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ABSTRACT 

Of all possible ketoses, only D-fructose occur large scale in nature. Therefore, all the 

ketoses with the exception of D-fructose are defined as “rare ketose”. Despite their lower 

accessibility, rare ketoses offer an enormous potential for applications in pharmaceutical, medicine, 

functional food and synthetic chemistry. However, studies of rare ketoses have been hampered by 

the lack of efficient preparation methods. Here, a convenient and efficient platform for the facile 

synthesis of rare ketoses is described. The introduced two-step strategies are based on a 

“phosphorylationde-phosphorylation” cascade reaction. Rare ketoses were prepared from 

readily available starting materials as their ketose-1-phosphate forms in step 1 by one-pot 

multienzyme reactions, followed by the hydrolysis of the phosphate groups in acidic conditions to 

produce desired ketoses in step 2. By this strategy, 14 rare ketoses were obtained from readily 

available starting materials with high yield, high purity, and without having to undergo tedious 

isomer separation step. 

Sialic acids are typically linked 2-3 or 2-6 to the galactose that located at the non-

reducing terminal end of glycans, playing important but distinct roles in a variety of biological and 

pathological processes. However, details about their respective roles are still largely unknown due 

to the lack of an effective analytical technique. Lectin and antibody binding have been the primary 

method to analyze glycans, but lectins and antibodies often suffer from weak binding affinity, 

limited specificity, and cross-reactivity. To address this issue, we develop a chmoenzymatic 

reporter strategy for rapid and sensitive detection of N-acetylneuraminic acid-(2-3)-Galactose 

(Neu5Ac(2-3)Gal) glycans on cell surface. 

INDEX WORDS: Ketoses, phosphorylation, silver nitrate, Chemoenzymatic reporter, Glycans, 

N-acetylneuraminic acid-(2-3)-Galactose.  
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1 CHAPTER 1 FACILE ENZYMATIC SYNTHESIS OF KETOSES 

1.1 Introduction 

    Rare sugars are defined as monosaccharides that only naturally occur in small amounts.1 

According to the classification by the International Society of Rare Sugars (ISRS), the only seven 

common monosaccharides that naturally occur in substantial quantities are D-xylose, D-ribose, L-

arabinose, D-glucose, D-galactose, D-mannose and D-fructose.2 Of all possible ketopentoses and 

ketohexoses, the twelve ketoses can be divided into two types in relation to their C-3 configuration: 

(3S)-ketoses and (3R)-ketoses.3 With the exception of D-fructose, all of these ketoses are defined 

as “rare sugars”.3 Despite their lower accessibility, rare ketoses offer an enormous potential for 

applications in pharmaceutical, medicine, functional food and synthetic chemistry. 4-7 For example, 

D-psicose has about 70% of the sweetness but only 0.3% of the energy calories of sucrose.8, 9 It 

can also inhibit hepatic lipogenous enzyme activity, helping reduce abdominal fat accumulation.10 

L-xylulose was reported to be an inhibitor of glycosidase,11 while also serving as an indicator for 

acute or chronic hepatitis and liver cirrhosis.12 L-rhamnulose is a precursor of furaneol that has 

been used in the flavor industry for its sweet strawberry aroma.13  

    In addition, phosphorylated ketopentoses are also intermediates in sugar metabolism pathway 

and synthetic starting materials of many important biomolecular. The ketopentoses can be 

phosphorylated at the C-1 or C-5 position, resulting in eight phosphorylated ketopentoses. All 

pentoses including aldopentose and ketopentose that could be utilized by bacteria or other 

organisms must first be converted to their phosphorylated ketopentose forms to enable metabolic 

function.1, 4, 14, 15 In these metabolism pathways, ketopentose 1-phosphates are split into 

glycolaldehyde and dihydroxyacetone phosphate, which is an intermediate in the glycolytic 

pathway, by aldolases.16-18 Ketose 5-phosphates will be epimerized to D-xylulose 5-phospahte or 
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D-ribulose 5-phosphate, which are key participants of pentose phosphate pathway (PPP), by 

epimerases.19-21 PPP is a universal metabolic process present in bacteria, plants and animals,22 and 

its main function is to produce reducing power and building blocks for cell growth.23 Because of 

their critical position in sugar metabolism pathway, phosphorylated ketopentoses are also the 

starting materials in synthetic chemistry.24 For example, D-xylulose 5-phosphate can act as the 

starting material for the synthesis of heptose in bacteria.25 Likewise, D-ribulose 5-phosphate can 

be used for the synthesis of 3-deoxy-D-manno-octulosonic acid (KDO).26 Therefore, 

phosphorylated ketopentoses have great potential for applications in investigating the mechanistic 

and regulatory aspects of sugar metabolism, identification and characterization of new enzymes in 

nature, and being raw materials in synthetic chemistry.27-29  

 

Figure 1.1 14 ketoses and 8 phosphorylated ketopentoses synthesized in this work 
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    Izumori and co-workers have established a beautiful strategy termed“Izumoring” for rare sugar 

synthesis, a method by which most of rare sugars have been produced through isomerization, 

epimerization, oxidization or reduction reactions.2 Aldose-ketose isomerization is the most 

important method for ketose preparation, 30 even though such isomerization is very unfavorable 

for ketose formation.31 Great progress has been achieved by using both chemical and enzymatic 

aldose-ketose isomerization schemes over the last two decades.32-37 Approaches to improve aldose-

ketose conversion, including the addition of borate to break aldose-ketose reaction equilibrium,38 

directed evolution,39-41 and discovery of novel enzymes in nature42 have also been suggested. 

Nevertheless, an extensive isomer separation step is still necessary to obtain a ketose in pure form 

using these methods.43, 44 Ion-exchange chromatography (Ca2+ form) is the main method for sugar 

isomer separation.45 Selective degradation of unwanted isomer by bacteria to isolate the desired 

ketose has also been explored.46-48 However, both methodologies are time-consuming and suffer 

from low efficiency. Furthermore, four common aldoses (D-xylose, D-ribose, L-arabinose and D-

galactose) correspond to four rare ketoses (D-xylulose, D-ribulose, L-ribulose and D-tagatose) 

while D-glucose and D-mannose correspond to D-fructose. Therefore, the synthesis of other rare 

ketoses (L-xylulose, D-psicose, D-sorbose, L-tagatose, L-sorbose, L-fructose, and L-psicose), all 

which possess a (3R)-configuration with the exception of L-sorbose and L-psicose, has been more 

challenging. Chemical schemes for the synthesis of these rare ketoses undergoing protecting and 

de-protecting steps have been explored.49, 50 Alternatively, enzymatic preparation by epimerizing 

(3S)-ketose to (3R)-ketose51, oxidizing polyols,52 or relying on aldol condensation53 proceeds 

regio- and stereoselectively without protection. However, these methods suffer from expensive 

starting materials, low conversion ratios or a complicated isomer separation step. Therefore, 

despite their commercial availability, most of rare ketoses remain very expensive which in turn 
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has hindered studies of this fundamental class of carbohydrates. We therefore establish a strategy 

for a convenient, efficient and cost-effective synthesis of ketoses, by which 14 difficult-to-access 

ketoses can be obtained from readily available starting materials with high yield and purity and 

without undergoing a tedious purification steps. Our strategies are based on a 

“phosphorylationde-phosphorylation” cascade reaction (Figure 1.1).  

1.2 Enzymatic synthesis of common rare ketoses 

Our strategies are based on a “phosphorylation/de-phosphorylation” cascade reaction. In 

the first reaction step of Figure1.2, we combined thermodynamically unfavourable bioconversions 

of common (3S)-sugars to the desired (3S)-ketoses (route A) or (3R)-ketoses (route B) with 

phosphorylation reactions by substrate-specific kinases (Fructokinase (HK) from humans in route 

A, L-rhamnulose kinase (RhaB) from Thermotoga maritima MSB8 in route B). In the second 

reaction step, phosphate adenosines (ATP and ADP) were selectively removed by a convenient 

method called silver nitrate precipitation. Then, acid phosphatase (AphA) was added to hydrolyze 

the phosphate groups to produce the desired ketoses. 

1.2.1  Substrate specificity study of HK and RhaB 

To achieve the designed schemes, there are three challenges: 1) the identification of kinases 

that could phosphorylate the desired ketoses at C-1 position but not starting sugars or intermediates, 

2) the availability of a D-tagatose 3-epimerase (DTE) which specifically epimerizes ketoses at C-

3 but not ketose 1-phosphates and 3) an efficient method to separate phosphate sugars from 

phosphate adenosines (ATP and ADP).  

The first reaction step of our strategy was carried at a slightly basic condition where all enzymes 

were quite active. Nevertheless, monosaccharides are unstable in alkaline media,54 and the 

isomerases in reaction system may also affect the intermediate of phosphate ketoses to a certain 



4 

 

extent when the kinase that transferred phosphate group to the C-5 (pentose) or C-6 (hexose) 

position was used. To avoid such unwanted side reactions, kinases that phosphorylate ketoses at 

the C-1 position were utilized.55 In route A of Figure1.2, a kinase that could phosphorylate 

 

Figure 1.2 one-pot two-step enzymatic synthesis of ketoses 

(3S)-ketoses (D-xylulose, L-ribulose, and D-tagatose) but not (3S)-aldoses (D-xylose, L-arabinose 

and D-galactose) is necessary. In route B, a kinase that specifically recognizes (3R)-ketoses but 

not (3S)-ketoses and (3S)-aldoses is necessary. By screening the substrate specificity of many 

kinases (data not shown), we were able to find that fructokinase (HK) from humans18, 56 accords 

well with the requirement of route A and L-rhamnulose kinase (RhaB) from Thermotoga maritima 

MSB8 (Table 1.1)，a novel enzyme that absolutely requires ketoses with (3R)-configuration, 

accords well with the requirement of route B. Another requirement for the establishment of route 

B of Figure 1.2 is that DTE, which catalyzes the interconversion of (3S)- and (3R)-ketoses,51 does 

not epimerize ketose 1-phosphates. Otherwise the products obtained finally will be a mixture 
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containing both (3S)-ketoses and (3R)-ketoses. DTE does not recognize D-fructose 6-phosphate 

and D-ribulose 5-phosphate.51 We, therefore, hypothesized that it would not recognize other 

phosphate ketoses, such as ketose 1-phosphates.  

Table 1.1 substrate specificity of RhaB and HK 

Substrate C-3 Configuration RhaB 

Activity (%) 

HK 

Activity (%) 

L-rhamnulose R 100 NA 

L-xylulose R 91 NA 

D-ribulose R 101 NA 

D-sorbose R 14 NA 

L-fructose R 86 ND 

D-psicose R 34 NA 

L-tagatose R 55 NA 

L-ribulose S ND 37 

D-xylulose S 0.3 129 

D-tagatose S ND 13 

L-psicose S ND 28 

D-fructose S ND 100 

L-sorbose S ND 32 

L-arabinose S ND ND 

D-xylose S 0.1 ND 

D-galactose S ND ND 

NA: not assayed. ND: no detectable activity was observed 
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1.2.2 Silver nitrate precipitation 

In the second reaction step, acid phosphatase was used to hydrolyze the phosphate group 

of ketose 1-phosphates to produce ketoses in acidic condition (pH 5.5) where monosaccharides are 

stable. However, the existence of phosphate adenosines (ATP and ADP) inhibit the hydrolytic 

activity of the acid phosphatase.[57] To conveniently purify sugar phosphate from ATP and ADP, 

a method referred to as silver nitrate precipitation was used to remove phosphate adenosines 

selectively. Silver phosphate is insoluble, and thus silver ions can precipitate ADP and ATP.[58] 

Interestingly, we noticed that silver ions cannot precipitate monophosphate sugar when the sugars 

are composed of four or more carbons(Table 1.2). It appears that the binding of the sugar group to 

phosphate prevents phosphate silver precipitation.  

Table 1.2 precipitation with silver ion 

Compound Precipitation  Compound Precipitation  

PEP   +a D-erythrose 4-phosphate   -b 

 glycerol 3-phospahte  + D-ribulose 5-phosphate - 

ATP + D-fructose 6-phospahte - 

ADP + D-glucose 1-phospahte - 

D-fructose 1,6-bisphosphate       + AMP - 

a: white precipitation was observed 

b: clear solution was observed 

    Applying this selective precipitation of silver ions, phosphate sugars can be easily and cleanly 

separated from phosphate adenosines (ATP and ADP), by which more than 99% ATP and ADP 

were removed (Figure 1.3). Then, excess sodium chloride was added to remove the redundant 

silver ions. After desalting by using Bio-Gel P-2 column, sugar phosphate can be obtained in pure 

form. The total separation process can be completed in less than 15 minutes. The precipitate can 

be re-dissolved in ammonium hydroxide, and the phosphate adenosines (ATP and ADP) or silver 

ions can be then recycled compared to another phosphate sugar purification method, barium 
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precipitation, by which phosphate sugar was isolated as barium form,[59] no additional steps to 

remove toxic ions and no accurate pH control are necessary. Moreover, silver is safer than barium 

and other metal ions that can be used to precipitate phosphate adenosines such as mercury.[60] 

These advantages make this method highly attractive for use in rapidly purifying phosphate sugars. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 HPLC and TLC analysis of silver nitrate precipitation method  

1.2.3 The synthesis of L-ribulose, D-xylulose, D-tagatose, L-xylulose, D-ribulose, D-

sorbose, D-psicose, and L-tagatose 

In route A of Figure 1.2, L-arabinose, D-xylose, and D-galactose (entries 1 to 3) were 

incubated with their corresponding isomerases (Table 1.3) and HK to prepare L-ribulose, D-

xylulose and D-tagatose, respectively. The reactions were allowed to proceed until no detectable 

starting aldoses were found by HPLC (conversion ratios exceeding 99%), making isomer 

separation unnecessary. Silver nitrate precipitation method was used to remove ATP and ADP. 
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Proteins were also removed during this process (test by Bradford method). Consequently, two 

steps of the designed scheme could be carried in one-pot. After the hydrolysis of phosphate groups 

in step 2, the solution from each reaction was desalting by using Bio-Gel P-2 column. L-ribulose, 

D-xylulose, and D-tagatose were finally obtained in more than 90% yield (Table 1.3). The products 

were confirmed by the analysis of NMR, HPLC and MS. HPLC and NMR analyses indicated 

product purity exceeds 99%. 

    In route B of Figure 1.2, five (3R)-ketoses (L-xylulose, D-ribulose, D-sorbose, D-psicose, and 

L-tagatose) were prepared from five common (3S)-sugars (L-arabinose, D-xylose, D-galactose, D-

fructose, and L- sorbose), respectively. The discovery of DTE made it possible to achieve the 

interconversion between (3S)-ketoses and (3R)-ketoses and is especially important for the 

preparation of (3R)-ketoses.51 Nevertheless, ketoses, with the exceptions of two (3S)-ketoses (D-

fructose and L-sorbose), are not readily available, and the conversions catalyzed by DTE are an 

equilibrium reaction. For example, the conversion ratio is only 20% for D-fructose to D-psicose 

and 27% for L-sorbose to L-tagatose.57 The separation of (3S)-ketoses and (3R)-ketoses is difficult 

due to their similar properties. In this work, we combined DTE-catalyzed epimerization with 

targeted phosphorylation of (3R)-ketose by RhaB (entries 7 and 8). To avoid using non-readily 

available ketoses, enzymatic isomerization when starting with (3S)-aldose (entries 4 to 6). All 

reactions were allowed to proceed until no detectable starting sugars were found by HPLC 

(conversion ratios exceeding 99%). After the hydrolysis of phosphate groups in step 2, all five 

(3R)-ketoses were obtained in more than 90% yield (Table 1.3). Given the high substrate 

specificity of RhaB, L-xylulose, D-sorbose, D-psicose and L-tagatose were obtained in more than 

99% purity. D-ribulose was obtained in 98.2% purity while 0.6% of D-xylulose and 1.2% of D-
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xylose were observed because D-xylose and D-xylulose could be phosphorylated by RhaB to a 

certain extent (Table 1.3).  

Table 1.3 Synthesis of rare ketoses using the two-step strategy 

Entry Starting material Enzyme Scheme Intermediate Ketose Yield 

(%)[a] 

Purity 

(%)[b] 

 

1  

L-arabinose 

 

AraA 

HK 

 

 

Route A  

Figure 1.2 
 

L-ribulose 1-phosphate 

 

L-ribulose 

 

93 

 

>99 

 

2  

D-xylose 

 

XylA 

HK 

 

Route A  

Figure 1.2 
 

D-xylulose 1-phosphate 

 

D-xylulose 

 

92 

 

>99 

 

3  

D-galactose 

 

AraA 

HK 

 

Route A  

Figure 1.2 
 

D-tagatose 1-phosphate 

 

D-tagatose 

 

92 

 

>99 

 

4  

L-arabinose 

AraA 

DTE 

RhaB 

 

Route B  

Figure 1.2 
 

L-xylulose 1-phosphate 

 

L-xylulose 

 

91 

 

>99 

 

5  

D-xylose 

XylA 

DTE 

RhaB 

 

Route B  

Figure 1.2 
 

D-ribulose 1-phosphate 

 

D-ribulose 

 

91 

 

98.2 

 

6  

D-galactose 

AraA 

DTE 

RhaB 

 

Route B  

Figure 1.2 
 

D-sorbose 1-phosphate 

 

D-sorbose 

 

94 

 

>99 

 

7  

D-fructose 

 

DTE 

RhaB 

 

Route B  

Figure 1.2 
 

D-psicose 1-phosphate 

 

D-psicose 

 

93 

 

>99 

 

8  

L-sorbose 

 

DTE 

RhaB 

 

Route B  

Figure 1.2 
 

L-tagatose 1-phosphate 

 

L-tagatose 

 

95 

 

>99 

 

 

9 

 

DL-glycerol 3-

phosphate 

 

 
glycerol 

 

 

 

 

 

 

 

 

GPO 

GO 

catalase 

RhaD 

 

 

Figure 1.4 

 

 

L-fructose 1-phosphate 

 

 

L-fructose 

 

 

70 

 

 

99 

 

10  

L-fructose 

 

DTE 

HK 

 

 

Figure 1.4 
 

L-psicose 1-phosphate 

 

L-psicose 

 

90 

 

>99 

 

[b] Defined as the desired ketose to the sum of all possible sugars. 
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1.2.1 The synthesis of L-fructose and L-psicose 

L-fructose was synthesized by using RhaD due to a lack of common corresponding sugars. 

