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ABSTRACT 

Upon viral infection, host cells produce type I interferon (IFN), which activates the JAK-

STAT signaling pathway and induces the expression of hundreds of interferon-stimulated genes 

(ISGs) to establish an antiviral state. In West Nile virus (WNV)-infected cells, the JAK-STAT 

signaling pathway is blocked by viral proteins. However, the expression of a subset of ISGs, 

which includes 2-5-oligoadenylate synthetase 1a (Oas1a), Oas1b, interferon regulatory factor 7 

(Irf7), Mx1, and interferon-induced proteins with tetratricopeptide repeats 1 (Ifit1), is still 

upregulated by an IFN-independent mechanism in WNV-infected mouse embryonic fibroblasts 

(MEFs). Studies in cells with one or more components of RNA-sensing pathway knocked out 



 

showed that the alternative ISG upregulation is activated through RIG-I or MDA5, and the 

downstream adaptor IPS-1. In cells with IRF3, 5 and 7 knocked out, the alternative ISG 

upregulation by WNV infection is reduced but not eliminated. As an initial means of discovering 

the transcription factors involved in this non-canonical ISG upregulation, the critical regulatory 

regions in the promoters of two representative ISGs, Oas1b and Ifit1, were mapped using a dual 

luciferase assay system with a NanoLuc luciferase promoter reporter in WNV-infected Ifnar1-/- 

MEFs. The region from -299 to -28 in the Oas1b promoter, and the region from -192 to -50 in 

the Ifit1 promoter were identified as being important for upregulating non-canonical gene 

expression after WNV infection. Fine mapping identified enhancer and repressor sub-regions as 

well as transcription factor binding sites (TFBSs) putatively involved in the IFN-independent 

antiviral mechanism. Mutation of one identified TFBS in the ISG promoters reduced Oas1b and 

Ifit1 promoter activities. In electrophoretic mobility shift assays (EMSAs), a unique band, which 

was detected in WNV-infected but not in mock-infected Ifnar1-/- MEF nuclear extracts, was not 

observed when a probe with the identified TFBS mutated was used, suggesting that a unique 

complex forms at the identified TFBS when it is in the context of the adjacent flanking regions. 

The unique complex appears to contain NF-κB components and IRF3, IRF5 or IRF7. Our 

findings provide new insights into the mechanism involved in non-canonical upregulation of 

ISGs after WNV infection.  

 

 

INDEX WORDS: West Nile virus, IFN-independent signaling, Transcription factors, Interferon-
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1 

1  INTRODUCTION 

1.1 Flaviviruses 

1.1.1 Genus Flavivirus  

The family Flaviviridae currently contains four genera: Flavivirus, Hepacivirus, 

Pestivirus, and Pegivirus. The genus Flavivirus includes viruses transmitted by blood-feeding 

arthropods, several of which are emergent or re-emergent pathogens that are found on six 

continents. Viruses in this genus include dengue virus (DENV), yellow fever virus (YFV), 

Japanese encephalitis (JEV), tick-borne encephalitis viruses (TBEV), West Nile virus (WNV), 

and the recently emerged pathogen, Zika virus (ZIKV). Flavivirus infections in humans are 

responsible for significant morbidity and mortality (Fields et al., 2013; Daep et al., 2014).  

1.1.2 Flavivirus genome characteristics and replication 

Flaviviruses are enveloped viruses with an ~11-kb positive-sense, single-stranded RNA 

genome that encodes a single open reading frame with highly structured 5′ and 3′ flanking 

untranslated regions (UTR). The flavivirus genome has a 5′ type 1 cap structure, as do eukaryotic 

cell mRNAs. However, unlike the eukaryotic host mRNA, the flavivirus genome RNA does not 

contain a 3′ poly-A. The flavivirus replication life cycle begins with virion attachment to cell 

surface receptors, endocytosis, and fusion with the endosomal membrane resulting in the release 

of the viral genome RNA into the cytoplasm. The genome is translated by host machinery as a 

single polyprotein, which is subsequently cleaved by host and viral proteases to generate three 

structural [capsid (C), premembrane (prM), and envelop (E)] and seven non-structural (NS1, 

NS2A, NS2B, NS3, NS4A, NS4B, NS5) proteins. The non-structural proteins form the 

replication complex that is required for viral RNA synthesis on ER membrane. The nascent 

genome RNA is encapsidated by ER-membrane associated structural proteins. Following virion 
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assembly and transport through the host cellular secretory pathway, mature viral particles are 

released by exocytosis from an infected cell (Brinton, 2002). All tested viruses in the genus 

Flavivirus, including WNV, DEVN, TBEV, and YFV, also produce a unique 3′ noncoding 

subgenomic RNA (sfRNA) in infected cells, which is generated by cellular 5′ to 3′ exonuclease 

XRN1 digestion of genome RNA that is terminated by an RNA structure located RNA 3′ UTR 

(Funk et al., 2010; Chapman et al., 2014). The role of the sfRNA in the flavivirus replication 

cycle is not clear. However, it was shown that sfRNA contributes to flavivirus pathogenicity and 

evasion of the host immune response (Roby et al., 2014).  

1.1.3 Enzootic cycle and pathogenicity of WNV 

WNV is a mosquito-borne virus that is present in Africa, Eastern Europe and the 

Mediterranean region, Russia, the Middle East, India, Australia, and the Americas. It was first 

discovered in the West Nile district of Uganda in 1937 (Kramer et al., 2008). WNV emerged in 

New York City in the summer of 1999, then spread throughout the United States within four 

years and has continued to cause seasonal outbreaks (Komar, 2003; Reisen, 2013). In nature, 

WNV is maintained in a transmission cycle between birds and mosquitos, predominantly Culex 

mosquito species that prefer to bite birds over humans. However, WNV is sometimes transmitted 

to a person by a mosquito bite. Unlike DENV- or ZIKV-infected humans, humans infected with 

WNV are dead-end hosts and not part of the enzootic cycle because they have low viremia 

levels. Although WNV infections in humans are usually asymptomatic, some people develop 

fever and flu-like symptoms and less than 1 % of WNV-infected patients develop neurological 

diseases, such as encephalitis, meningitis, or poliomyelitis. Older adults are at greater risk of 

developing severe symptoms (Dauphin and Zientara, 2007). The central nervous system damage 

caused by a WNV infection is non-reversible. The study of WNV-host interactions provides 
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valuable insights for the development of vaccines and the identification of targets for antiviral 

drug development.  

WNV infections in human are usually the result of a mosquito bite. During blood-

feeding, mosquitos inject their saliva into human skin, which contains WNV particles and some 

molecules that reduce inflammation and alter host immunity (Titus et al., 2006). WNV 

pathogenesis in humans is not well characterized, but studies in rodent models have provided 

some insights. Following a mosquito bite, WNV replicates in local skin cells, including 

keratinocytes, dermal dendritic cells (DCs), and Langerhans cells. After DC migration, viral 

particles infect the regional draining lymph node, and subsequently migrate in the blood to the 

spleen, cross the blood brain barrier (BBB) and infect the central neural system (CNS) causing 

neuron damage (Suthar et al., 2013). Host innate and adaptive immune responses work together 

to clear a WNV infection and limit possible damage due to an immune response.  

1.1.4 WNV strain diversity 

Based on the comparison of the amino acid sequences of the envelope protein, WNV 

isolates have been divided into lineage1 and lineage 2 (Berthet et al., 1997). Lineage 1 consists 

of strains that are often associated with outbreaks of human encephalitis and meningitis, 

including NY99 and Eg101 (Lanciotti et al., 1999; Brinton, 2002). A WNV strain that is 

endemic to Australia and Asia, Kunjin virus, also belongs to lineage 1 but has an attenuated 

phenotype in humans (Beasley et al., 2005). Lineage 2 strains are restricted to Africa and are 

usually less pathogenic, but several recent neuroinvasive cases associated with endemic lineage 2 

WNV suggest that the virulence of WNV strains in this linage may be underestimated (Venter 

and Swanepoel, 2010). Recent studies of the genome sequences of additional WNV isolates 

suggest that some WNV isolates cannot be grouped into lineage 1 or 2. A phylogenetic analysis 
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that used partial genome sequences (C-prM-E) added three additional genetic lineages for WNV 

strains (Bakonyi et al., 2005; Bondre et al., 2007). Because only a few isolates have recently 

been found for lineages 3, 4, and 5, little is known about their phenotypes (Suthar et al., 2013).   

1.1.5 WNV replication cycle 

The cell surface receptor(s) used for WNV attachment and entry is unknown (Brinton, 

2002; 2014).  WNV particles enter cells via receptor-mediated endocytosis, and viral RNA is 

released into the cell cytoplasm following fusion of the viral and cellular endosomal membranes. 

The WNV genome encodes three structural proteins (C, prM, E) and seven non-structural 

proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5). Many of the non-structural proteins 

have multiple functions, but all contribute to facilitate virus RNA replication. The 3′ and 5′ 

terminal regions of the WNV genome has been shown to interact with each other to regulate viral 

minus strand RNA replication, and interaction between some cell proteins and the terminal viral 

RNAs may promote virus RNA replication (Brinton and Basu, 2015).  

1.2 Host cell interferon (IFN) antiviral response  

The IFN response serves as an essential component of mammalian cell innate antiviral 

defense. IFN was first described by Alick Isaacs and Jean Lindenmann in 1957 as a phenomenon 

of “conditions that disrupted virus information” (Isaacs and Lindenmann, 1957). In the 1970s, it 

was found that there is a family of IFN proteins. During the next two decades, it was 

demonstrated that IFNs were not only effective in defending against virus diseases and cancer 

but also for treating multiple sclerosis (MS). As the intercellular molecular events involved in the 

production of IFN as well as the intercellular networks stimulated by IFN being elucidated, it 

became clear that IFNs are fundamental components of the innate immune system (Borden et al., 

2007). To date, three types of IFNs (type I, III, III) have been identified.  



 

 

5 

Either the incoming virion or viral genome or viral molecules produced in infected cells 

are sensed by host cell sensors, called pattern recognition receptors (PPRs). These membrane-

bound or cytoplasmic PPRs activate downstream signaling pathways that lead to the production 

of different kinds of cytokines and chemokines. Secreted IFNs are important cytokines that bind 

to cell surface IFN receptors, activate signaling pathways and induce an antiviral state in infected 

and uninfected cells by upregulating the expression of hundreds of interferon-stimulated genes 

(ISGs). The antiviral function of these ISGs establishes an antiviral state, forming the first line of 

immune response to virus infection. The IFN response in host cells is classified into three phases: 

induction of IFN expression, activation of the IFN effector pathway, and expression of ISGs.  

1.2.1 Host PPRs that induce IFN expression after a flavivirus infection 

The membrane-bound and cytoplasmic PRRs in mammalian cells serve as a sophisticated 

immune surveillance network to sense unique features of invading viral pathogens. Unique 

features of viruses, termed pathogen-associated molecular patterns (PAMPs), include viral 

nucleic acids, proteins and carbohydrates (Brennan and Bowie, 2010; Wilkins and Gale, 2010). 

Three major classes of PPRs have been shown to contribute to efficient detection of a flavivirus 

infection. IFNs are induced through the signaling pathways downstream of an activated PRR 

after virus infection.  

1.2.1.1 Toll-like receptors (TLRs) 

TLRs are transmembrane proteins that serve as membrane-bound PRRs. There are 10 

TLR family members encoded by the human genome and 12 by the mouse genome. TLR3, 

TLR7, TLR8, and TLR9 detect viral nucleic acids in endosomal compartments. Except for 

TLR9, which recognizes CpG-rich regions of viral DNA, the other TLRs, TLR3, TRL7, and 

TL8, are of importance in sensing a flavivirus infection. The RNA ligands detected by the three 
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flavivirus-activated TLRs differ. TLR3 recognizes double-stranded RNA (dsRNA) or a stem-

loop in a ssRNA; TLR7 and TLR8 recognize GU-rich ssRNA (Akira et al., 2006; Uematsu and 

Akira, 2007).  

TLR3 is expressed in immune cells as well as in non-immune cells, such as fibroblasts, 

epithelial cells, and endothelial cells. Following ligand binding, TLR3 recruits the adaptor 

molecule TIR domain-containing adaptor inducing IFN-β (TRIF) and signals through TNF 

receptor-associated factor 3 (TRAF3) and TRAF6 to activate the kinase IκB kinase ε (IKKε) and 

TANK-binding kinase 1 (TBK1), which activates the transcription factors IRF3, IRF7 and NF-

κB that trigger the transcription of IFN and pro-inflammatory cytokine genes (Akira et al., 2006; 

Wang et al., 2011). The role of TLR3 in the innate immune response against a WNV infection is 

complicated and controversial. In a study of WNV infections in TLR3-/- mice, two independent 

research groups demonstrated distinct outcomes of a WNV infection (Wang et al., 2004; Daffis 

et al., 2008). One study showed that TLR3-/- mice were more resistant to WNV infection 

suggesting that impaired TLR3-dependent pro-inflammatory cytokine production leads to 

increased penetration of the blood brain barrier and higher incidence of lethal infection (Wang et 

al., 2004). The other study found that TLR3-/- mice were more susceptible to WNV infection as 

evidenced by increased viral burdens in the brain, suggesting that TLR3 contributes to restrict 

the viral infection and replication in neurons (Daffis et al., 2008). Interestingly, there is no 

difference in the IFN levels produced between WNV-infected TLR3-/- and wild-type fibroblasts, 

dendritic cells, or mice (Daffis et al., 2008), indicating that TLR3 is dispensable for IFN 

induction in response to a WNV infection, and different PRRs are responsible for the induction 

of IFN after WNV infection. The results from a study of human susceptibility to WNV infection 
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suggested that higher levels of TLR3 in macrophages from aged donors leads to elevated levels 

of pro-inflammatory cytokines and increased central nervous system disease (Kong et al., 2008).  

The expression of TLR7 and TLR8 is mainly restricted to dendritic cells, macrophages, 

and B cells. TLR7 and TLR8 transmit signals through the adaptor molecule myeloid 

differentiation primary response gene 88 (MyD88), activating IRF7 and NF-κB, which activate 

the expression of IFNs and pro-inflammatory cytokines (Akira et al., 2006; Wang et al., 2011). 

TLR7 and its adaptor molecule MyD88 play a protective role against WNV-induced encephalitis 

in mice. TLR7-/- mice and Myd88-/- mice both showed increased susceptibility to lethal WNV 

infection, which appears to be linked to increased viral burden in the brain (Town et al., 2009; 

Szretter et al., 2010). It is suggested that TLR7 and MyD88 provide protection against a WNV 

infection by reducing immune cell migration to infected cell target sites. However, after WNV 

infection, MyD88-/- mice showed a reduced IFN response while TLR7-/- mice showed an 

elevated level of IFN in the blood, suggesting that the activation of IFN production occurs 

through cross talk between signal pathways downstream of multiple PRRs. 

1.2.1.2 RIG-I like receptors (RLRs) 

The cytosolic RNA sensors, RLRs, are considered to be key intracellular PRRs for the 

detection of a flavivirus infection. RLRs family receptors, which include the retinoic acid 

inducible gene I (RIG-I), melanoma differentiation-associated gene 5 (MDA5, also known as 

IFIH1) and laboratory of genetics and physiology-2 (LGP2, also known as DHX58), are 

expressed in most cell types. All three RLRs contain a DExD/H helicase domain and a C-

terminal domain, which are both essential for binding viral RNA. In addition, RIG-I and MDA5 

have two N-terminal caspase activation and recruitment domains (CARDs), which are protein-

protein interaction domains that are required for mediating antiviral signaling downstream of 
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RNA recognition (Wilkins and Gale, 2010). In contrast, LGP2 lacks both CARDs and the 

signaling effector domain and has been suggested to function as a regulator of RIG-I and MDA5; 

however, its mode of action could be positive or negative regulation (Satoh et al., 2010; Wang et 

al., 2011; Bruns and Horvath, 2012; Malur et al., 2012).  

In the cytoplasm of a virus infected cell, the recognition of viral RNA activates the 

enzymatic functions of RIG-I and MDA5 and initiates signal transduction pathways via the 

adaptor protein mitochondrial antiviral signaling (MAVS), which is also called IPS-1, VISA, or 

Cardif, localizing at the mitochondria, mitochondria-associated membranes (MAMs) and 

peroxisomes (Barral et al., 2009; Gack, 2014). The activation of RIG-I or MDA5 and their 

subsequent transportation to IPS-1 are tightly controlled by an interplay of ubiquitination and 

phosphorylation modifications (Gack, 2014). IPS-1 transduces signaling that activates 

transcription factors such as NF-κB, IRF3, IRF7, and ATF2/c-Jun, resulting in the production of 

antiviral IFNs for the establishment of a broadly effective cellular antiviral state.  

RLRs recognize pathogen patterns that are highly specific to viral RNAs and distinct 

from host 5′-capped mRNA. Although RIG-I and MDA5 are structurally similar, they have 

distinct ligand preferences that enable them to recognize the RNAs of different viruses. Early 

studies suggested that the viral pathogens detected by RIG-I and MDA5 were non-overlapping. 

However, new evidence suggests that both of RIG-I and MDA5 contribute to efficient detection 

of VSV, Sendai virus, DENV and WNV infections (Wilkins and Gale, 2010; Gack, 2014). A 

significant amount of research has been focused on understanding the molecular signatures that 

are required for recognition by RLRs. Results from experiments with synthetic or purified viral 

RNAs showed that RIG-I recognizes ssRNA with a 5′-triphosphate or short blunt-end dsRNA to 

distinguish non-self from self RNA (Kell and Gale, 2015). The 5′-triphosphate moiety that 
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stimulates RIG-I could be from the viral RNAs produced during replication or the RNA of 

incoming virions (Weber et al., 2013). In addition, particular sequence compositions of the RNA 

ligand play a role in RIG-I recognition. The poly-U/UC motifs in HCV genomic RNA activate 

RIG-I in combination with a 5′-triphosphate moiety (Saito et al., 2008). In contrast, the 

characteristics of MDA5 RNA ligands have not yet been well defined. The current thought is that 

MDA5 recognizes long dsRNA (greater than 1 kb in length) and synthesized RNAs, such as poly 

(I:C). Recognition by MDA5 does not require a 5′-triphosphalation on RNA (Schlee, 2013).  

In the context of detecting a WNV infection, RLR signaling is crucial for activating the 

innate and adaptive immune responses. Moreover, the roles of RIG-I and MDA5 are essential 

and non-redundant in detecting WNV infection. Studies with WNV-infected RIG-I or MDA5 

knockout cells showed that at early times of infection, RIG-I is activated to contribute to innate 

immune protection, while at later times, MDA5 sustains and amplifies the antiviral response. 

IPS-1 was indispensable for the RIG-I and MDA5 downstream signaling that controls WNV 

infection (Fredericksen et al., 2008; Errett et al., 2013). Both RIG-I-/- and MDA5-/- mice 

showed increased mortality after WNV challenge and double knock out RIG-I-/- /MDA5-/- mice 

developed severe pathogenesis after WNV infection, similar to what was observed in IPS-1-/- 

mice (Suthar et al., 2010; Errett et al., 2013). Additional studies showed that the exposed 5′ 

triphosphate and dsRNA structure activating RIG-I and MDA5 were produced during WNV 

genome replication rather than those present on the incoming virion RNA (Shipley et al., 2012; 

Errett et al., 2013). LGP2 is not essential for inducing an innate immune response to a WNV 

infection. The elevated susceptibility of LGP2-/- mice to WNV infection is linked to a defect in 

T cell expansion, which is not virus specific (Suthar et al., 2012). A study of WNV-infected IPS-

1-/- cells and mice suggested that the RLR signaling is not only important for inducing an innate 
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immune response but also plays a role in regulating inflammation and modulating the adaptive 

immune response (Suthar et al., 2010).  

1.2.1.3 cGAS-STING-dependent sensors 

cGAS (cyclic GAMP-AMP synthase) is a cytosolic DNA sensing enzyme. cGAS is 

known to be triggered by DNA viruses and activates the production of IFN through stimulator of 

interferon genes (STING, also known as MITA, MPYS or ERIS) and downstream IRF3 (Barber, 

2015). STING, which was also shown to transduce signaling downstream of RIG-I, is associated 

with the ER. cGAS-STING signaling was recently shown to be able to restrict DENV and WNV 

infections, which is surprising because cGAS is a DNA-sensing PRR (Gack and Diamond, 

2016). Ectopically expressed cGAS restricts WNV replication in human cells. In cGAS-/- cells, 

WNV replicates to a higher level compared to WT control cells and cGAS-/- mice exhibited 

elevated susceptibility to lethal WNV infection (Schoggins et al., 2014). The mechanism by 

which cGAS protects the host from a WNV infection seems to be through maintaining a basal 

immune response. Consistent with characteristics of the cGAS-/- mice, STING-/- mice are more 

susceptible to lethal WNV infection (You et al., 2013). The cGAS-STING induced immune 

response is effective against DNA viruses and only some of positive-sense single-stranded RNA 

viruses, but how it is activated during an RNA virus infection has not yet been elucidated. 

Possible ligands for cGAS activation in cells infected with a positive-sense, single-stranded RNA 

virus infection include viral genome RNA, cDNA, dsRNA, and host cell-derived DNA. It was 

suggested that STING could be activated by virus-induced ER membrane remodeling or by 

fragments of mitochondrial DNA released from focal areas of virus-induced mitochondrial 

fragmentation (Holm et al., 2012; Maringer and Fernandez-Sesma, 2014).  
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1.2.2 IFNs 

The expression of IFN genes in response to a stimulus is tightly controlled by some gene-

specific transcription repressors and sequence-specific transcription factors, which is the main 

controlling level of IFN production (Levy et al., 2011). To date, three types of IFNs have been 

identified. Type I IFNs, which include IFN-α, IFN-β, IFN-ε, IFN-κ, and IFN-ω, are secreted by 

almost all cell types in mammals. Each of the type I IFNs is encoded by a single gene except for 

IFN-α of which there are 13 subtypes in humans. Type I IFNs interact with the type I IFN 

receptor (IFNAR) that is composed of the IFNAR1/IFNAR2 heterodimer on the cell surface. 

