the detachment of 

the Sapphire block (Hyndman et al., 1975). As the Sapphire block separated from the Idaho 

batholith, it moved ~25 km east during the same time the Boulder batholith started to form 

(Hyndman et al., 1975). This caused the injection of the Boulder batholith to spread eastward 

from beneath the Sapphire block (Hyndman et al., 1975). This is one explanation for how the 

Boulder batholith could be genetically related to batholiths to the west (i.e. Pioneer batholith) 

given its somewhat isolated location.  

 Another control of emplacement is east-west tear faults which were active throughout Late 

Cretaceous thrust faulting during times of tectonic convergence (Lund et al., 2002; Norman & 

Leeman, 1989). Emplacement of the remaining Boulder batholith plutons occurred during a 6 - 

10 m.y. span at around 81.7 to 73.7 Ma during eastward thrusting in the fold-and-thrust belt (du 

Bray et al., 2012; Vejmelek & Smithson, 1995). Chemical and petrographic data do not relate to 

the idea of the Butte Granite entailing separate, compositionally discrete intrusions (du Bray et 

al., 2012). This notion is still left up to debate whether the Boulder batholith formed in a single 

magmatic event or two pulses of magmatism. 

The regional structural setting surrounding the Boulder batholith is another important 

factor affecting its emplacement. The most prominent factors of this setting are the pattern of 
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long-term activity of Late Cretaceous fault sets, the magma source and the positions of principal 

tectonic provinces relative to the plutons (Schmidt, Smedes, & MichaelO’Neil, 1990).  

The boundary of two Late Cretaceous tectonic provinces are straddled by the Boulder 

batholith and its satellite plutons: the Rocky Mountain foreland and the Cordilleran thrust belt 

(Schmidt, Smedes, & MichaelO’Neill, 1990). The Cordilleran thrust belt located in southwestern 

and west-central Montana lies north and west of the Rocky Mountain foreland. Middle 

Proterozoic and Phanerozoic sedimentary rocks, as well as pre-batholith Late Cretaceous 

volcanic rocks, comprise the thrust belt and were transported east-northeasterly (Schmidt et al., 

1990). The thrusts are rooted at or near the base of a 3km-thick prism of Middle Proterozoic 

rocks of the Belt Supergroup in one or more decollement horizons (Ruppel, Wallace, Schmidt, & 

Lopez, 1981). This decollement represents the floor of the batholith, and much of it was 

emplaced on this surface as the allochthonous sedimentary rocks were being translated 

eastwardly (Schmidt et al., 1990). 

The emplacement of the Boulder batholith was also controlled by three major fault sets. 

The three fault sets that cross the upper crust in the region of the Boulder batholith have been 

recurrently active since the Proterozoic: they consist of NE-trending, E-trending, and NW-

trending fault sets (Schmidt et al., 1990). These faults are believed to have controlled the 

emplacement of the early-stage plutons and the Butte Granite which occurred concurrently 

(Berger et al., 2011). 

The magma source of the Boulder batholith is believed to come from the subduction of the 

Pacific (Farallon) plate eastward beneath the North American plate. Given the location of the 

Boulder batholith, a subduction-related origin well east of the Late Cretaceous western margin of 

North America would require a fast convergence rate and consequent shallow subduction (du 
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Bray et al., 2012, 2009). Radiogenic isotope data correlate with this theory plus an idea of 

substantial mantle components involvement (du Bray et al., 2012). As the Farallon plate 

subducted, it gave rise to molten basalt and volatiles which melted the lower part of the 

continent. The crustal composition that melted first was granite which then began to rise. This 

lead to the formation and emplacement of the Boulder batholith at around 73 to 81 Ma.  

Volcanism, plutonism, folding and thrusting started and stopped inside a few million years 

of each other during the last 20 m.y. of the Cretaceous (Robinson, Klepper, & Obradovich, 

1968). Major folding is thought to have ended after volcanism ceased (Robinson et al., 1968). 

2.2.3 Idaho Batholith 

Immense quantities of granite magma melted deep within the large welt that formed 

along the old continental margin between 100 and 44 Ma. This welt was formed from the 

contraction caused by the Farallon plate subducting under the North American plate during 

Mesozoic and early Tertiary times (Foster, Schafer, Fanning, & Hyndman, 2001). The largest 

single component of the Idaho batholith is the Atlanta lobe, which is a voluminous peraluminous 

suite formed between 83 and 67 Ma (Gaschnig, Vervoort, Lewis, & McClelland, 2010).  

Precambrian continental crust was intruded by a large portion of the Idaho batholith 

which led to the melting of this ancient crust producing large peraluminous granitic rocks 

(Mueller & Shuster, 1995). Geochemical data correlate with the involvement of Precambrian 

continental crust as well as subduction-related magma as a source for the Idaho batholith 

(Norman & Leeman, 1989).  

Melting occurred at around 15 miles below the surface and crystallization began at a 

depth of 10 miles below the surface, emplacement at this depth led to a slow cooling process 

(Hyndman, 1984).  The outcome of these processes is now visible throughout a large region of 
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central Idaho and in the Bitterroot Range of western Montana. A less voluminous portion of the 

Idaho batholith developed over Phanerozoic accreted terranes on its western margin (Foster et 

al., 2006). Foster et al. (2001, 2006) presented varied source magmas for the Idaho batholith but 

identified the Precambrian crust as a major component. 

Compared to other Mesozoic-Tertiary batholiths in the North American Cordillera 

orogen, the Idaho batholith is unique since it intruded thick Precambrian crust (Foster et al., 

2006). These Precambrian rocks are part of the Belt Supergroup and chemical, petrologic, and 

field data suggest that this part of the batholith formed from magmas created by subduction 

along the western margin of North America at around 50 -100 Ma (Mueller & Shuster, 1995). 