RhaD exclusively produces L-fructose from dihydroxyacetone phosphate (DHAP) and L-

glyceraldehyde.[23] However, DHAP and L-glyceraldehyde are costly and unstable. To increase 

the practicality of the process, two previously reported strategies[23, 26] were combined allowing 

the use of inexpensive materials of glycerol and DL-glycerol 3-phosphate to produce L-fructose 

1-phosphate in one-pot  (Figure 1.4), by which L-glyceraldehyde was oxidized from glycerol by 

galactose oxidase (GO) and DHAP was oxidized from DL-glycerol 3-phosphate by glycerol 

phosphate oxidase (GPO). After the hydrolysis of the phosphate group in step 2, L-fructose was 

finally obtained in 70% yield with a purity of 99%. Then, L-psicose was prepared from L-fructose 

by DTE. However, the conversion of L-fructose to L-psicose catalyzed by DTE is unfavorable for 

L-psicose formation, for which the conversion ratio is only 24%.[25] Applying the discovery that 

HK from humans could efficiently phosphorylate L-psicose but not L-fructose, L-psicose was 

prepared from L-fructose using the described targeted phosphorylation strategy (Figure 1.4) in 

90% yield with a product purity exceeding 99%. 

 

Figure 1.4 Enzymatic synthesis of L-fructose and L-psicose 
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1.3 Enzymatic synthesis of deoxy rare ketoses 

1.3.1 The synthesis of L-rhamnulose and L-fuculose 

         L-rhamnulose and L-fuculose are two crucial rare deoxy ketoses that offer many potential 

applications. For example, L-rhamnulose is a precursor of furaneol that has been used in the flavor 

industry for its sweet strawberry aroma.13 In addition, L-rhamnulose and L-fuculose play important 

roles in sugar metabolism.16, 58, 59  In bacteria, L-rhamnose and L-fucose must be converted to their 

ketose 1-phosphate forms, which are later split into dihydroxyacetone phosphate and L-

lactaldehyde by L-rhamnulose 1-phosphate aldolase (RhaD) or L-fuculose 1-phosphate aldolase 

(FucA) to facilitate further metabolic function.60 RhaD and FucA are two powerful biocatalysts 

and have been widely used in synthetic chemistry to produce rare ketoses or their derivatives.61, 62 

Moreover, L-rhamnulose and L-fuculose can also be directly isomerized or epimerized into other 

rare sugars.63, 64 Therefore, L-rhamnulose and L-fuculose are not only primary targets for 

investigating the mechanistic and regulatory aspects of sugar metabolism, but also important 

starting materials in synthetic chemistry. An efficient system to readily provide both ketoses in 

considerable amounts is highly attractive in enabling the studies of both deoxy ketoses.  

There are two methods that could be used to produce L-rhamnulose and L-fuculose. The most 

common method is isomerizing L-rhamnose to L-rhamnulose or L-fucose to L-fuculose.63-65 

However, aldose-ketose isomerization mediated by either chemical or enzymatic method 

(isomerase) is reversible, with reaction equilibrium being very unfavorable for ketose formation.66 

For example, only 11% of L-fucose can be isomerized to L-fuculose by L-fucose isomerase (FucI) 

in the final reaction equilibrium.65 Moreover, an extensive isomer separation step is still necessary 

to obtain a ketose in pure form. Ion-exchange chromatography (Ca2+ form) is the main method for 

sugar isomer separation.45 Nevertheless, it was reported that L-rhamnulose is hard to be separated 
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from L-rhamnose using ion-exchange chromatography (Ca2+ form) column.64 They even can’t be 

separated well by HPLC. Commercially availabe product only has 80% purity (Sigma-Aldrich). 

Selective degradation of unwanted isomer by bacteria to isolate the desired ketose has also been 

explored,46-48 but this method is time-consuming and suffer from low efficiency. The addition of  

borate into reaction system has been suggested to improve aldose-ketose isomerization because 

borate can bind ketose stronger than aldose.67 Such strategy has been applied on the conversion of 

L-fucose to L-fuculose, in which a 85% conversion ratio was observed.65 However, the purification 

steps require the separation of ketose-borate complex and the splitting of the desired ketoses from 

ketose-borate complex.68 These tedious manipulations place a limit on the applications of this 

strategy. The second method for the production of L-rhamnulose and L-fuculose is based on aldol 

condensation reaction.53, 69 In this strategy, RhaD or FucA were used to produce L-rhamnulose 1-

phosphate or L-fuculose 1-phosphate from dihydroxyacetone phosphate (DHAP) and L-

lactaldehyde, and then the phosphate group was hydrolyzed to afford L-rhamnulose or L-fuculose. 

However, DHAP and L-glyceraldehyde are costly and unstable, reducing the synthetic practicality. 

Although DL-glycerol 3-phosphate, an inexpensive starting material, has been used to produce 

DHAP in a one-pot reaction fashion,70, 71 ketose production mediated by aldolase still suffers from 

low yields and tedious purification manipulations.69 Therefore, while L-rhamnulose and L-

fuculose are commercially available, they are cost prohibitive (L-rhamnulose, $178/10 mg, Sigma-

Aldrich; L-fuculose, $199/10 mg, Carbosynth). The study of L-rhamnulose and L-fuculose has 

been hindered due to their limit availability. Herein an enzymatic method for the efficient and 

convenient preparation of rare ketoses L-rhamnulose and L-fuculose from readily available aldoses 

is reported.  

To apply the described scheme on L-rhamnulose and L-fuculose production in this work, the 
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prerequisite is the availability of a kinase that specifically recognizes L-rhamnulose and L-fuculose 

but not L-rhamnose or L-fucose. Otherwise, the products obtained finally will be a mixture 

containing both aldose and ketose. L-rhamnulose kinase is the enzyme that prefers ketoses with 

(3R)-configuration. Recently, we identified an L-rhamnulose kinase from Thermotoga maritima 

MSB8, which show high substrate specificity towards (3R)-ketoses as compared to (3S)-ketoses 

or (3S)-aldoses. In this work, the substrate specificity of RhaB towards several deoxy sugars was 

studied. RhaB failed to recognize L-rhamnose or L-fucose but had high activity towards L-

rhamnulose and L-fuculose (Table 1.4), indicating its potential for one-pot multienzyme (OPME) 

reactions to produce L-rhamnulose and L-fuculose. 

 

Figure 1.5 Two-step strategy for the enzymatic synthesis of L-rhamnulose and L-fuculose 

Table 1.4 Substrate specificity of RhaB towards several deoxy sugars. 

Substrate RhaB activity (%) 

L-rhamnulose 100 

L-fuculose 81.3 

L-rhamnose ND 

L-fucose ND 

ND: no detectable activity was observed. 

    Having met the prerequisite, other conversion-related enzymes including L-rhamnose isomerase 

(RhaA),72 L-fucose isomerase (FucI),73 and acid phosphatase (AphA)74 from Escherichia coli were 

prepared as described in experiment part. To test the potential of RhaB in OPME reactions, 
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analytical scale reactions (Table 1.5) were performed in one-pot (164 ug scale), and tested by TLC. 

Reactions without isomerases were done as negative controls. Once the formation of sugar 

phosphates was observed on TLC while no reactions were observed on the control reactions, 

preparative reactions (gram scale) were performed. 

    In the first reaction step, L-rhamnose was incubated with RhaA and RhaB in one-pot in the 

presence of ATP as the phosphate donor (OPME 1, Figure 1.5). No buffer was used in 

consideration to purification. The reaction pH was held near 7.5, where all enzymes are quite 

active, using sodium hydroxide as the reaction occurred. In this one-pot two-enzyme system, RhaA 

isomerized L-rhamnose to L-rhamnulose, which was immediately phosphorylated by RhaB. It 

seems that L-rhamnulose was taken out of the reaction balance, and thus the reaction was driven 

towards the formation of L-rhamnulose in its ketose 1-phosphate form (L-rhamnulose 1-

phosphate). The reaction was monitored by TLC and HPLC equipped with ELSD detector (HPX-

87H column). Once the reaction finished (conversion ratio exceeding 99%), silver nitrate 

precipitation was used to precipitate ATP and ADP. In detail, silver nitrate was added into reaction 

system until no new precipitate formed, and the precipitate was removed by centrifugation. Sodium 

chloride was added to precipitate the remaining silver ions, and the precipitate was removed by 

centrifugation. After desalting by using P-2 column, L-rhamnulose 1-phosphate was isolated in 

91% yield. The product was analyzed by NMR and MS (see experiment part).  The NMR spectra 

and MS data are well in accord with previously reported data, confirming the isolated product is 

L-rhamnulose 1-phosphate. In the second reaction step, the phosphate group of L-rhamnulose 1-

phosphate was hydrolyzed by AphA in pH 5.5 to produce L-rhamnulose. Once phosphate sugar 

was no longer observed on TLC, the solution was concentrated and purified by P-2 column to 

afford final product in 82% yield with regard to L-rhamnose. The product was analyzed by HPLC, 
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NMR and MS (See experiment part). No obvious peak of L-rhamnose can be found by HPLC 

(Figure 1.6) and no characteristic peak of aldose can be found in NMR spectra (See experiment 

part) indicating product purity exceeding 99%. 

Table 1.5 Enzymatic synthesis of L-rhamnulose and L-fuculose from L-rhamnose or L-fucose. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6 HPLC profiles of L-rhamnulose and L-fuculose compared with starting aldoses. 

    Similarly, preparative scale synthesis of L-fuculose from L-fucose was also carried in gram 

scale. In the first reaction step, L-fucose was incubated with FucI and RhaB in the presence of 

ATP as phosphate donor. Conversion ratio exceeding 99% can be reached. Following the same 

manipulation as described above, L-fuculose 1-phosphate was isolated in 93% yield. NMR and 

MS data are well in accord with the previously reported data,69, 75 confirming the isolated product 
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is L-fuculose 1-phosphate. After hydrolyzing the phosphate group of L-fuculose 1-phosphate by 

AphA in step 2, L-fuculose was obtained in 84% yield with regard to L-fucose. The product was 

analyzed by HPLC, NMR and MS. HPLC and NMR analysis indicates a product purity exceeding 

99%. 

1.3.2 The synthesis of 6-deoxy-L-sorbose  

        6-deoxy-L-sorbose can serve as a precursor of furaneol (4-Hydroxy-2,5-dimethyl-3(2H)-

furanone), an important compound in the food industry for its caramerl-like flavor used in food 

industry.76 Moreover, 6-deoxy-L-sorbose is also the starting material for the preparation of 6-

deoxy-L-gulose and 6-deoxy-L-idose.63 The majority of the potential applications of 6-deoxy-L-

sorbose have not been fully investigated due to its relative scarcity. Enzymatic synthesis by the 

condensation of dihydroxyacetone phosphate (DHAP) and L-lactaldehyde employing aldolase has 

been the primary method for 6-deoxy-L-sorbose preparation (Scheme 1, A), in which 6-deoxy-L-

sorbose was obtained in 56% yield.77 Hecquet and co-workers found that 6-deoxy-L-sorbose could 

also be prepared from 2,3-dihydroxybutyraldehyde and hydroxypyruvate by using transketolase 

(TK) (Scheme 1, B).78 Although a 24 % yield was achieved, up to 26% of an isomer (6-deoxy-D-

fructose) was also present in the resulting solution. Subsequently, they found that TK could 

exclusively produces 6-deoxy-L-sorbose when hydroxypyruvate and 4-deoxy-L-threose were used 

as starting materials (Scheme 1, C).79 The process was improved by coupling the isomerization 

reaction of 4-deoxy-L-threose from 4-deoxy-L-erythrulose giving a yield up to 35%.79 However, 

these methods suffer from expensive staring materials, low yields and complicated purification 

processes. Recently, Shompoosang and co-workers used L-fucose (6-deoxy-L-galactose), a readily 

available sugar in nature, as starting materials in preparing 6-deoxy-L-sorbose (Scheme, D).63 By 

this process, L-fucose was isomerized to L-fuculose (6-deoxy-L-tagatose) by L-fucose isomerase, 
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and then 6-deoxy-L-sorbose was epimerized from 6-deoxy-L-tagatose by D-tagatose 3-epimerase 

(DTE). However, since all aldose-ketose isomerization is very unfavorable for ketose formation, 

the first step only produce 9% isolated yield. The production was improved by reusing the purified 

L-fucose several times, but only 27% isolated yield was obtained. The second step produces 50% 

yield resulting in a final 14% isolated yield of 6-deoxy-L-sorbose with regard to L-fucose. 

Moreover, this method requires a tedious isomer separation process to obtain 6-deoxy-L-sorbose 

in pure form.  

    To establish a facile method for 6-deoxy-L-sorbose preparation, we attempt to apply an 

“isomerizationepimerization phosphorylationdephosphorylation” cascade reaction to 

produce 6-deoxy-L-sorbose from L-fucose directly (Figure 1.7). FucI catalyzes the isomerization 

of L-fucose to L-fuculose.80  DTE is a novel epimerase that catalyze the epimerization of ketoses 

at C-3 position resulting (3S)- and (3R)- interconversion.51, 81, 82 These two enzymes have been 

used to produced 6-deoxy-L-sorbose as mentioned above. Although these two reactions can be 

carried in one-pot to simplify the synthetic process, the purification of 6-deoxy-L-sorbose from the 

reaction mixture containing L-fucose, L-fuculose and 6-deoxy-L-sorbose is very difficult and makes 

this strategy impractical.  In this work, the isomerization of L-fucose to L-fuculose, and 

epimerization of L-fuculose to 6-deoxy-L-sorbose were accurately controlled by coupling with a 

targeted phosphorylation reaction of 6-deoxy-L-sorbose in one-pot fashion.  The selective 

phosphorylation of 6-deoxy-L-sorbose could drive both reversible reactions towards the formation 

of the 6-deoxy-L-sorbose 1-phosphate in the first reaction step. However, to achieve the designed 

scheme, the prerequisite is the availability of a kinase that specifically recognizes 6-deoxy-L-

sorbose but not L-fucose and L-fuculose. Otherwise, the products obtained finally will be a mixture 

containing many isomers (L-fucose and L-fuculose), which are difficult to be separate. 
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Figure 1.7 Enzymatic synthesis of 6-deoxy-L-sorbose 

 

    By screening the substrate specificity of many kinases, we recently found that fructose kinase 

(HK) from human, which phosphorylate ketose to ketose 1-phosphate, preferred ketose with (3S)-

configuration as its substrate. In this work, substrate specificity of HK towards 6-deoxy-L-sorbose 

((3S)-configuration), L-fucose ((3R)-configuration), and L-fuculose ((3R)-configuration) was 

studied. 6-deoxy-L-sorbose could serve as the substrate of HK while no detectable activity of HK 
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towards either L-fucose or L-fuculose was observed (Table 1.6), indicating its potential for one-

pot multienzyme (OPME) reaction to produce 6-deoxy-L-sorbose from L-fucose. Indeed, 

treatment of 6-deoxy-L-sorbose with HK in the presence of ATP as phosphate donor led to 

complete conversion to 6-deoxy-L-sorbose 1-phosphate after 2 hour at 37 °C. 

Table 1.6 Substrate specificity of HK towards several deoxy sugars 

Substrate HK activity (%) C-3 configuration 

L-fucose ND R 

L-fuculose ND R 

6-deoxy-L-sorbose 100 S 

 

Having met the prerequisite, other conversion related enzymes including L-fucose isomerase 

(FucI) from Escherichia coli,73 DTE from Pseudomonas Sp, St-2451, and AphA from Escherichia 

coli 74  were prepared as described in experiment part. To test the potential of HK in OPME 

reaction, a small-scale reaction system (50 ul) containing conversion-related enzymes (FucI, DTE 

and HK) was performed (reaction group). Reactions without FucI (control 1 group) or DTE 

(control 2 group) were done as negative controls. The reaction was incubated at 37 °C for 1 hour 

and monitored by TLC (EtOAc/MeOH/H2O/HOAc=5:2:1.4:0.4). The formation of 6-deoxy-L-

sorbose 1-phosphate was observed in the reaction group and no reaction was observed in either 

control 1 or control 2, indicating the feasibility of the designed OPME reaction. Preparative 

reactions were performed in the gram scale. To efficiently convert L-fucose, excess ATP (1.25 

equiv) was used. For the convenience of the final purification, no buffer was used. The reaction 

pH was held near 7.5 using sodium hydroxide as the reaction was ongoing. The reaction was 

allowed to proceed until no detectable L-fucose was observed by HPLC (conversion ratio 

exceeding 99%) and thereby making isomer separation step is unnecessary.  
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Table 1.7 Enzymatic synthesis of 6-deoxy-L-sorbose from L-fucose 
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Figure 1.8 HPLC profiles of 6-deoxy-L-sorbose 

6-deoxy-L-sorbose 1-phosphate was purified by using silver nitrate precipitation method.83 The 

principle of this method is that silver ions could precipitate ATP and ADP while monophosphate 

sugars could not be precipitated when the sugars are composed of four or more carbons. Therefore, 

by applying this selective precipitating ability of siver ions, sugar phosphate can be cleanly and 

easily separated from adenosine phosphates. Afterwards, the solution was desalted by Bio-Gel P-

2 column to afford 6-deoxy-L-sorbose 1-phosphate in 92% yield with reagard to L-fucose. In the 

second reaction step, the phosphate group of 6-deoxy-L-sorbose 1-phosphate was hydrolyzed by 

AphA in pH 5.5. Once no detecable sugar phosphate was observed, the reaction was stoped by 

adding cooled ethanol. The solution was purified by Bio-Rad P-2 column to afford 6-deoxy-L-

sorbose in 81 % yield with regard to L-fucose. 
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1.3.3 The synthesis of 6-deoxy-L-psicose 

        Rare sugars cannot be extracted from natural sources due to their low abundance. Therefore, 

numerous chemical and enzymatic methods have been explored to synthesize rare sugars from 

common sugars.4, 84 Chemical strategies for rare sugars tend to require multiple 

protection/deprotection and complicated purification steps, suffering from low yield as a result.85 

As an alternative, enzymatic synthesis with mild conditions and high efficiency has distinct 

advantages in both regio- and stereo-selectivity.1  Izumori et al. have previously shown that the 

total synthesis of rare sugars by using isomerization, epimerization, oxidization or reduction 

reactions is achievable.2, 3 For example, aldose-ketose isomerization catalyzed by a single 

isomerase has been widely used to produce ketose from aldose as most common sugars are 

aldoses.86 Nevertheless, aldose-ketose isomerization is very unfavorable for ketose formation in 

the final reaction as ketose has a higher energy state than aldose.66 In most instances, the 

conversion ratios are no more than 40%.87-91 Attempts to improve aldose-ketose isomerization 

include the addition of borate to break the aldose-ketose reaction equilibrium,38 the discovery of 

novel enzymes in nature,42 and directed evolution92 have also been suggested. Nevertheless, these 

methods still suffer from low yield, or an isomer separation manipulation, which is a labor-

intensive and time-consuming process due to the similar properties of the isomer pair. Ketose-

ketose epimerization catalyzed by D-psicose 3-epimerase (DPE) or D-tagatose 3-epimerase (DTE), 

which was firstly discovered by Izumori and co-workers,51 is another important reaction for rare 

sugar synthesis. However, this process also suffers from low yield and isomer separation 

manipulation. Oxidization or reduction reactions require co-enzyme such as NAD+/NADH, which 

are commercially too expensive for large scale synthesis. Therefore, the study of rare sugars is still 

hindered due to the lack of an efficient and convenient preparation method. 