Nearly every cell type expresses receptors for type I IFNs (Takaoka and Yanai, 2006; Maher et 

al., 2007). Type II IFN, which includes only one species, IFN-γ, is produced by activated T 

lymphocytes, monocytes, and NK cells, and binds to the IFN- γ receptor (IFNGR) composed of 

an IFNGR1/IFNGR2 heterodimer (Takaoka and Yanai, 2006). IFN- γ plays a crucial role in 

bridging the innate and adaptive responses (Schroder et al., 2004). Type III IFNs, which include 

IFN-λ1 (IL-29), IFN-λ2 (IL-28A), IFN-λ3 (IL-28B), and IFN-λ4, bind to the IFN-λ receptor 

composed of IFNLR1/IL-10Rβ (Fox et al., 2009; Levy et al., 2011). Expression of the IFN-λ 

receptor is not well characterized with respect to cell type. It was originally thought to be limited 

primarily to epithelial cells. Later studies demonstrated that hepatocytes express IFNLR1 and 

respond to IFN-λ treatment (Sommereyns et al., 2008; Muir et al., 2010).  

1.2.3 IFN signaling: The JAK-STAT pathway 

The binding of IFN to receptors located on both infected and adjacent uninfected cells 

activates the JAK kinases that are associated with the cell surface IFN receptors, leading to the 

JAK-STAT pathway signaling that activates ISG expression. Four mammalian JAKs were 

discovered: JAK1, JAK2, JAK3, and TYK2. In the absence of a stimulus, the JAK proteins are 
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in an inactivate conformation. After type I IFN binding to the IFNAR1/2 heterodimer, the 

JAK1/TYK2 kinases become activated and phosphorylate STAT1 and STAT2 on specific 

tyrosines. The phosphorylated STATs interact with IRF9 to form the transcription factor 

complex ISGF3 that translocates into the nucleus and binds to the ISRE of ISG promoters to 

activate their expression (Takaoka and Yanai, 2006; Borden et al., 2007; Wilkins and Gale, 

2010; Stark and Darnell, 2012). Type III IFN also activates JAK1 and TYK2 to activate the 

formation of ISGF3 to induce ISG expression. However, type II IFN activates JAK1 and JAK2, 

which activate tyrosine phosphorylation and dimerization of STAT1 that induces the expression 

of ISGs through the gamma-activated sequence (GAS) promoter element. The STAT1 

homodimer responding to type II IFN is also called gamma-activated factor (GAF) (Borden et 

al., 2007). 

The JAK-STAT pathway was defined in the 1990s. The trimeric ISGF3 complex is an 

essential component of JAK-STAT signaling activated by type I and type III IFN.  It was 

subsequently discovered that in addition to the canonical ISGF3 complex with both STAT1 and 

STAT2 tyrosine phosphorylated, there are another two forms of ISGF3 with transcription factor 

function. In one, only STAT1 is tyrosine phosphorylated and binds to non-phosphorylated 

STAT2 and IRF9, which forms in response to IFN-γ (Morrow et al., 2011). The other is non-

phosphorylated STAT1 and STAT2 binding to IRF9, which forms in response to type I IFNs to 

prolong the expression of a subset of ISGs (Cheon and Stark, 2009; Stark and Darnell, 2012). All 

three forms of ISGF3 can bind to the ISRE (Fink and Grandvaux, 2013; Majoros et al., 2017). 

The versatile functions of STAT1 are tightly regulated by its post-translational modifications. 

Besides tyrosine phosphorylation, phosphorylation of STAT1 on serine 708 induced by IKKε 

can regulate the expression of some ISGs (Tenoever et al., 2007; Perwitasari et al., 2011). 
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Moreover, this serine phosphorylation inhibits the homodimerization of STAT1 but does not 

disrupt ISGF3 formation, thus distinguishing type II IFN signaling activation from type I and 

type III IFN (Ng et al., 2011). During the early stages of ISG induction, STAT1 is tyrosine 

phosphorylated, but unphosphorylated STAT1 functions during the late stages of ISG expression 

prolongation after virus infection (Levy and Darnell, 2002; Stark and Darnell, 2012).  

The mammalian STAT protein family consists of 7 members: STAT1, STAT2, STAT3, 

STAT4, STAT5A, STAT5B, and STAT6. They are expressed in different tissues and respond to 

various cytokines. For example, STAT6 is mainly distributed in bone-marrow-derived cells; 

STAT3 gets tyrosine phosphorylated in response to IL-6, while STAT1 and STAT2 respond to 

IFNs (Aaronson and Horvath, 2002; Cheon et al., 2011). In addition to the well-studied ISGF3 

complex and STAT1 dimer, increasing numbers of reports suggest that additional STAT proteins 

play a role in the IFN response. Some other STAT containing complexes, including a STAT3 

homodimer, a STAT5 homodimer, a STAT2/STAT1 heterodimer, and a STAT5/CRKL 

heterodimer, can be induced by IFNs to mediate gene transcription (Brierley and Fish, 2005). In 

response to different subtypes of type I IFNs, different human leukocyte subsets employ 

signaling mediated by different STAT proteins, suggesting a cell-type specificity of the IFN 

response. In addition, the cell-type specific responses to type I IFNs might be activated by 

several different kinases besides JAKs, including PI3K and p38 kinase (van Boxel-Dezaire et al., 

2006; van Boxel-Dezaire et al., 2010).  

1.2.4 The IFN response elements of ISG promoters 

The two major DNA regulatory elements, ISRE and GAS, on the promoters of ISGs have 

been shown to mediate the gene expression as a result of the activation of the JAK-STAT 

pathway. 
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1.2.4.1 ISRE consensus 

The ISRE, with the consensus sequence 5′-A/GNGAAANNGAAACT-3′ (Darnell et al., 

1994), is the DNA motif that the trimeric factor ISGF3 complex, which is composed of STAT1, 

STAT2, and IRF9, binds to in response to type I and type III IFN binding to their cell surface 

receptors. The binding of the ISGF3 complex to the ISRE site leads to expression of ISGs 

required for the innate antiviral immune response. The exact DNA binding contacts of the ISGF3 

complex are not known, as no co-crystal structure of ISGF3-ISRE has been solved.  

Recent studies suggested some non-canonical proteins can bind to the ISRE downstream 

of type I IFN binding to its receptor. An ISGF3-like complex containing STAT6, STAT2 and 

IRF9 was observed binding to the ISRE element in type I IFN-stimulated B cells (Gupta et al., 

1999; Fink and Grandvaux, 2013). In the absence of STAT1, STAT2 and IRF9 alone can form a 

complex that binds to the ISRE sequence to regulate the expression of some ISGs and establish 

an antiviral response to DENV infection (Kraus et al., 2003). Similar STAT1-independent 

resistance has been reported against other kinds of virus infections (Perry et al., 2011; Blaszczyk 

et al., 2015; Majoros et al., 2017).  

The consensus sequence of the ISRE partially overlaps that of the IRF-binding elements 

(IRF-E) which have the consensus sequence 5′-AANNGAAANNGAAA-3′. The IRF-E site is 

recognized by proteins from the IRF family (Fujii et al., 1999; Taniguchi et al., 2001). The exact 

nucleotide sequence of the binding site for each IRF family member is slightly different. Studies 

show that besides ISGF3, IRF7 can bind to the ISRE and regulate ISG expression. ISREs can be 

grouped into IRF7-specific, ISGF3-specific, and universal ISREs (Schmid et al., 2010). 
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1.2.4.2 GAS consensus 

The GAS site, with the canonical consensus sequence 5′-TTCNNNGAAA-3′, is the DNA 

motif that the STAT1 homodimer binds to in response to type II IFN (Aaronson and Horvath, 

2002). Recent studies have reported that some other STAT complexes can recognize GAS-like 

elements after type I IFN treatment. A STAT2 homodimer can modulate expression of a subset 

of ISGs through binding to a GAS-like site with a palindromic sequence of TTNNNNAA in 

response to type I IFN; a STAT1/STAT2 heterodimer can bind to another GAS-like site with the 

consensus sequence ATTCCCNGAAA, which is found in the promoter of IRF1 (Ghislain et al., 

2001; Brierley et al., 2006). The binding affinity between a STAT dimer and a DNA sequence is 

determined by the nucleotide sequence as well as by cooperative interactions between the STAT 

dimer and adjacent proteins on the promoter (Aaronson and Horvath, 2002). 

1.2.5 The antiviral functions of ISGs 

ISGs are a diverse group of hundreds of genes, whose expression establishes an antiviral 

state in infected cells. Each type of IFN induces a different set of ISGs, and these sets of ISGs 

partially overlap (Der et al., 1998). The ISGs can inhibit almost every step of a virus life cycle in 

the host cells, including virus entry, translation, viral genome replication and transcription, viral 

particle assembly and escape (de Veer et al., 2001; Schneider et al., 2014). The antiviral 

functions of some of the proteins encoded by ISGs have been studied in recent years using a 

siRNA library screen to knock down or a vector to overexpress single ISG. A number of ISGs 

were found to have antiviral functions against influenza viruses, flaviviruses or alphaviruses 

(Itsui et al., 2006; Zhang et al., 2007; Jiang et al., 2008; Brass et al., 2009; Brehin et al., 2009; 

Jiang et al., 2010). Proteins encoded by ISGs known to have antiviral functions include dsRNA-

activated protein kinase (PKR), MX1, 2′-5′ oligoadenylate synthetase (OAS1 and OAS3), 
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ISG15, ISG20, IFITM-1, -2 and -3, and viperin (also known as RSAD2). A screen of more than 

380 ISGs against six viruses confirmed the antiviral functions of IFITM, OAS, ISG15, ISG20, 

viperin, MX, and IRF7 proteins, and identified additional antiviral proteins encoded by ISGs, 

including interferon-induced proteins with tetratricopeptide repeats (IFIT) proteins and IRF1. 

Most of the ISGs that have direct antiviral functions show antiviral activities against a wide 

range of viruses (Schoggins et al., 2011). Among the >300 known ISGs, some are components of 

the IFN induction and JAK-STAT pathways, such as RIG-I, MDA5, IRF7, IRF9, and STAT1. 

However, the functions of the majority of the >300 ISGs have still not been fully described. It is 

suggested that the combined functions of multiple ISGs increase the magnitude of the antiviral 

activity (Schoggins and Rice, 2011; Schneider et al., 2014). However, a small subset of ISGs 

was shown to be able to enhance the replication of a particular virus species, indicating the 

complexity of the IFN system (Schoggins and Rice, 2011).                 

1.2.5.1 OAS family  

Once an OAS protein is activated by double-stranded RNA, it catalyzes the formation of 

unique 2′-5′ linked oligoadenylates from ATP, which serve as second messengers for the 

dimerization and activation of endonuclease RNase L. Activated RNase L degrades both cellular 

and viral ssRNA (Silverman, 2007). Expression of the OAS gene is activated by IFN signaling 

and regulated by the ISRE in the OAS gene promoter (Rutherford et al., 1988). Moreover, the 

OAS-RNase L system is an important IFN-induced antiviral pathway for several types of viruses, 

including flaviviruses, picornaviruses, alphaviruses, and herpesviruses (Austin et al., 2005; 

Silverman, 2007; Brehin et al., 2009; Hornung et al., 2014).  

The human OAS family contains four genes: OAS1, OAS2, OAS3, and OAS-like 

(OASL). The OAS1, OAS2, OAS3 proteins all have the 2′-5′ oligoadenylate synthase activity, 
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whereas the OASL protein provides antiviral activity by enhancing the activation of RIG-I 

signaling (Zhu et al., 2014). In contrast, the mouse OAS family contains eight Oas1 genes 

(Oas1a to Oas1h), one Oas2, one Oas3, and two Oasl genes (Oasl1 and Oasl2) (Justesen et al., 

2000). The mouse Oas1 isoforms were generated by gene duplication (Perelygin et al., 2006). 

Among the eight mouse Oas1 proteins, only Oas1a and Oas1g have been reported to have OAS 

enzymatic activity (Kakuta et al., 2002). The non-enzymatic Oas1b has a specific antiviral 

activity against members of the genus Flavivirus that is independent of the OAS/RNase L 

pathway (Scherbik et al., 2007a; Elbahesh et al., 2011). Oas1d, which also encodes a non-

enzymatic OAS protein, was reported to be involved in germline development (Yan et al., 2005). 

The mouse Oas12 has OAS enzymatic activity, but Oasl1 does not (Eskildsen et al., 2003). 

Mouse Oas1l has been shown to negatively regulate the production of type I IFN by inhibiting 

the translation of IRF7, the transcription factor that positively regulates the expression of IFN 

genes (Lee et al., 2013). 

1.2.5.2 IFIT family 

 Interferon-induced proteins with tetratricopeptide repeats (IFIT) are highly induced by 

type I or type III IFN treatment or by a viral infection. Proteins of the IFIT family, which have 

no known enzymatic activities, inhibit viral replication in host cells through binding to viral 

RNA together with other host proteins, and decrease virus transcription and translation (Fensterl 

and Sen, 2015). 

The human IFIT family consists of four members: IFIT1 (ISG56), IFIT2 (ISG54), IFIT3 

(ISG60 or IFIT4), and IFIT5 (ISG58). The genes encoding human IFIT proteins are clustered 

together on chromosome 10. A human pseudogene IFIT1B has been identified on human 

chromosome 13, but it remains uncharacterized (Diamond, 2014). The mouse Ifit family consists 
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of three characterized members: Ifit1 (Isg56), Ifit2 (Isg54), and Ifit3 (Isg49). The murine Ifit 

genes are clustered on chromosome 19qC1. The same locus also contains three additional 

uncharacterized members: Ifit1b, Ifit1c, and Ifit3b (Fensterl and Sen, 2015). All human and 

mouse IFIT genes, except for human IFIT1B, have one or two ISREs within 200 bp upstream of 

the transcription start site, which drives their stimulus-dependent expression (Fensterl and Sen, 

2011).  

Antiviral functions have been demonstrated for several IFIT proteins. IFIT proteins 

localize in the cytoplasm and inhibit cellular translation initiation by interaction with eIF3, which 

is a large protein complex consisting of 13 different subunits termed eIF3a-m (Damoc et al., 

2007). In human cells, IFIT1 and IFIT2 both bind to the eIF3e subunit, and IFIT2 additionally 

binds to eIF3c; in mouse, Ifit1 and Ifit2 selectively bind to eIF3c subunit. The binding of IFIT 

proteins to eIF3 subunits prevents the formation of the preinitiation complex 48S (Hui et al., 

2005; Terenzi et al., 2005; Terenzi et al., 2006). IFIT proteins block viral protein translation as 

well as cell protein translation in infected cells.  

Mammalian cellular mRNAs contain a 5′ N-7 methylated guanosine cap linked by a 5′-

to-5′ triphosphate bridge to the first base, the ribose of which is further modified by methylation 

at the 2′-O position (Decroly et al., 2011). These modifications assist in translational control as 

well as in distinguishing self from non-self RNA. Both human IFIT1 and mouse Ifit1 recognize 

2′-O unmethylated RNA and 5′-ppp RNA as non-self RNA. IFIT1 recognizes viral RNAs with 

these types of 5′ ends and acts as an effector molecule to suppress viral translation. The full 

antiviral function after IFIT1 binding to 5′-ppp RNA requires the binding of IFIT2 and IFIT3 to 

IFIT1 (Pichlmair et al., 2011; Diamond, 2014). Human IFIT5 also binds to 5′-ppp RNA, but it is 

not in the same complex with IFIT1, IFIT2, and IFIT3. The exact antiviral function of IFIT5 is 
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not clear, but the protein was shown to co-localize with the cellular cytosolic sensor RIG-I 

(Katibah et al., 2013; Vladimer et al., 2014).   

Besides binding to host proteins and viral nucleic acids, IFIT1 protein has been 

demonstrated to directly bind to a viral protein E1, which is a viral helicase encoded by human 

papillomavirus (HPV) (a double-stranded DNA virus). The binding of IFIT1 to E1 sequesters 

this viral helicase in the cytoplasm thus preventing it from aiding viral replication within the 

nucleus (Terenzi et al., 2008).   

1.2.5.3 IRF family 

The interferon regulatory factor (IRF) family consists of nine members in mammals:  

IRF1, IRF2, IRF3, IRF4 (also known as PIP or ICSAT), IRF5, IRF6, IRF7, IRF8 (also known as 

ICSBP), and IRF9 (also known as ISGF3γ) (Taniguchi et al., 2001). IRF proteins do not have 

direct antiviral activities, but most of them function as transcription factors for type I IFN 

pathway genes. All of the IRF proteins have an N-terminal helix-turn-helix DNA-binding 

domain (Ikushima et al., 2013). The DNA sequence that IRFs bind to is called the IRF binding 

element (IRF-E) with the sequence 5′-AANNGAAANNGAAA-3′, which is recognized by all of 

the IRF proteins, from IRF1 to IRF9 (Paun and Pitha, 2007). However, each IRF protein 

possesses slightly different DNA binding specificities within the IRF consensus sequence 

(Schmid et al., 2010). IRF4 and IRF8 are mainly expressed in lymphocytes, macrophages, B 

cells and dendritic cells while the other IRFs are more ubiquitously expressed in almost all cell 

types (Paun and Pitha, 2007).  

IRF1, which was the first IRF protein discovered, has a prominent antiviral role against 

numerous viruses, including WNV, YFV, human immunodeficiency virus (HIV) and 

chikungunya virus (CHIKV) (Schoggins et al., 2011). IRF1 enhances the expression of the IFN-
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β gene but its precise role is not clear (Escalante et al., 1998). IRF1 was also shown to induce the 

expression of many ISGs in the absence of IFN (Pine, 1992). Overexpression of IRF1 in human 

STAT1-/- MEFs transcriptionally activates a set of ISGs without inducing the expression of IFN 

(Schoggins et al., 2011). Therefore, IRF1 appears to activate an antiviral program in the absence 

of STAT1 signaling and IFN gene induction.  

IRF2 binds to the same DNA motif as IRF1, but it represses IRF1-induced transcriptional 

activation (Hida et al., 2000). Moreover, it does not induce the expression of the IFN-α and IFN-

β genes but acts as a negative regulator of the expression of type I IFNs as well as of IFN 

signaling (Honda et al., 2004; Kuo and Calame, 2004). 

IRF3 and IRF7 are the main transcription factors that induce the expression of type I 

IFNs in virus-infected cells. IRF3 and IRF7, which are highly homologous, both have an N-

terminal DNA binding domain and phosphorylation sites in the C-terminus that can be 

phosphorylated in response to a virus infection (Taniguchi et al., 2001). IRF3 is constitutively 

expressed and locates in the cytoplasm in a latent form. Upon viral infection, it is 

phosphorylated, dimerizes, translocates to the nucleus and binds to its target DNA sequence on 

the gene promoters switching on gene expression (Grandvaux et al., 2002; Mori et al., 2004). 

Unlike IRF3, IRF7 is expressed at low levels in cells and its expression is upregulated by type I 

IFNs. IRF7 regulates the expression of the IFN-α and IFN-β genes (Honda and Taniguchi, 2006). 

Similar to IRF3, cytosolic IRF7 undergoes phosphorylation, dimerization and nuclear 

translocation to become an active transcription factor. IRF3 and IRF7 can form homodimers and 

heterodimers, and each of these dimers differently acts to regulate the expression of type I IFN 

genes. An IRF3 homodimer and IRF3/IRF7 heterodimers regulate the early phase of IFN-β 
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production, while the IRF-7 homodimer appears to be responsible for maintaining the expression 

levels of type I IFNs (Sato et al., 1998; Honda et al., 2005).  

IRF5 has roles in the immune response to pathogens and apoptosis. It responds to TLR as 

well as RLR signaling. The antiviral role of IRF5 is different from that of IRF7, mainly for the 

set of genes it induces (Barnes et al., 2004). IRF5 is involved in the induction of some ISGs and 

in IFN-β gene induction after WNV infection of dendritic cells (Lazear et al., 2013). In WNV-

infected mice, IRF5 protects the host through shaping the early innate immune response, which 

includes controlling the type I IFN responses and regulating the expression of other cytokines 

and chemokines (Thackray et al., 2014). IRF6 is closely related to IRF5 with respect to amino 

acid sequence, but it does not have an antiviral function. IRF6 is a key regulator controlling the 

keratinocyte proliferation-differentiation switch (Richardson et al., 2006).  

IRF9 is a component of the tertiary complex ISGF3 that is formed in response to type I 

IFN binding to its receptor. It is essential for the antiviral response of type I IFN because it is the 

major DNA-binding subunit of the transcription factor complex ISGF3, which also contains p-

STAT1 and p-STAT2 (Taniguchi et al., 2001). IRF9 can also form ISGF3-like complexes with a 

STAT1 homodimer or with STAT2 alone, which have similar DNA binding affinities as ISGF3 

(Kraus et al., 2003). 

1.3 Viruses antagonize the host IFN response at the cellular and molecular levels   

Although the IFN response is critical for controlling virus infection, both RNA viruses 

and DNA viruses have evolved multiple ways to invade the host IFN system. Viruses inhibit IFN 

production, block the JAK-STAT signaling, or disrupt the action of ISGs.  
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1.3.1 Virus infections that inhibit IFN production 

Virus infections activate the host cell RLR-IPS-1 pathway, TLR-MyD88/TRIF pathway 

or cGAS-STING pathway to induce the expression of type I IFNs. In the RLR-IPS-1 pathway, 

the binding of viral RNA to cytosolic RLRs, mainly RIG-I and MDA5, causes a conformational 

change in RIG-I and MDA5, which reveals the N-terminal CARD domain. In addition to a 

conformational change, RIG-I and MDA5 undergo dephosphorylation by cellular 

phosphoprotein phosphatase 1α (PP1α) and PP1γ before being released from the auto-repression 

state. Lys63-linked ubiquitination by tripartite motif protein 25 (TRM25) and Riplet (also known 

as RNF135 or REUL) is essential for RIG-I activation, while the requirement for Lys63-linked 

ubiquitin chains for MDA5 activation is still being debated (Chiang et al., 2014). Active RIG-I 

and MDA5 separately bind to IPS-1, which also has a CARD domain, through a CARD-CARD 

interaction. This eventually leads to activation of IRF3, IRF7 (via IKKε and TBK1) and NF-κB 

(via the IKKα/β/γ complex), which is required for the transcription of the IFN-β gene. The TLR-

MyD88/TRIF pathway and cGAS-STING pathway also ultimately lead to the activation of 

IKKε, TBK1 and the IKKα/β/γ complex, thereby activating the transcription factors IRF3, IRF7 

and NF-κB needed for induction of type I IFN gene expression. The induction of IFN signaling 

can be divided into three phases: recognition of viral RNAs by PRRs, signaling transduction 

from PRRs via adaptor proteins, and activation of the IRF and NF-κB transcription factors. Each 

of these three phases can be a target for virus antagonism against IFN induction.  