They were emplaced along and to the west of the major terrane boundary separating continental 

rocks from accreted oceanic-arc terranes (Mueller & Shuster, 1995). This boundary is identified 

by the transition from accreted oceanic-arc terranes of the Blue Mountain Province to 

continental-margin sedimentary rocks of Proterozoic or Paleozoic age (Mueller & Shuster, 

1995).  

The large quantities of molten magma within the welt made the continent unstable along 

the old western margin. This led to large chunks detaching and moving eastward from this 

former mountain range.  

Enormous volumes of peraluminous granitoids, containing biotite granitoids, cored by a 

muscovite-biotite granite dominate the Idaho batholith (Gaschnig et al., 2010). 
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2.3 General lithological background 

The study area includes igneous rocks of the three batholiths, underlain by Precambrian 

igneous and metamorphic rocks, capped by Paleozoic to Cenozoic strata of sedimentary and 

volcanic rocks and separated by intermittent Tertiary and Quaternary basin deposits.  

2.3.1 Regional Basement 

The regional basement in southwestern Montana is composed of several igneous and 

metamorphic rock types. The most dominant type is quartzofeldspathic gneiss of diverse 

composition (James & Hedge, 1980) with interlayers of amphibolite and metasedimentary rocks, 

dolomitic marble, quartzite, and iron-formation (James & Hedge, 1980). Rb-Sr analyses limit the 

age of metamorphism to 2.7 Ga (James & Hedge, 1980). These Precambrian rocks outcrop 

throughout the region. 

 

3 METHODS 

3.1 Pioneer and Boulder Batholith sample collection 

Ten to thirteen samples were collected over an area of 6,000 km2 from the Boulder and 

Pioneer Mountain batholiths. At selected outcrops, the method of sampling was to obtain an 

extensive variety of rocks based on their physical characteristics. For the Pioneer and Boulder 

batholiths sample selection was designed to gather an array of rocks with varying mineral 

composition, grain size, color, and phenocrysts. Samples were collected from natural outcrops 

from similar locations as identified by du Bray et al., (2009) 

3.2 Bulk geochemical analysis 

For the bulk geochemical analyses of major- and trace-elements over 20 samples were 

selected. Only the unweathered samples were chosen for geochemical analysis, using thin section 



17 

and hand samples observations to identify weathered samples. Both Laser Ablation Inductively 

Coupled Plasma Mass Spectrometry (LA-ICP-MS), and X-ray fluorescence (XRF) analyses at 

Michigan State were completed on fused glass disks. The procedure followed the outline 

described by Hannah et al. (2002) for the preparation of low-dilution fusion glass disks (LDF). 

The fused disks were analyzed using a Bruker Pioneer S4 X-Ray fluorescent spectrograph. XRF 

element analyses were reduced using Bruker Spectra Plus software®, which uses fundamental 

parameters (Criss, 1980). 

For LA-ICP-MS trace element analyses, a Cetac+ LSX200 laser ablation system coupled 

with a Micromass Platform ICP-MS was used. The analyses were done for approximately three 

minutes with continuous ablation (line scan). To correct for variations in ablated sample volume 

and instrument response strontium, determined by XRF, was used as an internal standard. 

MassLynx® software was used for trace element data reduction. The background signal from the 

argon plasma was subtracted from each of the samples and standards before any calculations 

were done. Based on a linear regression method using BHVO, W-2, JB-1, JB-2, JB-3, JA-2, JA-

3, BIR, QLO-1, and RGM-1 standards, element concentrations in the samples were calculated. 

For the final calibration line for samples only standards with calculated values within 15% of the 

ideal standard values were used.  

Petrographic microscope analyses were performed on thin sections made to a thickness of 

2 microns. An Olympus BX40 Trinocular Microscope was used for the analyses of thin sections 

under plane- and cross-polarized light. Mineral proportions were estimated using a glass 

coverslip with tick marks along with field of view calculations. 
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4 RESULTS 

4.1 Geochemistry of Pioneer Mountain Batholith 

In the figures, all the major elements have been normalized to 100%. 

4.1.1 Major elements 

The LeBas et al. (1986) chemical classification of samples from the Pioneer batholith is 

shown in Figure 3. The samples plot in the dacite and basalt fields with one sample in the 

rhyolite field and one sample in the basaltic-andesite field. There are no transitional 

compositions and all but one plot in the calc-alkaline field. The sampled rock ages range from 

70-76 Ma, the dacites are granites, and basalt plots are monzonites.  

The major- and trace-element data are presented in variation diagrams in Figures 4 and 5, 

respectively. Samples from the Pioneer Mountain batholith show significant chemical variation. 

The largest distinctions are observed in Na2O, MgO, Al2O3, and K2O. The major oxides for the 

dacite and basaltic samples follow a relatively smooth trend which would suggest that they are 

genetically related. There is a noticeable gap in relation to SiO2 spanning from ~57 – 67 wt. % 

SiO2 (intermediate compositions).  
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Figure 3 TAS diagram from Le Bas et al., (1986) showing Pioneer batholith 

sample plots. Most samples plot within the basalt and dacite fields with one sample 

plotting in the basaltic-andesite field and one sample plotting the rhyolite field. 
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Figure 4 Bulk rock geochemistry. Harker variation diagrams plotting major oxides vs. 

SiO2. Noticeable decreases in CaO correlate to amphibole fractionation along with 

increasing Al2O3 then decrease with increasing silica content. 
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4.1.2 Trace elements 

Trace element variation diagrams with respect to SiO2 are presented in Figure 5. Most 

trace elements show slight chemical variation in the Pioneer batholith except for Cr, Hf, Sr, and Zr.  

The high Zr and Hf concentrations in the more evolved melts suggest extensive liquid evolution. 