22 

 

6-deoxy-L-psicose is a 6-deoxy rare sugar and also the C-3 epimer of L-rhamnulose. 6-deoxy 

sugars are building blocks of a variety of natural products, including antifungals,93 antibiotics,94 

and anticancer agents.95, 96 6-deoxy-L-psicose is the intermediate for the preparation of 6-deoxy-

L-allose and 6-deoxy-L-altrose.64 The more potential applications of 6-deoxy-L-psicose have not 

been reported, possibly due to its limited avalibility. Chemical 6-deoxy reaction from 

corresponding ketoses require complicated protection/deprotection steps, resulting in a low yield.97, 

98 The only enzymatic strategy reported for 6-deoxy-L-psicose synthesis is by Shompoosang et al, 

to the best of our knowledge.64 They incubated L-rhamonsoe with L-rhamnose isomerase (RhaI) 

and D-tagatose 3-epimerase (DTE) to prodece 6-deoxy-L-psicose. When the final reaction 

equilibrium was observed, a mixture containing L-rhamnose, L-rhamnulose and  6-deoxy-L-

psicose (55: 35: 15) was obtained.  After a tedious purification step, 6-deoxy-L-psicose was 

obtained in only 8.7% yield with respect to L-rhamnose. Therefore, an efficient and convenient 

strategy capable of producing 6-deoxy-L-psicose in considerable amount would be of great interest 

to accelerate the study of 6-deoxy-L-psicose.  

    To produce 6-deoxy-L-psicose from L-rhamnose by using the proposed two-step strategy, two 

prerequisites must first be met: 1) the availability of a D-tagatose 3-epimerase (DTE) to catalyze 

the interconversion of L-rhamnulose and 6-deoxy-L-psicose, but not the interconversion between 

6-deoxy-L-psicose 1-phosphate and L-rhamnulose 1-phosphate; and 2) the availability of a kinase 

that specifically phosphorylates 6-deoxy-L-psicose but not  L-rhamnulose and L-rhamnose. The 

discovery of DTE, which epimerize ketoses at C-3 position, by Izumori et al has made it possible 

to achieve the interconversion of (3S)-sugars and (3R)-sugars.51 They demonstrated that DTE from 

Pseudomonas Sp, St-24 failed to recognize D-fructose 6-phosphate and D-ribulose 5-phosphate.51 

We recently found that DTE from Pseudomonas Sp, St-24 also fails to use many ketose phosphates 
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as the substrate.99, 100 Therefore, we proposed that it may not recognize 6-deoxy-L-psicose 1-

phosphate as substrate in this work. This assumption is supported by the purity analysis of 6-

deoxy-L-psicose (Table 1.9). To found a kinase that specifically phosphorylates 6-deoxy-L-

psicose but not  L-rhamnulose and L-rhamnose, substrate specificity of many kinases was studied 

in this work (data not shown). Finally, we found that fructose kinase (HK) from human accords 

well with the requirement of the described Scheme. Substrate specificity study indicated that HK 

could efficiently phosphorylate 6-deoxy-L-psicose, with only trace activity (<0.1 %) towards L-

rhamnulose and no detectable activity towards L-rhamnose (Table 1.8). The high specificity of 

HK towards 6-deoxy-L-psicose indicated its potential for applications in one-pot multienzyme 

(OPME) reaction for the preparation of 6-deoxy-L-psicose from L-rhamnose.  

 

Figure 1.9 Enzymatic synthesis of 6-deoxy-L-psicose. 
 

    To test this potential, analytical scale reaction system (164 ug in 50 ul) containing conversion-

related enzymes (RhaI, DTE and HK) was performed. Reactions without RhaI (control 1 group) 
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or DTE (control 2 group) were done as negative controls. The reaction was incubated at 37 °C for 

1 hour and monitored by TLC (EtOAc/MeOH/H2O/HOAc=5:2:1.4:0.4). The formation of 6-

deoxy-L-psicose 1-phosphate was observed in the reaction group and no reaction was observed in 

either control 1 or control 2, indicating the feasibility of the designed OPME reaction.   

Table 1.8 Substrate specificity of HK towards several deoxy sugars 

Substrate HK activity 
(%) 

C-3 configuration 

L-rhamnose ND R 

L-rhamnulose <0.1 R 

6-deoxy-L-psicose 100 S 

    Preparative scale synthesis was carried in a 400 ml reaction solution containing 20 mM L-

rhamnose. As much as possible to consume L-rhamnose, 1.25 equivalent of ATP was added. The 

reaction pH was held near 7.5 using 1 M of sodium hydroxide as the reaction was ongoing. The 

reaction was carefully shaken at 37°C for 48 hours to allow the formation of 6-deoxy-L-psicose 1-

phosphate. Enzymes were supplemented every 12 hours. Once reaction finished, 95% of L-

rhamnose was consumed (as confirmed by HPLC). Afterwards, ATP and ADP was selectively 

precipitated by using silver nitrate precipitation method,33 while 6-deoxy-L-psicose 1-phosphate 

is still in solution. 6-deoxy-L-psicose 1-phosphate was separated from the remaining L-rhamnose 

by using Bio-Gel P-2 column to afford final product in 90% yield with reagard to L-rhamnose. In 

the second reaction step, 6-deoxy-L-psicose 1-phosphate obtained in first reaction step was 

dissolved in water and the solution pH was adjusted to 5.5 using 1 M of HCl. Then, acid 

phosphatase was added to hydrolyze the phosphate group of 6-deoxy-L-psicose 1-phosphate to 

afford 6-deoxy-L-psicose. After desalting by using Bio-Gel P-2 column, 6-deoxy-L-psicose was 

obtained in 80% yield with regard to L-rhamnose (Table 1.9). 
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The obtained product was confirmed by NMR, HRMS and HPLC analysis. The predicted 

peak ([M+Na]+ 187.0582) was well observed on high resolution mass spectrum. The product purity 

was analyzed by HPLC using HPX-87H column or Sugar-Pak 1 column equipped with evaporative 

light scattering detector (ELSD). HPLC analysis using HPX-87H column indicated that no 

detectable L-rhamnose was found (as also confirmed by 1H-NMR).  HPLC analysis using Sugar-

Pak 1 column showed that 1.5 % of L-rhamnulose was found in final product (Figure 1.10). This 

may result from the long reaction time and the trace activity of HK towards L-rhamnulose.  

Table 1.9 Enzymatic synthesis of 6-deoxy-L-psicose from L-rhamnose 
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Figure 1.10 HPLC analysis of 6-deoxy-L-psicose 
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1.4 Facile enzymatic synthesis of phosphorylated phosphorylated ketopentoses 

    Of all possible structures, only 12 pentoses naturally occur comprised of eight aldopentoses 

(D-xylose, D-lyxose, D-ribose, D-arabinose, L-xylose, L-lyxose, L-ribose, and L-arabinose) and four 

corresponding ketopentoses (D-xylulose, D-ribulose, L-xylulose, and L-ribulose).3 The ketopentoses 

can be phosphorylated at the C-1 or C-5 position, resulting in eight phosphorylated ketopentoses 

(Figure 1.1). It is now well established that abnormal levels of phosphorylated ketopentoses in 

mammals are directly correlated to a wide range of diseases such as diabetes, cancer, 

atherosclerosis, and cystic fibrosis.101-106 Uyeda and co-workers found that xylulose 5-phosphate 

acts as a glucose signaling compound, recruiting and activating a specific protein serine/threonine 

phosphatase (PPase), which is responsible for the activation of transcription of the L-type pyruvate 

kinase gene and lipogenic enzyme genes.107-109 Enzymes involved in phosphorylated ketopentoses 

metabolism are exciting potential targets for therapeutic treatment.110-113 Additionally, 

phosphorylated ketopentoses are important intermediates in sugar metabolism pathway. All 

pentoses including aldopentose and ketopentose that could be utilized by bacteria or other 

organisms must first be converted to their phosphorylated ketopentose forms to enable metabolic 

function.1, 4, 14, 15 In these metabolism pathways, ketopentose 1-phosphates are split into 

glycolaldehyde and dihydroxyacetone phosphate, which is an intermediate in the glycolytic 

pathway, by aldolases.16-18 Ketose 5-phosphates will be epimerized to D-xylulose 5-phospahte or 

D-ribulose 5-phosphate, which are key participants of pentose phosphate pathway (PPP), by 

epimerases.19-21 PPP is a universal metabolic process present in bacteria, plants and animals,22 and 

its main function is to produce reducing power and building blocks for cell growth.23 Because of 

their critical position in sugar metabolism pathway, phosphorylated ketopentoses are also the 

starting materials in synthetic chemistry.24 For example, D-xylulose 5-phosphate can act as the 
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starting material for the synthesis of heptose in bacteria.25 Likewise, D-ribulose 5-phosphate can 

be used for the synthesis of 3-deoxy-D-manno-octulosonic acid (KDO).26 Therefore, 

phosphorylated ketopentoses have great potential for applications in investigating the mechanistic 

and regulatory aspects of sugar metabolism, identification and characterization of new enzymes in 

nature, and being raw materials in synthetic chemistry.27-29 A platform for the highly efficient and 

convenient synthesis of phosphorylated ketopentoses is therefore of considerable interest. 

    Regarding the biological and synthetic applications of phosphorylated ketopentoses, multiple 

methods have been developed. The chemical phosphorylation of ketoses involves 

protection/deprotection steps.114-116 Alternatively enzymatic catalysis (kinase) with mild reaction 

conditions and high reaction efficiency is able to proceed regio- and stereoselectively without 

requiring protection.117-122 However, ketopentoses are cost prohibitive for preparative scale 

synthesis. The strategy includes enzymatic isomerization in a one-pot fashion to enable the use of 

cheaper aldose as starting materials to prepare phosphorylated ketoses,60, 69, 115, 123 but the 

availability of substrate-specific kinases is a prerequisite. Moreover, enzymatic phosphorylation 

requires the separation of sugar phosphate from adenosine phosphates (ATP and ADP) to obtain a 

sugar phosphate in pure form. The two most common methods used for sugar phosphate 

purification are ion-exchange chromatography and barium precipitation,75, 115, 124 but both methods 

are labor-intensive and time-consuming. Additionally, enzymatic synthesis of phosphorylated 

ketopentoses employing transketolase,125-127 aldolase,60, 75, 128 or oxidase129 has also been suggested. 

However, these methods suffer from both expensive starting materials and extensive purification 

steps. Therefore, while some phosphorylated ketopentoses are commercially available, they are 

extremely expensive (D-ribulose 5-phosphate, $1245/25mg, Sigma-Aldrich; D-xylulose 5-

phosphate, $1150/10 mg, Carbosynth). Studies of this fundamental class of carbohydrates have 
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been hindered by a lack of efficient preparation methods to readily provide substantial amounts of 

the desired products.  

    In this work, an efficient and convenient platform for phosphorylated ketose syntheses is 

described. All eight phosphorylated ketopentoses were produced from D-xylose and L-arabinose 

utilizing this platform (Figure 1.11). Our strategies are mainly based on 

“isomerizationphosphorylation” and “isomerizationepimerizationphosphorylation” 

cascade reactions. We combined the thermodynamically unfavorable bioconversions of D-xylose 

to D-series of ketopentose (D-xylulose and D-ribulose), or L-arabinose to L-series of ketopentose (L-

ribulose and L-xylulose) with phosphorylation reactions by substrate-specific kinases to prepare 

the desired phosphorylated ketopentoses (1 to 3, and 5 to 7). D-ribulose 5-phosphate (4) and L-

xylulose 5-phosphate (8) were synthesized by a two-step strategy. 

    D-xylose and L-arabinose are the two common pentoses found in substantial quantities in 

nature.2 Although the reactions are reversible, aldose-ketose isomerization and ketose-ketose 

epimerization has been the main method for ketose preparation.2 Nevertheless, separation of the 

desired ketose from its isomeric mixture is difficult. To avoid such separation, we combined these 

reversible reactions with targeted phosphorylation reactions catalyzed by kinases in a one-pot 

fashion to prepare phosphorylated ketopentoses instead of directly phosphorylating the ketoses. 

These reactions are known as one-pot multienzyme reaction (OPME).130 The phosphorylation 

reaction coupled with the reversible conversions (isomerization or epimerization) drives the 

reactions (isomerization or epimerization) towards the formation of ketoses in their phosphorylated 

forms until a high conversion ratio was reached. 

    In order to establish the basis of OPME reactions for the preparation of D-xylulose 5-phosphate 

from D-xylose, and L-ribulose 5-phosphate from L-arabinose, the substrate specificity of  
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Figure 1.11 Total synthesis of phosphorylated ketopentoses from D-xylose and L-arabinose 

D-xylulose kinase (XylB) and L-ribulose kinase (AraB) from E.coli,120, 122 were tested (see 

experiment part). No detectable activity of XylB towards D-xylose, or AraB towards L-arabinose 

was found (Table 1.10), indicating their potential for OPME reactions. To test the practicability of 

the designed OPME reactions, analytical reactions were firstly carried in 50 ul system containing 

conversion-related enzymes (Table 1.11), starting materials and ATP. Reactions without isomerase 

were performed as negative controls. The reactions were tested by TLC 

(EtOAc/MeOH/H2O/HOAc=5:2:1.4:0.4). After observing sugar phosphates formation by TLC 

and no reactions in control samples, preparative scale syntheses were performed. 

Preparative scale syntheses were routinely performed in gram scale (Table 1.11). D-xylose was 

incubated with D-xylose isomerase (XylA) from E.coli131 and XylB in the presence of ATP (1.25 

molar equiv) as phosphate donor to prepare D-xylulose 5-phosphate (OPME 1, Figure 1.11). L-

arabinose was incubated with ATP (1.25 molar equiv), L-arabinose isomerase (AraA) from 

Bacillus subtilis,132 and AraB to prepare L-ribulose 5-phosphate (OPME 5, Figure 1.11). No buffer 

was used in consideration to purification. The reaction pH was held near 7.5, where all enzymes 
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are quite active, using sodium hydroxide as the reaction occurred. Both reactions were allowed to 

proceed until a conversion ratio exceeding 99% was reached (as confirmed by HPLC).  

Table 1.10 Substrate specificity of kinasesa 

Substrate XylB 

Activity (%) 

AraB 

Activity (%) 

LyxK 

Activity 

(%) 

RhaBb 

Activity 

(%) 

HKb 

Activity 

(%) 

L-arabinose ND ND ND ND ND 

D-xylose ND ND ND 0.1 ND 

L-xylulose 7.3 1.3 100 100 NA 

D-ribulose 4.9 139 2.5 111 NA 

L-ribulose 16.9 100 2.5 ND 100 

D-xylulose 100 3.4 1.6 0.3 349 

a: Substrate specificity was studied by the reactions that were performed at 37°C for 10 minutes 

in 50 ul reaction mixture containing a Tris-HCl buffer (100 mM, pH 7.5), 20 mM of sugar standards, 

20mM of ATP, 5 mM of Mg2+, and 10 ug of enzymes.  NA: not assayed. ND: no detectable activity 

was observed. 

Afterwards, silver nitrate precipitation method99 was used to purify D-xylulose 5-phosphate and 

L-ribulose 5-phosphate. In detail, silver nitrate was added to the solution to precipitate ATP and 

ADP selectively until no new precipitation was observed. Precipitates were removed by 

centrifugation. Sodium chloride was added to precipitate residual silver ions and silver chloride 

precipitate was removed by centrifugation. The entire separation process can be finished in less 

than 15 minutes. After desalting by a P-2 column, D-xylulose 5-phosphate and L-ribulose 5-

phosphate were isolated in more than 90% yield (Table 1.11) comparable to the yield for ion-

exchange purification methods. Compared to barium precipitation method, by which sugar 

phosphate was isolated as a barium salt in the presence of barium and ethanol,115, 124 no additional 

steps to remove toxic ions and no accurate pH control are necessary. Moreover, silver is safer than 
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barium. The isolated products were confirmed by NMR and MS analysis (see experiment part). 