1.3.1.1 The counteraction to IFN production by non-flaviviruses 

Both RNA viruses and DNA viruses encode proteins that can antagonize IFN production. 

A well-characterized IFN antagonist is the influenza A virus non-structural protein NS1. This 

protein blocks IFN induction through multiple mechanisms. NS1 binds to dsRNA via its N-
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terminal RNA-binding domain (RBD), thus potentially protecting viral RNA from detection by 

cellular sensors (Donelan et al., 2003). In addition, NS1 binds to TRIM25 and Riplet to block 

their mediation on Lys63-linked polyubiquitination of RIG-I (Gack et al., 2009). In the nucleus, 

NS1 interacts with host protein CPSF30 via its C-terminal effector domain (ED), which results in 

inhibition of host gene expression including the IFN genes (Garcia-Sastre, 2011).  

Paramyxoviruses, which have single-stranded negative-sense RNA genome, have been 

well studied for IFN production antagonism. The non-structural proteins V, W, and C, which are 

produced from the single P/V/C gene through an RNA-editing mechanism, play important roles 

in IFN antagonism (Goodbourn and Randall, 2009). Among them, V proteins are considered the 

principal IFN antagonists. The V proteins have been shown to directly inhibit MDA5, to 

indirectly inhibit RIG-I via LGP2, and also to inhibit the IRF3/IRF7 kinase IKKε and TBK1, to 

prevent IFN gene expression. However, the inhibition mechanisms of the V proteins of different 

members of this family are not the same (Andrejeva et al., 2004; Goodbourn and Randall, 2009; 

Chiang et al., 2014; Hoffmann et al., 2015). The paramyxovirus W protein and C protein have 

also been shown to inhibit the activation of IRF3 by mislocalizing the IRF3 protein inside the 

nucleus (Shaw et al., 2005; Sparrer et al., 2012). DNA viruses encode specific proteins that 

antagonize IFN production by targeting cGAS, nuclear translocation or the transcriptional 

activity of IRF3 (Hoffmann et al., 2015). 

1.3.1.2 The counteraction to IFN production by Flaviviruses 

1.3.1.2.1  Prevention of recognition of viral components by PRRs 

Flaviviruses have evolved ways to sequester or modify viral RNA to dampen recognition 

by cell sensors. In infected cells, some of the small non-structural proteins of DENV and WNV 

induce invaginations in the ER membrane that are the sites for exponential replication of genome 
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RNA. These invaginations have been proposed to act as a physical barrier to conceal replicated 

viral RNA from cellular cytosolic sensors (Welsch et al., 2009; Gillespie et al., 2010). Many 

flaviviruses, including WNV, DENV, JEV, ZIKV, and YFV, add a 5′ cap structure to their 

genomic RNAs, which is N7 and 2′-O methylated by the viral methyltransferases encoded in the 

NS5 protein, thereby creating a mimic of the eukaryotic cell cap structures. Recombinant WNV, 

JEV, and DENV with a mutation in the 2′-O-methyltransferase show growth attenuation in IFN-

competent cells (Daffis et al., 2010; Kimura et al., 2013; Li et al., 2013). A mutant WNV lacking 

the 2′-O-methyltransferase was inhibited by murine Ifit1, but wild-type WNV was not. In 

addition, the same mutant WNV was avirulent in wild-type mice but virulent in Ifit1-/- mice 

(Daffis et al., 2010).  

1.3.1.2.2 Inhibition of PRRs or their adaptor proteins  

Lys63-linked polyubiquitination of RIG-I that is regulated by TRIM25 is required for 

RIG-I activation. Host protein TRIM25 is a target of flavivirus sfRNA, which is a non-coding 

RNA derived from the 3′UTR of the viral genomic RNA. The sfRNA of an epidemic DENV 

strain was shown to bind to TRIM25, thus disrupting the stability of TRIM25 and weakening the 

RIG-I mediated IFN response (Manokaran et al., 2015). The translocation of activated RIG-I to 

interact with IPS-1, which is presented on mitochondria, mitochondria-associated membranes, 

and peroxisomes, has been shown to be a target of flavivirus counteraction of IFN production. 

The DENV and WNV NS3 proteins interact with a human cell protein, 14-3-3ε, which is the 

chaperone for RIG-I translocation to mitochondria (Chan and Gack, 2016). The interaction 

between NS3 and 14-3-3ε prevents the translocation of RIG-I to mitochondria; thus RIG-I cannot 

interact with IPS-1(MAVs) to transduce downstream signaling.  
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In the cGAS-STING pathway, STING transduces signaling downstream of the cell sensor 

cGAS to activate the transcription factor IRF3. The DENV NS2B/3 protease cleaves human 

STING, thus inhibiting cGAS mediated type I IFN induction. Murine STING is not a target of 

DENV NS2B/3 because the cleavage site for DENV NS2B/3 is not present in the murine 

ortholog (Aguirre et al., 2012; Yu et al., 2012a). WNV NS2B/3 has a structure very similar to 

that of DENV NS2B/3, but WNV NS2B/3 shows more strict cleavage site specificities than 

DENV NS2B/3 (Shiryaev et al., 2007). It is not known whether WNV NS2B/3 cleaves human 

STING. Moreover, STING cleavage was not observed during JEV and YFV infection, which 

was investigated with isolated JEV NS2B/3 protein or NS2B/3 protein of the YFV vaccine strain 

17D (Yu et al., 2012b; Maringer and Fernandez-Sesma, 2014). Nevertheless, YFV NS4B is 

known as an antagonist of STING since it binds and colocalizes with STING in transient 

transfection experiments (Ishikawa et al., 2009). 

WNV structural protein E has been shown to target the kinase, receptor-interacting 

protein 1 (RIP1), which is downstream of TLR3-TRIF signaling for type I IFN induction. The 

inhibition of RIP1 requires a particular glycosylation profile on the E protein. Only mosquito 

cell-derived, but not mammalian cell-produced, WNV have this type of glycosylation profile on 

E protein (Arjona et al., 2007). 

1.3.1.2.3 Antagonism of signaling proteins and transcription factors downstream of PRRs  

The kinases IKKε and TBK1 are required for activation of the transcription factors IRF3 

and IRF7. DENV NS2B/3 protease binds to IKKε and blocks its kinase activity, thus inhibiting 

IRF3 mediated IFN expression (Anglero-Rodriguez et al., 2014). Ectopically expressed DENV 

NS2A and NS4B, as well as WNV NS4B (NY99 strain), inhibit the activation of TBK1 but the 

exact mechanism involved is not known. The inhibition of TBK1 by NS2A and NS4B may 
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require other factors because NS2A and NS4B do not directly interact with TBK1 (Dalrymple et 

al., 2015). A study of NS2A from the WNV Kunjin strain demonstrated that a single amino acid 

substitution (Ala30 to Pro) in this nonstructural protein controls its antagonism on IFN-β 

promoter activity but the targeted cell protein is not known. Recombinant WNVKunjin with a 

mutant NS2A had attenuated viral replication in cells and reduced virulence in mice (Liu et al., 

2004; Liu et al., 2006). 

1.3.2  Viruses inhibit the IFN signaling pathway  

Secreted type I IFNs bind to the IFNAR1/2 heterodimer receptor. The kinases that are 

associated with the receptor, JAK1 and TYK2, then become activated through trans- and auto-

phosphorylation and catalyze the phosphorylation of STAT1 and STAT2 which then form the 

transcription factor complex ISGF3 with IRF9. The ISGF3 complex translocates into the 

nucleus, binds to the ISRE in ISG promoters, and activates the expression of ISGs establishing 

an antiviral state. Type III IFN activates the same kinases and transcription factor complex as 

type I IFNs, while type II IFN activates JAK1 and JAK2 kinases and uses a p-STAT1 dimer as 

the transcription factor (Schneider et al., 2014). Viruses have evolved several ways of interfering 

with the IFN-induced JAK-STAT pathway to sustain high levels of infection. The viral 

antagonizing strategies of the IFN signaling pathway fall into two major categories: inhibition of 

kinase activities and direct targeting of STAT1 and/or STAT2.  

1.3.2.1 The counteraction of the JAK-STAT pathway by non-flaviviruses 

Paramyxovirus V proteins antagonize the JAK-STAT pathway through several different 

mechanisms. Measles virus (MeV) V protein interacts with JAK1, which inhibits 

phosphorylation of STAT1 and STAT2 (Caignard et al., 2007). V proteins of particular 

paramyxoviruses (rubulaviruses) target STAT1 or STAT2 for proteasomal degradation. In 
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rubulavirus-infected cells, a V-degradation complex (VDC) is formed, which contains the V 

protein, STAT1, STAT2, and components of an E3 ubiquitin ligase complex. This VDC complex 

mediates the polyubiquitination of the STAT proteins that results in their degradation. Although 

both STAT1 and STAT2 are present in the VDC, only one of the two STAT proteins is 

degraded, and which one is degraded differs among the viruses (Parisien et al., 2001; Andrejeva 

et al., 2002; Hoffmann et al., 2015). Some other V proteins disrupt the JAK-STAT pathway by 

sequestering STAT1 and STAT2 in the cytoplasm, thus preventing their nuclear translocation 

and transcription factor function (Rodriguez et al., 2002; Rodriguez et al., 2003; Horvath, 2004). 

The non-structural C proteins of the paramyxovirus, Sendai virus (SeV), have been found to bind 

to STAT1 and STAT2 and interfere with STAT1 and STAT2 phosphorylation, while the C 

protein of another paramyxovirus, human parainfluenza virus type 1 (hPIV1), binds to 

phosphorylated STAT1 and sequesters it in cytoplasmic perinuclear aggregates (Komatsu et al., 

2002; Gotoh et al., 2003; Schomacker et al., 2012). Since STAT1 is involved in type I, II, III 

IFN signaling, and STAT2 is involved in type I and III IFN signaling, the inhibition of both 

STAT1 and STAT2 by paramyxovirus non-structural V and C proteins weakens type I, II, and III 

IFNs signaling. 

Another highly pathogenic virus, Ebola virus (EBOV), which belongs to the family 

Filoviridae, can also interfere with IFN signaling. The VP24 protein of EBOV interacts with the 

host karyopherin-α protein, which is a nuclear importer, and thus inhibits nuclear translocation of 

phosphorylated STAT1 by this importer (Reid et al., 2006; Reid et al., 2007). However, the 

VP24 protein of another highly pathogenic filovirus, Marburg virus (MARV), does not block 

STAT1 nuclear import. Instead, the MARV VP40 protein acts as an antagonist against IFN 
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signaling by preventing the function of JAK1 thus inhibiting the phosphorylation of STAT1 and 

STAT2 (Basler and Amarasinghe, 2009; Valmas et al., 2010; Valmas and Basler, 2011).  

1.3.2.2 The counteraction of the JAK-STAT pathway by flaviviruses 

1.3.2.2.1 Inhibition of JAK1 or TYK2 activity 

Non-structural protein NS4B of WNV is the antagonist that inhibits the activation of both 

JAK1 and TYK2 in human cells, thereby blocking STAT activation (Keller et al., 2006; Evans 

and Seeger, 2007). Both the DENV and YFV NS4B proteins function by blocking the activation 

of STAT1 (Munoz-Jordan et al., 2005). In cells infected by JEV, the viral NS5 protein blocks 

phosphorylation of TYK2 and STAT1 (Lin et al., 2006). WNV also blocks IFN signaling by 

upregulating the expression of suppressors of cytokine signaling 1 (SOC1) and SOC3 that blunt 

JAK1 activity. Another neuroinvasive flavivirus, TBEV, shares the same invasion strategy 

against IFN signaling (Mansfield et al., 2010). Furthermore, WNV-induced depletion of 

IFNAR1 dampens IFN signaling (Evans et al., 2011). 

1.3.2.2.2 Direct targeting of STAT1 and STAT2 

Flavivirus infections target STAT1 and STAT2 by directly blocking their 

phosphorylation or by sequestering these STAT proteins in the cytoplasm or by targeting STATs 

for degradation (Lin et al., 2006; Munoz-Jordan and Fredericksen, 2010). DENV NS5 targets 

human STAT2 for proteasomal degradation but does not interact with murine STAT2 (Ashour et 

al., 2010). In addition, ectopically expressed DENV NS5 binds to human STAT2, but not to 

TYK2 or STAT1 and inhibits the phosphorylation of STAT2 (Mazzon et al., 2009). JEV NS5 

blocks the phosphorylation of STAT1, thus inhibiting STAT1 nuclear translocation (Lin et al., 

2006). NS5 protein from WNV NY99 prevents the phosphorylation of STAT1 in human cells 

(Laurent-Rolle et al., 2010). WNV Eg101 NS5 protein blocks phosphorylation of STAT proteins 
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in primate cells, but in infected MEFs, STAT1 and STAT2 are phosphorylated, but their nuclear 

translocation is blocked by an unknown mechanism (Pulit-Penaloza et al., 2012b). WNV-

induced redistribution of cellular cholesterol was also shown to block STAT1 phosphorylation 

and nuclear translocation, thus dampening IFN signaling (Mackenzie et al., 2007). 

Studies of ZIKV from two different labs showed that ZIKV infection blocks the JAK-

STAT pathway in host cells. The ZIKV NS5 protein targets human STAT2, which causes its 

degradation, but it does not target mouse STAT2. This finding is similar to what was observed 

for DENV NS5. However, unlike DENV NS5, ZIKV NS5-mediated STAT2 degradation does 

not require the E3 ubiquitin ligase UBR4 (Grant et al., 2016). In A549 and human dendritic cells, 

ZIKV infection inhibits the phosphorylation of STAT1 and STAT2 but the mechanism was not 

studied (Bowen et al., 2017).  

1.3.3 Virus escape of ISG antiviral functions 

Although the functions of most of the ISGs are unknown, some proteins encoded by ISGs 

have direct antiviral functions, for example, viperin and Ifit1, while some ISG proteins have 

regulatory effects on the IFN system, for example, IRF3, IRF7, and STAT1. Viruses have 

evolved ways to escape the antiviral functions of particular ISGs. One well-characterized 

example is how viruses escape the antiviral function of Ifit1, which acts as a sensor of non-self 

RNA as well as an antiviral effector. Flaviviruses use their own enzymes to generate a 5′ cap on 

the viral genome to escape detection by Ifit1 as described previously. Alphavirus, which also has 

positive-sense single-stranded RNA genome but no cap 1 structure, use a particular secondary 

structure within the 5′ UTR of their genome RNA to alter Ifit1 binding and function, thereby 

avoiding inhibition by Ifit1 protein (Hyde et al., 2014).  
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GOAL OF THE DISSERTATION 

Although WNV has the ability to inhibit the IFN signaling pathway, efficient 

upregulation of a subset of ISGs, including Oas1a, Oas1b, and Irf7, was still observed in WNV-

infected cells and cells deficient in IFN signaling (Pulit-Penaloza et al., 2012b). However, it was 

not known which host cellular sensors were used to detect a WNV infection and signal the 

initiation of this IFN-independent ISG upregulation mechanism. It was also not known which 

transcription factors were involved in activating the ISGs or to which binding sites in the ISG 

promoters these TFs bound. The goals of this study were to increase understanding of this non-

canonical IFN-independent mechanism of ISG upregulation with studies designed to address the 

following aims.  

 

Aim 1. Analysis of the host cellular factors involved in the WNV-induced IFN-independent 

ISG upregulation mechanism. 

Aim 2. Functional analysis of the promoters of representative ISGs in WNV-infected MEFs 

that do not respond to IFN. 

The data obtained under Aims 1 and 2 are described in Chapter 2.  
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2 IDENTIFICATION OF HOST CELLULAR FACTORS AND TRANSCRIPTION 

FACTOR BINDING SITES INVOLVED IN A NON-CANONICAL INTERFERON-

STIMULATED GENE UPREGULATION MECHANISM 

2.1 Introduction 

In response to a virus infection, host cells produce type I IFNs that serve as the first line 

of antiviral defense. Secreted type I IFNs bind to their receptors, which are heterodimers of 

IFNAR1 and IFNAR2, located on the surfaces of both infected and adjacent uninfected cells. 

The binding of IFNs to their receptors activates the receptor-associated kinases inside the cells, 

which phosphorylate STAT1 and STAT2. The transcription factor complex ISGF3 composed of 

phosphorylated STAT1, phosphorylated STAT2 and interferon regulatory factor 9 (IRF9), forms 

and translocates into the nucleus, binds to the IFN-stimulated response element (ISRE) in the 

promoters of IFN-stimulated genes (ISGs) and activates ISG expression. The proteins encoded 

by hundreds of ISGs target different steps of virus replication cycles, and their actions establish 

an antiviral state. 

Viruses have evolved various ways of evading the host IFN response by targeting either 

IFN production or IFN signaling (Hoffmann et al., 2015; Gack and Diamond, 2016). In WNV-

infected host cells, the induction, expression, and secretion of type I IFN occur normally, but the 

canonical Janus tyrosine kinase (JAK)-STAT signaling pathway is blocked by the virus 

infection. However, the Brinton lab previously discovered a backup antiviral response 

characterized by the upregulation of a subset of ISGs when the canonical IFN-induced antiviral 

signaling is blocked in WNV-infected mouse embryo fibroblasts (MEFs) (Scherbik et al., 

2007b). This subset of ISGs includes Oas1a, Oas1b, and Irf7. Each of these ISGs has a known 

antiviral function. Oas1a, which is an enzymatically active synthetase, can synthesize 2′-5′ 
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oligoadenylates (2-5A) from ATP and 2-5A activates the latent endonuclease RNase L, leading 

to RNase L-mediated cellular and viral RNA degradation (Scherbik et al., 2006; Silverman, 

2007). Oas1b, which is an inactive synthetase, has antiviral activity that specifically targets 

members of the genus Flavivirus and is independent of the OAS/RNase L pathway (Scherbik et 

al., 2007a; Elbahesh et al., 2011). Irf7 is a “master regulator” that is an important regulator of the 

production of type I IFNs after virus infection (Honda et al., 2005). The IFN independence of the 

upregulation of a subset of ISGs was confirmed in WNV-infected Ifnar1-/- MEFs as well as in 

WNV-infected STAT1-/- MEFs and STAT2-/- MEFs (Pulit-Penaloza et al., 2012b). These 

results showed that the IFN-independent ISG upregulation mechanism still occurs in response to 

a WNV infection when canonical IFN-dependent signaling is blocked. However, the finding that 

the level of virus replication in Ifnar1-/- MEFs is higher than in wild-type MEFs indicates that 

the broader IFN-induced canonical ISG response provides a more robust antiviral response 

against WNV infection than the non-canonical upregulation of a subset of ISGs. Recent studies 

suggest that the IFN-independent ISG upregulation mechanism is not limited to WNV-infected 

MEFs. Influenza A virus was demonstrated to induce a set of ISGs in the absence of ISGF3 

activation, suggesting that an IFN-independent ISG upregulation mechanism exists in influenza 

A virus-infected cells (Schmid et al., 2010). A study screening over 380 ISGs for their antiviral 

functions in a transient gene overexpression system showed that some ISG proteins could trigger 

an antiviral program in human STAT1-/- fibroblasts (Schoggins et al., 2011). This result 

suggests that an IFN-independent ISG upregulation mechanism also exists in human cells. 

Although the IFN-independent ISG upregulation mechanism is a backup antiviral response, 

further study of this mechanism is expected to broaden knowledge of host antiviral mechanisms 

and to provide insights for future research in the host-virus interaction field.  
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Several recent studies suggest that some ISGs can be upregulated in response to a virus 

infection through pathways that are independent of the JAK-STAT signaling pathway 

(Kalvakolanu, 2003; Schmid et al., 2010; Schoggins et al., 2011). A hypothesized mechanism of 

alternative ISG upregulation is the activation of cell pathogen pattern receptors (PRRs) by viral 

components activates signaling pathways, ultimately leading to the activation of transcription 

factors and the induction of ISG expression. The cell cytosolic RNA sensors, RIG-I and MDA5, 

can detect a WNV infection (Suthar et al., 2013; Lazear and Diamond, 2015). Signaling from 

RIG-I or MDA5 is transduced through the downstream adaptor IPS-1. However, the Brinton lab 

previously showed that in cells with RIG-I or MDA5 knocked out, IFN-independent ISG 

upregulation still occurs (Pulit-Penaloza et al., 2012b). In contrast, when IPS-1 was knocked out, 

ISGs were upregulated at 8 h post infection with WNV, but the mRNA levels decreased 

progressively at later times, suggesting that IPS-1 is required for the IFN-independent 

mechanism at later times after WNV infection when the viral proteins have inhibited canonical 

IFN signaling (Pulit-Penaloza et al., 2012b). Transcription factors IRF3 or IRF7 can induce an 

IFN-like transcriptome response in the absence of type I IFN signaling (Schmid et al., 2010). 

However, IFN-independent ISG upregulation still occurred in WNV-infected IRF3-/-, IRF7-/- 

and IRF3/7-/- MEFs indicating that IRF3 and IRF7 are dispensable for the IFN-independent ISG 

upregulation mechanism (Pulit-Penaloza et al., 2012b). These results suggest that the alternative 

IFN-independent ISG upregulation mechanism is working through cell sensors, but how this 

mechanism regulates ISG expression is not fully understood.  

In the present study, Mx1 and Ifit1 were identified as additional members of the subset of 

ISGs that can be upregulated by WNV infection in an IFN-independent manner. The cellular 

cytosolic sensors, RIG-I and MDA5, were found to be redundantly involved in detection of 
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WNV infection that leads to the activation of the IFN-independent upregulation of ISGs. The 

transcription factors IRF3, IRF5, and IRF7, were redundantly involved in mediating the 

alternative upregulation of ISGs. A dual-luciferase assay system was established to map critical 

DNA regulatory elements in the promoters of ISGs upregulated by the IFN-independent ISG 

upregulation mechanism. By mapping the promoters of two representative ISGs, Ifit1 and Oas1b, 

the ISRE, which is the regulatory element that mediates ISG upregulation in the canonical JAK-

STAT pathway, was also found to be involved in mediating IFN-independent ISG upregulation 

after WNV infection in mouse cells by interacting with a new protein complex. This novel ISRE-

binding transcription factor complex appears to contain NF-κB components, IRF3, IRF5 or 

IRF7, and additional protein factors. The promoter regions flanking the ISRE also contribute to 

the regulation of ISG expression in the IFN-independent mechanism.   