Some high Cr levels could be due to analytical error or crystal accumulation. The reduction in Sr in 

the more evolved melts could be due to plagioclase fractionation, which will be explored further in 

the discussion section of this paper. There is a noticeable increase in Rb and Ba which are the more 

mobile LIL elements, and this could suggest contamination by a crustal component. This crustal 

component has been shown to a be a product of asthenosphere mantle initiating melting of the 

Precambrian crust leading to magmatism (Foster et al., 2012; Mueller et al., 1996). Investigations 

by Zen et al. (1980) also corroborate this theory, suggesting that Rb/Sr ratios show a Precambrian 

crustal component and are a good candidate for the source of granitoids on isotopic grounds. The low 

concentrations of Rb, Th, and U in the mafic members which also have Sr and Ca concentrations 

suggest an M-type granitoid which could be the outcome of single-stage fractionation of mantle 

melts.  
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Figure 5 Trace Element Harker diagrams. Pioneer batholith trace element 

samples plotted vs. SiO2. Sr decreases with increasing SiO2 content, evidence for 

plagioclase fractionation. Ba and Rb increase are an indication of crustal contamination. 

All trace elements are presented in ppm. 
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Spider diagrams and rare earth element (REE) diagrams for the Pioneer batholith are 

shown in Figure 6. The spider diagram shows a Nb-Ta trough and the decoupled large ion 

lithophile elements/high field strength elements (LIL/HFS) pattern which is considered a 

characteristic of subduction zone magmas. More evolved Pioneer batholith rocks show elevated 

Ta, Nb, Zr, and HF which is a good indicator of the involvement of subcontinental lithospheric 

mantle for the silica-rich Pioneer samples. The Sr spike in the mafic components represents 

plagioclase accumulation. The silicic components show a slight peak and trough in some samples 

for Sr.  

The REE diagram shows the distinct geochemical properties between the mafic and 

silicic rocks of the Pioneer batholith. The silicic components are enriched with respect to the mafic 

group in the LREE meaning fractionation could be a dominant process, and both groups would be 

considered enriched which could mean continental crust involvement in this enrichment.  The REE 

for both the silicic and mafic batholith samples have an enrichment of LREEs over HREEs which is 

similar to other subduction-related magmas. The spoon shape of the HREEs shown in the REE 

diagram is consistent with the fractionation of amphibole (du Bray et al., 2012, 2009; Hammarstrom, 

1982). There is an Eu trough in the silicic group which could represent fractionation of plagioclase.  
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Figure 6 REE & Spider diagrams. Blue lines represent silicic samples, and yellow 

lines represent mafic samples for the Pioneer batholith. Eu peaks in mafic samples and 

troughs in silicic sample indicate plagioclase accumulation and fractionation, 

respectively. The “spoon-like” shape of the REE diagram is evidence for amphibole 

fractionation. 
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4.2 Petrographic analyses of Pioneer batholith end members 

Petrographic analyses were performed on eleven thin sections representing two end 

members of the Pioneer batholith. The mafic end member is a monzonite, and the felsic end 

member is granite. Complete petrographic analyses for all the units can be found in the 

Appendix.   

4.2.1 Monzonite 

The monzonites of the Pioneer batholith alkaline basalts with a few samples plotting in 

the basalt-andesite fields of the TAS diagram (Fig. 3). Primary mineralogy of the monzonite 

consists of plagioclase (45%), amphibole (30%), and biotite (15%) with a matrix of quartz and 

opaques. Plagioclase crystals show albite twinning, compositional zoning, and sieve textures. 

Plagioclase accumulation with interstitial quartz grains is shown in thin section (Figure 7); this is 

congruent with the Eu peaks in REE diagrams. Amphibole mineral grains have a poikilitic 

texture and larger elongate grains common with longer cooling periods. In Figure 8 they are 

shown in with intergrowths of plagioclase.  

Amphibole is the main mafic mineral of the assemblages and occurs in a significant 

proportion along with biotite. Amphiboles dominate these mafic samples, and as they progress to 

a higher silica content, the amphiboles are less abundant. This is consistent with amphibole 

fractionation and is shown in the REE diagram above (Fig. 6) due to the affinity of MREE with 

amphibole explaining the “spoon” shape.  
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Figure 7. Thin section of Pioneer batholith sample 002. Noticeable plagioclase 

accumulate texture with interstitial quartz grains. Thin section under cross-polarized 

light. 
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Figure 8 Thin section of Pioneer batholith sample 001. Amphibole pictured with 

intergrowths of plagioclase. Thin section is under cross-polarized light. 
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4.2.2 Granite 

Granites of the Pioneer batholith are crystalline and range from coarse to fine grained. 

These rocks are alkaline dacites, with a few samples extending into the rhyolite field. Detailed 

microscope work on the most evolved Pioneer batholith samples revealed that they are entirely 

free of entrained cumulate material and have much smaller proportions of amphibole and 

plagioclase.  

Petrographically, the granites have abundant potassium feldspar (45%), plagioclase 

(20%), and quartz (~15%) with biotite (10%) and amphibole (5 - 10%). Textures range from 

medium subhedral and anhedral granular to coarse-grained granular to porphyritic. Porphyritic 

granites are shown in Figure 9, large individual grains of plagioclase, amphibole, quartz are 

surrounded by a groundmass of quartz and plagioclase.   

4.2.3 Relationship between the Monzonite and Granite 

The monzonites and the granites have similar patterns of REE even with the minor 

enrichment of the later in most trace elements. Despite the contrasting concentrations of major 

elements, we can still infer from the REE diagrams that these units share similar parental 

magmas (e.g. MgO, SiO2, Fe2O3, CaO, etc.) observed in these units (Figs. 4 & 6).  