Compared to the previous synthesis,115, 123, 127 not only a higher isolated yield was obtained, but 

also the tedious purification step was avoided. 

To assess product purity, the phosphate groups on both phosphorylated sugars were hydrolyzed 

by acid phosphatase. The resultant monosaccharides were analyzed by HPLC (see experiment part). 

A product distribution of D-xylulose to D-xylose (98.4: 1.6) was observed indicating the isolated 

product of D-xylulose 5-phosphate contains 1.6% of D-xylose 5-phosphate (as also observed by 

NMR). Similarly, a product distribution of L-ribulose to L-arabinose (99.5: 0.5) was observed 

indicating the isolated product of L-ribulose 5-phosphate contains 0.5% of L-arabinose 5-

phosphate (as also observed by NMR). The existence of aldoses may because XylA and AraA can 

incorrectly isomerize D-xylulose 5-phosphate and L-ribulose 5-phosphate to a certain extent. 

To prepare D-xylulose 1-phosphate and L-ribulose 1-phosphate from D-xylose and L-arabinose 

using OPME reactions, an enzyme that could phosphorylate D-xylulose and L-ribulose at the C-1 

position but not D-xylose and L-arabinose is required. Human fructosekinase (HK) catalyzes the 

phosphorylation of  ketoses to ketose 1-phosphates.56 Recently, we found HK could specifically 

recognize D-xylulose and L-ribulose but not D-xylose and L-arabinose.99 Analytical reactions 

containing conversion-related enzymes (Table 1.11) were performed and tested as described above. 

Once the formation of sugar phosphates were observed by TLC and no further reactions in control 

samples seen, preparative scale syntheses were performed. D-xylose was incubated with ATP (1.25 

molar equiv), XylA, and HK to prepare D-xylulose 1-phosphate (OPME 2, Figure1.11). L-

arabinose was incubated with ATP (1.25 molar equiv), AraA, and HK to prepare L-ribulose 1-

phosphate (OPME 6, Figure 1.11). Both reactions were monitored by TLC and HPLC. 

Once no detectable amounts of the starting aldoses were observed (conversion ratio exceeding  
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Table 1.11 Total synthesis of phosphorylated ketopentoses from D-xylose and L-arabinose using 

the strategy shown in Scheme 1a 

 

a: Defined as the percentage of desired phosphorylated ketose out of the sum of all possible 

isomers (as confirmed by HPLC). 

99%), silver nitrate precipitation was used to purify the sugar phosphates. After desalting by a P-

2 column, D-xylulose 1-phosphate and L-ribulose 1-phosphate were isolated in more than 90% 

yield (Table 1.11). The products were confirmed by NMR and MS analysis (see experiment part). 

The purity was analyzed in the same manner mentioned above (see experiment part). Since the C-
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1 position was blocked by the phosphate group, the side reactions were avoided to result in a 

product purity exceeding 99% (Table 1.11).  

    D-ribulose 1-phosphate and L-xylulose 1-phosphate were prepared from D-xylose and L-

arabinose using OPME 3 and OPME 7 (Figure 1.11). Although D-ribulose 1-phosphate and L-

xylulose 1-phosphate have great potential applications, they have been difficult to prepare in 

substantial quantities. For example, it has been reported that D-ribulose 1-phosphate can be 

isomerized from D-ribose 1-phopshate, which result from the phosphorylation of D-ribose, by 

MTR 1-P isomerase.133 However, this process is impractical, requiring not only a sugar phosphate 

purification step but also a protracted isomer separation. D-ribulose and L-xylulose have a (3R)-

configuration which is different from D-xylose and L-arabinose. To prepare D-ribulose 1-

phosphate from D-xylose, and L-xylulose 1-phosphate from L-arabinose, isomerization catalyzed 

by isomerase (XylA or AraA) and a C-3 epimerization catalyzed by D-tagatose 3-epimerase (DTE) 

from Pseudomonas Sp, ST-2451 were combined in one-pot. These two reversible conversions were 

coupled with L-rhamnulose kinase (RhaB) from Thermotoga maritima MSB8, a novel enzyme that 

requires ketoses with (3R)-configuration,99 resulting in the formation of (3R)-ketose 1-phosphates. 

Once the starting aldoses were no longer detected, D-ribulose 1-phosphate and L-xylulose 1-

phosphate were purified by silver nitrate precipitation in more than 90% yield (Table 1.11) and 

confirmed by NMR and MS analysis (see experiment part). A product distribution of D-ribulose, 

D-xylulose and D-xylose (98.2: 1.2: 0.6) was observed indicating the purity of D-ribulose 1-

phosphate is 98.2%. For L-xylulose 1-phosphate analysis, no detectable L-arabinose or L-ribulose 

was found indicating L-xylulose 1-phosphate has a purity exceeding 99%. Such conversions are 

important because most of sugars that naturally occur in large amounts are (3S)-aldoses.2 Therefore, 
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the reactions described herein (OPME 3 and OPME 7) represent a novel strategy for the 

preparation of (3R)-ketoses from (3S)-aldoses directly.     

D-ribulose 5-phosphate and L-xylulose 5-phosphate also have been difficult to prepare in quantity. 

The methods known in the literature for the synthesis of D-ribulose 5-phosphate are the 

phosphorylation of D-ribulose,115 the isomerization of D-ribose 5-phosphate, and the oxidization of 

D-gluconate 6-phosphate.129 L-xylulose 5-phosphate could be prepared by phosphorylating L-

xylulose.119 Nevertheless, these methods also suffer from expensive starting materials or a tedious 

purification step. In this work, D-ribulose 5-phosphate and L-xylulose 5-phosphate were prepared 

from D-xylose and L-arabinose by a two-step strategy (conversion 4 and conversion 8, Figure 1.11) 

due to an inability to identify kinases that could specifically phosphorylate D-ribulose and L-

xylulose at the C-5 position. In the first conversion step, D-ribulose and L-xylulose were obtained 

by hydrolyzing the phosphate groups of D-ribulose 1-phosphate and L-xylulose 1-phosphate, both 

of which were prepared from D-xylose and L-arabinose using OPME 3 and OPME 7, by 

acid phosphatase (AphA) from E.coli,74. AraB is well known as L-ribulose kinase,122 but it also 

displays high activity towards D-ribulose (Table 1.10). Thus, in the second conversion step, D-

ribulose was incubated with AraB to prepare D-ribulose 5-phosphate. L-xylulose was incubated 

with L-xylulose kinase (LyxK) from E.coli119 to prepare L-xylulose 5-phosphate. The products were 

purified by using silver nitrate precipitation. After desalting by using a P-2 column, the products 

were isolated in more than 84% yield with regard to D-xylose and L-arabinose (Table 1.11), 

respectively. Purity analysis indicated both D-ribulose 5-phosphate and L-xylulose 5-phosphate 

have a purity of 99%. 
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1.5 Enzymatic synthesis of 3-deoxy-D-mano-octulosonic acid (KDO) and its application 

for LPS assembly. 

  Lipopolysaccharides (LPS), also known as endotoxins, are large molecules that anchored in the 

outer membrane of Gram-negative bacteria by lipid A, to which a nonrepeating core 

oligosaccharide and a distal polysaccharide termed as O-antigen are attached (Figure 1).134 

Nonrepeating core oligosaccharide part contains 3-deoxy-D-manno-octulosonic acid (KDO) and 

heptose and is highly conserved in different bacteria.135 KDO is the only sugar that found in all 

known core structures, although in some cases a derivative, D-glycero-D-talo-2-octulosonic acid 

(KO), is also present.135 KDO was also found in capsular polysaccharides of many bacteria. For 

example, the repeating unit of Neisseria meningitides serogroup E capsule consists of alternating 

D-galactosamine and KDO residues.136 Escherichia coli K12 capsule contains rhamnose and KDO 

residues.137 Besides, KDO was found in plant and green algae.138-141 Concerning the importance 

of KDO in kinds of biological processes, enzymes that involved in KDO biosynthetic pathway are 

exciting targets for the development of new classes of antibiotics.142, 143 Core polysaccharides of 

LPS are also the potential vaccines against bacterial infection. Many KDO-containing  

 

Figure 1.12 The structure of E.coli LPS 

polysaccharides have been synthesized and evaluated in recent years.144-147 The fact that 

immunizations with many of these polysaccharides lead to antibody responses provides an impetus 
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to explore further KDO-containing polysaccharides as a vaccine candidate.147 Nevertheless, such 

studies have been hampered by the lack of efficient and convenient preparation methods for KDO 

preparation. 

Chemical methods for KDO synthesis have been developed over the past decades,148-154 but the 

tedious protection/de-protection steps can be complicated and suffer from low yield. Alternatively, 

enzymatic syntheses employing KDO aldolase,155 sialic acid aldolase,156, 157 KDO phosphate 

synthetase158 proceed regio- and stereoselectively without protection. KDO aldolase and sialic acid 

aldolase could condense arabinose and pyruvate into KDO directly, but both enzymes suffer from 

low specific activity,155, 156 making these processes impractical for the scalable synthesis of KDO. 

In contrast with both aldolases, KDO 8-phosphate synthetase showed significantly higher specific 

activity,158-160 and more than 120 mg of protein could be obtained from one liter of LB culture 

medium by using pET protein expression system (data in this work). KDO 8-phosphate synthetase 

catalyzes the aldol condensation of D-arabinose 5-phosphate and phosphoenolpyruvate (PEP), 

resulting in KDO 8-phosphate, which can be hydrolyzed to afford KDO by phosphatase.158 The 

only block of this process for large scale synthesis is the low accessibility of D-arabinose 5-

phosphate. Commercially available D-arabinose 5-phosphate is extremely expensive ($643/25mg, 

Sigma-Aldrich) for preparative scale synthesis. Moreover, D-arabinose 5-phosphate has been 

difficult to prepare in quantity because there is a lack of kinase that could efficiently phosphorylate 

D-arabinose at C-5 position directly. Bednarski and co-workers used hexokinase and ATP-

regeneration system to produce D-arabinose 5-phosphate for KDO synthesis.158 Nevertheless, the 

low specific activity of hexokinase towards D-arabinose requires a large amount of hexokinase. 

To avoid using expensive starting materials, Pohl and co-workers have developed a biological 

“living factory”, by which KDO was produced from glucose through cell fermentation.26 Although 
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hundreds milligram of KDO could be produced in one liter of medium, the purification of the final 

product from fermentation broth can be complicated. Therefore, an efficient and convenient 

method to readily provide KDO in considerable amounts is highly attractive in enabling the studies 

of KDO. 

 

Figure 1.13 One-pot multienzyme system for the production of KDO 

Herein, an efficient enzymatic strategy for the facile synthesis of KDO from easy-to-get 

starting materials is described (Figure 1.13). In the first stage, D-ribulose 5-phosphate was 

prepared from D-xylose in multi-gram scale. In the second stage, D-ribulose 5-phosphate was 

incubated with D-arabinose 5-phosphate isomerase (KdsD), KDO 8-phosphate synthetase (KdsA), 

and KDO 8-phosphate phosphatase (KdsC) in one-pot fashion to produce KDO. The obtained 

KDO was further transferred into lipid A by KDO transferase from E.coli (WaaA) (Figure 1.14). 

   D-arabinose 5-phosphate is a rare sugar phosphate, and there is a lack of kinase that could 

efficiently phosphorylate D-arabinose directly. Therefore, D-arabinose 5-phosphate has been 

difficult to prepare in quantity, and the commercially available product is extremely expensive. 

Meanwhile, many synthetic methods have been explored for the synthesis of D-ribulose 5-

phosphate, which is a key intermediate in pentose phosphate pathway(PPP) and widely exists in 

bacteria, plants, and animals.22 The reported methods for the synthesis of D-ribulose 5-phosphate 

relies on the isomerization of D-ribose 5-phosphate,161 the phosphorylation of D-ribulose,133 and 

the oxidization of D-gluconate 6-phosphate.162 Although scalable product could be produced by 

using these methods, these processes still suffer from expensive starting materials, low yields, or 
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a complicated purification step. As a consequence, commercially available D-ribulose 5-phosphate 

is also extremely expensive ($1245/25mg, Sigma-Aldrich). Recently, we have developed an 

efficient and convenient platform for the facile synthesis of phosphorylated ketopentoses,83 in 

which the synthesis of D-ribulose 5-phosphate was also included. In this strategy, D-ribulose was 

prepared from D-xylose by a one-pot two-enzyme system in first reaction stage,163 and then D-

ribulose was phosphorylated by using L-ribulose kinase at C-5 position. The product was purified 

by using silver nitrate precipitation.83 Having got a considerable amount of D-ribulose 5-phosphate 

in hand in this work (multi-gram), we try to use a sequential one-pot three-enzyme (OP3E) system 

containing KdsD, KdsA, and KdsC to synthesize KDO (Figure 1.13).  

 

Figure 1.14 One-pot multienzyme system for the synthesis of Re-LPS. 

The requirement of several enzyme-catalyzed reactions being carried in one-pot is that the 

enzymes must explicitly recognize their individual substrate. Otherwise, the cross-reactions will 

result in unpredictable by-products and increase the purification difficulties. KDO 8-phosphate 

synthetase could specifically recognize D-arabinose 5-phosphate but not D-ribulose 5-

phosphate,160 making our design (Figure 1.13) reasonable. KdsC is highly active to hydrolyze the 

phosphate group of KDO 8-phosphate, while only trace activity towards D-arabinose 5-phosphate 



39 

 

and PEP was observed (thousands of times lower than KDO 8-phosphate),164 indicates its potential 

applications in OPME reaction. However, its substrate specificity towards D-ribulose 5-phosphate 

is unknown. To test the substrate specificity of KdsC towards D-ribulose 5-phosphate, D-ribulose 

5-phosphate was incubated with KdsC in excess amount for three hours, while D-ribulose 5-

phosphate was incubated with alkaline phosphatase as a control. No observable D-ribulose was 

found on TLC, indicating D-ribulsoe 5-phosphate can’t serve as the substrate of KdsC.  

To test the practicability of the designed OPME reaction for the production of KDO, analytical 

scale reaction was carried in a 50 ul system containing D-ribulose 5-phosphate KdsD, KdsA, and 

KdsC.  The reactions were monitored by TLC while employing authentic KDO as a control. After 

observing the formation of KDO on TLC, preparative scale synthesis was carried in 300 ml system 

(gram scale). To efficiently convert D-ribulose 5-phosphate, excess PEP (2.5 equiv) was used. For 

the convenience of the final purification, no buffer was used. The reaction pH was held near 7.5 

using sodium hydroxide as the reaction was ongoing. Once reaction no longer moves forward, 

KDO was purified by using DEAE column (HCO3
- form). After desalting by Bio-Gel P-2 column, 

the product was isolated in 72% yield concerning D-ribulose 5-phosphate. The product was 

confirmed by NMR and HRMS analysis. 1H-NMR of the obtained KDO is well accord with the 

authentic standard (Figure 1.15). A single peak (237.0561, M-H) on high resolution mass spectrum 

was observed as well.  

To further confirm the structure of the obtained KDO, the product was converted to the known 

pentaacetate methyl ester of KDO 3 (Figure 1.15). 3 was characterized by NMR and HRMS (see 

experiment part). The proton and carbon NMR spectra of the 3 were good accordance with the 

previously reported data.141, 155 

Having got a considerable amount of KDO in hand, we further try to install it on lipid A to 
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Figure 1.15 1H-NMR spectra of the obtained KDO (upper graph) compared to the 

authentic KDO (bottom graph) 

 

 

Figure 1.16 Synthesis of the pentaacetate methyl ester of KDO. (a) Ac2O, DMAP, 

pyridine, rt; (b) TMSCHN2, DCM/MeOH 

synthesize Re-type LPS (lipid A linked with KDO residues)165 by using KDO transferase. The 

synthesis of Re-type LPS is the key step to synthesize lipopolysaccharide (lipid A linked with 

polysaccharide) to develop vaccine candidate against Gram-negative bacteria infection. Lipid A 

can serve as an adjuvant to enhance the immunogenicity of polysaccharide portion.166, 167 Although 

many efforts have been made to install polysaccharide on lipid A, only Re-type LPS has been 

synthesized successfully by using chemical strategy to the best of our knowledge.168 Nevertheless, 

the process undergoing multi protection/deprotection steps can be complicated and suffer from 

ppm (t1)
0.01.02.03.04.05.06.07.0
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very low yield. The synthesis of more complex lipopolysaccharides is still challenged. Compared 

to chemical method, enzymatic synthesis of oligosaccharides has distinct advantages in regio- and 

stereo-selectivity. In this work, we tried to develop an enzymatic system to prepare Re-LPS for 

further synthesis of complex lipopolysaccharides (Figure 1.14). 

KDO transferase from E.coli (WaaA) can transfer two KDO residues onto lipid A.169, 170 Before 

its incorporation into LPS or CPS, KDO is activated to CMP-KDO, which serves as the substrate 

for KDO transferase, by CMP-KDO synthase.171-173 However, CMP-KDO is very unstable under 

physiological conditions. It has been reported that the half-life-time of CMP-KDO is only 34 min 

at 25°C.174 Therefore, a one-pot reaction system was used to transfer KDO on lipid A (Scheme 

3),170 in which KDO, CTP, CMP-KDO synthesase from E.coli (KdsB), inorganic pyrophosphatase 

(PPA) from Pasteurella multocida and WaaA were included. KdsB catalyzes the formation of 

CMP-KDO from KDO and CTP. PPA was added to improve the whole reaction by hydrolyzing 

the by-product of PPi. The produced CMP-KDO could serve as the substrate of WaaA. Although 

we successfully observed the formation of the product on the high resolution mass spectrum, a 

large-scale synthesis to obtain enough products for NMR analysis and vaccine evaluation was not 

achieved. The difficulties line in the extremely poor solubility of lipid A in water. Kinds of 

detergents have been tested to improve the reaction, but a practical scale synthesis is still 

unsuccessful. Tylor and co-workers recently found that heptose transferases can recognize lipid A 

without intact lipid tails,175, 176 which solubility is better than the normal lipid A. Inspired by this 

result, a circuitous strategy is re-designed to try to synthesize Re-LPS in large scale in our lab. 