2.2 Materials and methods 

2.2.1 Cells and viruses 

Primary IFNAR-/- (Ifnar1-/-), IRF1-/-, RIG-I/MDA5-/-, IRF5-/-, IRF3/5/7-/- and wild-

type C57BL/6 MEFs (provided by Michael Diamond, Washington University School of 

Medicine, St. Louis, MO) were cultured in high glucose Dulbecco’s modified Eagle’s medium 

(DMEM) supplemented with 10% fetal bovine serum (FBS), 1% L-glutamine, 1% non-essential 

amino acid (NEAA), and penicillin (100 U/ml)/streptomycin (100 µg/ml). Primary MEFs were 

used for experiments between passage 3 and passage 7. IFNAR-/- and wild-type C57BL/6 MEF 

cell lines transformed by the 3T3 protocol were grown in DMEM supplemented with 3% FBS, 

5% newborn bovine serum, 1% L-glutamine, and penicillin (100 U/ml)/streptomycin (100 

µg/ml). tSTAT1-/- and wild-type t129/SvEv MEF cell lines (provided by Karen Mossman, 

McMaster University, Hamilton, Ontario, Canada) were cultured in MEM supplemented with 
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10% FBS, 1% L-glutamine and penicillin (100 U/ml)/streptomycin (100 µg/ml). These cells 

were maintained at 37℃ in an incubator in a 5% CO2 atmosphere.  

A WNV Eg101 virus stock was prepared by infecting baby hamster kidney (BHK) cells 

at a multiplicity of infection (MOI) of 0.1 and harvesting culture fluid at about 40 hours post 

infection (hpi). The culture fluid was clarified by centrifugation at 2,000 rpm for 5 min, aliquoted 

and stored at -80℃. A stock of WNV W956IC was made by transfecting in vitro transcribed 

W956IC RNA into BHK cells (1 µg/2 × 106 cells) with the transfection reagent DMRIE-C 

according to the manufacturer’s protocol (Invitrogen) (Basu and Brinton, 2011). At 72 h after 

transfection, a time when BHK cells were rounded up but still attached, cell culture fluid was 

harvested, clarified, aliquoted and stored at -80℃. Virus titers were assessed by plaque assay on 

BHK monolayers as previously described (Emara et al., 2008).  

2.2.2 Extraction of total cell RNA and quantification of cellular mRNAs  

MEFs were cultured in 6-well plates and infected with WNV at the indicated MOI. At the 

indicated times, cell lysates were collected with TRI-reagent (Molecular Research Center), and 

total RNA was extracted following the manufacturer’s protocol. The purity and integrity of the 

RNA were determined using a NanoVue Plus spectrophotometer (GE Healthcare) (at A260/A280 

and A260/A230) and by RNA gel electrophoresis. One-step real-time quantitative (q) RT-PCR was 

performed using the TaqMan RNA-to-Ct 1-step Kit (ThermoFisher Scientific) for each target 

gene and the endogenous control gene in a singleplex format with 300 ng of total RNA. The 

following TaqMan gene expression assays (20 × primer and FAM/MGB probe mixes) were 

used: Mn00836412_m1 for Oas1a, Mn00449297_m1 for Oas1b, Mn00516793_m1 for Irf7, 

Mm00515153_m1 for Ifit1, Mm00487796_m1 for Mx1, Mm00488995_m1 for Mx2, 

Mm00491265_m1 for Rsad2 (Applied Biosystems). Glyceraldehyde-3-phosphate dehydrogenase 
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(GAPDH) mRNA was detected as an endogenous control for each sample with mouse GAPDH 

primers and probe (Applied Biosystems). The cycling reactions were run on an Applied 

Biosystems 7500-Fast Real-time PCR System with the following parameters: reverse 

transcription at 48°C for 15 min, AmpliTaq activation at 95°C for 10 min, denaturation at 95°C 

for 15 sec, and annealing/extension at 60°C for 1 min (cycle repeated 40 times). Each experiment 

was repeated at least twice and all samples were analyzed in triplicate. Triplicate threshold cycle 

(Ct) values were used to calculate comparative fold change for the expression of the targeted 

gene using the 2-∆∆Ct method provided by Applied Biosystems software. To estimate gene 

induction by WNV infection, the transcript level obtained for each gene was normalized to the 

GAPDH transcript level in the same sample and the relative fold change (RQU) was calculated 

over the 8 h mock-infected sample. For the type I IFN treatment samples, the RQU was 

calculated over the untreated sample value.  

2.2.3 Plasmid construction and site-directed mutagenesis 

2.2.3.1 Ifit1 promoter mapping constructs 

The mouse Ifit1 gene promoter region analyzed consisted of sequence 1,000 bp upstream 

and 66 bp downstream from the transcription start site (TSS). This region was amplified from 

C57BL/6 genomic DNA using primers designed based on the C57BL/6J mouse genomic 

sequence [(NCBI) Genbank ID: NC_000085.6]. The amplified PCR product was then cloned 

into a Topo vector (Invitrogen) and sequenced. After digesting the Topo vector DNA with SacI 

and HindIII, the insert fragment was subcloned into the Nanoluc (Nluc) luciferase reporter vector 

pNL4.17 to generate the (-1000, +66) reporter construct. Additional Ifit1 promoter truncation 

constructs were made using the Topo-Ifit1 promoter vector as a template and the primers listed 
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in Table 2-1. Each of the PCR products was digested with SacI and HindIII and then ligated into 

the Nluc luciferase reporter. All of the constructs were sequenced for verification. 
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Table 2.1 Primer sequences used for construction of Ifit1 promoter fragments of different lengths 

 Forward primers Reverse primers 

Ifit1-1000, +66 CTCAAGAGCTCTGAGCCCCACTGTCTGTAGTTCa CTCACAAGCTTGAACTCCTCAGAAACCTGCCTTb 

Ifit1 -700, +66 CTCAAGAGCTCCATGACTATGATTGGTGGAAAG CTCACAAGCTTGAACTCCTCAGAAACCTGCCTT 

Ifit1 -500, +66 CTCAAGAGCTCGACACACAACAAACCAGCTAG CTCACAAGCTTGAACTCCTCAGAAACCTGCCTT 

Ifit1 -350, +66 CTCAAGAGCTCGCTTGGAAGAAAGAACAACAC CTCACAAGCTTGAACTCCTCAGAAACCTGCCTT 

Ifit1 -192, +66 CTCAAGAGCTCTGTATCCGTTTCAGAGCCTTC CTCACAAGCTTGAACTCCTCAGAAACCTGCCTT 

Ifit1 -132, +66 CTCAAGAGCTCCCACAGTGCGTCTCCCTG CTCACAAGCTTGAACTCCTCAGAAACCTGCCTT 

Ifit1 -50, +66 CTCAAGAGCTCCTGACTGAAAAGAGCACACC CTCACAAGCTTGAACTCCTCAGAAACCTGCCTT 

a Underlined letters indicate the SacI restriction site included in all forward primers. 
b Underlined letters indicate the HindIII restriction site included in all reverse primers. 
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2.2.3.2 Oas1b promoter mapping constructs 

Six Oas1b truncation promoter constructs were previously made by inserting promoter 

fragments of various lengths into the pGL-4.17 firefly luciferase reporter plasmid DNA (Pulit-

Penaloza et al., 2012b). These constructs were modified by replacing the reporter gene with the 

Nluc luciferase gene using HindIII/BamHI sites. The Nluc gene was amplified from pNL1.1 

CMV-Nluc DNA with the forward primer 5′-GCCAAGCTTGGCAATCCG-3′ and the reverse 

primer 5′-CGACGGATCCTTATCG-3′ containing HindIII and BamHI restriction digest sites, 

respectively (the restriction sites are underlined in the primer sequences). A promoter-less Nluc 

luciferase reporter vector pNL-4.17 plasmid was also made using the same strategy for replacing 

the firefly luciferase gene in the pGL-4.17 plasmid with the Nluc luciferase gene. Additional 

Oas1b promoter fragments of different lengths were amplified by PCR with the primers listed in 

Table 2-2 using the longest Oas1b promoter construct as a template. Internal deletion fragments 

were made using a “double-joint PCR” strategy (Kim et al., 2009). For the fragment (-299/-202, 

-93/+50) that has an internal deletion, two sub fragments were amplified with the primer pairs (-

299,-202) and (-93, +50)-1 respectively in the first-round PCR with the longest Oas1b promoter 

construct used as a template, and then the two amplified sub fragments (ratio of 1:1) were fused 

together in a second-round PCR. The fused product was then amplified with the primer pair (-

299/-202, -93/+50) in the third-round PCR. The other fragment (-299/-144, -93/+50) was 

generated using the same strategy with primer pairs (-299, -144) and (-93, +50)-2 in the first-

round PCR and primer pair (-299/-144, -93/+50) in the third-round PCR. The amplified promoter 

fragments were next inserted into the pNL-4.17 plasmid at NheI/BglII sites. All of the constructs 

were sequenced for verification. 
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Table 2.2 Primer sequences used for construction of Oas1b promoter fragments of different lengths 

  Forward primer Reverse primer 

(-299, +50) CTAGCTAGCAGGAGATGGAAGCCGAGCTCa GAAGATCTCCTCTGCAGCCAGCAGb 

(-251, +50) CTAGCTAGCCCTGATTCCGTTTCCCTTC GAAGATCTCCTCTGCAGCCAGCAG 

(-134, +50) CTAGCTAGCCCTGGGCCGGATCTTAAG GAAGATCTCCTCTGCAGCCAGCAG 

(-93, +50) CTAGCTAGCGTACCTGTTCAGAAGCCCTAAC GAAGATCTCCTCTGCAGCCAGCAG 

(-54, +50) CTAGCTAGCCCTGGATGATTTGCATATC GAAGATCTCCTCTGCAGCCAGCAG 

(-28, +50) CTAGCTAGCTTCCCGGGAAATGGAAACTG GAAGATCTCCTCTGCAGCCAGCAG 

(-299, -202) CTAGCTAGCAGGAGATGGAAGCCG CAGGTACTACGTTTTAGGAACAATCTGTGc 

(-93, +50)-1 CTAAAACGTAGTACCTGTTCAGAAGCC GAAGATCTCCTCTGCAGCCAGCAG 

(-299/-202, -93/+50) CTAGCTAGCAGGAGATGGAAGCCG GAAGATCTCCTCTGCAGCCAGCAG 

(-299, -144) CTAGCTAGCAGGAGATGGAAGCCG GTAAGGAAACTGACCTGGCTTTCTCG 

(-93, +50)-2 GTTTCCTTACGTACCTGTTCAGAAGCC GAAGATCTCCTCTGCAGCCAGCAG 

(-299/-144, -93/+50) CTAGCTAGCAGGAGATGGAAGCCG GAAGATCTCCTCTGCAGCCAGCAG 

a Underlined letters indicate the NheI restriction site included in all forward primers. 
b Underlined letters indicate the BglII restriction site included in all reverse primers. 
c Double underlined letters indicate a linker sequence to connect the two sub fragments in the internal deletion promoter fragment. 
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2.2.3.3 Site-directed mutagenesis of ISREs  

The software tool MatInspector (Genomatix) was used to predict transcription factor 

binding sites (TFBSs) in the Oas1b and Ifit1 promoter fragment sequences, and two ISREs were 

identified in each gene promoter within 350 bp upstream of TSS. Specific mutations were 

introduced into each of the ISREs of the Oas1b promoter constructs (-251, +50) and (-93, +50), 

as well as into those of the Ifit1 promoter construct (-192, +66). Mutations were introduced using 

the primers listed in Table 2-3 and a QuickChange II Site Directed Mutagenesis Kit (Agilent 

Technologies) following the manufacturer’s protocol. The mutant construct sequences were 

analyzed with MatInspector to ensure that the substitutions disrupted the ISRE but did not create 

any new transcription factor binding sites. All of the constructs were verified by DNA 

sequencing.  

Table 2.3 Primer sequences used for ISRE motif mutation 

  Promoter sequence 

Oas1b mISRE1 Fa GTGCACGTAGAAGAAGGGTACCGGAATCAGGAAACCACAb 

 

R TGTGGTTTCCTGATTCCGGTACCCTTCTTCTACGTGCAC 

Oas1b mISRE2 F CAGAAATGGGACTTTCAGGTACCATTTCCCGGGAAGGGC 

 

R GCCCTTCCCGGGAAATGGTACCTGAAAGTCCCATTTCTG 

Ifit1 mISRE1 F GGATAAACTGCAGGCTTCAGGTACACTTTCCAGTCTCAGTTTC 

 

R GAAACTGAGACTGGAAAGTGTACCTGAAGCCTGCAGTTTATCC 

Ifit1 mISRE2 F GTACACTTTCCAGTCTCAGGTACAGTTTCTCACTGCTGACT 

 

R AGTCAGCAGTGAGAAACTGTACCTGAGACTGGAAAGTGTAC 

a F, forward primer; R, reverse primer. 
b Underlined letters indicate mutated nts. 

 

2.2.4 Transient transfection and dual luciferase assay 

In the study of mapping the promoters of Ifit1 and Oas1b, IFNAR-/- MEFs were seeded 

at 6 × 104 cells/well in 24-well plates. After 24 h, cells were mock-infected or infected with 

WNV W956 at a MOI of 3 and cultured with the antibiotic-free medium. At 3 hpi, 0.4 µg Oas1b 

or Ifit1 promoter Nluc luciferase construct DNA was co-transfected with 0.1 µg firefly luciferase 
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vector pGL 4.53 DNA (Promega) using Lipofectamine LTX with PLUS (Invitrogen) according 

to the manufacturer’s protocol. At 28 hpi, cells were harvested with 150 µl Passive Lysis Buffer 

(Promega) per well. The Nanoluc and firefly luciferase activities were measured separately with 

the Dual-Glo® luciferase assay system (Promega) according to the manufacturer’s protocol 

using a Victor 3 plate reader (Perkin Elmer). The Nanoluc luciferase activity was normalized to 

the firefly luciferase activity in each sample.  

In the study of investigating ISRE activation in an IFN-independent manner, a luciferase 

reporter containing three copies of the ISRE consensus sequence (Stratagene) was co-transfected 

with the pGL-TK Renilla luciferase reporter at a ratio of 20:1 using Lipofectamine LTX with 

PLUS (Invitrogen) into mock-infected and WNV-infected IFNAR-/- MEFs. Firefly and Renilla 

luciferase activities were measured with the Dual-Luciferase® reporter assay system (Promega) 

according to manufacturer’s protocol using the Victor 3 plate reader (Perkin Elmer). The firefly 

luciferase activity was normalized to the Renilla luciferase activity in each sample. 

2.2.5 Electrophoretic mobility shift assay (EMSA) and supershift assay 

IFNAR-/- MEFs were infected with WNV W956 at a MOI of 3 or mock-infected. At 21 

hpi, cells were lysed, and nuclear extracts were collected with a Nuclear Fraction Kit (Active 

Motif). The forward and reverse strands of the double-stranded Ifit1 oligonucleotide DNA 

probes listed in Table 2-4 were synthesized with a 3′-biotin label (Integrated DNA 

Technologies). After being reconstituted, 50 pmol of each strand were mixed with TE buffer and 

annealed using a thermocycler with the following parameters: 95°C for 5 min, 95°C (-1°C/cycle) 

for 1 min (cycle repeated 47 times), and held at 4°C. Annealed probes were aliquoted and stored 

at -20°C. The same probe without a 3′-biotin label was used for cold probe competition 

experiments. Nuclear extracts (3 µg) prepared from IFNAR-/- MEFs that were either mock- or 
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WNV-infected were incubated with 20 fmol of labeled DNA probe for 1 h at 22°C. The 20 µl 

binding reactions also included 50 ng/µl herring sperm DNA (non-specific nucleotide 

competitor), 2.5% glycerol and 0.05% NP-40. To ensure specific binding between the DNA 

probe and the proteins in the nuclear extract, 0.2 to 4 pmol of the unlabeled probe was added to 

the reaction for specific competition with the biotin-labeled probe. For supershift assays, nuclear 

extracts (3 µg) were incubated with 2 to 10 µg of anti-RelA antibody (Santa Cruz Biotechnology, 

Cat#sc-8008x) for 30 min at 4°C prior to adding the DNA probe into the reaction. After 

incubation for 1 h at 22°C, 5× loading buffer (ThermoFisher Scientific) was added and the 

samples were electrophoresed on a 6% native polyacrylamide gel (ThermoFisher Scientific). 

Electrophoresis was stopped when the front dye had migrated to about ¾ of the way to the 

bottom of the gel. The DNA-protein complexes that were separated on the native polyacrylamide 

gel were then transferred to a positively charged nylon membrane (GE Healthcare), where the 

labeled probe was detected using a Chemiluminescent Nucleic Acid Detection Kit 

(ThermoFisher Scientific) and a LAS4000 CCD camera with high-resolution increment 

exposure. For supershift assays, the band intensities were measured three times with different 

parameters for band detection and background removal using ImageQuant TL software.  
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Table 2.4 Ifit1 promoter probe sequences used for EMSA 

 Probe sequence 

FT66Fa 5′-GATGATAAACTGCAGGCTTCAGTTTCACTTTCCAGTCTCAGTTTCAGTTTCTCACTGCTGACTGAAAAG-3′ bio 

FT66Rb 5′-CTTTTCAGTCAGCAGTGAGAAACTGAAACTGAGACTGGAAAGTGAAACTGAAGCCTGCAGTTTATC-3′bio 

FTmutF 5′-GATGATAAACTGCAGGCTTCAGGTACACTTTCCAGTCTCAGGTACAGTTTCTCACTGCTGACTGAAAAG-3′ bioc 

FTmutR 5′-CTTTTCAGTCAGCAGTGAGAAACTGTACCTGAGACTGGAAAGTGTACCTGAAGCCTGCAGTTTATC-3′-bio 

a Forward strand. 
b Reverse strand. 

c Underlined letters indicate mutated nts. 
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2.2.6 Inhibition of the NF-κB pathway 

The NF-κB inhibitor, Caffeic Acid Phenethyl Ester (CAPE) (Santa Cruz Biotechnology), 

was dissolved in DMSO to make a 25 mg/ml stock solution. The effect of CAPE on the 

alternative ISG upregulation mechanism was assayed by the dual luciferase assay with the Ifit1 (-

192, +66) Nluc luciferase construct. CAPE was added to the cell culture medium to final 

concentrations of 3, 5, 10, or 15 µg/ml right after virus absorption, while 0.05% DMSO 

treatment was used as controls. Significant differences were determined with a one-way 

ANOVA with multi-comparisons to the DMSO treatment sample and Tukey’s post hoc test.  

2.2.7 Detection of proteins by Western blotting in nuclear fractions 

Nuclear and cytoplasmic extracts were prepared from IFNAR-/- MEFs using a Nuclear 

Fraction Kit (Active Motif) following the manufacturer’s protocol. The protein concentrations in 

these fractions were measured using a BCA assay (ThermoFisher Scientific). Equivalent 

amounts (45 µg) of nuclear and cytoplasmic samples were used for SDS-polyacrylamide gel 

electrophoresis (PAGE). The separated proteins were electrophoretically transferred to a 

nitrocellulose membrane. The membrane was blocked with Tris-buffered saline (TBS, pH 8) 

containing 5% nonfat dried milk or 5% bovine serum albumin (BSA) and 0.1% Tween-20 for 1 h 

at room temperature and then incubated with a primary antibody overnight at 4℃. The membrane 

was then incubated with anti-rabbit or anti-mouse antibody conjugated with horseradish 

peroxidase (HRP) (Cell Signaling Technology) for 1 h at room temperature, washed with TBS 

containing 0.1% Tween-20, and processed for chemiluminescence using a SuperSignal West 

Pico Substrate kit (Thermo Fisher Scientific). The primary antibodies used were: anti-alpha-

tubulin (Cell Signaling Technology, Cat#3873) and anti-Histone H3 (Cell Signaling Technology, 

Cat#4499), anti-p65 (RelA) (Santa Cruz Biotechnology, Cat#sc-8008x), anti-p50 (Cell Signaling 
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Technology, Cat#12540), anti-IRF3 (Cell Signaling Technology, Cat#4302), anti-IRF5 (Cell 

Signaling Technology, Cat#4950), and anti-IRF7 (Invitrogen, Cat#PA5-20280).  

 

2.3 Results 

2.3.1 Mx1 but not Mx2 expression is induced by WNV in an IFN-independent manner  

To identify additional ISGs in the subset that is induced by WNV infection in an IFN-

independent manner, the mRNA expression levels of ISGs with known antiviral functions were 

analyzed in WNV-infected IFNAR-/- MEFs. Mx proteins have been shown to have 

evolutionarily conserved antiviral activities towards several families of viruses, among which the 

majority studied were negative-strand RNA viruses. The expression of Mx genes is typically 

strictly dependent on type I and III IFNs (Verhelst et al., 2013). Two Mx proteins are encoded by 

the human (MxA and MxB) as well as the mouse (Mx1 and Mx2) genomes. Human MxA is a 

cytoplasmic protein. Polymorphisms in the human MxA gene have been associated with HCV 

infection outcomes (Knapp et al., 2003; Garcia-Alvarez et al., 2017). Mouse Mx1 localizes to 

the nucleus and inhibits viruses that replicate in the nucleus, such as influenza virus, whereas 

mouse Mx2 is cytoplasmic and protects against viruses that replicate in the cytoplasm, such as 

vesicular stomatitis virus (VSV) (Haller et al., 2007). Rsad2 (also known as cig5 and viperin) has 

antiviral activity against a wide variety of viruses (Helbig and Beard, 2014). Rsad2 has been 

shown to be induced by all three types of IFN, and its expression is tightly regulated by ISGF3 

(Severa et al., 2006). However, infection with another flavivirus, Japanese encephalitis virus 

(JEV), directly activates Rsad2 expression through activating the transcription factors IRF3 and 

AP-1 (Chan et al., 2008). The induction of Rsad2 in an IRF-3 dependent but an IFN-independent 

manner was observed in cells infected with an alphavirus, Chikungunya virus (CHIKV) (White 
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et al., 2011). Mice lacking Rsad2 showed increased mortality after WNV infection (Szretter et 

al., 2011).  

The mRNA expression levels of Mx1, Mx2, and Rsad2 were measured by real-time 

quantitative (q) RT-PCR in the total cellular RNA samples collected from WNV Eg101-infected 

IFNAR-/- MEFs. At 34 hpi, Mx1 was upregulated in WNV Eg101-infected IFNAR-/- MEFs. 