Plagioclase and amphibole are pervasive in the monzonites and to a lesser extent the 

granites which are indicative of a shared origin. The reduction of plagioclase and amphibole 

concentrations from the monzonite to granite in thin section along with REE patterns allow us to 

recognize a possible fractionating assemblage that can be used to model the magmatic variation 

detected in the Pioneer batholith.  
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The gap in SiO2 content between the monzonites and granites can be caused with only a 

minor amount of fractional crystallization. This occurrence can be explained by the Daly gap 

which reflects the dynamics of fractional crystallization and the phases involved. 

 

 

Figure 9 Thin section of Pioneer batholith sample 001. Large grains of plagioclase with 

albite twinning and amphibole are present with some interstitial quartz grains. Thin section is 

under cross-polarized light. 
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5 DISCUSSION 

The goals of this study are to document the nature and source of the Pioneer batholith and 

compare it with the Boulder batholith; both are associated with the subduction of the Farallon 

plate. Another goal is to propose a magmatic evolution model for the Pioneer and Boulder 

batholiths.  

5.1 Chemical and mineralogical variation of SW Montana batholiths 

The emplacement dates for the Pioneer, Boulder, and Idaho batholith overlap, ranging 

from 78-73 Ma. This section presents a discussion of chemical and mineralogical evidence 

suggesting that the Pioneer batholith and Boulder batholith were produced from the same parent 

material. Fractionation modeling, variation diagrams, thin section analysis, geochemical data, 

REE, and Spider diagrams were used and cross-referenced to produce evidence for the similar 

sources for the Pioneer and Boulder batholiths. 

The spectra observed for the post-intrusive Lowland Creek Volcanics associated with the 

Boulder batholith are similar to initial strontium ratios for the Pioneer batholith, which range 

from 0.7064-0.7098 (Hammarstrom, 1982). The Sr ratios indicate a crustal components 

interaction with the melt produced from the subducting Farallon plate for both the Pioneer and 

Boulder batholith. This is one identifying factor suggesting that they are from the same source. 

The TAS diagram (Figure 10) shows Boulder batholith samples plotting within the range 

of the Boulder batholith samples from du Bray et al., 2012. The silica-rich Pioneer batholith 

samples plot within the range of Boulder batholith samples from du Bray et al., 2012 as well. 

Pioneer batholith samples all plot within the Idaho batholith sample range suggesting that they 

are compositionally homogeneous. The Pioneer batholith samples plot in the basalt, basaltic 

andesite, and dacite fields with a noticeable gap of andesite compositions.  
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Figure 10. TAS diagram, all samples. Blue diamonds are Pioneer batholith 

samples; red triangles are Boulder batholith samples. Yellow blob represents Idaho 

batholith sample field from Clarke, 1990 and red blob represents the Boulder batholith 

sample field from du Bray et al., 2012. 

 

If a smooth curve is drawn on the Al2O3 diagram, Al2O3 increases until about 57 wt.% SiO2 

and then decreases. Comparing this to the CaO variation diagram, CaO decreases continuously 

showing possible clinopyroxene fractionation early on, removing Ca and not Al, and later as 

plagioclase began to crystallize it removed both Al and Ca. The trends in these diagrams possibly 

suggest fractional crystallization of plagioclase, amphibole, and apatite.  

Figure 11 presents the Harker variation diagrams for the Pioneer and Boulder batholiths. 

When viewed together they show a smooth trend which suggests a comagmatic relationship 

between the two batholiths. The Pioneer batholith samples are bimodal, comprised of silicic and 
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mafic compositions while the Boulder batholith fills most of the intermediate composition gaps 

with some overlap of silicic within the silicic samples.  

 

Figure 11. Harker variation diagrams. Blue diamonds represent the Pioneer 

batholith and orange squares represent the Boulder batholith samples. Boulder batholith 

samples follow a smooth trend in line with the Pioneer samples and bridge the gap 

between the low and high silica members. 



33 

The Pioneer and Boulder batholith samples both have geochemical signatures similar to 

subduction zone magmas, showing enrichment in large ion lithophile elements (LILE) relative to 

high field strength elements (HFSE) and light earth elements (LREE). They both have Nb and Ta 

troughs which imply a subduction-related source and possibly amphibole fractionation. Figure 12 

shows Spider and REE diagrams comparing the Pioneer batholith to the Boulder and Idaho 

batholith samples. The high silica Pioneer batholith samples show little variation from the high 

silica Boulder batholith trace elements suggesting a similar parent material. Both have elevated 

Hf – Zr which could imply extensive liquid evolution or an enriched source material. The source 

for both batholiths is believed to be the interaction of the Farallon plate with crustal components 

as it subducted beneath the North America Plate in Late Cretaceous.  

We have established that the Pioneer and Boulder batholiths are likely derived from the 

same parent magma, a statement reinforced by their comparable REE patterns (Figure 12) and 

similar mineralogy. This realization permitted us to test for crystal fractionation as the key 

process driving magmatic evolution between the two batholiths. Fractionation modeling using a 

calculated parent material for the Pioneer batholith shows that plagioclase and amphibole are the 

main phases that fractionated from the melt. This can be directly correlated to thin section 

analysis, Spider, REE, and variation diagrams (Figures 11, 12, 13, 14, 15).  

Diagnostic trace elements from the Pioneer batholith (Dy, Yb, La) are also consistent 

with the fractionating assemblage being dominated by plagioclase and amphibole. Amphibole 

appears throughout the magmatic differentiation process – as evidenced by thin section 

observations and REE diagrams, and thus amphibole fractionation is one key component in our 

modeled crystal fractionation schemes. Specifically, we have shown that amphibole fractionation 

(~37% of the  
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Figure 12. REE and Spider diagrams. Black lines represent Pioneer batholith 

samples. Shaded pink fields represent Boulder batholith samples, and shaded green areas 

represent Idaho batholith samples from Clarke 1990. 
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. 

fractionating assemblage) can be linked to the magmatic evolution of the Pioneer 

batholith from basalt to dacite, and thus may represent a liquid line of descent. 