1.6 Conclusions 

   In summary, we have successfully established of a novel platform for the facile synthesis of 

ketoses, which relied on substrate-specific kinases and the improved aldol condensation reaction, 
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makes it possible to use one-pot multienzyme (OPME)130 reactions to prepare 14 non-readily 

available ketopentoses and ketohexoses from common and inexpensive materials. The described 

two-step strategy not only provides unprecedentedly high yields but also avoids the need to 

undergo a complicated isomer separation step. ATP is commercially cheap due to its increased 

industrial production over the past decade and ATP-regeneration system has also been 

suggested,177 making the transformation reaction described herein of particular interest for large-

scale production. This study represents a highly convenient and efficient strategy for ketose 

syntheses. We anticipate that this platform will accelerate an understanding of both biological roles 

and synthetic applications of rare ketoses, and advance the further synthesis of rare aldoses because 

the aldose-ketose isomerization reaction is very favorable for aldose formation. Future studies will 

enable the identification of new kinases to be used in more sugar syntheses, providing a powerful 

set of tools for carbohydrate research.  

In addition, a novel method for the efficient and convenient synthesis of phosphorylated ketoses 

was established. This method relies on substrate-specific kinases and a convenient sugar 

phosphates purification method (silver nitrate precipitation). Starting from two common and 

inexpensive aldoses (D-xylose and L-arabinose), all phosphorylated ketopentoses were produced 

utilizing this strategy with high yield and purity without a tedious sugar phosphate separation step. 

ATP is also commercially affordable due to the increased industrial production over the past 

decades,177, 178 making the transformation reaction described herein of particular interest for large-

scale preparation. The precipitate (silver-adenosine phosphates complex) produced during 

purification process can be redissolved with ammonium hydroxide, and the adenosine phosphates 

(ATP and ADP) or silver ions can be then recycled, reducing the preparation cost when this method 

was applied on large scale purification. Moreover, based on the availability of D-xylulose 5-
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phosphate and D-ribulose 5-phosphate in considerable quantities, we have further established a 

biosynthetic strategy for the efficient synthesis of KDO, which are the building block of the 

lipopolysaccharide and have been difficult to obtain. This strategy will accelerate an understanding 

of both biological roles and synthetic applications of phosphorylated ketopentoses. Future studies 

will enable the identification of new substrate-specific kinases to be used in more phosphorylated 

sugar syntheses, providing a powerful set of tools for carbohydrate research.  

In addition, a practical system for the facile synthesis of KDO in large scale is described. We 

demonstrate herein that KDO could be efficiently and conveniently prepared from D-ribulose 5-

phosphate by using a one-pot multienzyme (OPME) system. The advantages of this strategy are 

that all the materials used in this strategy are easy-to-get and all enzymes involved in the synthetic 

process are highly active. Moreover, an attempt for the installation of KDO to lipid A is also made. 

Although two KDO residues can be easily transferred to lipid A by a single KDO transferase, a 

practical reaction system that could produce enough products is still necessary. We anticipate this 

work will accelerate an understanding of both biological roles and synthetic applications of KDO. 
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2     CHEMOENZYMATIC REPORTER STRATEGY FOR PROBING COMPLEX 

GLYCANS  

2.1 Introduction 

N-acetylneuraminic acid (Neu5Ac) is the most widespread form of sialic acid and almost 

the only form found in humans.179 N-glycolylneuraminic acid (Neu5Gc) and 

ketodeoxynonulosonic acid (Kdn) are common in other vertebrates but rarely present in humans.179 

Neu5Ac is present essentially in all human tissues and always attaches to the galactose residue at 

the nonreducing terminal end of glycans through 2-3 or 2-6 linkage.180 It is well established 

that Neu5Ac(2-3)Gal and Neu5Ac(2-6)Gal glycans play crucial but distinctive roles in diverse 

biological and pathological processes including immune responses, cell–cell and cell–pathogen 

interactions.181-184 However, studies are hindered due to the lack of an effective method to analyze 

such glycans or glycoproteins. 

    The Neu5Ac2-3)Gal epitope localized on cell surface is well known to be the receptor of 

many infectious microbes such as the influenza virus.180 Abnormal Neu5Ac2-3)Gal expression 

has frequently been observed in many carcinomas.182 Traditionally, lectin binding using Maackia 

amurensis leukoagglutinin (MAL I) and hemagglutinin (MAH or MAL II) is the main method for 

Neu5Ac2-3)Gal detection. However, MAL I only bind terminal Neu5Ac(2-3)Gal(1-

4)GlcNAc trisaccharide in N-glycans.185, 186 MAH binds preferentially trisaccharide Neu5Ac(2-

3)Gal(1-3)GalNAc in O-glycans.187 They also bind some nonsialylated structures such as SO4
-3-

Gal(1-3)GalNAc.188 Moreover, it was reported that Maackia amurensis lectins require a high 

minimum agglutinating concentration (up to 125 ug to 500 ug),189 and therefore a long incubation 

time (typically overnight) is necessary for glycoprotein detection.190, 191 Thus, the development of 
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an simple, rapid and sensitive method for detecting Neu5Ac2-3)Gal glycans remains an unmet 

need. 

    Lectin binding has been the primary method to analyze sialylated glycans,192-194 but lectins 

often suffer from weak binding affinity, limited specificity, and cross-reactivity. In recent years, 

the development of bioorthogonal chemistry provides a powerful tool for probing glycans, proteins 

and lipids.195-198 Bioorthogonal functional groups (azide and alkyne) carried by N-

acetylmannosamine or Neu5Ac analogues were metabolically incorporated into glycans, allowing 

the covalent conjugation by click chemistry reaction with either fluorescent tags for visualization, 

or affinity probes for enrichment of sialylated glycans and glycoproteins.199-204 Chemical approach 

to tag sialylated glycans has also been suggested.205 Nevertheless, these methods suffer from low 

detection sensitivity and efficiency, toxicity of labeling regents, and the inability to detect 

complicated glycan structures.   

 

Figure 2.1 Chmoenzymatic reporter strategy for probing Neu5Aca(2,3)Gal glycans 

    As a complementary strategy to remodel glycans with non-natural functionalities, 

chemoenzymatic labeling glycans relies on the substrate-specific glycosyltransferases, which 

transfer non-natural sugars that contain bioorthogonal functional groups onto target glycan in 

vitro.206-210 Chemoenzymatic method does not rely on cell’s biosynthetic machinery and therefore 

can be employed in any desired biological contexts where feeding cells with non-natural sugar 

analogs is not possible, such as human tissue extracts.207 As glycosyltransferase-mediated reaction 
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and click chemistry reaction proceed high specificity and efficiency, chemoenzymatic labeling 

provides a higher sensitivity and selectivity compared to other analytical methods such as 

antibodies, lectins, and metabolic labeling. In this communication, we report a two-step 

chemoenzymatic method that takes advantage of the substrate promiscuity of a   -(1,4)-N-

acetylgalactosaminyltransferase from Campylobacter jejuni (CgtA) and click chemistry reaction 

to rapidly and sensitively detect Neu5Ac(2-3)Gal glycans (Figure 2.1). 

2.2 Donor specificity study of CgtA 

GalNAz was prepared from galactosamine hydrochloride as described previously with 

minor changes.211 In detail, galactosamine hydrochloride (1290 mg, 6 mmol) was dissolved in 

MeOH (50 mL) in which an equivalent amount of sodium methoxide was added. The reaction 

mixture was carried at 25°C for 1 hour and then 1 ml of TEA (6.7 mmol) and 3.06 g of chloroacetic 

anhydride were added. The reaction was stirred overnight to allow the formation of intermediate 

chloro-intermediate. Chloro-intermediate was partially purified by flash chromatography with 

MeOH: CH2Cl2 gradually from 10:1 to 6:1. The resulting chloro-intermediate was dissolved in 

DMF (50 ml), in which 3.9 g of sodium azide (60 mmol) and 200 ul 15-crown-5 were added. The 

reaction mixture was stirred at 60°C overnight to allow the formation of GalNAz. The insoluble 

substance was removed by filtration. The flow through containing GalNAz was concentrated under 

reduced pressure and purified by flash chromatography with MeOH: CH2Cl2 gradually from 10:1 

to 6:1. The obtained GalNAz was further purified by using Bio-Gel P-2 column to provide 938 mg 

of GalNAz (60% yield). 

UDP-GalNAz was prepared by the reaction (100 ml) containing 50 mM Tris-HCl buffer 

(pH 7.5), 20 mM of GalNAz (2 mmol), 5 mM of Mg2+, 10 mg of NahK, 10 mg of AGX1 and 1 

mg of PPA.212 PPA was added to improve the total conversion ratio by hydrolyzing the newly 
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formed inorganic pyrophosphate. The reaction was carefully shaken at 37°C overnight to allow 

the formation of UDP-GalNAz. The reaction was monitored by TLC. Once the reaction finished, 

equal volume of cooled ethanol was added to precipitate proteins. The precipitate was removed by 

centrifugation and the supernatant containing UDP-GalNAz was concentrated under reduced 

pressure. UDP-GalNAz was purified by DEAE (HCO3
-) column. The column was eluted with a 2 

L linear gradient of NH4HCO3 (from 0 to 0.5 M). The fractions containing UDP-GalNAz was 

collected and desalted by using Bio-Gel P-2 column to afford final product in 62% yield (820 mg, 

ammonium form). 

 

Figure 2.2 CgtA recognize Neu5Aca(2,3)Gal stcructure with UDP-GalNAc or UDP-

GalNAz 

Neu5Ac2-3)Gal disaccharide is the outer core component of many Campylobacter jejuni 

strains.213 CgtA is responsible for the extension of Neu5Ac2-3)Gal with GalNAc residue (Figure 

2.2).213 We reasoned that CgtA might tolerate substitution at the C-2 position of GalNAc, allowing 

for the introduction of an azide group for further click chemistry reaction (Figure 2.2). Substrate 

specificity study using Ganglio-oligosaccharide GM3 (entry 1, Table 2.1) shows that both UDP-

GalNAz and UDP-GalNAc are efficient substrate of CgtA. Kinetic analysis revealed a kcat/Km 

value of 1.34 nM-1min-1 for UDP-GalNAc, and 1.51 nM-1min-1 for UDP-GalNAz. Indeed, 
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treatment of GM3 with CgtA and UDP-GalNAz overnight led to a complete conversion of GM3. 

The product was confirmed by MALDI-TOF-MS and NMR. 

 

7.5 10.0 12.5 15.0 17.5 20.0 22.5 min

0.00

0.25

0.50

0.75

1.00

1.25

1.50

(x1,000,000)

 

Figure 2.3 HPLC profile of the CgtA-catalyzed reactions. 1, Neu5Ac(2-3)Gal(1-4)Glc--Me 

was incubated with UDP-GalNAz. 2, Neu5Ac(2-3)Gal(1-4)Glc--Me was incubated with UDP-

GalNAc. 3, Neu5Ac(2-6)Gal(1-4)Glc--Me was incubated with UDP-GalNAz. 4, Neu5Ac(2-

6)Gal(1-4)Glc--Me was incubated with UDP-GalNAc. 

 

2.3 Acceptor specificity study of CgtA 

        Having demonstrated that CgtA accepts UDP-GalNAz as substrate, we next tested its 

substrate specificity towards sialylated oligosaccharides with UDP-GalNAz. Many sialylated 

oligosaccharides containing 2-3-, 2-6-, or 2-8-linked sialic acid (Table 2.1 and Table S1) were 

synthesized as previously reported.99, 214-216 We found that CgtA require only linear disaccharide 

structure of Neu5Ac2-3)Gal (Table 2.1, entries 1 to 5) or Neu5Gc2-3)Gal (Table 2.1, entry 2) 

when using UDP-GalNAz as donor. Meanwhile, only very low relative activity towards the 

structure containing 2-6-linked sialic acid or without sialic acid was detected (Table 1, Entries 6 

to 10; Table 2.1, entries 3 to 5). Indeed, no observable product or by-product (UDP) could be found 



49 

 

on TLC after the incubation of these compounds with CgtA and UDP-GalNAz overnight. These 

findings indicated the potential of CgtA for application in selective labeling Neu5Ac2-3)Gal 

glycans.  

2.4 Chemoenzymatic labeling Neu5Ac(2-3)Gal glycans in feutin 

        To test the practicality of the described strategy on protein labeling, we used fetal bovine 

fetuin as an example. Fetal bovine fetuin is a well-studied model protein for sialylated glycans 

analysis and commercially available. It contains three N-glycosylation and three O-glycosylation 

sites, on which Neu5Ac attached to the terminal galactose residues through 2-3- or 2-6-

linkage.217 To perform a control, fetal bovine fetuin was treated with a sialidase (NanC), which 

specifically hydrolyzes2-3-linked Neu5Ac.218 After the treatment of NanC, a slight migration 

change compare to native feutin was observed on SDS-PAGE gel (Figure 2.4). The 2-6-linked 

Neu5Ac was confirmed by biotinylated SNA (Figure 2.4). Native fetuin or NanC-treated fetuin 

was labeled by CgtA with UDP-GalNAz at 37°C for 1 hour, while other control groups were 

performed in parallel. Following copper-free click reaction (DIBO-alkyne, 10 uM), the proteins 

were analyzed by western blot using streptavidin-linked horseradish peroxidase (S-HRP). Strong 

fluorescence in native fetuin was observed, while all the control groups failed to be labeled (Figure 

2.4), demonstrating that the designed scheme could be used to specifically label Neu5Ac2-3)Gal 

glycans on glycoprotein. The labeled fetuin was further treated with peptide N-glycosidase F 

(PNGF), which remove N-Glycans from glycoprotein, and detected by S-HRP. Although there is a 

significant fluorescence reduction, fluorescence labeling in the PNGF-treated sample still can be 

observed (Figure 2.4, bottom graph), indicating that both N-glycans and O-glycans were labeled. 

Meanwhile, the probe of same amount of fetuin with biotinylated MAL II is unsuccessful. Thus, 

our chemoenzymatic approach provides a more credible detection strategy for Neu5Ac2-3)Gal 
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glycans and enable the highly sensitive detection of glycoproteins. 

Table 2.1 Substrate specificity of CgtA with UDP-GalNAz 

Entry Substrate RA (%)a 

1  100 

2  104 

3  101 

4  113 

5 
 

97 

6  <1 

7  <1 

8  <1 

9  <1 

10 

 

<1 

11 
 

110 

12 
 

<1 

13 
 

<1 

14 
 

<1 

                             aRA: relative activity. See experiment part for details. 
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Figure 2.4 Chemoenzymatic detection Neu5Aca(2-3)Gal glycans. CBB: Coomassie brilliant 

blue staining. S-HRP: streptavidin-linked horseradish peroxidase. B-SNA: biotinylated SNA. 

NanC: The sample was treated with NanC before performing labeling reaction. PNGF: the labeled 

fetuin (rightmost) was further treated with PNGF (bottom graph). (B) Chemoenzymatic detection 

Neu5Ac(2-3)Gal glycoproteins from cell lysates of HEK293T cells. (C) Chemoenzymatic 

detection Neu5Ac(2-3)Gal glycoproteins on cell surface of HEK 293T. (D) The imaging of 

Neu5Ac(2-3)Gal glycans on live HeLa cells (Green) using fluorescence microscopy. Nuclei were 

stained with 4',6-diamidino-2-phenylindole (DAPI; blue).  

2.5 Chemoenzymatic labeling Neu5Ac(2-3)Gal glycans in complex glycans 

We next determined whether the approach could be used to track Neu5Ac2-3)Gal 

glycoproteins in complex samples. Cell lysates from human embryonic kidney 293 (HEK293T) 

cells was incubated with CgtA and UDP-GalNAz at 37°C for 1 hour, while control groups were 

performed parallel. Follow-ing the Cu(I)-catalyzed azide−alkyne cycloaddition (CuAAC) reaction 

with diazo-biotin-alkyne, biotinylated cell lysates was detected by S-HRP (Figure 2.4). Strong 

fluorescence labeling of cell lysates was observed, while only background nonspe-cific labeling in 

NanC-treated group and other control groups was observed (Figure 2.4), highlighting further the 

specificity of the designed strategy towards Neu5Ac2-3)Gal glycans. Cell surface Neu5Aca2-

3)Gal glycans were selective-ly labeled by incubating suspension HEK293T living cells with CgtA 
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and UDP-GalNAz at 37°C for 30 min. Following the biotinylation by CuAAC reaction, strong 

fluorescence labeling was observed compared to control groups in western blot detection (Figure 

2.4). Then, several other randomly selected human cancer cell lines including A549, HeLA, and 

HepG2 were chemoenzymatically labeled using the same strategy (see experiment part). The 

labeled samples were further treated with PNGF, resulting in significant fluorescence reduction, 

which indicates that Neu5Ac2-3)Gal mainly attach to N-glycans  in these cell lines. 

 

Figure 2.5 Global identification of cell surface Neu5Ac2-3)Gal glycoproteins . 

    We next investigated the potential application of the described strategy for Neu5Ac2-3)Gal 

glycans imaging and quantification. The determination of the expression level of Neu5Ac2-

3)Gal glycans is very important to understand sialic-acid-related microbe infection and 

carcinogenesis.219, 220 Adherent HeLa cells were labeled by CgtA and UDP-GalNAz at 37°C for 

30 min. After copper-free click reaction (DIBO-biotin, 30 uM), a fluorescent reporter was 

subsequently installed by incubation with streptavidin-linked Alexa Fluor 488 (10 ug/ml). 