Neither Mx2 nor Rsad2, which are induced by IFN-β treatment in wild-type MEFs, were 

detected in the WNV-infected IFNAR-/- MEFs (Figure 2-1 A). The IFN-independent induction 

of Mx1 was next investigated in RNA samples of WNV Eg101-infected IFNAR-/- MEFs 

collected at different times after infection. Mx1 mRNA expression was induced by WNV Eg101 

infection of IFNAR-/- MEFs, and the peak transcript level was observed at 32 hpi (Figure 2-1 B). 

The kinetics of Mx1 upregulation were similar to those of the other ISGs in this subset after 

WNV Eg101 infection in IFNAR-/- MEFs (Pulit-Penaloza et al., 2012b). The data indicate that 

Mx1 is another member in the subset of ISGs that can be induced by WNV in an IFN-

independent manner. The data also confirmed that only a subset of ISGs could be induced by the 

alternative mechanism. 

The human MxA and mouse Mx1 proteins have antiviral activity against negative-strand 

RNA viruses but are not very effective in inhibiting flaviviruses. The cytoplasmic human MxA 

protein was reported to sequester WNV capsid protein that was ectopically expressed from a 

vector, but this potential inhibitory effect on replication was not observed in the context of a 

virus infection (Hoenen et al., 2014). Constitutive expression of murine Mx1 protein protects 

against influenza virus infection but not WNV infection in mice (Moritoh et al., 2009).  
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Figure 2.1 Mx1, but not Mx2 and Rsad2, is upregulated in an IFN-independent manner. 

Primary IFNAR-/- MEFs and wild-type C57BL/6 MEFs were mock-infected or infected 

with WNV Eg101 at a MOI of 5 for the indicated times, or treated with IFN-β (1000 U/ml) for 3 

h. (A) Mx1, Mx2 and Rsad2 mRNA levels were measured by real-time qRT-PCR in cellular 

RNA samples from mock- or WNV-infected IFNAR-/- MEFs collected at 34 hpi or from 

control- or IFN-treated wild-type C57BL/6 MEFs (positive control). (B) The Mx1 mRNA levels 

in IFNAR-/- or wild-type MEFs at different times after WNV infection were analyzed by real-

time qRT-PCR. The transcript level of each gene was normalized to the GAPDH transcript level 
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in the same sample and is shown as the relative fold change over the amount in 34 h mock-

infected samples. For the IFN-treated sample, the relative fold change was calculated over the 

amount in an untreated MEF sample. Each sample was assayed in triplicate, and representative 

data from one of three independent experiments are shown. The error bars represent standard 

deviation (SD). CN, untreated control. Iβ, IFN-β treatment.  

 

2.3.2 Ifit1 is an additional ISG in the subset that is induced by WNV infection in an IFN-

independent manner  

IFIT proteins (interferon-induced proteins with tetratricopeptide repeats) are known to be 

induced by type I or type III IFN treatment or viral infection. IFIT proteins have no known 

enzymatic activities but inhibit virus transcription and translation in host cells (Fensterl and Sen, 

2015). The Ifit1 gene is conserved among mammals. Cytoplasmic Ifit1 protein recognizes non-

self RNA structures, such as 2′-O unmethylated RNA and 5′-ppp RNA and acts as an effector 

molecule to suppress viral translation (Pichlmair et al., 2011; Diamond, 2014). To escape the 

antiviral function of Ifit1, flaviviruses have evolved their own capping machinery to modify the 

5′ end of the viral RNA in the same way that host mRNA is modified. A WNV with a mutation 

inhibiting the viral 2′-O-methyltransferase activity showed reduced pathogenesis in wild-type 

mice due to the action of the Ifit1 protein (Szretter et al., 2012).  

To determine whether Ifit1 can be induced by WNV infection in an IFN-independent 

manner, the transcript level of Ifit1 was assayed in WNV Eg101-infected MEFs by real-time 

qRT-PCR. After WNV infection, Ifit1 was highly induced in primary wild-type C57BL/6 MEFs 

as well as in IFNAR-/- MEFs (Figure 2-2 A). The data indicate that Ifit1 can be induced by 

WNV infection in an IFN-independent manner as well as in an IFN-dependent manner. IFN-

independent induction of Ifit1 was also observed in WNV-infected tSTAT1-/- MEFs, which lack 

a fundamental component of the JAK-STAT signaling pathway. The tSTAT1-/- MEFs and 

control wild-type t129 MEFs used were transformed cell lines. As expected, Ifit1 gene 
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expression was induced by WNV infection in both wild-type t129 and tSTAT1-/- MEFs (Figure 

2-2 B). The data indicate that Ifit1 is also a member of the subset of ISGs that are induced by 

WNV infection by an IFN-independent mechanism.  

 

Figure 2.2 Ifit1 is upregulated in an IFN-independent manner by WNV infection. 

Ifit1 mRNA expression was measured by qRT-PCR in WNV Eg101-infected (MOI of 5) 

(A) primary IFNAR-/- MEFs and (B) transformed STAT1-/- MEFs. MEFs were mock-infected 

or infected with WNV strain Eg101 at the indicated times post infection, or treated with IFN-β 

(1000 U/ml) for 3 h. The Ifit1 transcript level was normalized to the transcript level of GAPDH 

in the same sample and is shown as the relative fold change over the amount in the 8 h mock-

infected samples. Each sample was assayed in triplicate, and representative data from one of 

three independent experiments are shown. The error bars represent SD. CN, control. Iβ, IFN-β 

treatment. 
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2.3.3 Comparison of the alternative ISG upregulation mechanism induced by WNV Eg101 

and WNV W956IC 

WNV Eg101 was used in the initial study that discovered the IFN-independent 

upregulation of ISGs after WNV infection (Pulit-Penaloza et al., 2012b). W956IC (referred as 

W956 hereafter) is an engineered chimeric WNV. The majority of the W956 genome is from the 

lineage II WNV strain B956, with the 1,496 nts from the 3′ end from the lineage I WNV strain 

Eg101 (Yamshchikov et al., 2001). Compared to the natural virus strain Eg101, the chimeric 

virus produces higher levels of “unprotected” viral RNA at early times after infection, which 

activate the cellular RNA sensors inducing elevated levels of IFN-β. Because more RNA 

replication than genome translation is occurring at early times after infection, fewer viral proteins 

that inhibit the canonical IFN signaling are produced. Consequently, W956-infected cells rapidly 

produce high levels of ISGs that reduce the yield of W956 virus in type I IFN-competent cells 

(Scherbik et al., 2013). Therefore, it was hypothesized that a WNV W956 infection would 

induce the IFN-independent expression of ISGs to a higher level than a WNV Eg101 infection. 

To test this hypothesis, the extent of upregulation of some representative ISGs induced by 

the IFN-independent mechanism by these two WNVs was compared. IFNAR-/- MEFs, which do 

not have canonical IFN signaling, were infected with WNV W956 or WNV Eg101 at a MOI of 

5. Total cellular RNA samples were collected from W956-infected cells at 8, 16, 24, 32 and 48 

hpi. Total cellular RNAs were only collected at 8, 24 and 32 hpi after WNV Eg101 infection 

because this was a repeat of previously published data.  

Oas1a, Oas1b, and IRF7 mRNA expression level were analyzed by real-time qRT-PCR. 

In response to WNV Eg101 infection, the transcription of Oas1a and Oas1b mRNA increased 

since 8 hpi and reached a peak level of more than a 1000-fold change at 32 hpi in IFNAR-/- 
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MEFs (Figure 2-3 A and B). Irf7 was induced by only about 100 fold at 32 hpi after WNV 

Eg101 infection of IFNAR-/- MEFs (Figure 2-3 C). The WNV Eg101 data obtained are 

consistent with previously published data (Pulit-Penaloza et al., 2012b).  

In WNV W956-infected IFNAR-/- MEFs, high levels of Oas1a, Oas1b, and Irf7 

expression levels were observed by 16 hpi, which were similar to the levels reached by 32 hpi in 

WNV Eg101-infected cells. Although the expression levels of Oas1a and Oas1b progressively 

decreased with time after infection starting at 24 hpi, the Irf7 levels did not decline (Figure 2-3 D 

to F). These data demonstrate that WNV W956 induces more robust IFN-independent expression 

of the subset of ISGs at early times after virus infection than WNV Eg101, which is likely due to 

the strong activation of the cellular RNA sensors by the high levels of “unprotected” viral RNA 

produced at early times in WNV W956-infected cells.  
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Figure 2.3 WNV W956 induces the alternative mechanism of ISG expression to a higher level 

than WNV Eg101 at early times after infection. 

Transformed (3T3) IFNAR-/- and wild-type C57B/6 MEFs were infected with WNV 

Eg101 or WNV W956 at a MOI of 5, and total cellular RNA was collected at the indicated times 
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after infection. The mRNA expression levels of Oas1a, Oas1b, and Irf7 were measured by real-

time qRT-PCR in WNV Eg101-infected MEFs (A to C) and WNV W956-infected MEFs (D to 

F). The transcript level of each gene was normalized to the GAPDH transcript level in the same 

sample and is shown as relative fold change over the amount in the 8 h mock-infected samples. 

Each sample was assayed in triplicate. Representative data from one of three independent 

experiments are shown. The error bars represent SD.  

 

To compare the yields produced by WNV Eg101 and WNV W956 in IFN-incompetent 

MEFs, IFNAR-/- MEFs were infected (MOI of 1), and the extracellular virus titers were 

measured by plaque assay. At 12 hpi, WNV W956-infected IFNAR-/- MEFs produced 10 times 

more virus than the WNV Eg101-infected cells. The virus yields were similar at 24 hpi and after 

that were slightly lower from the W956-infected cells (Figure 2-4). The observation that higher 

yields of W956 are produced at an early time after infection but not at later times was similar to 

what was observed in BHK cells, which also have a defective IFN system (Scherbik et al., 2013). 

Overall, these data suggest that in W956-infected IFN-incompetent cells, the “unprotected” viral 

RNA produced at early times after infection (around 12 h) rapidly activates IFN-independent 

antiviral signaling.  
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Figure 2.4 Comparison of virus production by WNV Eg101 and W956 virus infections in IFNAR-

/- MEFs. 

Confluent monolayers of 3T3-transformed IFNAR-/- MEFs were infected with WNV 

Eg101 or WNV W956 at a MOI of 1. At the indicated times after infection, culture fluids were 

collected, and infectivity was determined by plaque assay. The values are averages of duplicate 

titrations of each sample from two independent biological repeats. The error bars represent SD 

(n=4).   

 

2.3.4 The alternative ISG upregulation mechanism is activated by viral RNA sensor RIG-I 

or MDA5 

The RLR family of cytosolic sensors, RIG-I and MDA5, are both essential for the 

induction of IFN expression and control pathogenesis after a WNV infection (Errett et al., 2013). 

After viral RNA binds to RIG-I or MDA5, signaling is transduced through the adaptor molecule 

IPS-1 to activate downstream signaling leading to the induction of IFN-β gene expression. In 

WNV-infected cells, the expression and secretion of type I IFN are normal, but signaling induced 
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by secreted IFN binding to its cell surface receptor is blocked by viral nonstructural proteins. A 

previous study in the Brinton lab showed that in MEFs lacking IPS-1, the IFN-independent 

subset of ISGs is upregulated at 8 hpi but is progressively decreased thereafter (Pulit-Penaloza et 

al., 2012b). These data suggest that IPS-1 is involved in regulating this subset of ISGs in the 

IFN-independent manner. IPS-1 is the downstream adaptor molecule of RIG-I and MDA5. In 

MEFs lacking either RIG-I or MDA5, the alternative ISG upregulation mechanism was still 

observed in WNV Eg101-infected MEFs (Pulit-Penaloza et al., 2012b). However, the lack of 

RIG-I resulted in a slight reduction in gene upregulation levels (Pulit-Penaloza et al., 2012b). It 

was not known whether RIG-I and MDA5 redundantly sense WNV RNA or whether viral RNA 

was detected by a different cell sensor during the induction of the IFN-independent upregulation 

of ISGs. Toll-like receptor 3 (TLR3), TLR7, and TLR8 have been shown to be involved in 

sensing a WNV infection (Gack and Diamond, 2016). The cyclic GAMP-AMP synthase (cGAS), 

which senses DNA, was shown to be activated by both a WNV and a dengue virus (another 

flavivirus) infection. cGAS signaling is transduced through stimulator of interferon genes 

(STING) which can associate with IPS-1 (Ishikawa et al., 2009; Kell and Gale, 2015).  

The characteristic of producing high levels of early viral RNAs that activate the cell 

sensors makes WNV W956 a better virus than WNV Eg101 for studying the involvement of cell 

sensors in the IFN-independent mechanism. MEFs lacking both RIG-I and MDA5 were used to 

determine whether RIG-I and MDA5 function redundantly in sensing viral RNA during the 

initiation of IFN-independent upregulation of ISGs. RIG-I-/-/MDA5-/- MEFs were infected with 

WNV W956 at a MOI of 5 to ensure that all of the cells were infected and total cellular RNA 

was harvested at the indicated times. ISG transcripts levels were assayed by real-time qRT-PCR. 

In WNV W956-infected RIG-I-/-/MDA5-/- MEFs, Oas1a, Irf7, and Ifit1 were not upregulated 
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after virus infection (Figure 2-5 A, C and D). Although a low-level induction of Oas1b was 

detected after virus infection, the level was not significantly higher than that in the 24 h mock-

infected sample (Figure 2-5 B). Because the previously published data on IFN-independent ISGs 

in RIG-I-/- and MDA5-/- MEFs were obtained using WNV Eg101 (Pulit-Penaloza et al., 2012b), 

the RIG-I-/-/MDA5-/- MEFs were also infected with WNV Eg101. A similar decrease in the 

upregulation of the IFN-independent ISGs was observed in WNV Eg101-infected RIG-I-/-

/MDA5-/- MEFs (data not shown) as with WNV W956 infection. The data indicate that either 

RIG-I or MDA5 can activate the IFN-independent antiviral mechanism. 
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Figure 2.5 At least one of the cytosolic sensors, RIG-I and MDA5, is needed for the induction of 

the IFN-independent mechanism. 

Primary RIG-I-/-/MDA5-/- MEFs and wild-type C57BL/6 MEFs were mock-infected or 

infected with WNV W956 at a MOI of 5. The mRNA expression levels of (A) Oas1a, (B) Oas1b, 

(C) Irf7, and (D) Ifit1 were measured by real-time qRT-PCR in total cellular RNA samples 
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collected at the indicated hpi. The transcript level of each gene was normalized to the GAPDH 

transcript level in the same sample and is shown as relative fold change over the amount in the 8 

h mock-infected samples. Each sample was assayed in triplicate, and representative data from 

one of three independent experiments are shown. The error bars represent SD.  

 

2.3.5 Analysis of the involvement of IRF family transcription factors in the upregulation of 

the IFN-independent subset of ISGs by a WNV infection 

IRF family members were initially identified as transcription factors for genes in the type 

I IFN pathway. There are nine well-conserved members in the mammalian IRF family: IRF1, 

IRF2, IRF3, IRF4, IRF5, IRF6, IRF7, IRF8, and IRF9 (also known as ISGF3γ) (Taniguchi et al., 

2001). All of the IRF proteins have a helix-turn-helix DNA-binding motif (Ikushima et al., 

2013). The DNA binding site for all of the IRFs is called the IRF-binding element (IRF-E), and 

its consensus sequence is 5′-AANNGAAANNGAAA-3′ (Paun and Pitha, 2007). However, each 

IRF protein processes slightly different DNA binding specificities within the IRF-E consensus 

sequence (Schmid et al., 2010).  

IRF9 is expressed in a variety of tissues and is essential for the antiviral response induced 

by type I IFN signaling because it is the DNA-binding subunit of the transcription factor 

complex ISGF3 (Taniguchi et al., 2001). In a previous study in the Brinton lab, Oas1a and Oas1b 

were shown to be upregulated in WNV-infected IRF3-/- MEFs but not in IRF3/9-/- MEFs, 

suggesting the possibility that IRF9 is involved in the upregulation of ISGs by the IFN-

independent mechanism (Pulit-Penaloza et al., 2012b). To analyze the role of IRF9 in 

upregulating the expression of Oas1a, Oas1b, and Irf7 by an IFN-independent mechanism, the 

transcript levels of these genes were analyzed in primary IRF9-/- MEFs at various times after 

WNV infection. Oas1a, Oas1b and Irf7 were all induced in WNV-infected IRF9-/- MEFs (Figure 
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2-6). The data indicate that IRF9 is not required for the upregulation of these ISGs in WNV-

infected MEFs and that the IRF3/9-/- MEFs likely had an additional defect(s).   

 

Figure 2.6 The IFN-independent subset of ISGs is upregulated in IRF9-/- MEFs after WNV 

infection. 

Primary IRF9-/- MEFs were mock-infected or infected with WNV Eg101 at a MOI of 5. 

Cells incubated with IFN-β (1000 U/ml) for 3 h were used as a control. The mRNA expression 

levels of Oas1a, Oas1b, and Irf7 were measured by real-time qRT-PCR in cellular RNA samples 

collected at the indicated hpi. The transcript level of each gene was normalized to the GAPDH 

transcript level in the same sample and is shown as relative fold change over the amount in the 8 

h mock-infected samples. The level of Oas1a in 8 h mock-infected sample was too low to be 

detected, so the amount in 16 h WNV-infected samples was used to calculate relative fold 

change. Each sample was assayed in triplicate. Representative data from one of three 

independent experiments are shown. The error bars represent SD.  
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IRF1, the first discovered member of the IRF family, was shown to induce the expression 

of many ISGs in the absence of IFN (Pine, 1992). The overexpression of IRF1 in human STAT1-

/- MEFs was subsequently shown to transcriptionally activate a subset of ISGs without inducing 

the expression of IFN (Schoggins et al., 2011). The role of IRF1 in upregulating the expression 

of the subset of ISGs activated in an IFN-independent manner by a WNV infection was next 

analyzed. Primary IRF1-/- MEFs and matched wild-type MEFs were infected with WNV W956 

at a MOI of 5, and total cellular RNA was collected at the indicated times. The transcript levels 

of Oas1a, Oas1b, Irf7, and Ifit1 were measured by real-time qRT-PCR. Each of these four genes 

was efficiently upregulated in IRF1-/- and control cells by both IFN-β and WNV infection 

(Figure 2-8 A to D). The data suggest that IRF1 alone is not required for the upregulation of the 

subset of IFN-independent ISGs in WNV-infected MEFs.  
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Figure 2.7 The IFN-independent subset of ISGs is upregulated in IRF1-/- MEFsafter WNV 

infection. 

Primary IRF1-/- MEFs and the wild-type C57BL/6 MEFs were mock-infected or infected 

with WNV W956 at a MOI of 5. Cells treated with IFN-β were used as positive controls. The 
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mRNA expression levels of (A) Oas1a, (B) Oas1b, (C) Irf7, and (D) Ifit1 were measured by real-

time qRT-PCR in cellular RNA samples collected at the indicated hpi. The transcript level for 

each gene was normalized to the GAPDH transcript level in the same sample and is shown as 

relative fold change over the amount in the 8 h mock-infected samples. The relative fold change 

after IFN-β treatment was calculated over the amount in untreated cells. Each sample was 

assayed in triplicate. Representative data from one of three independent experiments are shown. 

The error bars represent SD. CN, untreated control. Iβ, IFN-β treatment. 

 

IRF5 is involved in the signaling pathway downstream of the RIG-I/MDA5-IPS-1 

pathway for type I IFN production (Ikushima et al., 2013). IRF5 has been reported to be 

involved in the upregulation of some ISGs as well as in IFN-β gene induction after WNV 

infection in dendritic cells (Lazear et al., 2013). In WNV-infected mice, IRF5 provided 

protection through shaping the early innate immune response, which includes controlling the 

type I IFN response and regulating the expression of other cytokines and chemokines (Thackray 

et al., 2014). The role of IRF5 in upregulating the IFN-independent subset of ISGs was analyzed 

in WNV-infected MEFs. Primary IRF5-/- MEFs and matched wild-type MEFs were infected 

with WNV W956 at a MOI of 5, and total cellular RNA samples were collected at the indicated 

times. The transcript levels of Oas1a, Oas1b, Irf7, and Ifit1 were assayed by real-time qRT-PCR. 

All four genes were efficiently upregulated in IRF5-/- and control MEFs by both IFN-β and 

WNV infection (Figure 2-9 A to D). The data suggest that the IFN-independent subset of ISGs 

can be upregulated by WNV infection when IRF5 is absent.  
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Figure 2.8 The IFN-independent subset of ISGs is upregulated in IRF5-/- MEFs after WNV 

infection. 

Primary IRF5-/- MEFs and wild-type C57BL/6 MEFs were mock-infected or infected 

with WNV W956 at a MOI of 5. Cells treated with IFN-β for 3 h were used as a positive control. 

The mRNA expression levels of (A) Oas1a, (B) Oas1b, (C) Irf7, and (D) Ifit1 were measured by 

real-time qRT-PCR in total cellular RNA samples collected at the indicated times after infection. 

The transcript level for each gene was normalized to the GAPDH transcript level in the same 

sample and is shown as relative fold change over the amount in the 8 h mock-infected samples. 
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The relative fold change after IFN-β treatment is calculated over the amount in control treatment. 

Each sample was assayed in triplicate. Representative data from one of three independent 

experiments are shown. The error bars represent SD. CN, untreated. Iβ, IFN-β treatment. 

 

Among all the IRF family members, IRF3 and IRF7 are closely related to each other with 

respect to their amino acid sequences. Both IRF3 and IRF7 have an N-terminal DNA binding 

domain and some phosphorylation sites in the C-terminal region (Taniguchi et al., 2001). IRF3 is 

constitutively expressed and located in the cytoplasm as a latent form. IRF7 is induced by type I 

IFNs and further regulates the expression of IFN-β. Phosphorylation is required for nuclear 

translocation and transcription factor activities of IRF3 and IRF7 (Honda and Taniguchi, 2006). 

Previous data from the Brinton lab showed that Oas1a, Oas1b, and Irf7 are still upregulated in 

WNV-infected IRF3-/-, IRF7-/- and IRF3/7-/- MEFs (Pulit-Penaloza et al., 2012b). A 

comparative study of WNV-infected IRF3/7-/- and IRF3/5/7-/- dendritic cells suggested that 

IRF5, IRF3 and IRF7 are responsible for the induction of IFN-β and some ISGs after virus 

infection (Lazear et al., 2013).  