The second key factor diving magmatic evolution is plagioclase fractionation. Thin 

section analyses and variation diagrams first revealed evidence for fractionation. After testing for 

crystal fractionation, it was shown that the plagioclase dominated fractionation (~50% of the 

fractionation assemblage) could also be linked the magmatic evolution. 

Eu troughs in the Spider and REE diagrams for the silicic Pioneer samples along with the 

steady decrease of Eu and Sr as SiO2 content increases is a characteristic of plagioclase 

fractionation. This is due to isomorphic substitution of Eu and Sr for Ca and Na in plagioclase 

resulting in troughs or peaks depending on whether plagioclase fractionation or accumulation is 

occurring. The Sr spike on the REE and Spider diagrams for the mafic Pioneer samples correlate 

with the abundance of plagioclase in the more mafic thin sections. Whereas the more silicic 

samples show slight Eu and Sr troughs, representing fractionation of plagioclase. This can be 

correlated with thin section analyses showing an abundance of plagioclase with accumulate 

texture in the mafic samples and much less plagioclase in the more silicic samples.  

Figure 13, a diagram showing Dy/Yb ratio decreases at ~67 wt% SiO2 indicating some 

amphibole fractionation (Keshavarzi, Esmaili, Kahkhaei, Mokhtari, & Kordlou, 2014). This is 

verified in thin section due to a decrease in amphibole abundance as SiO2 content increases. 

Steady decreases seen in trace element variation diagrams, in P2O5 with increasing SiO2 content, 

can be attributed to apatite fractionation (Keshavarzi et al., 2014). Apatite fractionation is a 

minor factor in magma differentiation relative to amphibole and plagioclase fractionation.  



36 

 

Figure 13 Dy/YB vs SiO2. The decrease of the Dy/Yb ratio as SiO2 decreases is indicative 

of amphibole fractionation. 

 

The Ba/Sr vs. SiO2 diagram (Figure 14) shows that plagioclase and not K-feldspar was the 

fractionating component due to increasing Ba/Sr ratio from the mafic to silicic components. This 

is also verified in my thin section reports. Figure 15 a CaO/Al2O3 vs. (MgO/(MgO + Fe2O3) 

diagram shows an increase in CaO/Al2O3 as Mg# decreases (more evolved liquids); this is an 

indication of the removal of plagioclase which takes CaO and Al2O3 with it as it fractionates 

from the melt. The MgO# represents the more mafic melts as SiO2 varies little in these liquids, 

the CaO/Al2O3 vs. SiO2 represents the removal of plagioclase across the entire suite of PM 

samples. 
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Figure 14 Ba/Sr vs SiO2 showing fractionation of plagioclase. Ba/Sr ratios increase as 

SiO2 content increases showing plagioclase and not potassium feldspar was the dominant 

fractionating phase. 

 

The geochemical data presented shows that Pioneer and Boulder batholith are 

comagmatic and that crystal fractionation is the main process leading to their magmatic diversity. 

The issue about the relative locations of the Boulder and Pioneer batholiths has not yet been 

explained. The involvement of the Sapphire Block leading to the emplacement of the Boulder 

batholith could have influenced the location of the Pioneer batholith and possibly its magma 

generation as well. The movement of the Sapphire block may have been responsible for the 

injection of the Pioneer batholith to the southeast due to depression it caused (Hyndman et al., 

1975).  
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Figure 15 CaO/Al2O3 vs. MgO/(MgO + Fe2O3).The MgO# represents the more mafic 

melts as SiO2 varies little in these liquids, the CaO/Al2O3 vs. SiO2 represents the removal of 

plagioclase across the entire suite of PM samples. 

 

6 CONCLUSIONS 

The Late Cretaceous Pioneer and Boulder batholiths are a product of the subduction of the 

Farallon plate beneath the North American plate. A subduction zone source is evident in 

geochemical signatures similar to subduction zone magmas in REE diagrams. Comparable Sr 

ratios for Pioneer batholith and Boulder batholith indicate a crustal component interaction with 

the melt.  

Smooth trends on Harker variation diagrams and little variation between high silica Pioneer 

and Boulder batholith trace elements suggest a comagmatic relationship between the two 

batholiths. Overlapping emplacement dates for the Pioneer and Boulder batholiths (78-73 Ma) 
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agree with a comagmatic relationship. Once a comagmatic relationship was established between 

the Pioneer and Boulder batholiths we tested for crystal fractionation as the key process driving 

magmatic evolution between the two batholiths. The Pioneer batholith samples are bimodal, 

comprised of silicic and mafic compositions while the Boulder batholith fills most of the 

intermediate composition gaps with some overlap within the silicic samples. The bimodal nature 

of the Pioneer batholith samples implies extensive liquid evolution which was shown by elevated 

Hf – Zr. 

 Modeling revealed that plagioclase and amphibole fractionation where the driving forces of 

the extensive liquid evolution seen in the Pioneer batholith. The reduction in proportions of 

amphibole and plagioclase, analyzed in thin section, from the mafic to silicic end-member was 

also evidence for crystal fractionation. Trace element data were also consistent with these two 

phases being the dominant fractionated material leading to the bimodal Pioneer batholith.  

Amphibole fractionation may significantly influence the major element concentration in 

continental arc lavas and plutons. Amphibole contains significantly less SiO2 and more TiO2 than 

basalt, and thus during fractionation, the liquid composition would be efficiently driven to higher 

SiO2 and lower TiO2. Furthermore, it is within amphibole fractionation zones that water-rich 

magmas can become stalled during fractionation, driving the interstitial liquids to more evolved 

compositions. Differentiation of magmas in crustal reservoirs in conditions relevant for the for 

the emplacement of crustal plutons is critical for understanding the genesis of dacites and 

andesites and to completely produce a cortical model for the evolution of the Earth’s continental 

crust.  