Membrane-associated fluorescence was observed for cells treated with both CgtA and UDP-

GalNAz, whereas no fluorescence labeling was detected for control cells labeled in the absence of 

CgtA, confirming the specificity of the in situ chemoenzymatic reaction (Figure 2.4). The 

fluorescence intensity, which reflects the expression level of Neu5Ac2-3)Gal glycans 

proportionally, was determined by flow cytometry.  
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2.6 Conclusions 

        In conclusion, on the basis of a glycosyltransferase that could specifically recognize 

Neu5Ac(2-3)Gal with UDP-GalNAz and site-specific click chemistry reaction, we have 

developed the first strategy for the rapid and sensitive detecting Neu5Ac(2-3)Gal glycans. This 

method is far superior to the traditional lectin-based methods to detect Neu5Ac(2-3)Gal, which 

are limited by their inherent disadvantages. This method also allows that the global analysis of 

Neu5Ac(2-3)Gal glycoproteins is achievable, providing a powerful tools for sialic-acid-related 

research. Moreover, substrate specificity study indicated that the described strategy can be also 

used to probe Neu5Gc(2-3)Gal glycans, which are currently detected by polyclonal monospecific 

antibody.180 Future studies will enable the exploration of new glycosyltransferase for use in more 

glycan detecting. 
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3     EXPERIMENTAL PROCEDURES 

3.1 Experiment procedures for facile enzymatic synthesis of rare sugars 

3.1.1 General methods 

1H-NMR, 13C-NMR and 31P-NMR spectra were recorded on a Bruker 400-MHz NMR 

spectrometer (D2O as the solvent). High resolution electrospray ionization (ESI) mass spectra were 

obtained using Thermo HPLC-Orbitrap Elite. Thin-layer chromatography (TLC) was performed 

on silica gel 60 F254 plates (Merck, MA) using p-anisaldehyde sugar stain. High performance 

liquid chromatography (HPLC) was performed on a Shimadzu SPD-20A equipped with ultraviolet 

(UV) detector and evaporative light scattering detector (ELSD). The HPLC columns used in this 

work are ZIC®-cHILIC (Merck, Darmstadt, Germany), HPX-87H (Bio-Rad, Hercules, CA), 

Sugar-Pak 1 column (Waters Corp., Milford, MA), YMC Polyamine II column (YMC Corp., 

Kyoto, Japan), and XBridge Amide column (Waters Corp., Milford, MA). Gel filtration 

chromatography was performed using a column (100 cm × 2.5 cm) packed with Bio-Gel P-2 fine 

resins (45–90μm) (Bio-Rad, Hercules, CA). 

    Platinum® Pfx DNA Polymerase, Subcloning Efficiency™ DH5α™ competent cells and E. coli 

BL21 (DE3) chemically competent cells were from Invitrogen (Grand Island, NY). Plasmid pET-

28a was from Novagen (Madison, WI). Restriction enzymes and T4 DNA ligase were from NEB 

(Beverly, MA). Sugar standards were bought from Carbosynth (San Diego, CA). Escherichia coli 

genomic DNA used for PCR in this work was extracted from Escherichia coli BL21 (DE3) cells. 

Thermotoga maritima MSB8 genomic DNA were purchased from American Type Culture 

Collection (Rockville, MD). Gene synthesis service was provided by GenScript (Piscataway, NJ). 

All other chemicals or enzymes unless otherwise stated were purchased from Sigma without 

further purification. 
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3.1.2 Temperature effect on RhaB. 

The effect of temperature was determined by the reactions that were performed in a 50 μL 

reaction mixture containing a Tris-HCl buffer (100 mM, pH 7.5), L-rhamnulose (20 mM), ATP 

(20 mM), Mg2+ (5 mM) and RhaB (15 ng). Reactions were allowed to proceed for 10 minutes at 

different temperatures (from 45°C to 100°C), and were stopped by diluting ten times using a buffer 

of acetonitrile/100 mM aqueous ammonium acetate pH 4.5 (60% acetonitrile). The reactions were 

quantified by analyzing the formation of ADP by HPLC equipped with UV detector at 254 nm 

using ZIC®-cHILIC column. The column was eluted at 30°C with acetonitrile/100 mM aqueous 

ammonium acetate pH 4.5 (60% acetonitrile) at a flow rate of 0.6 ml/min (Figure 3.1). 
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Figure 3.1 Temperature effect and pH profile of RhaB. 

 

3.1.3 pH profiles study of RhaB 

The effect of pH was determined by the reactions that were performed in 50 μL reaction 

mixture containing a Tris-HCl buffer(100 mM) with a pH in the range of 7.0- 9.0, L-rhamnulose 

(20 mM), ATP (20 mM), Mg2+ (5 mM) and RhaB (15 ng). Reactions were allowed to proceed 

for 10 minutes at 45°C and were stopped by diluting ten times using a buffer of acetonitrile/100 
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mM aqueous ammonium acetate pH 4.5 (60% acetonitrile). Samples were analyzed by HPLC 

using ZIC®-cHILIC column as what described above (Figure 3.1). 

3.1.4 Substrate specificity study of RhaB 

Substrate specificity of RhaB was studied by the reactions that were performed in 50 ul 

reaction mixture containing a Tris-HCl buffer (100 mM, pH 7.5), 20 mM of sugar standards (Table 

1.3), 5 mM of Mg2+, and 15 ng of RhaB. The reactions were carried at 45°C for 10 minutes and 

were stopped by diluting ten times using a buffer of acetonitrile/100 mM aqueous ammonium 

acetate pH 4.5 (60% acetonitrile). Samples were analyzed by HPLC using ZIC®-cHILIC column 

as what described above. 

3.1.5 Substrate specificity of HK 

Substrate specificity of HK was studied by the reactions that were performed in 50 ul 

reaction mixture containing a Tris-HCl buffer (100 mM, pH 7.5), 20 mM of sugar standards (Table 

1.3), 5 mM of Mg2+, and 15 ug of HK. The reactions were carried at 37°C for 10 minutes and were 

stopped by diluting ten times using a buffer of acetonitrile/100 mM aqueous ammonium acetate 

pH 4.5 (60% acetonitrile). Samples were analyzed by HPLC using ZIC®-cHILIC column as what 

described above. 

3.1.6 Preparative scale synthesis of L-ribulose, D-xylulose, and D-tagatose 

Reactions were carried in a final volume of 150 ml reaction system containing 25 mM of 

ATP, 3 mM of Mg2+, 3 mM of Mn2+, 20 mM starting sugars and conversion-related enzymes 

(Table 1.3). L-arabinose (3 mmol, entry 1), D-xylose (3 mmol, entry 2) and D-galactose (3 mmol, 

entry 3) were incubated with 10 to 30 mg of their corresponding isomerases and 10 to 20 mg of 

HK, respectively. The reactions were carefully shaken at pH near 7.5 for 12 to 36 hours at 37°C 

to allow the formation of ketose 1-phosphates. The reactions were monitored by TLC 
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(EtOAc/MeOH/H2O/HOAc=5:2:1.4:0.4) and HPLC equipped ELSD using a HPX-87H column 

with pure water as the mobile phase. All the reactions were allowed to proceed until no detectable 

starting sugars were found. Silver nitrate was added to precipitate ATP and ADP until no more 

precipitate formed (~2.2 g silver nitrate was used for each reaction). The precipitate was removed 

by centrifugation (14000 g, 1 min) and washed twice using distilled water. Sodium chloride was 

added to a final concentration of 200 mM to remove the remnant silver ions. Silver chloride was 

removed by centrifugation (14000 g, 1 min). The pH was then adjusted to 5.5 and 5 mg of AphA 

was added. The mixture was shaken at 37°C to produce ketoses. Until no ketose 1-phosphates were 

found by TLC, the solution from each reaction was concentrated under reduced pressure and 

purified by using Bio-Gel P-2 column to afford final products in more than 90% yield (Table 1). 

HPLC retention times (Sugar-Pak 1 column) and NMR spectra are consistent with authentic 

samples, indicating the isolated products are the desired ketoses.[7] The possible existence of 

starting aldoses was analyzed by NMR and HPLC equipped ELSD using Sugar-Pak 1 column with 

pure water as the mobile phase. 

L-ribulose. 417 mg; yield, 93%; white syrup. HRMS (ESI) m/z calcd for C5H10O5 Na 

[M+Na]+ 173.0426, found 173.0413.  

D-xylulose. 415 mg; yield, 92%; white syrup. HRMS (ESI) m/z calcd for C5H10O5 Na 

[M+Na]+ 173.0426, found 173.0413.  

D-tagatose. 495 mg; yield, 92%; white foam.  HRMS (ESI) m/z calcd for C6H12O6 Na 

[M+Na]+ 203.0532, found 203.0640. 



58 

 

3.1.7 Preparative scale synthesis of L-xylulose, D-ribulose, D-sorbose, D-psicose, and 

L-tagatose. 

Reactions were carried in a final volume of 150 ml reaction system containing 25 mM of 

ATP, 3 mM of Mg2+, 3 mM of Mn2+, 20 mM starting sugars and conversion-related enzymes 

(Table 1.3). L-arabinose (3 mmol, entry 4), D-xylose (3 mmol, entry 5) and D-galactose (3 mmol, 

entry 6) were incubated with 10 to 30 mg of their corresponding isomerases, 10 mg of DTE and 5 

to 10 mg of RhaB, respectively. D-fructose (3 mmol, entry 7) and L-sorbose (3 mmol, entry 8) 

were incubated with 3 mg or 15 mg of DTE and 5 mg of RhaB, respectively. The reactions were 

carefully shaken at pH near 7.5 for 12 to 24 hours at 45°C to allow the formation of ketose 1-

phosphates. The reactions were monitored by TLC and HPLC equipped ELSD using HPX-87H 

column. All the reactions were allowed to proceed until no detectable starting sugars were found. 

Followed the same manipulation described above, the products were isolated in 91 to 95% yield. 

HPLC retention times (Sugar-Pak 1 column) and NMR spectra of the isolated products are in good 

agreement with the authentic samples.[7] The possible existence of starting aldoses was analyzed 

by NMR and HPLC equipped ELSD using YMC Polyamine II column (L-arabinose detection) 

with acetonitrile/water (75:25) as the mobile phase, XBridge Amide column (D-galactose 

detection) with acetonitrile/water (75:25) as mobile phase or Sugar-Pak 1 column (D-xylose 

detection). The possible existence of (3S)-ketoses was analyzed by HPLC equipped ELSD using 

Sugar-Pak 1 column. 

L-xylulose. 408 mg; yield, 91%; white syrup. HRMS (ESI) m/z calcd for C5H10O5 Na 

[M+Na]+ 173.0426, found 173.0421.  

D-ribulose. 410 mg; yield, 91%; white syrup. HRMS (ESI) m/z calcd for C5H10O5 Na 

[M+Na]+ 173.0426, found 173.0422. 
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D-sorbose. 508 mg; yield, 94%; white foam.  HRMS (ESI) m/z calcd for C6H12O6 Na 

[M+Na]+ 203.0532, found 203.0525. 

D-psicose. 502 mg; yield, 93%; white foam. HRMS (ESI) m/z calcd for C6H12O6 Na 

[M+Na]+ 203.0532, found 203.0519. 

L-tagatose. 513 mg; yield, 95%; white foam. HRMS (ESI) m/z calcd for C6H12O6 Na 

[M+Na]+ 203.0532, found 203.0519. 

3.1.8 Preparative scale synthesis of L-fructose and L-psicose 

1 M of glycerol (200 ml) was incubated with galactose oxidase and catalase as previously 

reported. Then, 1944 mg of DL-glycerol 3-phosphate corresponding to 5.0 mmol of L-glycerol 3-

phosphate, 20 mg of RhaD, glycerol 3-phosphate oxidase (600 units) and catalase (3000 units) 

were added. The reaction mixture was carefully shaken at room temperature while vented to the 

atmosphere for 48 hours to allow the formation of L-fructose 1-phosphate. 1 volume of cooled 

ethanol was added to remove proteins. The solution was concentrated under reduced pressure and 

purified by Bio-Gel P-2 column to remove most of the impurities. The fractions contain L-fructose 

1-phosphate were collected and concentrated under reduced pressure. The pH was adjusted to 5.5, 

and 10 mg of AphA was added to produce L-fructose. Product was purified as previous reported 

and finally obtained in 70% yield with regard to DL-glycerol 3-phosphate. L-psicose was prepared 

by a reaction mixture (150 ml, pH 7.5) containing L-fructose (20 mM, 3.0 mmol), 25 mM of ATP, 

3 mM of Mg2+, 3 mM of Mn2+, 6 mg of DTE and 10 mg of HK. The reaction was shaken at 37°C 

and monitored by TLC and HPLC. Until no L-fructose was detected, silver nitrate precipitation 

method was used to remove ATP and ADP. The supernatant was concentrated and purified by 

Bio-Gel P-2 column to afford L-psicose 1-phosphate. Fractions containing L-psicose 1-phosphate 

were collected and concentrated in vacuo. The solution was adjusted to pH 5.5 and 3 mg of AphA 
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was added to produce L-psicose. Product was finally obtained in 90% yield with regard to L-

fructose. HPLC retention times (Sugar-Pak 1 column) and NMR spectra are consistent with 

authentic samples.[7] The product distributions were analyzed by HPLC equipped ELSD using 

Sugar-Pak 1 column. 

L-fructose. 628 mg; yield, 70%; white foam. HRMS (ESI) m/z calcd for C6H12O6 Na 

[M+Na]+ 203.0532, found 203.0519. 

L-psicose. 487 mg; yield, 90%; white foam. HRMS (ESI) m/z calcd for C6H12O6 Na 

[M+Na]+ 203.0532, found 203.0519. 

3.1.9 FucI and RhaI preparation  

L-fucose isomerase (FucI),73 L-rhamnose isomerase (RhaA)72 were cloned into pET-28a 

vector and the recombinant plasmids were confirmed by restriction mapping and sequencing. The 

confirmed constructs were subsequently transformed into E.coli BL21 (DE3) for protein 

expression. After being induced by IPTG at 16 °C overnight, bacteria cells were harvested by 

centrifugation and re-suspended in lysis buffer (50 mM Tris-HCl, 300 mM NaCl, 10 mM 

imadozle; pH 8.0). Cells were disrupted by a microfluidizer and the lysate was removed by 

centrifugation (12,000 g, 25 min). The supernatant was loaded onto a Ni-NTA agarose column 

equilibrated with the lysis buffer (50 mM Tris-HCl, 300 mM NaCl, 10 mM imadozle; pH 8.0). 

The column was washed with 2 column volumes of the lysis buffer and 2 column volumes of the 

wash buffer (50 mM Tris-HCl, 300 mM NaCl, 30 mM imadozle; pH 8.0). The proteins were finally 

eluted with elution buffer (50 mM Tris-HCl, 300 mM NaCl, 300 mM imadozle; pH 8.0). The 

purified proteins were desalted by filtration (Millipore, 30,000 MWCO). Each protein could be 

obtained more than 80 mg from 1 liter culture medium. 

     L-rhamnulose kinase (RhaB) from Thermotoga maritima MSB8, and acid phosphatase 

(AphA) from Escherichia coli were prepared as previously reported.99 The protein concentration 
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was determined by the Bradford method with bovine serum as a standard and the purity was 

confirmed by SDS-PAGE. 

3.1.10 Substrate specificity of RhaB towards deoxy sugars 

Substrate specificity of RhaB was studied by the reactions that were performed in 50 ul 

reaction mixture containing a Tris-HCl buffer (100 mM, pH 7.5), 20 mM of sugar standards (Table 

1.4), 20mM of ATP, 5 mM of Mg2+, and 100 ng of enzymes. The reactions were carried at 45°C 

for 10 minutes and were stopped by diluting ten times using a cold buffer of acetonitrile/100 mM 

aqueous ammonium acetate pH 4.5 (60% acetonitrile). The reactions were quantified by analyzing 

the formation of ADP by HPLC equipped with UV detector at 254 nm using ZIC®-cHILIC column. 

The column was eluted at 30°C with acetonitrile/100 mM aqueous ammonium acetate pH 4.5 (60% 

acetonitrile) at a flow rate of 0.6 ml/min. 

3.1.11 Preparative synthesis of L-rhamnulose and L-fuculose 

In the first step, reactions were carried in a final volume of 400 ml reaction system 

containing 25 mM of ATP, 3 mM of Mg2+, 3 mM of Mn2+, 20 mM starting sugars and conversion-

related enzymes (Table 1.5). L-fucose (8.0 mmol) was incubated with 30 mg of FucI and 10 mg 

of RhaB. L-rhamnose (8.0 mmol) was incubated with 30 mg of RhaA and 10 mg of RhaB. The 

reactions were carefully shaken at pH near 7.5 at 45°C to allow the formation of ketose 1-

phosphates. The reactions were monitored by TLC, and HPLC equipped ELSD using HPX-87H 

column. Once the reactions no longer move forward, silver nitrate was added to precipitate ATP 

and ADP until no new precipitate formed. The precipitate was removed by centrifugation (14000 

g, 1 min) and washed twice using distilled water. Sodium chloride was added to a final 

concentration of 200 mM to remove the remnant silver ions. Silver chloride was removed by 

centrifugation (14000 g, 1 min). The solution from each reaction was concentrated under reduced 
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pressure and purified by using Bio-Gel P-2 column to afford final products. The products were 

confirmed by NMR and MS analysis. 

L-rhamnulose 1-phosphate (1929 mg,  Yield 91%). :=1:3. 1H NMR (D2O, 400 MHz):  4.02-

4.09 (m, 1 H), 3.72-3.85 (m, 4 H), 1.29 (d, 3 H, J = 5.3 Hz, H-6); 13C NMR (D2O, 100 Hz): 102.5 

(d, C-1, J = 8.4 Hz), 99.1 (d, C-1, J = 9.5 Hz), 81.2, 79.78.1, 76.4, 75.2, 74.6, 17.8, 16.6; 31P 

NMR (D2O, 133 Hz):  1.85 (), 1.21 (). HRMS (ESI) m/z calcd for [C6H13O8P-H]- 243.0348, 

found 243.0259. 