The induction of Oas1a, Oas1b, and Ifit1 was analyzed in WNV-infected IRF3/5/7-/- 

MEFs. These cells were infected with WNV Eg101 at a MOI of 5 for consistency with the 

previous study in IRF3/7-/- MEFs. Oas1a, Oas1b, and Ifit1 mRNA expression levels were 

induced by IFN-β treatment in the IRF3/5/7-/- MEFs. However, the induction of each of the 

three genes by WNV infection was less than 10 fold by 8 hpi, and the induction decreased with 

time (Figure 2-10 A to C). Expression of the IFN-β gene was not induced by WNV infection in 

these cells, confirming that the IRF3/5/7-/- MEFs do not produce IFN-β in response to WNV 

infection (Lazear et al., 2013) (Figure 2-10 D). The data suggest that IRF3, IRF5, or IRF7 can 

function as transcription factors in the IFN-independent ISG upregulation by WNV infection, 

and that they are functionally redundant.  
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Figure 2.9 IRF3, IRF5, and IRF7 each can function in regulating the IFN-independent 

mechanism. 

Primary IRF3/5/7-/- MEFs and wild-type C57BL/6 MEFs were mock-infected or infected 

with WNV Eg101 at a MOI of 5. Cells incubated with IFN-β (1000 U/ml) for 3 h were used as 
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positive controls. The mRNA expression levels of (A) Oas1a, (B) Oas1b, (C) Ifit1, and (D) Ifnb1 

were measured by real time qRT-PCR in total cellular RNA samples collected at the indicated 

times after infection. The transcript level for each gene was normalized to the GAPDH transcript 

level in the same sample and is shown as relative fold change over the amount in the 8 h mock-

infected samples. The relative fold change after IFN-β treatment was calculated over the amount 

in untreated cells. Each sample was assayed in triplicate. Representative data from one of three 

independent experiments are shown. The error bars represent SD. CN, untreated control. Iβ, IFN-

β treatment. 

 

 

Ifit1 gene expression was previously reported to be upregulated through the transcription 

factor IRF3 after activation of cell sensors by viral or bacterial components (Fensterl and Sen, 

2011). To determine whether the IFN-independent upregulation of Ifit1 in WNV-infected cells is 

IRF3-dependent as previously reported, Ifit1 mRNA expression levels in WNV-infected IRF3-/- 

MEFs were analyzed by real-time qRT-PCR. Ifit1 was upregulated in both IRF3-/- and control 

MEFs after infection with either WNV W956 or WNV Eg101. However, the induction by WNV 

W956 reached a higher level at an earlier time after infection (Figure 2-11). The data 

demonstrate that IRF3 alone does not control the IFN-independent upregulation of Ifit1 after 

WNV infection.  
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Figure 2.10 Ifit1 is induced by WNV infection in an IRF3-independent manner in MEFs. 

Primary IRF3-/- and wild-type C57BL/6 MEFs were mock-infected or infected with 

WNV W956 or WNV Eg101 at a MOI of 3 for indicated hpi. Ifit1 mRNA expression was 

assessed by real-time qRT-PCR. The Ifit1 transcript level was normalized to the transcript level 

of GAPDH in the same sample and is shown as relative fold change over the amount in the 18 h 

mock-infected samples. Each sample was assayed in triplicate. Shown data are representative of 

three independent biological repeats. Error bars represent SD.  

 

2.3.6 Mapping alternative response elements in the Ifit1 promoter  

As an alternative method for predicting putative transcription factors involved in the IFN-

independent ISG upregulation mechanism, functionally important transcription factor binding 

site (TFBS) regions in the promoters of representative ISGs were mapped. TFBSs are typically 6 

to 12 bp in length, while the promoter of a gene is typically more than 1000 bp in length. 
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Therefore, serially truncated promoter fragments were used for the initial mapping studies using 

a dual luciferase assay system.   

Because of its high level of induction in WNV-infected cells by the IFN-independent 

mechanism, the Ifit1 gene promoter was chosen for mapping. The longest Ifit1 promoter 

fragment containing 1000 bp upstream and 66 bp downstream of the transcription start site (TSS) 

was first cloned into the Nluc luciferase reporter vector pNL4.17. IFNAR-/- MEFs were mock-

infected or infected with WNV W956 at a MOI of 3. At 3 hpi, cells were co-transfected with 

Ifit1 promoter Nluc luciferase construct DNA and a firefly luciferase vector DNA. Cell extracts 

were harvested at 28 h after infection (25 h after transfection) and assayed for luciferase activity. 

Basal luciferase activity, which was well distinguished from the background, was detected for 

the longest Ifit1 (-1000, +66) construct in mock-infected cells. In WNV-infected cells, this 

construct showed a significant increase in promoter activity, indicating that the promoter was 

activated by the virus infection (Figure 2-11 A). A set of 5′ sequentially truncated Ifit1 promoter 

fragments was next cloned into the Nluc luciferase reporter construct and assayed by the dual 

luciferase assay system. Similar basal activities in mock-infected cells were detected for all of 

the 5′ truncated promoters except the shortest Ifit1 promoter fragment (-50, +66), which had 

lower basal activity (Figure 2-11 A). The lower activity of fragment (-50, +66) suggested that the 

region from -132 to -50 contains elements that enhance basal Ifit1 expression. After WNV 

infection, the promoter activities of all of the Ifit1 promoter constructs were highly induced. 

Among them, expression from the longest promoter fragment Ifit1 (-1000, +66) was induced 

more than 10 fold after the infection. The sequential 5′ truncation constructs Ifit1 (-700, +66) and 

Ifit1 (-500, +66) showed decreased luciferase activity compared to Ifit1 (-1000, +66), suggesting 

that the region from -1000 to -500 contains enhancers (Figure 2-11 A). However, the promoter 
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activities of Ifit1 (-350, +66) and (-192, +66) were higher than that of Ifit1 (-500, +66), 

indicating that the region from -500 to -192 negatively regulates the promoter activity after virus 

infection through repressors contained in this region. The promoter activity of Ifit1 (-132, +66) 

was about 65% of that of Ifit1 (-192, +66), suggesting that the region from -192 to -132 contains 

enhancers. Comparison of the promoter activities of Ifit1 (-132, +66) and Ifit1 (-50, +66) showed 

that the deletion of the promoter region from -132 to -50 decreased the promoter activity by 

about 95%, suggesting that some very strong enhancers are contained in this region (Figure 2-11 

A). The mapping data suggest that within the Ifit1 promoter, the regions from -1000 to -500, and 

from -192 to -50 contain enhancers while the region from -500 to -192 contains repressors 

(Figure 2-11 B). The promoter activity of the Ifit1 (-192, +66) construct corresponded to about 

80% of the promoter activity of the longest Ifit1 promoter construct, which contains both an 

enhancer region (A1) and a repressor region in the region from -1000 to -192 (Figure 2-11 A), 

suggesting that the enhancer A1 region can overcome the repressor effects in regulating Ifit1 

gene expression after WNV infection.  

The ISRE is the TFBS to which the transcription factor complex ISGF3, which is 

composed of p-STAT1, p-STAT2, and IRF9, binds during the canonical JAK-STAT pathway in 

response to secreted type I IFNs binding to their cell surface receptors. There are three ISREs on 

the Ifit1 promoter. One ISRE is located in the enhancer A1 region between -700 and -500. The 

Ifit1 (-700, +66) construct, which contains this ISRE, showed higher luciferase activity than Ifit1 

(-500, +66) construct that does not contain this ISRE (Figure 2-11 A). The other two ISREs on 

the Ifit1 promoter are located in the enhancer region between -132 and -50. Both of the promoter 

fragments Ifit1 (-192, +66) and Ifit1 (-132, +66), which contain the two ISREs, showed much 

higher promoter activities than the Ifit1 (-50, +66) fragment, which does not contain any ISRE 
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(Figure 2-11 A). The promoter mapping results suggested the possibility that the ISRE may 

contribute to the increased promoter activity. However, although both promoter fragments Ifit1 (-

192, +66) and Ifit1 (-132, +66) contain two ISREs, the lower promoter activity of Ifit1 (-132, 

+66) compared to that of (-192, +66) suggests that additional elements in the region from -192 to 

-132 are also involved in upregulating the induction of Ifit1 gene expression in WNV-infected 

IFNAR-/- MEFs (Figure 2-11 A).  

 

Figure 2.11 Mapping the mouse Ifit1 gene promoter regions that are activated after WNV 

infection by the IFN-independent mechanism. 

Reporter vectors containing Ifit1 promoter fragments of different lengths were 

constructed. (A) Diagram of the promoter fragments tested (left side) and their luciferase 

activities (right side). Arrows indicate the position of the TSS. The upstream distances to the 

TSS are indicated. All promoter fragments terminate 66 bp downstream of the TSS. Transformed 

(3T3) IFNAR-/- MEFs were mock-infected or infected with WNV W956 at a MOI of 3. At 3 

hpi, cells were co-transfected with a Nluc luciferase reporter construct DNA and firefly 
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luciferase vector pGL4.53 DNA (transfection control) in triplicate. At 28 hpi, cell lysates were 

prepared, and luciferase activity was measured. The Nluc luciferase activity was normalized to 

the firefly luciferase activity for each sample. Error bars represent SD. Significant differences 

were determined with a two-way ANOVA with multi-comparisons across the activities of 

promoters of different lengths and Tukey’s post hoc test (*, p<0.05). (B) Diagram of the 

regulatory regions of the Ifit1 promoter during an IFN-independent response. The upstream 

distances to the TSS are indicated. A, enhancer. R, repressor.  

 

2.3.7 Mapping alternative response elements in the Oas1b promoter 

The promoter of mouse Oas1b was also mapped to locate cis-acting elements that 

respond to IFN-independent signaling in WNV-infected cells using the dual luciferase assay 

system. An Oas1b promoter fragment that contained 802 bp upstream and 50 bp downstream of 

the TSS was cloned into the Nluc luciferase vector pNL4.17. A set of 5′ sequentially truncated 

Oas1b promoter constructs was then made. IFNAR-/- MEFs were mock-infected or infected with 

WNV W956 at a MOI of 3, and then co-transfected with each Oas1b promoter Nluc luciferase 

construct DNA and a firefly luciferase vector DNA at 3 hpi. Cell extracts were harvested at 28 

hpi (25 h after transfection), and luciferase activity was assayed. The basal activities of the 

Oas1b constructs were slightly higher and more variable than those found for the Ifit1 promoter 

constructs, with only the Oas1b (-54, +50) and Oas1b (-28, +50) constructs showing lower basal 

activities that were still well distinguished from background. The construct Oas1b (-299, +50) 

produced a higher basal activity than the other constructs that contained either longer or shorter 

Oas1b promoter fragments. The observation that the basal activity of Oas1b (-28, +50) was 30-

fold lower than that of Oas1b (-299, +50) suggested that the region between -299 and -28 

contains elements that enhance basal Oas1b expression in IFNAR-/- MEFs (Figure 2-12 A). All 

of the Oas1b promoter constructs were activated by WNV infection with more than a 3-fold 

induction. The construct Oas1b (-802, +50) showed higher promoter activity than the constructs 

Oas1b (-742, +50) and Oas1b (-576, +50), suggesting that in Oas1b promoter, the region from -
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802 to -576 contains enhancers (Figure 2-12 A). The observation that the promoter activity of 

Oas1b (-507, +50) was higher than that of Oas1b (-576, +50) suggested that the region between -

576 and -507 contains repressors. The observed decrease in promoter activity between Oas1b (-

507, +50) and Oas1b (-394, +50) was subtle and demonstrated no statistical significance, but the 

deletion of the region from -394 to -299 significantly increased promoter activity as indicated by 

the promoter activities of constructs Oas1b (-394, +50) and Oas1b (-299, +50), suggesting the 

region between -394 to -299 contains repressors. Moreover, the promoter activity of Oas1b (-

576, +50) was lower than that of Oas1b (-299, +50), indicating that the region between -576 and 

-299 contains multiple strong negative regulatory elements (Figure 2-12 A). The construct Oas1b 

(-299, +50) demonstrated the highest WNV-induced promoter activities among all the Oas1b 

promoter constructs. Multiple 5′ deletions in the region from -299 to -28 decreased the promoter 

activity, suggesting that this region contains enhancers (Figure 2-12 A). The mapping data 

suggest that within the Oas1b promoter, the regions from -802 to -576, and from -299 to -28 

contain enhancers while the region from -576 to -299 contains repressors (Figure 2-12 C).  

The construct Oas1b (-299, +50) showed higher promoter activity than that of the longest 

promoter construct Oas1b (-802, +50), suggesting that the promoter region in the Oas1b (-299, 

+50) construct contains all of the key elements needed for IFN-independent upregulation of 

Oas1b after WNV infection. This region was further mapped using constructs with additional 5′ 

deletions or internal deletions. Comparison of the promoter activities of Oas1b (-299, +50), 

Oas1b (-251, +50) and Oas1b (-181, +50) demonstrated that deletion of the region between -251 

and -181 significantly decreased promoter activity. In addition, each sequential 5′ deletion of the 

region from -134 to -28 dramatically decreased the promoter activity as demonstrated by the 

activities of the Oas1b (-134, +50), Oas1b (-93, +50) and Oas1b (-28, +50) fragments. However, 
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the deletion of the region from -181 to -134 increased promoter activity as shown by constructs 

Oas1b (-181, +50) and Oas1b (-134, +50). The data suggest that even in the enhancer region 

from -299 to -28, there is still a subregion containing repressors. However, the repressors cannot 

overcome the effect of enhancers in the adjacent subregions (Figure 2-12 B). Comparison of the 

luciferase activities of the two constructs with internal deletions, Oas1b (-299/-202, -93/+50) and 

(-299/-144, -93/+50), showed that adding the piece of promoter from -202 to -144 decreased 

promoter activity, confirming the existence of repressor elements in the -181 to -144 region 

(Figure 2-12 B). The mapping data suggest that in Oas1b promoter, the regions from -802 to -

576, from -299 to -181, and from -134 to -28 contain enhancers while the regions from -576 to -

299, and from -181 to -134 contain repressors (Figure 2-13 C). The results indicate that the 

regulation of the Oas1b promoter is more complicated than that of the Ifit1 promoter in WNV-

infected IFNAR-/- MEFs.  

There are two ISREs in the Oas1b promoter. When the 5′ ISRE was deleted in the Oas1b 

promoter [compare fragments (-251, +50) and (-181, +50)], the promoter activity decreased by 

one-third (Figure 2-12 B), suggesting that this ISRE plays an important role in regulating the 

IFN-independent induction of Oas1b by WNV infection. Although the shortest Oas1b promoter 

(-28, +50) contains the 3′ ISRE, it had very low luciferase activity (Figure 2-12 B). The 

sequential 5′ deletions from -134 to -28 dramatically decreased the promoter activity, suggesting 

the possibility that enhancers in this region may cooperatively regulate Oas1b gene promoter 

activation with the 3′ ISRE in WNV-infected IFNAR-/- MEFs. 
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Figure 2.12 Mapping the mouse Oas1b gene promoter regions activated after WNV infection by 

the IFN-independent mechanism. 

Reporter constructs containing Oas1b promoter fragments of different lengths were 

constructed. (A, B) Diagram of the promoter fragments tested (left side) and their luciferase 

activities (right side). Arrows indicate the TSS. The upstream distances to the TSS are indicated. 

All promoter fragments terminate 50 bp downstream of the TSS. Transformed (3T3) IFNAR-/- 



 

 

76 

MEFs were mock-infected or infected with WNV W956 at a MOI of 3. At 3 hpi, cells were co-

transfected with a Nluc luciferase reporter construct DNA and firefly luciferase vector pGL4.53 

DNA (transfection control) in triplicate. At 28 hpi, cell lysates were prepared, and luciferase 

activity was measured. The Nluc luciferase activity was normalized to firefly luciferase activity 

for each sample. Error bars represent SD. Significant differences were determined with a two-

way ANOVA with multi-comparisons across the activities of promoters of different lengths and 

Tukey’s post hoc test (*, p<0.05). (C) Diagram of the regulatory regions of the Oas1b promoter. 

The numbers indicate locations upstream of the TSS. A, enhancer. R, repressor.  

 

2.3.8 ISRE motifs in the Ifit1 and Oas1b promoters are involved in the alternative gene 

upregulation mechanism 

The mapping data obtained for the Oas1b and Ifit1 promoters suggest the involvement of 

an ISRE in regulating the non-canonical ISG upregulation mechanism. The consensus sequence 

of the ISRE is 5′A/GNGAAANNGAAACT3′, where the 3′ GAAA (underlined) is the core 

binding site (Darnell et al., 1994). Both the Ifit1 promoter (Figure 2-11 A) and the Oas1b 

promoter (Figure 2-12 A and B) contain two ISREs within 350bp upstream of TSS. In the Ifit1 

promoter, the two sites are located in the region between -132 and -50 and are separated by 19 

nts. In the Oas1b promoter, one ISRE is located between -251 and -181 while the other is 

between -28 and TSS (206 nts apart). Each of the ISREs in the Oas1b and Ifit1 promoters was 

individually mutated to change the core binding consensus from GAAA to GTAC. The mutated 

sequence was analyzed using MatInspector software to confirm that the ISREs had been 

eliminated and no new TFBSs had been created. The promoter activity of each mutated construct 

was analyzed. 

The ISREs were mutated in the Ifit1 (-192, +66) construct. Mutation of either ISRE in the 

Ifit1 promoter decreased the luciferase activity by more than 80% (Figure 2-13 A). When both of 

the ISREs were mutated, the promoter activity was almost completely abolished (Figure 2-13 A). 

These results suggest that both ISREs contribute to the non-canonical expression of Ifit1 by 

WNV infection, and they are not redundant.  
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Because the two ISREs are not close to each other in the Oas1b promoter, the ISREs 

were separately mutated in two constructs, Oas1b (-251, +50) containing both sites and Oas1b (-

93, +50) containing only the 3′ ISRE. Mutation of the ISRE in the Oas1b (-93, +50) construct 

decreased promoter activity by ~68% (Figure 2-13 B). Mutation of either ISRE in the Oas1b (-

251, +50) construct significantly decreased promoter activity, with mutation of the 3′ ISRE 

having a greater negative effect. When both of the Oas1b ISREs were mutated, the promoter 

activity was similar to that observed when only the 3′ ISRE was mutated (Figure 2-13 B). These 

data indicate that the ISREs play a key role in mediating the non-canonical upregulation of 

Oas1b in WNV-infected cells, and that the 3′ ISRE has a more important role than the 5′ one. 

However, the data also indicate that the ISREs are not the only sites involved in IFN-independent 

gene regulation in this promoter. Comparison of the Oas1b (-299, +50) and Oas1b (-299/-202, -

93/+50) constructs showed that even when both ISREs were present, deletion of the enhancer 

region between -202 and -93 decreased the promoter activity by more than 50% (Figure 2-13 B).  
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Figure 2.13 Effect of ISRE on the IFN-independent activities of the Ifit1 and Oas1b promoters. 

The ISREs in (A) Ifit1 and (B) Oas1b promoter fragments were mutated in reporter 

constructs as indicated on the left side of the diagram. Transformed (3T3) IFNAR-/- MEFs were 

mock-infected or infected with WNV W956 at a MOI of 3. At 3 hpi, cells were co-transfected in 

triplicate with one of the mutant ISRE Nluc luciferase reporter constructs and the firefly 

luciferase vector pGL4.53 as a transfection control. Cell lysates were prepared at 28 hpi and 

luciferase activity was measured. Experiments with each construct were repeated three times. 

The Nluc luciferase activity was normalized to the firefly luciferase activity for each construct 

sample. Values are mean with SD of a representative experiment from three biological repeats. 

The significant differences between each sample were determined with two-way ANOVA with 

Tukey’s post hoc test (*, p<0.05).  
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2.3.9 ISREs can be activated in an IFN-independent manner 

To further confirm that an ISRE can be activated in an IFN-independent manner, the 

effect of a WNV infection on the activation of an ISRE luciferase reporter (pISRE-luc) 

containing three copies of the ISRE consensus sequence was assessed. IFNAR-/- MEFs were 

mock-infected or infected with WNV W956 at a MOI of 3. At 3 hpi, cells were co-transfected 

with pISRE-luc and pTK-Rluc (transfection control) construct DNA. The luciferase activity of 

the ISRE reporter was induced more than 3-fold by WNV infection (Figure 2-14). The data 

confirm that ISREs can be activated in an IFN-independent manner in WNV-infected cells.  

 

Figure 2.14 Activation of the expression of an ISRE reporter in an IFN-independent manner by 

WNV infection. 

Transformed (3T3) IFNAR-/- MEFs were mock-infected or infected with WNV W956 

for 3 h at a MOI of 3 and at 3 hpi, were co-transfected with a 3x ISRE-luc reporter construct 

DNA and pGL-TK reporter DNA (transfection control) in triplicate. At 28 hpi, cells were lysed, 

and luciferase activity was measured. Values are mean with SD of a representative experiment 

from three biological repeats. The statistical significance was evaluated by a student’s t-test with 

p<0.01.  