The geochemical data presented shows that Pioneer and Boulder batholith are 

comagmatic and that crystal fractionation is the primary process leading to their magmatic 



40 

diversity. The issue about the relative locations of the Boulder and Pioneer batholiths has not yet 

been explained and are outside the goals proposed for my research. Nonetheless, the involvement 

of the Sapphire Block leading in the emplacement of the Boulder batholith could have influenced 

the location of the Pioneer batholith and possibly its magma differentiation processes as well. 

Future models that are outside of the scope of this research must consider the evidence proposed 

in this document in order to produce an overarching model for the emplacement of the Pioneer 

and Boulder batholiths. 
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APPENDIX 

 

Sample 
BB-
14redo2 

BB-
14redo1 BB-13 BB-12 BB-11 

SiO2  66.96 66.91 62.48 67.70 64.73 

TiO2  0.49 0.49 0.70 0.43 0.64 

Al2O3  15.25 15.21 16.63 15.45 15.27 

Fe2O3  4.51 4.59 5.39 4.08 5.47 

MnO  0.08 0.08 0.08 0.08 0.09 

MgO  1.83 1.83 2.48 1.50 2.40 

CaO  3.74 3.76 4.77 3.25 4.16 

Na2O  2.91 2.90 3.04 3.47 2.82 

K2O  4.05 4.06 4.23 3.86 4.24 

P2O5  0.17 0.17 0.22 0.18 0.19 

Rb  136.86 140.66 128.43 149.01 155.60 

Zr 168.12 174.24 298.46 171.71 223.10 

Sr 478.94 494.52 527.24 575.91 443.35 
V-
ICPMs 82.89 85.86 108.67 71.13 109.81 
Cr-
ICPMS 14.11 14.18 23.65 9.93 19.92 

Y 19.20 20.07 17.76 19.14 23.75 

Nb 13.24 13.15 13.65 15.33 14.62 

Ba 774.46 787.06 1098.96 812.22 763.65 

La 51.99 54.45 36.48 50.75 42.12 

Ce 93.19 93.47 67.04 88.98 81.49 

Pr 9.37 9.46 7.10 8.90 8.86 

Nd 31.38 32.22 25.84 29.79 31.60 

Sm 4.96 4.93 4.34 4.77 5.42 

Eu 1.06 1.09 1.18 1.01 1.09 

Gd 4.11 4.16 3.85 3.88 4.75 

Tb 0.57 0.58 0.52 0.54 0.67 

Dy 3.33 3.44 3.10 3.19 4.04 

Ho 0.67 0.71 0.63 0.67 0.83 

Er 1.97 2.07 1.82 1.93 2.45 

Tm 0.30 0.31 0.27 0.30 0.37 

Yb 2.08 2.12 1.84 2.07 2.51 

Lu 0.32 0.34 0.29 0.34 0.38 

Hf 4.78 5.00 7.68 5.01 6.29 

Ta 1.12 1.11 0.88 1.17 1.13 

Pb 17.72 17.20 33.40 12.65 14.99 

Th 18.10 19.87 14.56 28.80 21.54 

U 3.54 3.53 3.05 4.28 4.28 
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Sample BB-10 BB-09 BB-08 BB-07X BB-07 

SiO2  64.79 65.26 67.64 65.56 65.55 

TiO2  0.63 0.60 0.49 0.49 0.49 

Al2O3  15.49 15.35 15.14 15.79 15.74 

Fe2O3  5.35 5.16 4.22 4.81 4.86 

MnO  0.09 0.09 0.07 0.08 0.08 

MgO  2.30 2.21 1.63 2.01 2.02 

CaO  4.14 3.97 3.24 4.16 4.18 

Na2O  2.84 2.86 2.73 3.10 3.07 

K2O  4.16 4.31 4.69 3.81 3.82 

P2O5  0.19 0.18 0.15 0.18 0.18 

Rb  157.84 170.35 176.79 127.33 131.50 

Zr 220.81 234.16 188.94 171.93 174.17 

Sr 460.38 441.12 411.36 508.51 520.71 

V-ICPMs 105.86 100.83 79.08 89.87 92.55 

Cr-ICPMS 20.18 18.28 11.49 14.96 15.63 

Y 22.82 23.65 21.81 20.16 20.81 

Nb 14.38 15.00 14.33 10.97 11.38 

Ba 802.64 746.76 854.74 775.02 795.24 

La 44.71 40.82 45.50 32.58 33.28 

Ce 83.74 80.58 86.83 62.32 63.00 

Pr 8.91 8.73 9.07 6.86 6.97 

Nd 31.48 31.39 31.42 25.17 25.81 

Sm 5.38 5.39 5.18 4.50 4.74 

Eu 1.13 1.08 1.00 1.07 1.07 

Gd 4.63 4.70 4.40 4.04 4.15 

Tb 0.65 0.67 0.61 0.56 0.59 

Dy 3.84 4.00 3.64 3.46 3.59 

Ho 0.80 0.82 0.76 0.71 0.73 

Er 2.31 2.40 2.27 2.06 2.12 

Tm 0.35 0.36 0.35 0.32 0.32 

Yb 2.35 2.41 2.31 2.08 2.16 

Lu 0.37 0.38 0.36 0.33 0.35 

Hf 6.07 6.50 5.57 4.91 5.04 

Ta 1.08 1.09 1.07 0.80 0.83 

Pb 17.28 18.29 15.70 15.46 15.74 

Th 22.51 24.46 30.86 17.65 17.04 

U 4.43 4.52 5.69 3.71 3.77 
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Sample BB-06 BB-05 BB-04X BB-04 BB-03 