L-fuculose 1-phosphate (1975 mg, Yield 93%). :=1:3. 1H NMR (D2O, 400 MHz):  4.31-4.37 

(m, 1 H, H-5a), 4.27 (d, 1 H, J = 4.3 Hz, H-3), 4.21-4.24 (m, 2 H, H-3, H-4), 4.08-4.16 (m, 2 

H, H-4, H-5), 3.92-3.96 (dd, 1 H, J = 11.2, 6.6 Hz, H-1a), 3.70-3.83 (m, H-1b, H-2a, H-

2b), 1.26 (d, 3 H, J = 6.1 Hz, H-6), 1.21 (d, 3 H, J = 6.5 Hz, H-6); 13C NMR (D2O, 100 Hz): 

102.7 (C-1), 100.2 (C-1), 77.0 (C-5), 75.4 (C-5), 74.6 (C-4), 71.4 (C-3), 71.3 (C-3, C-

4), 70.6 (C-2), 65.1 (C-2), 13.4 (C-6), 12.8 (C-6); 31P NMR (D2O, 133 Hz):  2.48 (), 1.76 

(). HRMS (ESI) m/z calcd for [C6H13O8P-H]- 243.0348, found 243.0259. 

In the second reaction step, ketose 1-phosphates were dissolved in water, the pH was adjusted 

to 5.5 using 1 M of HCl. Then, 3 mM of Mg2+, 0.2 mM of Zn2+, and 5 mg of AphA was added. 

The reactions were carried at 37°C to allow the hydrolysis of phosphate groups. Once no sugar 

phosphates were observed on TLC, the solution from each reaction was concentrated under 

reduced pressure and purified by using Bio-Gel P-2 column to afford final products. The product 

was analyzed by NMR, MS and HPLC. L-rhamnulose was analyzed by HPLC equipped with 

evaporative light scattering detector (ELSD) using HPX-87H column with pure water as mobile 

phase. L-fuculose was analyzed by using Sugar-Pak 1 column with pure water as mobile phase. 
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L-rhamnulose (1080 mg,  Yield 82%). :=1:3. 1H NMR (D2O, 400 MHz):  3.91-3.94 (m, 1 H), 

3.75 (t, 0.75 H, J = 8.0 Hz), 3.67 (dd, 0.75 H, J = 12.4, 6.2 Hz), 3.59 (t, 0.25 H, J = 5.8 Hz), 3.49 

(t, 0.25 H, J = 12.0 Hz), 3.45 (t, 0.25 H, J = 6.8 Hz), 3.35-3.43 (m, 1.75 H), 1.19 (d, 2.25 H, J = 

6.2 Hz), 1.16 (d, 0.75 H, J = 6.3 Hz); 13C NMR (D2O, 100 Hz): 102.8, 100.0, 81.4, 80.1, 78.3, 

75.4, 75.3, 74.1, 61.8, 17.9, 16.4. HRMS (ESI) m/z calcd for C6H12O5 Na [M+Na]+ 187.0582, 

found 187.0528. 

L-fuculose (1099 mg, Yield 84%). :=1:3. 1H NMR (D2O, 400 MHz):  4.17 (d, 0.25 H, J = 5.0 

Hz), 4.11 (d, 0.75 H, J = 4.5 Hz), 3.95-4.01 (m, 2 H), 3.36-3.05 (m, 2 H), 1.15 (d, 2.25 H, J = 6.2 

Hz), 1.08 (d, 0.75 H, J = 6.5 Hz); 13C NMR (D2O, 100 Hz): 104.5, 102.1, 78.4, 76.4, 75.4, 72.8, 

72.4, 71.0, 62.7, 62.4, 14.5, 13.6. HRMS (ESI) m/z calcd for C6H12O5 Na [M+Na]+ 187.0582, 

found 187.0528. 

3.1.12 Preparative scale synthesis of 6-deoxy-L-sorbose 

In the first step, reactions were carried in a final volume of 400 ml reaction system 

containing 25 mM of ATP, 3 mM of Mg2+, 3 mM of Mn2+, 20 mM L-fucose (8.0 mmol), 30 mg 

of FucI, 35 mg of DTE and 30 mg of HK. The reactions were carefully shaken at pH near 7.5 at 

37°C to allow the formation of 6-deoxy-L-sorbose 1-phosphates. The reactions were monitored by 

TLC, and HPLC equipped ELSD using HPX-87H column. The column was eluted at 60°C with 

pure water as mobile phase at a flow rate of 0.6 ml/min. Once the L-fucose was no longer detected, 

silver nitrate was added to precipitate ATP and ADP until no new precipitate formed. The 

precipitate was removed by centrifugation (14000 g, 1 min) and washed twice using distilled water. 

Sodium chloride was added to a final concentration of 200 mM to remove the remnant silver ions. 

Silver chloride was removed by centrifugation (14000 g, 1 min). The supernatant was concentrated 
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under reduced pressure and purified by using Bio-Gel P-2 column to afford 6-deoxy-L-sorbose 1-

phosphate.  

In the second reaction step, 6-deoxy-L-sorbose 1-phosphate was dissolved in water, and the pH 

was adjusted to 5.5 using 1 M of HCl. Then, 3 mM of Mg2+, 0.2 mM of Zn2+, and 10 mg of AphA 

was added. The reactions were carried at 37°C to allow the hydrolysis of phosphate group. Once 

no sugar phosphate was observed on TLC, equal volume of cold ethanol was added to stop 

reaction. The solution was concentrated under reduced pressure and purified by using Bio-Gel P-

2 column to afford 6-deoxy-L-sorbose.  

6-deoxy-L-sorbose (1059 mg, 81% yield). 1H NMR (D2O, 400 MHz): 4.32-4.37 (m, 1 H), 4.13-

4.16 (m, 1 H), 4.01-4.02 (m, 1 H), 3.48-3.56 (m, 2 H), 1.13 (d, J = 6.4 Hz, 3 H, -CH3); 
13C NMR 

(D2O, 100 Hz): 212.8, 105.1, 101.7, 80.2, 78.1, 76.7, 76.5, 76.4, 75.8, 75.7, 74.8, 68.0, 65.9, 

63.4, 62.5, 18.1, 14.8, 14.0. HRMS (ESI) m/z calcd for C6H12O5 Na [M+Na]+ 187.0582, found 

187.0582. 

3.1.13 Substrate specificity of HK towards deoxy sugars 

Substrate specificity of HK towards L-rhamnose, L-rhamnulose and 6-deoxy-L-psicose 

was studied by the reactions that were performed in 50 ul reaction mixture containing a Tris-HCl 

buffer (100 mM, pH 7.5), 20 mM of sugar standards (Table 1.8), 20 mM of ATP, 5 mM of Mg2+, 

and 10 ug of enzymes. The reactions were performed at 37°C for 10 minutes and were stopped by 

diluting ten times using a cold buffer of acetonitrile/100 mM aqueous ammonium acetate pH 4.5 

(60% acetonitrile). The solutions were centrifuged 5 minutes (12000 g) before HPLC injection. 

The reactions were quantified by analyzing the formation of ADP by HPLC equipped with UV 

detector at 254 nm using ZIC®-cHILIC column. The column was eluted at room temperature with 
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acetonitrile/100 mM aqueous ammonium acetate pH 4.5 (60% acetonitrile) at a flow rate of 0.6 

ml/min. 

3.1.14 Preparative scale synthesis of 6-deoxy-L-psicose 

To a 400 ml reaction solution, 20 mM of L-rhamnose (8.0 mmol), 25 mM of ATP, 3 mM of Mg2+, 

3 mM of Mn2+, 20 mg of FucI, 25 mg of DTE and 20 mg of HK were added. The solution pH was 

adjusted to 8.0 using sodium hydroxide and was carefully shaken at 37°C to allow the formation 

of 6-deoxy-L-psicose 1-phosphate. The reaction was monitored by TLC, and HPLC (HPX-87H 

column). 5 mg of FucI, 5 mg of DTE and 5 mg of HK were supplemented every 12 hours. After 

the reaction was performed 48 hours, 95% conversion ratio was reached (as confirmed by HPLC). 

A longer reaction time makes no contribution to the improvement of conversion ratio. Afterwards, 

silver nitrate was added to precipitate adenosine phosphates (ATP and ADP) until no new 

precipitate formed. The precipitate was removed by centrifugation (14000 g, 1 min) and washed 

twice using distilled water. Sodium chloride was added to a final concentration of 200 mM to 

remove the remnant silver ions. Silver chloride was removed by centrifugation (14000 g, 1 min). 

The supernatant was concentrated under reduced pressure and purified by using Bio-Gel P-2 

column to afford 6-deoxy-L-psicose 1-phosphate.  

In the second reaction step, the fractions that containing 6-deoxy-L-psicose 1-phosphate were 

collected and dissolved in water. The solution pH was adjusted to 5.5 using 1 M of HCl. Then, 3 

mM of Mg2+, 0.2 mM of Zn2+, and 10 mg of AphA was added. The reaction was carried at 37°C 

to allow the hydrolysis of phosphate group. Once no sugar phosphate was observed on TLC, equal 

volume of cold ethanol was added to precipitate proteins. The solution was concentrated under 

reduced pressure and purified by using Bio-Gel P-2 column to afford 6-deoxy-L-psicose.  
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6-deoxy-L-psicose (1059 mg, 81% yield). 1H NMR (400 MHz, D2O) δ 4.04 (t, J = 6.6 Hz, 2H), 

3.76 (t, J = 5.7 Hz, 1H), 3.67 (d, J = 14.5 Hz, 1H), 3.46 (q, J = 12.0 Hz, 2H), 1.26 (d, J = 6.2 Hz, 

1H), 1.17 (d, J = 6.3 Hz, 2H).13C NMR (100 MHz, D2O) δ 105.24, 102.92, 78.50, 78.06, 75.95, 

75.11, 70.28, 63.47, 62.49, 59.35, 19.35, 17.75. HRMS (ESI) m/z calcd for C6H12O5 Na [M+Na]+ 

187.0582, found 187.0579. 

3.1.15 Preparative scale synthesis of D-xylulose 5-phosphate and L-ribulose 5-phosphate. 

Reactions were carried in a final volume of 250 ml reaction system containing 25 mM of 

ATP, 3 mM of Mg2+, 3 mM of Mn2+, 20 mM starting sugars and conversion-related enzymes 

(Table 1). D-xylose (5.0 mmol) was incubated with 20 mg of XylA and 20 mg of XylB. L-

arabinose (5.0 mmol) was incubated with 15 mg of AraA and 20 mg of AraB. The reactions were 

carefully shaken at pH near 7.5 at 37°C to allow the formation of ketose 5-phosphates. The 

reactions were monitored by TLC, and HPLC equipped ELSD using HPX-87H column with pure 

water as mobile phase. Once no detectable starting sugars were found, silver nitrate (1 M) was 

added to precipitate ATP and ADP until no new precipitate formed. The precipitate was removed 

by centrifugation (14000 g, 1 min) and washed twice using distilled water. Sodium chloride  was 

added to a final concentration of 200 mM to remove the remnant silver ions. Silver chloride was 

removed by centrifugation (14000 g, 1 min). The solution from each reaction was concentrated 

under reduced pressure and purified by using Bio-Gel P-2 column to afford final products. 

D-xylulose 5-phosphate (1). (1143 mg,  Yield 91%); 1H NMR (D2O, 400 MHz):  4.64 

(d, 1 H,  J = 19.4 Hz, H-1a), 4.52 (d, 1 H, J =  19.4 Hz, H-1b), 4.50 (d, 1 H, J = 1.8 Hz, H-3), 4.18-

4.22 (m, 1 H, H-4), 3.85-3.89 (m, 2 H, H-5); 13C NMR (D2O, 100 Hz): 211.9, 73.9, 69.7, 65.0, 

63.6; 31P NMR (D2O, 133 Hz):  2.23. HRMS (ESI) m/z calculated for [C5H11O8P -H]-  229.0119, 

found 229.0122. 
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L-ribulose 5-phosphate (5). (1164 mg, Yield 92%); 1H NMR (D2O, 400 MHz):  4.61 (d, 

1 H,  J = 19.4 Hz, H-1a), 4.54 (d, 1 H, J = 19.4 Hz, H-1b), 4.40 (d, 1 H, J = 5.8 Hz, H-3), 4.02 (dd, 

J = 10.6, 5.2 Hz, 1 H, H-5a), 3.83-3.91 (m, 2 H, H-4, H-5b); 13C NMR (D2O, 100 Hz): 212.6, 

74.9, 71.4 (d, J = 7.0 Hz), 66.3, 63.7; 31P NMR (D2O, 133 Hz): 4.38. HRMS (ESI) m/z calculated 

for [C5H11O8P -H]-  229.0119, found 229.0122. 

3.1.16 Preparative scale synthesis of D-xylulose 1-phosphate and L-ribulose 1-phosphate. 

Reactions were carried in a final volume of 250 ml reaction system containing 25 mM of 

ATP, 3 mM of Mg2+, 3 mM of Mn2+, 20 mM starting sugars and conversion-related enzymes 

(Table 1.11). D-xylose (5.0 mmol) was incubated with 20 mg of XylA and 15 mg of HK. L-

arabinose (5.0 mmol) was incubated with 15 mg of AraA and 25 mg of HK. The reactions were 

carefully shaken at pH near 7.5 at 37°C to allow the formation of ketose 1-phosphates. All the 

reactions were allowed to proceed until no detectable starting sugars were found. Silver nitrate 

precipitation method (as described above) was used to purify D-xylulose 1-phosphate and L-

ribulose 1-phosphate. The solution from each reaction was concentrated under reduced pressure 

and purified by using Bio-Gel P-2 column to afford final products. 

D-xylulose 1-phosphate (2). 1159 mg; Yield 92%; 1H NMR (D2O, 400 MHz):  4.29-4.33 

(m, 0.7 H), 4.22-4.26 (m, 0.49 H), 4.19-4.23 (m, 0.25 H), 4.12-4.16 (m, 0.80 H), 4.02-4.05 (m, 

1.01 H), 3.93 (dd, 1 H, J = 11.3, 8.6 Hz, 0.33 H), 3.87 (dd, J = 9.4, 0.33 Hz), 3.72-3.78 (m, 1.67 

H), 3.59-3.63 (m, 0.94 H); 13C NMR (D2O, 100 Hz): 105.9 (d, JC-P = 6.1 Hz, C-1), 102.3 (d, JC-

P = 7.4 Hz, C-1), 80.1, 76.9, 75.3, 74.6, 72.7, 69.7, 65.9 (d, JC-P = 3.1 Hz), 64.4 (d, JC-P = 4.1 Hz); 

31P NMR (D2O, 133 Hz):  5.11 (), 4.24 (); :=1:2. HRMS (ESI) m/z calculated for [C5H11O8P 

-H]-  229.0119, found 229.0123. 
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L-ribulose 1-phosphate (5). 1170 mg; Yield 93%; 1H NMR (D2O, 400 MHz): 4.58 (dd, 

0.33 H,  J = 12.5, 6.4 Hz), 4.31 (brs, 0.57 H), 4.11-4.17 (m, 0.85 H), 3.99-4.04 (m, 1.12 H), 3.88-

3.90 (m, 0.59 H), 3.69-3.75 (m, 1.67 H); 13C NMR (D2O, 100 Hz): 105.9 (d, JC-P = 6.2 Hz, C-1), 

101.9 (d, JC-P = 8.5 Hz, C-1), 74.9, 71.5, 71.1, 70.5, 70.0, 69.9, 65.9 (d, JC-P = 3.3 Hz), 64.7 (d, JC-

P = 4.4 Hz); 31P NMR (D2O, 133 Hz): 5.18 (), 4.40 (); = 1:2. HRMS (ESI) m/z calculated 

for [C5H11O8P -H]-  229.0119, found 229.0123. 

3.1.17 Preparative scale synthesis of D-ribulose 1-phosphate and L-xylulose 1-phosphate. 

Reactions were carried in a final volume of 250 ml reaction system containing 25 mM of 

ATP, 3 mM of Mg2+, 3 mM of Mn2+, 20 mM starting sugars and conversion-related enzymes 

(Table 1.11). D-xylose (5.0 mmol) was incubated with 20 mg of XylA, 35 mg of DTE and 13 mg 

of RhaB. L-arabinose (5.0 mmol) was incubated with 15 mg of AraA, 35 mg of DTE and 13 mg 

of RhaB. The reactions were carefully shaken at pH near 7.5 at 45°C to allow the formation of 

ketose 1-phosphates. Once no detectable starting sugars were found, silver nitrate precipitation 

method (as described above) was used to purify D-ribulose 1-phosphate and L-xylulose 1-

phosphate. The solution from each reaction was concentrated under reduced pressure and desalted 

by using Bio-Gel P-2 column to afford final products.  

D-ribulose-1-phosphate (3). 1183 mg; Yield 94%; 1H NMR (D2O, 400 MHz):  4.31 (s, 

1 H), 4.14 (s, 1 H), 4.00-4.02 (m,   3.88-3.90 (m,  1 H), 3.69-3.78 (m,  2 H); 13C NMR (D2O, 

100 Hz): 105.5 (d, JC-P = 7.0 Hz, C-1), 101.7 (d, JC-P = 8.0 Hz, C-1), 74.9, 71.2, 70.9, 70.5, 70.0 

(2 C), 65.9 (2 C), 65.9 (d, JC-P = 3.0 Hz), 65.1 (d, JC-P = 5.0 Hz); 31P NMR (D2O, 133 Hz): 3.60 

(), 2.60 (); = 1:2. HRMS (ESI) m/z calculated for [C5H11O8P -H]-  229.0119, found 229.0123. 
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L-xylulose-1-phosphate (7). 1204 mg; Yield, 96%;  1H NMR (D2O, 400 MHz):  4.32 

(brs, 1 H), 4.22-4.26 (m, 1 H), 4.14-4.16 (m, 1 H), 4.04-4.06 (m, 1 H), 3.79 (brs, 1 H), 3.63 (brs, 

1 H); 13C NMR (D2O, 100 Hz): 105.9 (d, JC-P = 6.0 Hz, C-1), 102.4 (d, JC-P = 8.0 Hz, C-1), 80.3, 

76.9, 75.3, 74.7, 72.7, 69.7, 66.0 (d, JC-P = 5.0 Hz), 64.4 (d, JC-P = 4.0 Hz); 31P NMR (D2O, 133 

Hz):  5.28 (), 4.44 (); := 1:2. HRMS (ESI) m/z calculated for [C5H11O8P -H]-  229.0119, 

found 229.0121. 