 

2.3.10 Detection of protein complexes binding to the ISREs of Ifit1 promoter by 

electrophoretic mobility shift (EMSA)  

An EMSA was used to directly investigate whether nuclear proteins in WNV-infected 

IFNAR-/- cells can bind to the ISREs of an Ifit1 promoter fragment. The DNA probe consisted 

of the Ifit1 promoter region from -103 to -38, which contains two ISREs, was labeled at the 3′ 
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end with biotin. Nuclear extracts were prepared as described in Materials and Methods from 

mock-infected or WNV W956-infected (MOI of 3) IFNAR-/- MEFs harvested at 21 hpi. The 

probe was incubated with the nuclear extracts for 1 h, and then the reaction mixtures were 

subjected to native PAGE. Two complexes were detected in the mock-infected nuclear extracts 

(Figure 2-15, lane 1) while three complexes were detected in the WNV-infected nuclear extracts 

(Figure 2-15, lane 7). The unique complex (Complex III) detected in the WNV samples migrated 

slower than the other two complexes (Complex II and Complex I) that were detected in all of the 

samples. When the unlabeled probe was titrated into the binding reactions, the Complex III band 

decreased in intensity in a dose dependent manner in the WNV-infected nuclear extracts and 

both the Complex II and Complex I band densities decreased in mock-infected and WNV-

infected samples (Figure 2-15, lane 2 to 5, lane 8 to 11). A probe that contained both ISRE core 

sequences mutated from GAAA into GTAC was also tested by EMSA. Complex III was not 

detected by the mutant probe in the WNV-infected nuclear extract. The formation of Complex I 

was detected in both mock-infected and WNV-infected nuclear extracts with the mutant probe, 

but Complex II was not detected in neither mock-infected nor WNV-infected nuclear extracts by 

the mutant probe. However, an increase of a large slower migrating complex (Complex M) was 

observed with the mutant probe in both the mock-infected and WNV-infected nuclear extracts 

(Figure 2-15, lane 6 and lane 12). These data indicate that the ISREs are required for the 

formation of Complex III in WNV-infected extracts. The formation of Complex II decreased 

with increasing concentrations of the unlabeled wild-type probe and did not form with the mutant 

probe (Figure 2-15), suggesting that some cell protein(s) in both infected and uninfected cell 

nuclear extracts can bind to the ISREs. Complex I formation decreased with increasing 

concentrations of unlabeled probe, but was still detected with the ISREs mutant probe, indicating 
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that nuclear proteins can also bind to other regions of the probe and do not require protein-DNA 

complexes binding at the ISREs to facilitate their binding.  

 
Figure 2.15 Cell proteins in WNV-infected IFNAR-/- MEF nuclear extracts bind to promoter 

ISRE motifs.  

Transformed (3T3) IFNAR-/- MEFs were mock-infected or infected with WNV W956 at 

a MOI of 3, and at 21 hpi, nuclear extracts were prepared. Nuclear extracts (3 µg) were 

incubated with biotin-labeled oligonucleotide probes for 1 h at 22°C. The lanes are numbered 

below the gel. In lanes 1 to 5 and 8 to 11, a 3′ biotinylated Ifit1 probe that contained two ISREs 

and corresponded to the Ifit1 promoter region from -103 to -38 was used. In lanes 2 to 5 and 8 to 

11, increasing concentrations of unlabeled probe was added to the reactions. The excess of the 

unlabeled probe over labeled probe is indicated. In lanes 6 and 12, labeled probe containing 

mutant ISREs was used. The reactions were electrophoresed on native 6% polyacrylamide gels. 

The migration positions of the free probe and protein-DNA complexes are indicated by arrows. 

The red asterisk indicates the specific complex formed only with the probe containing wild-type 

ISREs in WNV-infected nuclear extracts. A representative blot from four independent 

experiments is shown.  

 

2.3.11 One or more NF-κB transcription factors bind to the Ifit1 promoter in IFN-

independent ISG upregulation mechanism  

During canonical IFN signaling, in response to type I IFN binding to its cell surface 

receptor, the transcription factor complex ISGF3, which is composed of STAT1, STAT2, and 
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IRF9, assembles, translocates to the nucleus and binds to the ISREs in ISG promoters resulting 

in upregulation of their expression. However, WNV infection blocks the nuclear translocation of 

this complex. Therefore, the proteins found to be binding to the ISRE in WNV-infected, IFNAR-

/- extracts are not components of the ISGF3 complex. A recent publication reported that IRF5 

could bind to a DNA consensus that is similar to that of the ISRE when assisted by NF-κB RelA 

(Saliba et al., 2014). The binding of IRF3 to an ISRE after TLR4 activation also requires that 

RelA forms a complex with IRF3 (Wietek et al., 2003). It was hypothesized that NF-κB RelA is 

involved in the WNV-induced IFN-independent ISG upregulation mechanism by facilitating the 

binding of other transcription factors to the ISRE.  

The NF-κB family of transcription factors contains five members in mammals: RelA 

(p65), RelB, c-Rel, NF-κB1 (p105) and NF-κB2 (p100). p105 and p100 are processed into p50 

and p52, respectively (Hayden and Ghosh, 2011). In the canonical NF-κB pathway, when 

cytoplasmic IκBα is phosphorylated, it dissociates from the RelA/p50 heterodimer. The 

RelA/p50 heterodimer then translocates to the nucleus and binds to NF-κB sites in gene 

promoters (Oeckinghaus et al., 2011). An NF-κB inhibitor, caffeic acid phenethyl ester (CAPE), 

inhibits the nuclear translocation of the RelA/p50 complex and suppresses its binding to DNA 

(Natarajan et al., 1996). The exact mechanism by which CAPE inhibits NF-κB activation is not 

clear. The observation that the inhibitory effect of CAPE can be reversed by reducing agents 

suggested that a critical sulfhydryl group in NF-κB complex may be modified by CAPE 

(Natarajan et al., 1996). As an initial means of studying the possible involvement of NF-κB RelA 

in the IFN-independent ISG upregulation mechanism, the effect of CAPE on IFN-independent 

Ifit1 promoter activity was investigated. IFNAR-/- MEFs were mock-infected or infected with 

WNV W956 at a MOI of 3. Different concentrations of CAPE were added to the culture medium 
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immediately after virus absorption. At 3 hpi, cells were co-transfected with Ifit1 (-192, +66) 

Nluc luciferase reporter DNA and pGL 4.53 firefly luciferase reporter DNA (transfection 

control). At 29 hpi, cells were lysed and luciferase activities were measured. CAPE inhibited the 

upregulation of Ifit1 promoter activity by WNV infection in the IFNAR-/- MEFs in a dose-

dependent manner (Figure 2-16 A). These data suggested that NF-κB plays a role in the 

alternative ISG upregulation mechanism.  

The effect of CAPE on DNA binding complex formation detected by EMSA was next 

analyzed. Different concentrations of CAPE were first added to nuclear extracts from mock-

infected or WNV W956-infected MEFs, and incubated at 37°C for 30 min. A 3′ biotinylated Ifit1 

promoter -103 to -38 region probe was then added to the binding mixtures, and after incubation 

at 22°C for another 1 h, the complexes formed were analyzed by EMSA. Treatment with CAPE 

reduced the formation of Complexes I and II in the mock-infected nuclear extracts and of 

Complexes I, II and III in the WNV-infected nuclear extracts in a dose dependent manner 

(Figure 2-16 B). The data suggest that an NF-κB subunit is involved in each of the three 

complexes detected. The formation of Complex II and Complex III, which did not form when an 

ISRE mutant probe was used (Figure 2-15), was reduced by the treatment with CAPE (lane 2 to 

5, 8 to 11) (Figure 2-16 B). However, the formation of Complex I, which still formed when an 

ISRE mutant probe was used (Figure 2-15), was also reduced after the treatment with CAPE 

(lane 2 to 5, 8 to 11) (Figure 2-16 B). The data suggest that NF-κB subunits are present in protein 

complexes that bind to the ISRE and to ISRE flanking sequences in mock-infected cells as well 

as WNV-infected cells. NF-κB subunits also facilitate the upregulation of ISG expression in an 

IFN-independent manner in WNV-infected cells.  
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Figure 2.16 An NF-κB transcription factor is involved in regulating the non-canonical ISG 

upregulation mechanism. 

(A) Transformed (3T3) IFNAR-/- MEFs were mock-infected or infected with WNV 

W956 at a MOI of 3. The NF-κB inhibitor CAPE was added to the culture medium immediately 

after the virus absorption period. At 3 hpi, cells were co-transfected with Ifit1 (-192, +66) 

promoter reporter DNA and pGL 4.53 reporter DNA (transfection control) in triplicate. At 29 

hpi, cells were lysed, and reporter luciferase activities were measured. The plotted values are the 
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mean with SD from one representative experiment of three biological repeats. Significant 

differences were determined with a one-way ANOVA with multi-comparisons to the data for the 

DMSO treatment sample and Tukey’s post hoc test (****, p<0.0001). (B) Different 

concentrations of CAPE were added to the nuclear extract in the binding reaction and incubated 

at 37°C for 30 min. A 3′ biotinylated Ifit1 promoter -103 to -38 region probe was then added. 

After incubation for 1 h at 22°C, the DNA-protein complexes were analyzed by EMSA. The data 

shown are representative of one of two independent repeats.  

 

As an additional means of determining if NF-κB RelA is a component of Complex III, a 

supershift assay was performed. Different amounts of an anti-RelA antibody were added to the 

nuclear extracts and after incubation on ice for 30 min, the 3′ biotinylated Ifit1 promoter -103 to -

38 region probe was added, and the binding reactions were incubated at 22°C for 1 h. The DNA-

protein complexes were separated by native PAGE. A slight decrease in the intensity of the 

Complex III band was observed when 5 μl of the anti-RelA antibody was added, but lower 

concentrations of antibody did not cause a detectable decrease in band density (lane 9) (Figure 2-

17 A). Quantification of the Complex III band intensities confirmed that there was a statistically 

significant decrease in the intensity of the Complex III band after incubation with 5 µl anti-RelA 

antibody compared to the antibody buffer control (Figure 2-17 B). These data suggest that RelA 

is one of the components of Complex III. The lack of detection of a supershift band may be 

because of prevention of RelA from binding to the complex due to interaction with the antibody.  
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Figure 2.17 NF-κB RelA may be a component of Complex III. 

(A) Transformed (3T3) IFNAR-/- MEFs were infected with WNV W956 at a MOI of 3. 

At 21 hpi, nuclear extracts were prepared and incubated with the indicated amounts of anti-RelA 

antibody, antibody buffer (PBS plus Azide) or rabbit IgG for 30 min on ice. The wild-type 

biotin-labeled DNA probe was then added. After incubation for 1 h at 22°C, the DNA-protein 

complexes were analyzed by EMSA. Arrows indicate the protein-DNA complexes formed. The 
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red asterisk indicates Complex III that forms only with infected nuclear extracts when the wild-

type ISREs are present in the probe. (B) Densitometric quantification of the Complex III bands 

in the gel shown in panel A. 

 

2.3.12 An IRF protein may interact with NF-κB RelA at ISREs to regulate the IFN-

independent ISG upregulation mechanism 

The interaction of NF-κB family members with other heterologous transcription factors 

occurs either through direct interaction or by the different transcription factor occupying 

neighboring sites on a gene promoter (Oeckinghaus et al., 2011). Transcription factors 

previously shown to synergistically interact with NF-κB include Sp1, AP-1, STAT3 and 

CCAAT/enhancer-binding protein beta (CEBP/β) (Oeckinghaus et al., 2011). RelA and IRF3 

form a stable complex that can bind to an ISRE in response to TLR4 but not TLR3 activation 

(Wietek et al., 2003). IRF5 can form a complex with RelA, which is required for IRF5-mediated 

regulation of tumor necrosis factor (TNF) gene expression at an NF-κB promoter site in dendritic 

cells (Krausgruber et al., 2010). In macrophages, IRF5 and RelA form a complex that binds to an 

ISRE-like DNA consensus sequence and regulates the expression of inflammatory genes, 

including Il-1a, Il-6, and Tnf (Saliba et al., 2014). The sequences of IRF-binding elements (IRF-

E) in gene promoters share a high degree of homology with the ISRE (Schmid et al., 2010). In 

WNV-infected IRF3/5/7-/- MEFs, the level of the IFN-independent ISG response was reduced, 

and the ISG induction was not sustained. The data suggest the possibility that IRF3, IRF5, and 

IRF7 may be redundantly involved in the IFN-independent mechanism with any one of these 

three IRFs being able to function in this role (Figure 2-9).  

To directly compare the differences in the proteasome in nuclei of infected and 

uninfected cells, nuclear extracts of IRFAR-/- MEFs that were mock-infected or infected with 

W956 at a MOI of 3 were prepared at 23 hpi following the protocol described in the Materials 
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and Methods. Total amounts of protein in the nuclear extracts were measured with a BCA assay 

(ThermoFisher Scientific). Approximately 11 µg of each nuclear extract protein sample was 

loaded onto one lane of a 12% NuPAGE Bis-Tris gel, which was electrophoresed with NuPAGE 

MOPS SDS buffer (Life Technologies). The electrophoresis was stopped when the samples 

migrated ~0.5 cm into the gel. The protein gel was then stained with a colloidal blue staining kit 

(Life Technologies) and shipped to the Wistar Institute Proteomics and Metabolomics Facility 

(Philadelphia, PA) for MassSpec analysis. The proteins in the mock or WNV infection nuclear 

extracts on the gel were excised as a single band and digested with trypsin. The tryptic peptides 

were then analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) on a Q 

Exactive Plus mass spectrometer (ThermoFisher Scientific). Peptide sequences were identified 

using MaxQuant 1.5.2.8 (Ref: PMID 19029910). MS/MS spectra were searched against a 

UniProt Mus musculus (September 2016) database. The detected mouse nuclear proteins were 

quantified based on the identified peptides using the intensity-based absolute quantification 

(iBAQ) method and normalized using the MaxLFQ algorithm to take into account differences in 

sample loading (Schwanhausser et al., 2011; Cox et al., 2014). WNV-induced protein fold 

change was calculated over mock-infected protein level based on the LFQ intensity of each 

protein. STAT1 and STAT2 proteins, which are components of the transcription factor complex 

in the canonical JAK-STAT pathway, were not detected by MassSpec in the nuclear extracts of 

WNV-infected IFNAR-/- MEFs. This observation is consistent with previous data showing 

blockage of STAT protein nuclear translocation in WNV-infected cells (Pulit-Penaloza et al., 

2012b). The levels of RelA in the nucleus were found to be upregulated by WNV infection by 4-

fold, but neither p50 nor the IRF1, 3, 5 or 7 proteins were detected in the nucleus or cytoplasm 

by the MassSpec analysis.  
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Western blotting of the same nuclear extracts used for EMSA shown in Figure 2-15 was 

used as an alternative method for analyzing whether the levels of the NF-κB components (p50 

and RelA) as well as IRF3, IRF5, and IRF7 increased in the nucleus after WNV infection in 

IFNAR-/- MEFs. An increase in the nuclear levels of RelA and p50 was observed after WNV 

infection (Figure 2-18). The data confirm activation of the NF-κB pathway by WNV-infection. 

The levels of the IRF3, IRF5 and IRF7 proteins were higher in the nucleus than in the cytoplasm 

in mock-infected cells, and the levels of these proteins in the nucleus increased in the nuclei of 

IFNAR-/- MEFs after WNV-infection (Figure 2-18). The data indicate that the observed 

increased nuclear location of the NF-κB and IRF proteins after WNV infection is independent of 

IFN signaling.  

 

Figure 2.18 The levels of RelA, p50, IRF3, IRF5 and IRF7 proteins increase in the nucleus of 

WNV-infected IFNAR-/- MEFs. 

The same nuclear extracts used in the EMSA (Figure 2-15) were analyzed by Western 

blotting together with an equivalent amount protein of the corresponding cytoplasmic extracts, 

which were collected from mock- or WNV-infected IFNAR-/- MEFs (3T3-transformed) at 21 

hpi. Protein samples (45 µg) were separated in 10% and 15% SDS-PAGE gel. After transfer, the 

proteins on the membrane were detected with corresponding antibodies.  
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2.4 Discussion 

2.4.1 Cell sensors involved in the alternative ISG upregulation mechanism 

After WNV infection, multiple cell sensors, including RIG-I, MDA5, TLR3, TLR7, 

TLR8, and DNA sensor cGAS, are activated by viral pathogen-associated molecular patterns 

(PAMPs), thus leading to the induction of type I IFN (Suthar et al., 2013; Gack and Diamond, 

2016). Among these sensors, RIG-I and MDA5 are considered necessary for detection of a WNV 

infection and have nonredundant roles (Errett et al., 2013). This conclusion was reached from 

data obtained in studies performed with cells that have a functional IFN-dependent innate 

immune system. Data obtained in the present study showed that only basal expression of ISGs 

was observed in WNV-infected RIG-I-/-/MDA5-/- MEFs at early and late times after infection, 

indicating that either RIG-I or MDA5 sensing is also required to initiate the WNV-induced IFN-

independent ISG upregulation mechanism. The data also suggest that other cell sensors are not 

required for the alternative antiviral mechanism in WNV-infected cells. The previously reported 

data showing that the IFN-independent ISG upregulation mechanism is also reduced in WNV-

infected IPS-1-/- MEFs (Pulit-Penaloza et al., 2012b), confirmed the essential role of RIG-I and 

MDA5 in detecting WNV infection and IPS-1 in mediating downstream signaling in both the 

IFN-dependent and IFN-independent ISG upregulation mechanisms. 

The RIG-I-/-/MDA5-/- MEFs and IPS-1-/- MEFs do not produce type I IFN after WNV 

infection (Pulit-Penaloza et al., 2012b; Errett et al., 2013), providing a “clean system” for 

studying the effect of these factors on the IFN-independent antiviral mechanism. However, the 

kinetics of ISG induction in these two types of MEFs after WNV infection differed. In cells 

lacking IPS-1, the ISGs are upregulated at 8 hpi, and then the levels progressively decrease 

(Pulit-Penaloza et al., 2012b), while ISGs are not upregulated at any time after infection in WNV 
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infected RIG-I-/-/MDA5-/- MEFs (Figure 2-5). IPS-1 is currently considered to be the only 

adaptor for RIG-I and MDA5 downstream signaling. The inconsistency in ISG expression 

between RIG-I-/-/MDA5-/- MEFs and IPS-1-/- MEFs suggests the possibility that another 

unknown adaptor protein(s) can also transduce signaling downstream of RIG-I or MDA5.  

The data obtained from the comparison of the WNV W956- and Eg101-induced ISG 

expression levels in IFNAR-/- MEFs also support the role of the cell RNA sensors in initiating 

the alternative antiviral mechanism. A WNV W956 infection produces higher levels of 

“unprotected” viral RNA at early times after infection, which activate the cell RNA sensors 

leading to higher induction levels of ISGs than a WNV Eg101 infection (Figure 2-3). The 

induced ISGs then work cooperatively to limit the virus yield produced by WNV W956 (Figure 

2-4). Interestingly, in W956-infected cells, the mRNA expression levels of Oas1a and Oas1b 

progressively decrease after 24 hpi, while no decrease in Oas1a and Oas1b levels is observed in 

WNV Eg101-infected cells (Figure 2-3), suggesting that additional factors in WNV-infected 

cells are involved in maintaining the activation of the cell sensors. 

2.4.2 ISREs are involved in both the IFN-dependent and -independent mechanisms 

During the canonical IFN-dependent ISG upregulation mechanism, activation of the 

JAK-STAT pathway leads to the transcription factor complex ISGF3 binding to ISREs on the 

promoters of ISGs, which activates their expression. However, data obtained in the present study 

showed that the ISREs also mediate non-canonical, IFN-independent ISG expression by 

interacting with a different transcription factor complex. The finding that the same DNA element 

can bind to two distinct sets of proteins in response to a virus infection suggests transcriptional 

regulation redundancy that ensures an efficient antiviral system being activated by either the 
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IFN-dependent or -independent mechanism. This finding also provides new insights about the 

eukaryotic gene regulatory network.  

Data obtained in the present study show that Oas1a, Oas1b, Irf7, Ifit1, and Mx1 belong to 

the subset of ISGs that are upregulated by WNV-induced IFN-independent mechanism but Mx2 

and Rsad2 do not. The numbers and locations of ISREs in the promoters of these ISGs were 

compared. The promoters of each of the IFN-independently upregulated ISGs, Oas1a, Oas1b, 

Irf7, and Mx1, contain one or two ISREs while the Ifit1 promoter contains three ISREs. The 

promoters of Mx2 and Rsad2 also contain one and two ISREs, respectively. Concerning ISRE 

location, the promoters of each of these ISGs contain at least one ISRE within 350 bp upstream 

of the TSS except for Irf7, which belongs to the IFN-independently upregulated subset of ISGs 

(Table 2-5). Differences in the number or locations of the ISREs in the promoters of the ISGs did 

not correlate with the ability of the ISG to be upregulated in response to only the IFN-dependent 

upregulation mechanism or both the IFN-dependent and IFN-independent upregulation 

mechanisms. In the present study, individual mutation of the two ISREs in the Ifit1 and Oas1b 

promoters that are located within 350 bp upstream of TSS shows that each of these ISREs is 

critical for the IFN-independent upregulation (Figure 2-13). The two ISREs in Ifit1 promoter that 

are close to the TSS are 19 nts apart, while the two ISREs in the Oas1b promoter are 219 nts 

apart. It is interesting that no matter whether the ISREs are close or not, they both contribute to 

the gene upregulation in the IFN-independent mechanism.  

Table 2.5 Locations of the ISREs on the promoters of some ISGs 

Genea ISRE site amount ISRE site upstream of TSSb 

Oas1a one -15 

Oas1b two -235, -16 

Irf7 one -661 

Ifit1 three -613, -79, -60 

Mx1 two -912, -318 

Mx2 one -165 
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Rsad2 two -817, -103 
a The rows shaded pink indicate genes that are upregulated by the IFN-independent mechanism, 

while the rows shaded blue indicate genes that are not.  
b The location of the N site, which is next to the 3′GAAA (underlined) in the 

5′A/GNGAAANNGAAACT3′ consensus, relative to the TSS of the gene. 

 

The finding that not all of the ISREs can be activated by the non-canonical mechanism 

suggests that the nts contained in the different ISREs, including the variation of the 5′ GAAA 

site and the N nts in the ISRE consensus, may determine the binding partners of the ISRE and 

the sequences flanking the ISRE may also play a role. Analysis of additional ISREs, which are 

activated by the WNV-induced IFN-independent mechanism, is needed to further investigate the 

consensus of the ISREs that can mediate this non-canonical mechanism as well as the sequence 

differences between ISREs that can and cannot respond to IFN-independent signaling.  