SiO2  58.55 67.01 62.34 62.36 61.49 

TiO2  0.79 0.36 0.58 0.58 0.55 

Al2O3  17.10 16.52 16.66 16.60 16.07 

Fe2O3  7.44 3.72 6.11 6.11 6.61 

MnO  0.14 0.09 0.13 0.13 0.13 

MgO  3.31 1.26 2.22 2.26 2.92 

CaO  5.76 4.20 5.27 5.30 5.69 

Na2O  3.88 3.96 3.68 3.67 3.45 

K2O  2.75 2.70 2.78 2.76 2.84 

P2O5  0.28 0.17 0.23 0.23 0.26 

Rb  159.29 69.35 67.32 65.94 67.11 

Zr 181.37 134.47 184.48 188.68 158.19 

Sr 509.44 810.66 795.72 799.88 767.88 

V-ICPMs 145.39 48.86 99.60 100.33 120.04 

Cr-ICPMS 17.61 11.44 10.31 9.74 26.48 

Y 21.92 14.37 22.31 22.24 20.97 

Nb 16.76 12.98 13.15 13.43 11.29 

Ba 451.03 1137.53 1115.15 1149.08 901.21 

La 38.23 29.04 30.28 30.19 29.17 

Ce 77.14 56.03 59.31 59.71 56.87 

Pr 8.47 5.67 6.81 6.75 6.46 

Nd 30.12 20.11 25.66 25.70 24.80 

Sm 5.22 3.39 4.87 4.91 4.64 

Eu 1.11 0.95 1.33 1.31 1.20 

Gd 4.54 2.90 4.42 4.41 4.25 

Tb 0.62 0.40 0.63 0.62 0.60 

Dy 3.69 2.40 3.76 3.76 3.60 

Ho 0.78 0.49 0.79 0.80 0.75 

Er 2.26 1.47 2.31 2.29 2.15 

Tm 0.35 0.23 0.35 0.35 0.33 

Yb 2.38 1.58 2.34 2.38 2.18 

Lu 0.39 0.26 0.36 0.38 0.35 

Hf 5.18 3.63 4.78 4.87 4.36 

Ta 1.26 0.71 0.87 0.83 0.71 

Pb 12.46 10.68 12.62 12.22 13.95 

Th 12.24 7.26 8.57 8.59 7.21 

U 4.77 1.43 1.26 1.21 1.23 
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Sample BB-02X BB-02 BB-01   

SiO2  65.26 65.25 64.84   

TiO2  0.54 0.54 0.57   

Al2O3  15.43 15.45 15.41   

Fe2O3  5.00 4.97 4.97   

MnO  0.10 0.10 0.09   

MgO  2.19 2.18 2.26   

CaO  4.02 4.02 3.87   

Na2O  3.37 3.39 3.39   

K2O  3.91 3.91 4.43   

P2O5  0.18 0.18 0.17   

Rb  102.02 100.69 126.59   

Zr 238.62 236.71 251.88   

Sr 583.36 578.56 545.30   

V-ICPMs 91.12 89.54 97.60   

Cr-ICPMS 33.16 31.93 48.79   

Y 19.52 19.37 19.54   

Nb 16.39 16.37 19.57   

Ba 1013.08 1000.84 978.07   

La 30.58 29.90 34.52   

Ce 59.16 57.94 65.98   

Pr 6.55 6.41 7.14   

Nd 24.25 23.87 25.86   

Sm 4.43 4.33 4.59   

Eu 1.07 1.07 1.04   

Gd 3.97 3.84 4.00   

Tb 0.55 0.54 0.56   

Dy 3.31 3.25 3.32   

Ho 0.69 0.69 0.68   

Er 2.05 2.00 1.99   

Tm 0.32 0.31 0.31   

Yb 2.16 2.11 2.11   

Lu 0.34 0.34 0.33   

Hf 6.29 6.29 6.70   

Ta 0.96 0.97 1.16   

Pb 18.33 18.06 18.25   

Th 10.86 10.86 12.96   

U 0.96 0.98 1.25   
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Sample PM011 
PM-010 
redo PM010 PM-009 PM-008 

PM-007 
repeat PM-007 

SiO2  70.07 67.92 67.45 70.21 68.42 68.66 68.38 

TiO2  0.36 0.45 0.46 0.28 0.37 0.37 0.39 

Al2O3  15.09 15.56 15.73 16.36 16.17 15.77 15.82 

Fe2O3  3.45 4.23 4.33 2.30 3.38 3.74 3.80 

MnO  0.07 0.08 0.09 0.04 0.08 0.09 0.09 

MgO  1.05 1.58 1.60 0.50 1.04 1.13 1.16 

CaO  3.27 3.91 3.98 3.02 3.71 3.51 3.57 

Na2O  3.30 3.38 3.42 4.37 3.62 3.39 3.43 

K2O  3.21 2.74 2.79 2.82 3.05 3.18 3.21 

P2O5  0.12 0.14 0.14 0.09 0.14 0.14 0.15 

Rb  109.20 93.36 97.63 80.00 98.16 103.06 106.74 

Zr 153.56 175.67 170.56 189.45 175.35 178.72 176.90 

Sr 389.71 387.85 379.06 505.96 477.65 458.15 468.06 
V-
ICPMs 43.57 66.33 68.30 20.34 40.41 44.76 46.36 
Cr-
ICPMS 6.44 8.65 9.35 4.90 3.24 4.93 4.58 

Y 18.70 21.24 20.81 11.10 18.87 20.66 20.67 

Nb 13.33 14.39 14.40 13.41 15.32 14.87 15.37 

Ba 965.49 770.17 770.34 1112.39 987.89 1059.95 1071.12 

La 27.75 38.57 37.49 29.49 30.06 33.38 32.79 

Ce 56.09 73.73 73.05 56.18 60.17 65.45 64.32 

Pr 6.54 8.00 7.80 5.82 6.81 7.27 7.16 

Nd 24.31 28.39 28.21 19.66 25.15 26.58 25.92 

Sm 4.50 4.97 4.88 3.18 4.48 4.74 4.75 

Eu 1.20 1.14 1.14 0.82 1.16 1.19 1.15 

Gd 4.02 4.29 4.16 2.55 3.88 4.25 4.09 

Tb 0.58 0.62 0.60 0.35 0.55 0.62 0.58 

Dy 3.19 3.64 3.54 1.89 3.15 3.63 3.48 

Ho 0.64 0.75 0.73 0.37 0.64 0.74 0.72 

Er 1.75 2.17 2.13 1.02 1.82 2.15 2.08 

Tm 0.28 0.34 0.33 0.16 0.30 0.33 0.32 

Yb 1.85 2.31 2.24 1.08 1.94 2.23 2.19 

Lu 0.28 0.37 0.36 0.17 0.31 0.35 0.35 

Hf 4.22 4.99 4.79 4.91 4.72 4.87 4.70 

Ta 1.13 1.18 1.15 0.84 1.15 1.08 1.05 

Pb 20.81 18.07 17.79 13.01 22.13 21.04 20.79 

Th 8.34 12.73 12.46 6.99 8.63 9.48 9.29 

U 2.02 3.56 3.45 1.96 2.14 2.74 2.92 
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Sample 
PM-
006redo2 

PM-
006redo1 

PM-
005repeat PM-005 PM-004 PM-003 PM-002 

SiO2  68.61 68.52 68.46 68.47 48.57 50.41 47.52 

TiO2  0.37 0.37 0.38 0.38 1.19 1.05 1.21 

Al2O3  15.85 15.87 15.89 15.89 18.19 18.68 20.91 

Fe2O3  3.63 3.67 3.64 3.61 10.82 10.16 11.42 

MnO  0.08 0.08 0.09 0.08 0.18 0.16 0.17 

MgO  1.15 1.16 1.15 1.16 6.75 6.12 4.13 

CaO  3.57 3.58 3.71 3.71 9.94 8.84 10.09 

Na2O  3.45 3.43 3.44 3.46 2.80 2.52 3.41 

K2O  3.15 3.17 3.10 3.09 1.27 1.83 0.78 

P2O5  0.14 0.14 0.15 0.15 0.29 0.22 0.35 

Rb  103.18 105.00 92.62 94.53 27.35 46.91 14.69 

Zr 177.42 187.73 185.95 182.17 100.65 105.88 113.97 

Sr 466.79 486.29 475.72 467.78 689.28 672.03 866.69 

V-ICPMs 43.32 44.16 43.09 42.97 243.60 209.42 202.80 
Cr-
ICPMS 6.91 6.81 4.31 4.35 187.58 40.36 9.50 

Y 16.29 17.19 21.30 19.76 24.01 18.22 30.95 

Nb 12.81 13.38 15.00 14.88 10.33 11.27 8.97 

Ba 1029.56 1081.75 1048.13 1043.47 543.61 708.61 388.33 

La 27.76 29.97 36.77 34.11 22.71 23.28 24.74 

Ce 53.38 57.09 71.88 66.60 46.48 45.20 52.70 

Pr 5.87 6.29 7.80 7.40 5.81 5.22 6.97 

Nd 21.15 22.77 28.19 27.04 23.91 19.50 30.52 

Sm 3.72 3.97 4.84 4.56 4.86 3.67 6.52 

Eu 1.04 1.09 1.22 1.20 1.47 1.20 1.88 

Gd 3.23 3.43 4.16 4.00 4.69 3.58 6.24 

Tb 0.46 0.49 0.61 0.57 0.72 0.54 0.93 

Dy 2.74 2.91 3.50 3.32 4.20 3.22 5.48 

Ho 0.57 0.62 0.72 0.69 0.88 0.67 1.15 

Er 1.69 1.77 2.07 2.00 2.52 1.90 3.20 

Tm 0.26 0.27 0.34 0.32 0.39 0.29 0.48 

Yb 1.84 1.97 2.19 2.16 2.47 1.91 3.02 

Lu 0.30 0.32 0.36 0.33 0.37 0.30 0.45 

Hf 4.82 5.07 4.97 4.92 2.80 2.86 2.86 

Ta 0.86 0.93 1.10 1.06 0.56 0.62 0.40 

Pb 20.71 21.10 21.58 21.48 4.65 5.19 5.68 

Th 7.88 8.18 9.44 8.98 2.12 4.06 1.15 

U 2.00 2.08 1.80 1.86 0.45 0.81 0.33 
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Sample PM-001 

SiO2  55.73 

TiO2  0.69 

Al2O3  21.11 

Fe2O3  6.44 

MnO  0.09 

MgO  2.46 

CaO  8.30 

Na2O  3.96 

K2O  0.95 

P2O5  0.26 

Rb  22.16 

Zr 148.82 

Sr 892.69 
V-
ICPMs 106.67 
Cr-
ICPMS 19.02 

Y 16.46 

Nb 7.64 

Ba 437.34 

La 24.39 

Ce 42.36 

Pr 4.77 

Nd 18.81 

Sm 3.61 

Eu 1.29 

Gd 3.54 

Tb 0.51 

Dy 3.00 

Ho 0.61 

Er 1.71 

Tm 0.25 

Yb 1.59 

Lu 0.23 

Hf 3.53 

Ta 0.47 

Pb 6.94 

Th 5.86 

U 0.84 
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