2.4.3 Additional promoter regions are involved in mediating the IFN-independent 

mechanism 

Although ISREs mediate IFN-independent ISG expression, the present study 

demonstrated that regulation mediated by the ISRE works together with other enhancers. Both 

constructs Oas1b (-28, +50) and Oas1b (-93, +50) contain the 3′ ISRE. However, the promoter 

activity of Oas1b (-28, +50) was quite low, while the enhancer region located from -93 to -28 

significantly increased the promoter activity of Oas1b (-93, +50) (Figure 2-12 B). On the other 

hand, mutation of this 3′ ISRE decreased the promoter activity of Oas1b (-93, +50) by about 67% 

[comparison of Oas1b (-93, +50)-mut ISRE and Oas1b (-93, +50)] (Figure 2-13 B). The data 

suggest that the high promoter activity of Oas1b (-93, +50) is due to the effect of the ISRE as 

well as the enhancers in the adjacent upstream region between -93 to -28. In another example, 

although both of the ISREs in the Oas1b promoter are present in the construct Oas1b (-299/-202, 

-93/+50), its promoter activity was still less than 50% of the promoter activity of Oas1b (-299, 
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+50) (Figure 2-13 B), demonstrating that the enhancers in the region between -202 to -93 are 

also involved in regulating the IFN-independent induction of Oas1b by WNV infection together 

with the two ISREs. Similar data were also obtained with the Ifit1 promoter constructs. Although 

the two 3′ ISREs contributed more than 80% of the promoter activity of Ifit1 (-192, +66) 

[comparison of Ifit1 (-192, +50)-mutate-both-ISRE and Ifit1 (-192, +50)], the enhancers in the 

region between -192 to -132 contributed nearly 40% of the promoter activity of Ifit1 (-192, +50) 

[comparison of Ifit1 (-192, +50) and Ifit1 (-132, +50)] (Figure 2-11 A, Figure 2-12 A). TFBS 

prediction in the enhancer regions of both the Oas1b and Ifit1 promoters, which coordinately 

work with the ISREs, revealed a CEBP/β binding site. The transcription factor CEBP/β is has 

been shown to synergistically interact with NF-κB (Oeckinghaus et al., 2011). Data obtained in 

the present study suggested that NF-κB transcription factors bind to the ISREs in the IFN-

independent ISG upregulation mechanism.  

2.4.4 The additional promoter regions involved in mediating the IFN-dependent and -

independent ISG upregulation mechanisms differ  

ISREs mediate both IFN-dependent and -independent ISG induction after WNV 

infection, but the additional promoter regions involved in these two ISG upregulation 

mechanisms are different. In previous study of mapping the Oas1b promoter regions required for 

induction by IFN-β, the region from -576 to +50 was shown to have the highest induction 

activity, the region from -814 to -576 to contain repressors and the region from -576 to -181 to 

contain enhancers (Pulit-Penaloza et al., 2012a). In contrast, data from the present study showed 

that for the IFN-independent WNV-induced ISG expression mechanism, the Oas1b promoter 

construct containing promoter regions from -299 to +50 showed the highest induction activity, 

and the region from -802 to -576 to contain enhancers and the region from -576 to -181 to 
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contain enhancers as well as repressors (Figure 2-12). These data demonstrate that the same 

promoter regions have opposite function in response to different cell signaling pathways (Figure 

2-19). These opposite regulatory effects are likely due to different repressors and activators 

binding to the various DNA elements present.  

 

Figure 2.19 Oas1b promoter regions function differently in response to IFN-dependent and IFN-

independent signaling. 

The regulatory regions of Oas1b promoter for IFN-dependent signaling were summarized 

from previously published data (Pulit-Penaloza et al., 2012a), while the regulatory regions for 

WNV-induced IFN-independent signaling were summarized from the data in Figure 2-12. Green 

rectangle, ISRE. A, enhancer. R, repressor.  

 

2.4.5 NF-κB and either IRF3, IRF5 or IRF7 work together with additional TFs on ISG 

promoters to facilitate IFN-independent gene upregulation 

Data obtained in the present study suggested a working model at the transcriptional 

regulation level for the non-canonical ISG upregulation mechanism in WNV-infected cells. In 

mock-infected IFNAR-/- cells, a particular set of transcription factors, including one or more 

NF-κB proteins, bind to the ISREs and flanking regions but only maintain basal levels of 

promoter activation. WNV infection activates an additional protein complex binds to the ISREs, 

thus inducing higher levels of ISG expression. This new protein complex could form through 

replacing either some or all of the proteins already bound to the ISRE under basal conditions, 

and could form through recruiting additional proteins to the enhancer regions.   
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Data from the present study suggested that the WNV-induced, ISRE-binding protein 

complex may include RelA. A crystal structure of IRF proteins bound to a targeted DNA 

sequences demonstrated that the GAAA consensus of DNA is critical for IRF3 and IRF7 binding 

(Panne et al., 2004; 2007). The mutated ISRE used in the present study contains a disrupted 

GAAA consensus. The observation that the unique WNV-induced complex does not form with a 

mutated ISRE (Figure 2-15) suggested that IRF3 or IRF7 may also be part of the complex. IRF3 

and IRF5 were previously shown to be able to form a complex with RelA (Wietek et al., 2003; 

Krausgruber et al., 2010). The observation that the cells lacking IRF3, IRF5 and IRF7 showed 

decreased ISG upregulation after WNV infection suggests that IRF3, IRF5, and IRF7 may 

redundantly regulate the expression of the ISGs (Figure 2-9). The three IRF proteins, IRF3, 

IRF5, and IRF7, as well as RelA, were all shown to be present in the nucleus after WNV 

infection (Figure 2-18). Either IRF3, IRF5 or IRF7 may be contained in the unique WNV-

induced complex that binds to the ISREs, but whether these IRFs are present as monomers or 

dimers is not known.  

The data obtained suggest that RelA and an IRF protein may be present in the promoters 

of responsive ISGs, but additional enhancer regions identified suggest other proteins are 

involved. Transcription co-activator proteins CREB-binding protein (CBP) and its homolog p300 

are possible candidates. Phosphorylated IRF3 forms a strong association with CBP and p300 that 

facilitates its transcription activation of type I IFN genes (Weaver et al., 1998; Clement et al., 

2008). In Newcastle disease virus-infected cells, IRF5 interacts with CBP and p300, which were 

specifically recruited to the IFN-α promoter (Feng et al., 2010). In a study of Sendai virus 

infected cells, a virus-activated factor (VAF) complex, which contains IRF3, IRF7, and p300, 

bind to ISRE and IRF-E in the IRF7 promoter (Ning et al., 2005).  
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3 FUTURE DIRECTIONS 

Although the majority of WNV infections in humans are asymptomatic, about 20% of 

infected humans experience fever and mild disease symptoms while one in every 150 develops 

severe neuroinvasive diseases. Typically mild flu-like disease symptoms resolve after 1 week of 

infection, but fatigue, muscle weakness, joint pain and headache can persist for more than 30 

days. In the neuroinvasive cases, WNV infection can cause irreversible damage to the central 

neuron system (Murray et al., 2011). No approved vaccines or specific therapies for WNV 

infections in human are currently commercially available. WNV-host interactions are being 

studied to gain additional knowledge to facilitate future development of effective treatments. The 

expression of hundreds of ISGs activated by virus-induced IFN constitutes the first line of host 

antiviral defense. Although WNV has evolved effective ways of counteracting the host IFN 

response, the Brinton lab previously discovered that there is an alternative backup mechanism in 

host cells for establishing an antiviral state. In the present study, the WNV-induced IFN-

independent antiviral mechanism was further characterized in mouse cells. After a WNV 

infection, the host cell cytosolic sensors, RIG-I and MDA5, redundantly detect viral RNA and 

signal through their adaptor IPS-1 to downstream transcription factors. In the nucleus, WNV-

induced transcription factor complexes bind to ISREs and flanking regions, mediating the 

expression of a subset of ISGs. The data obtained in the present study suggest that the WNV-

induced ISRE-binding complex contains NF-κB components and either IRF3, IRF5 or IRF7 

(Figure 3-1).  
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Figure 3.1 Working model for the IFN-independent ISG upregulation mechanism in WNV-

infected cells.  

After WNV infection, viral RNAs are detected by host cytosolic sensors, RIG-I and 

MDA5. The activated sensors signal through their adaptor molecule IPS-1, which ultimately 

activates transcription factors. In the nucleus, a unique WNV-induced transcription factor 

complex binds to the ISRE on the promoters of a subset of ISGs, thereby activating expression of 

these ISGs in an IFN-independent manner. The proteins binding to flanking enhancers of ISREs 

also contribute to the IFN-independent upregulation of ISGs.  

 

3.1 Cell signaling pathways that are activated downstream of IPS-1 in WNV-infected 

IFNAR-/- MEFs 

After WNV infection, cell cytosolic receptors RIG-I and MDA5 are both essential for 

detecting virus infection, and transduce signaling through IPS-1 to induce IFN gene expression 

(Errett et al., 2013). Data from the present study suggest that the RIG-I/MDA5-IPS-1 pathway is 

also used to activate downstream transcription factors, including IRF3, IRF5, or IRF7, and NF-

κB p50 and RelA, to initiate the WNV-induced IFN-independent antiviral mechanism. However, 

the molecules involved in this downstream signaling in WNV-infected IFNAR-/- MEFs are not 

known. 
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It was shown in previous studies that upon RIG-I or MDA5 activation, IPS-1 recruits 

TNFR1-associated death domain protein (TRADD), which coordinates interactions with relevant 

downstream molecules. The IPS-1/TRADD complex recruits TNF receptor-associated factor 3 

(TRAF3), TRAF-associated NF-κB activator (TANK), and IKKγ, thereby initiating the 

activation of TBK1 and IKKε (Saha et al., 2006). The interaction of TRADD with IPS-1 also 

orchestrates the formation of a multimeric complex containing Fas-associated death domain 

containing protein (FADD), receptor interacting protein 1 (RIP1) that initiates NF-κB activation 

(Michallet et al., 2008; Jensen and Thomsen, 2012). The kinases TANK-binding kinase 1 

(TBK1) and IκB kinase ε (IKKε) are known to be activated downstream of IPS-1, and they 

phosphorylate IRF3 and IRF7, which is required for nuclear translocation of IRF3 and IRF7 

(Fitzgerald et al., 2003; Sharma et al., 2003). In addition, TBK1 and IKKε have been implicated 

in NF-κB activation. Both of these kinases can catalyze RelA phosphorylation that is essential 

for RelA transactivation function (Peters and Maniatis, 2001; Fitzgerald et al., 2003). Future 

studies could analyze the involvement of these known IPS-1 downstream molecules and 

posttranslational modifications in the WNV-induced IFN-independent ISG upregulation 

mechanism. 

The involvement of kinases TBK1 and IKKε in upregulating the IFN-independent ISG 

expression could be investigated first. Dominant negative mutants of TBK1 and IKKε or specific 

kinase inhibitors could be used to knock down these kinases. Alternatively, the two proteins 

could be overexpressed from transfected vectors. The effect of knocking down or overexpressing 

TBK1 and IKKε could be assayed in the dual luciferase assay system established in the present 

study in WNV W956-infected IFNAR-/- MEFs using the Ifit1 (-192, +66) and the Oas1b (-299, 

+50) Nluc reporter constructs.  
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If TBK1 and/or IKKε are found to be involved in signaling downstream of IPS-1 during 

activation of the IFN-independent ISG upregulation mechanism, additional studies could be done 

to investigate which molecules are associated with IPS-1 in this mechanism. The candidates are 

TRADD, TRAF3, TANK, IKKγ, FADD, and RIP1. The association of each of these proteins 

with endogenous IPS-1 could be investigated by immunoprecipitation using an antibody to IPS-1 

and immunoblotting with antibodies for each candidate in cell lysates of WNV W956-infected 

IFNAR-/- MEFs. The involvement of these proteins in IPS-1 downstream signaling could also be 

studied by overexpressing each protein together with the IPS-1 protein and evaluating the effect 

in the dual luciferase system established in the present study.  

3.2 The subgroup of ISREs and other DNA regulatory elements that can be activated by 

the IFN-independent ISG upregulation mechanism 

The WNV-induced IFN-independent ISG upregulation mechanism is mediated through 

the ISRE on the promoters of the ISGs that are upregulated. However, only a subset of ISGs can 

be upregulated by this mechanism, indicating that only this subset contains the ISREs that can be 

activated by the IFN-independent as well as the IFN-dependent mechanism. The subgroup of 

ISREs could be studied to try to identify possible unique characteristics that are functionally 

relevant. In the present study, the ISRE sequences analyzed were from only five ISGs, including 

Oas1a, Oas1b, Irf7, Ifit1, and Mx1. Among these, only the five ISRE sites that are on the 

promoters of Ifit1 and Oas1b were functionally tested during the IFN-independent activation. To 

obtain a more accurate sequence consensus of this subgroup of ISREs, additional ISGs 

responsive to the IFN-independent mechanism would need to be identified to compare a larger 

number of the functional ISRE sequences. A microarray analysis was previously performed on 

the samples collected from WNV-infected, wild-type MEFs (Scherbik et al., 2007b), which 
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detected both IFN-dependent and IFN-independent upregulated ISGs and therefore did not allow 

unambiguous detection of ISGs upregulated by the IFN-independent mechanism. To obtain a 

complete list of the ISGs upregulated by WNV in IFNAR-/- MEFs, an RNA-seq analysis could 

be performed. The ISREs of these ISGs could then be tested to confirm their ability to respond to 

the IFN-independent induction mechanism by a mutation in promoter constructs used in the 

luciferase reporter system. Next, the core and flanking sequences of all the ISREs that respond to 

the IFN-independent mechanism could be subjected to bioinformatics analysis to obtain a 

consensus sequence. If a characteristic consensus can be found, this information would be added 

to TFBS databases as well as to the gene regulation network databases to provide foundational 

information for other studies.  

The data obtained in the present study suggested that additional regulatory elements on 

the ISG promoters besides the ISREs are involved in the IFN-independent ISG upregulation 

mechanism in WNV-infected MEFs. These additional regulatory elements could be studied to 

obtain a complete picture of the factors involved in IFN-independent ISG upregulation. The 

Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) 

could be used to investigate genome-wide accessible regions and to map regions of transcription-

factor binding and nucleosome positioning on responsive ISG promoters in WNV-infected 

IFNAR-/- MEFs (Buenrostro et al., 2013). The derived sequences of transcription-factor binding 

regions of the upregulated ISGs would be analyzed by computational motif discovery methods to 

search for potential transcriptional regulatory elements mediating the WNV-induced IFN-

independent ISG upregulation. The Oas1b and Ifit1 promoter mapping data obtained in the 

present this study could be used to confirm the ATAC-seq analysis and computational analysis 

results. 
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3.3 A novel WNV-induced ISRE-binding protein complex involved in the IFN-

independent mechanism  

During IFN-dependent ISG upregulation, activation of the JAK-STAT pathway leads to 

the transcription factor complex ISGF3 that consists of p-STAT1, p-STAT2, and IRF9, binding 

to the ISREs on the promoters of ISGs and upregulating their expression. However, the nuclear 

translocation of the transcription factor complex ISGF3 is blocked in WNV-infected human and 

mouse cells (Keller et al., 2006; Laurent-Rolle et al., 2010; Pulit-Penaloza et al., 2012b). 

Moreover, STAT1, STAT2, and IRF9 were not detected in the nuclear extracts of WNV-infected 

IFNAR-/- MEFs by MassSpec in the present study and STAT1 and STAT2 were not previously 

detected in nuclei of WNV-infected, wild-type MEFs by immunofluorescence assay (IFA) or in 

nuclear extracts by Western blotting (Pulit-Penaloza et al., 2012b). Therefore, the WNV-induced 

ISRE-binding protein complex in the IFN-independent mechanism does not contain STAT1, 

STAT2 or IRF9. Data from the present study suggest that NF-κB RelA and IRF proteins are 

present in the novel virus-induced complex that binds to the ISREs in the promoters of 

responsive ISGs. Previous studies suggested that a RelA/IRF3 or RelA/IRF5 complex can bind 

to an ISRE after bacterial LPS treatment of cells (Wietek et al., 2003; Saliba et al., 2014). In the 

present study, NF-κB components were shown to mediate ISRE-driven ISG expression in the 

context of virus infection. It was suggested that NF-κB RelA, either IRF3, IRF5 and IRF7, and 

some other transcription co-activator proteins, such as CBP and p300, are present in this WNV-

induced ISRE-binding complex. The components of this complex could be elucidated by a pull-

down assay using the biotin/streptavidin affinity system in combination with MassSpec analysis 

of the pulled down proteins. The DNA probes containing ISREs that were used in the EMSA 

assay in this present study would be biotin-labeled, mixed with the nuclear extracts of WNV-
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infected IFNAR-/- MEFs. Next, the protein-DNA complex formed will be pulled down with 

streptavidin magnetic beads making use of the high affinity biotin-streptavidin bond. The 

proteins associated with the ISREs can then be identified with MassSpec. The probe with 

mutated ISREs would be used as a negative control to eliminate non-specific binding proteins in 

the MassSpec results. After the components of the WNV-induced ISRE-binding complex are 

identified, their roles in regulating the IFN-independent ISG upregulation could be confirmed by 

Chromatin immunoprecipitation (ChIP) assay in WNV-infected IFNAR-/- MEFs if ChIP grade 

antibodies are available.   

After the components of the WNV-induced ISRE binding complex are identified, how 

this complex is assembled could next be investigated. The domains of individual components of 

the complex would be studied first. All IRF proteins share a common DNA-binding domain 

(DBD) while they each contain a unique IRF association domain (IAD) that is responsible for 

interacting with other IRF proteins and other factors (Taniguchi et al., 2001). RelA has a 

dimerization domain (DD), a carboxy-terminal transactivation domain (TAD), and a Rel 

homology domain (RHD) that is conserved among all NF-κB proteins and is responsible for 

DNA binding and interaction with IκB (Oeckinghaus and Ghosh, 2009). When forming a 

complex with a heterologous transcription factor, RelA can provide its TAD for regulating gene 

expression (Yang et al., 2007). IRF3 has been shown to bind to the RHD of RelA, whereas the 

IAD of IRF5 and the DD of RelA are critical for the interaction of IRF5 and RelA (Ogawa et al., 

2005; Saliba et al., 2014). RelA has been found to interact with CBP/p300 via its DBD and TAD 

(Mukherjee et al., 2013). The domains of IRFs, RelA and other components that are important 

for the formation of the WNV-induced ISRE binding complex could be identified by 

coimmunoprecipitation assays with each truncated protein exogenously expressed in WNV-
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infected mouse IFNAR-/- cells. The conformation of the ISRE-binding complex could be studied 

using structural approaches. In the canonical NF-κB pathway, the NF-κB heterodimer RelA/p50 

binds to the NF-κB site containing the consensus sequence 5′-GGGRNYYYCC-3′ (R = A or G, 

Y = C or T, N = any base) (Chen and Ghosh, 1999). Notably, although RelA may be involved in 

the ISRE-binding complex, this consensus sequence was not found in the ISRE-containing probe 

used in the EMSA experiments of the present study. It is possible that RelA adopts a novel 

conformation and binds to a DNA sequence that is different from the NF-κB consensus 

sequence. A previous crystallization study suggested that one of the RelA monomers in the RelA 

homodimer can bind to te DNA sequence 5′-NGGAA-3′ (Chen et al., 2000), which is also a 

portion of the ISRE consensus. IRF3 and IRF7 usually bind to DNA as a homodimer or 

heterodimer, and each IRF interacts with a GAAA consensus sequence. It is not clear how many 

IRF proteins are present in the WNV-induced, ISRE-binding complex. The structure of the 

complex binding to the ISRE-containing DNA probe could be studied by co-crystallization. 

3.4 The antiviral effect of the alternative ISG upregulation mechanism 

The expression of hundreds of ISGs establishes an antiviral state in virus-infected IFN-

competent cells. The ISGs, which have diverse antiviral functions, can work together to 

negatively affect each step of a virus life cycle in infected host cells. The antiviral activities of 

each ISG are not equal, with some being strong antiviral inhibitors while many being modest 

inhibitors. The magnitude of the antiviral activity of two ISGs expressed together is usually 

greater than that of either gene expressed alone (Schoggins and Rice, 2011; Schoggins et al., 

2011). Moreover, the antiviral activities of each ISG vary for different viruses. The present study 

demonstrated that when the subset of ISGs upregulated by the IFN-independent antiviral 

mechanism is induced to a higher level at early times after WNV W956 infection than that after 
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WNV Eg101 infection, the antiviral activities of the ISGs work cooperatively to limit the yield of 

WNV W956. Although the inhibition effect on WNV W956 virus yield of the IFN-independent 

antiviral mechanism is not as significant as the IFN-dependent antiviral state (Scherbik et al., 

2013), the antiviral function of the alternative antiviral response could be studied.  

Both the IFN-dependent and IFN-independent antiviral responses are not activated in 

WNV-infected RIG-I-/-/MDA5-/- MEFs, and only the IFN-dependent antiviral response is not 

activated in WNV-infected IFNAR-/- MEFs. Therefore, virus yields that are produced by WNV 

W956 in RIG-I-/-/MDA5-/- MEFs and IFNAR-/- MEFs could be compared to evaluate the 

function of the backup IFN-independent antiviral response. If the key transcription factor of the 

IFN-independent antiviral mechanism is identified, this protein could be knocked down or 

knocked out in IFNAR-/- MEFs to eliminate the IFN-independent mechanism, and WNV virus 

yield could be used to evaluate the antiviral effect of the IFN-independent mechanism.  

Whether the alternative ISG upregulation mechanism responds to other virus infections 

could also be investigated. JEV could be used to investigate to see if the IFN-independent 

mechanism could be induced by another flavivirus through assaying its ability to induce the 

subset of ISGs in IFNAR-/- MEFs. The IFN-independent mechanism could also be investigated 

in IFNAR-/- MEFs infected with other RNA viruses, including Sendai virus and vesicular 

stomatitis virus (with a negative-sensed single-stranded RNA genome), as well as Sindbis virus 

(with a positive-sensed single-stranded RNA genome). In addition, the alternative ISG 

upregulation mechanism could be investigated in human cells. A human cell line that only has 

the IFN-independent antiviral response could be obtained by knocking out the type I IFN 

receptor using CRISPR. The upregulation of human orthologs of the subset of ISGs could be 
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investigated in human IFNAR-/- cells infected with WNV, JEV and other RNA viruses that 

could induce this alternative antiviral response in IFNAR-/- MEFs.  

 

SIGNIFICANCE 

The results of the present study extend knowledge of host antiviral mechanisms. Analysis 

of the host cellular factors and TFBS involved in a non-canonical ISG upregulation mechanism 

furthers the understanding of host antiviral responses against WNV infection. The findings of 

this study extend knowledge about viral detection, signaling activation and gene induction during 

the innate immune responses against virus infections. Many flaviviruses cause significant human 

morbidity and mortality around the world, but there are no effective antiviral therapies. Because 

most viruses have evolved ways to counteract the host IFN system, the knowledge gained in this 

study about an alternative host cell “backup” response provides new insights for future studies on 

host antiviral mechanisms and for the development of future antiviral therapies that target WNV 

and possibly, also other flaviviruses. 
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