3.1.18 Preparative scale synthesis of D-ribulose 5-phosphate and L-xylulose 5-phosphate 

In the first reaction step, D-ribulose 1-phosphate and L-xylulose 1-phosphate were 

prepared from 6 mmol of D-xylose or L-arabinose as described above. To prepare D-ribulose and 

L-xylulose, a reaction mixture in total volume of 100 ml containing ketose 1-phosphates, 5 mM of 

Mg2+, 0.1 mM Zn2+ and 10 mg of AphA. The reactions were carefully shaken at 37°C to allow 

the formation of ketoses. Once no detectable ketose 1-phosphates were found by TLC, The 

solution from each reaction was concentrated under reduced pressure and desalted by using Bio-

Gel P-2 column to afford ketose 1-phosphates. In the second reaction step, reactions were carried 

in a final volume of 300 ml reaction system containing 25 mM of ATP, 3 mM of Mg2+, 3 mM of 

Mn2+, ~20 mM of ketoses and kinases (Table 1.11). D-ribulose was incubated with 15 mg of 

AraB. L-xylulose was incubated with 20 mg of LyxK. The reactions were carefully shaken at pH 

near 7.5 at 37°C to allow the formation of ketose 5-phosphates. Once no detectable ketoses were 

found, silver nitrate precipitation method (as described above) was used to purify D-ribulose 5-

phosphate and L-xylulose 5-phosphate. The solution from each reaction was concentrated under 

reduced pressure and desalted by using Bio-Gel P-2 column to afford final products.   

D-ribulose-5-phosphate (4). 1291 mg; Yield, 85%; 1H NMR (D2O, 400 MHz): 4.61 (d, 

1 H, J = 19.4 Hz, H-1a), 4.55 (d, 1 H, J = 19.4 Hz, H-1b), 4.41 (d, J = 5.8, H-3), 4.01 (dd, J = 10.2, 
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4.9 Hz, H-5a), 3.82-3.92 (m, 2 H, H-4, H-5b); 13C NMR (D2O, 100 Hz): 211.4, 73.8, 70.2, 65.4, 

63.4; 31P NMR (D2O, 133 Hz): 4.24. HRMS (ESI) m/z calculated for [C5H11O8P -H]-  229.0119, 

found 229.0099. 

L-xylulose-5-phosphate (8). 1265 mg; Yield, 84%; 1H NMR (D2O, 400 MHz):  4.64 (d, 

1 H, J = 19.4 Hz, H-1a), 4.52 (d, 1 H, J = 19.4 Hz, H-1b), 4.51 (d, 1 H, J = 1.5 Hz, H-3), 4.17 (dd, 

1 H, J = 5.8, 4.4 Hz, H-5a), 3.80-3.83 (m, 2 H, H-4, H-5b); 13C NMR (D2O, 100 Hz): 213.1, 

75.2, 71.2 (d, J = 6.9 Hz), 66.0, 63.8 (d, J = 4.6 Hz); 31P NMR (D2O, 133 Hz):  4.35. HRMS (ESI) 

m/z calculated for [C5H11O8P -H]-  229.0119, found 229.0122. 

3.1.19 Purity analysis 

To analyze the purity of phosphorylated ketoses, the phosphate group of each sugar 

phosphate was hydrolyzed by a reaction system (pH 5.5) containing 20 mM of phosphorylated 

sugars, 3 mM of Mg2+ and 10 U of acid phosphatase. The reactions were incubated at 37°C until 

no sugar phosphates were observed by TLC (EtOAc/MeOH/H2O/HOAc=5:2:1.4:0.4). The 

mixture was then analyzed by HPLC employing authentic sugar standards as controls as previously 

reported.99 

3.1.20 Enzyme preparation for KDO synthesis 

KdsA, KdsC, KdsD, KdsB, and WaaA were amplified from Escherichia coli genomic 

DNA using the primers listed below.  

KdsA (F): GGAATTCCATATGAAACAAAAAGTGGTTAGC (NdeI) 

KdsA (R): CCCAAGCTTTTACTTGCTGGTATCCAGTTC (HindIII) 

KdsC (F): GGAATTCCATATGAGCAAAGCAGGTGCGT (NdeI) 

KdsC (R): CCCAAGCTTTCATATCGATTGCCCTTTGG (HindIII) 
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KdsD (F): CATGCCATGGATGTCGCACGTAGAGTTACAA (NcoI) 

KdsD (R): CCCAAGCTTCACTACGCCTGCACGCAG (HindIII) 

WaaA(F): GGAATTCCATATGCTCGAATTGCTTTACA (NdeI) 

WaaA(R): CGCGGATCCTCAATGCGTTTTCGGTG(BamHI) 

KdsB(F): GGAATTCCATATGAGTTTTGTGGTCATTATTC(NdeI) 

KdsB (R): CCCAAGCTTTTAGCGCATTTCAGCGCGAA (HindIII) 

All genes were cloned into pET-28a vectors and the recombinant plasmids were confirmed by 

restriction mapping and sequencing. The confirmed constructs were subsequently transformed into 

E.coli BL21 (DE3) for protein expression. After being induced by IPTG at 16 °C overnight, 

bacteria cells were harvested by centrifugation and re-suspended in lysis buffer (50 mM Tris-HCl, 

300 mM NaCl, 10 mM imidazole; pH 8.0). Cells were disrupted by a microfluidizer and the lysate 

was removed by centrifugation (12,000 g, 25 min). The supernatant was loaded onto a Ni-NTA 

agarose column equilibrated with the lysis buffer (50 mM Tris-HCl, 300 mM NaCl, 10 mM 

imidazole; pH 8.0). The column was washed with 2 column volumes of the lysis buffer and 2 

column volumes of the wash buffer (50 mM Tris-HCl, 300 mM NaCl, 30 mM imidazole; pH 8.0). 

The proteins were finally eluted with elution buffer (50 mM Tris-HCl, 300 mM NaCl, 300 mM 

imidazole; pH 8.0). The purified proteins were desalted by filtration (Millipore, 30,000 MWCO) 

for further use. The protein concentration was determined by the Bradford method with bovine 

serum albumin as a standard and the purity was confirmed by SDS-PAGE. 

3.1.21 Substrate specificity of KdsC 

Substrate specificity of KdsC toward D-ribulose 5-phosphate was studied by the reaction 

that was performed in 50 ul reaction mixture containing a Tris-HCl buffer (100 mM, pH 7.5), 20 
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mM of D-ribulose 5-phosphate, 5 mM of Mg2+, and 100 ng of KdsC. Meanwhile, reaction contains 

5 units of alkaline phosphatase (without KdsC) was performed as a control. The reactions were 

carried at 37°C for 3 hours and analyzed by TLC (EtOAc/MeOH/H2O/HOAc=5:2:1.4:0.4) 

employing authentic D-ribulose 5-phosphate and D-ribulose as controls. 

3.1.22 Preparative scale synthesis of KDO 

Reaction was carried in a final volume of 300 ml reaction system containing 20 mM of D-

ribulose 5-phosphate (6 mmol), 40 mM of PEP (12 mmol), 3 mM of Mg2+, 3 mM of Mn2+, 15 mg 

of KdsD, 30 mg of KdsA and 25 mg of KdsC. The reactions were carefully shaken at pH near 7.5 

at 37°C to allow the formation of KDO. The reactions were monitored by 

TLC(EtOAc/MeOH/H2O/HOAc=5:2:1.4:0.4). Once the reactions no longer move forward, the 

equal volume of ethanol was added to stop the reaction. The solution was concentrated under 

reduced pressure. KDO was purified using FPLC equipped with a DEAE column (HCO3
- form). 

The column was eluted with a 2 L linear gradient of NH4HCO3 (from 0 to 0.5 M). The column 

fractions were monitored using TLC. The fractions containing KDO was collected and desalted by 

using Bio-Gel P-2 column to afford final product in 72% yield (1109 mg, ammonium form) with 

regard to D-ribulose 5-phosphate. The product was analyzed by MS and NMR. 

3.1.23 Acetylated KDO methyl  

Acetylated KDO methyl ester was prepared from KDO as previously reported.141, 155 In detail, 

50 mg of KDO was added to a solution containing 1.5 ml of acetic anhydride, 3 ml of pyridine, 

and the catalytic amount of 4-Dimethylamino pyridine and the mixture was stirred under argon 

atmosphere at room temperature overnight. The reaction mixture was concentrated in vacuo. The 

resulting residue was diluted with DCM (5 mL), washed with 1 M HCl aqueous solution (10 mL), 

saturated aqueous solution of NaHCO3 (10 mL) and brine (10 mL). The organic layer was dried 
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over anhydrous Na2SO4 and filtered. The filtrate was concentrated in vacuo to afford 2. Then, 2 

was dissolved in 4 mL of CH2Cl2 and 4 mL of methanol, and then trimethylsilyldiazomethane 

(1mL, 2 M in diethyl ether) was slowly added. The above solution was stirred under argon 

atmosphere at room temperature overnight. The reaction mixture was concentrated in vacuo, and 

the resulting residue was purified by silica gel chromatography (hexane/ethyl acetate, 1:1) to afford 

a white solid 3 (28 mg).  1H NMR (CDCl3, 400 MHz): δ 1.98 (s, 3H, COCH3), 1.99 (s, 3H, 

COCH3), 2.03 (s, 3H, COCH3), 2.10 (s, 3H, COCH3), 2.13 (s, 3H, COCH3), 2.19-2.26 (m, 2H, H-

3a, H-3b), 3.79 (s, 3H,CO2CH3), 4.10 (dd, 1H, J = 4.0, 12.4 Hz, H-8b), 4.16 (d, 1H, J = 10.0 Hz, 

H-4), 4.46 (dd, 1H, J = 2.0, 12.0 Hz, H-8a), 5.19-5.23 (ddd,1H, J = 2.0, 3.6, 12.0 Hz, H-7), 5.29-

5.34 (ddd,1H, J = 2.8, 5.6, 11.2 Hz, H-6), 5.37 (s, 1H, H-5); 13C NMR (CDCl3, 100 MHz): δ 20.60 

(4x COCH3), 20.68 (COCH3), 30.90 (C3), 53.14 (CO2CH3), 62.09 (C8), 63.91, 65.88, 67.28, 

69.70, 97.43 (C2), 166.63 (C1), 167.92 (COCH3), 169.50 (COCH3), 169.94 (COCH3), 170.23 

(COCH3), 170.35 (COCH3); ESI HRMS: m/z calcd for C19H26NaO13 [M +Na]+ 485.1271, found 

485.1276.  
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3.1.24 HEPLC profile of ketoses 

 

Figure 3.2 HPLC profiles of L-ribulose compared with authentic samples (Sugar-Pak 1 column 

at 70 °C with pure water as the mobile phase at a flow rate of 0.6 ml/min). 

 

 

Figure 3.3 HPLC profiles of D-xylulose compared with authentic samples (Sugar-Pak 1 

column at 70 °C with pure water as the mobile phase at a flow rate of 0.6 ml/min). 
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Figure 3.4 HPLC profiles of D-tagatose compared with authentic samples (Sugar-Pak 1 

column at 70 °C with pure water as the mobile phase at a flow rate of 0.6 ml/min). 

 

 

Figure 3.5 HPLC profiles of L-xylulose compared with authentic samples (Sugar-Pak 1 

column at 70 °C with pure water as the mobile phase at a flow rate of 0.6 ml/min). 
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Figure 3.6 HPLC profiles of D-ribulose compared with authentic samples (Sugar-Pak 1 

column at 70 °C with pure water as the mobile phase at a flow rate of 0.6 ml/min). 

 

 

Figure 3.7 HPLC profiles of D-sorbose compared with authentic samples (Sugar-Pak 1 

column at 70 °C with pure water as the mobile phase at a flow rate of 0.6 ml/min). 
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Figure 3.8 HPLC profiles of D-psicose compared with authentic samples (Sugar-Pak 1 

column at 70 °C with pure water as the mobile phase at a flow rate of 0.6 ml/min). 

 

 

Figure 3.9 HPLC profiles of L-tagatose compared with authentic samples (Sugar-Pak 1 

column at 70 °C with pure water as the mobile phase at a flow rate of 0.6 ml/min). 
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Figure 3.10 HPLC profiles of L-fructose compared with authentic samples (Sugar-Pak 1 

column at 70 °C with pure water as the mobile phase at a flow rate of 0.6 ml/min). 

 

 

Figure 3.11 HPLC profiles of L-psicose compared with authentic samples (Sugar-Pak 1 

column at 70 °C with pure water as the mobile phase at a flow rate of 0.6 ml/min). 
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3.1.25 NMR spectra 

1H-NMR of L-ribulose 

 

13C-NMR of L-ribulose 
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1H-NMR of D-xylulose 

 

13C-NMR of D-xylulose 
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1H-NMR of D-tagatose 

 

13C-NMR of D-tagatose 
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1H-NMR of L-xylulose 

 

13C-NMR of L-xylulose 
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1H-NMR of D-ribulose                       

 

13C-NMR of D-ribulose             
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1H-NMR of D-sorbose  

 

13C-NMR of D-sorbose 
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1H-NMR of D-psicose 

 

13C-NMR of D-psicos
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1H-NMR of L-tagatose 

 

13C-NMR of L-tagatose 
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1H-NMR of L-fructose 

 

13C-NMR of L-fruct

 



88 

 

1H-NMR of L-psicose 

 

13C-NMR of L-psicose
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1H-NMR of L-rhamnulose 1-phosphate 

 

13C-NMR of L-rhamnulose 1-phosphate 
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1H-NMR of L-fuculose 1-phosphate 

 

13C-NMR of L-fuculose 1-phosphat
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1H-NMR of L-rhamnulose  

 

13C-NMR of L-rhamnulose  
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1H-NMR of L-fuculose  

 

13C-NMR of L-fuculose  
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1H-NMR of 6-deoxy-L-sorbose 

 

13C-NMR of 6-deoxy-L-sorbose 
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1H-NMR of 6-deoxy-L-psicose-1-phosphate 

 

13C-NMR of 6-deoxy-L-psicose-1-phosphate 
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1H-NMR of 6-deoxy-L-psicose 

 

13C-NMR of 6-deoxy-L-psicose 
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1H-NMR of D-xylulose 5-phosphate 

 

13C-NMR of D-xylulose 5-phosphate 
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31P-NMR of D-xylulose 5-phosphate 

 

1H-NMR of L-ribulose 5-phosphate 
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13C-NMR of L-ribulose 5-phosphate 

 

31P-NMR of L-ribulose 5-phosphate 
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1H-NMR of D-xylulose 1-phosphate

 

13C-NMR of D-xylulose 1-phosphate
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31P-NMR of D-xylulose 1-phosphate 

 

1H-NMR of L-ribulose 1-phosphate 
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13C-NMR of L-ribulose 1-phosphate

 

31P-NMR of L-ribulose 1-phosphate 
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1H-NMR of D-ribulose 1-phosphate 

 

13C-NMR of D-ribulose 1-phosphate 
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31P-NMR of D-ribulose 1-phosphate 

 

1H-NMR of L-xylulose 1-phosphate
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13C-NMR of L-xylulose 1-phosphate

 

31P-NMR of L-xylulose 1-phosphate 
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1H-NMR of D-ribulose 5-phosphate

 

13C-NMR of D-ribulose 5-phosphate
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31P-NMR of D-ribulose 5-phosphate 

 

1H-NMR of L-xylulose 5-phosphate
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13C-NMR of L-xylulose 5-phosphate

 

31P-NMR of L-xylulose 5-phosphate 
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3.2 Experiment procedures for chemoenzymatic reporter strategy for probing complex 

glycans on cell surface. 

3.2.1 Enzyme preparation 

Plasmid encoding CgtA from Campylobacter jejuni was kindly provided by Prof. Xi Chen 

(University of California, Davis). Neisseria meningitides CMP-Sia synthetase (NmCSS), 

Pasteurella multocidainorganic pyrophosphatase (PPA), Pasteurella multocida 2,3-

sialyltransferase (PmST1) and E.coli aldolase were prepared as previously reported.214 Pd2,6ST 

(2,6-sialyltransferase) from Photobacterium damsel,221 CstII (2,8-sialyltransferase) from 

Campylobacter jejuni215 and 1–4-galactosyltransferases (LgtB) from Neisseria meningitidis222 

were prepared as previously reported. D-galactosyl-1–3-N-acetyl-D-hexosamine phosphorylase 

(BiGalHexNAcP) and galactose kinase (GalK) from Bifidobacterium infantis was prepared as 

previously reported.223 Sialidase (NanH) from Bifidobacterium longum subsp. Infantis(ATCC 

15697) was prepared as previously reported.224 Sialidase (NanC) from Streptococcus 

penumoniae218 was cloned into pET-28a and overexpressed in E.coli BL21 (DE3). The purified 

proteins were  concentrated  and desalted with  10 kDa  molecular  weight  cut-off  (Millipore, 

MWCO)  spin  filters for further use. Protein concentration was determined by BCA Protein Assay 

Kit. 

3.2.2 General protocol for the synthesis of oligosaccharides  

Lactose--Me was chemically synthesized starting from lactose as previously reported.214 

LacNAc was enzymatically synthesized by incubating D-GlcNAc with UDP-Gal and LgtB and 

purified by Bio-Gel P-2 column.225 Gal-1,3-GalNAc was enzymatically synthesized by 

incubating D-GalNAc with BiGalHexNAcP and Gal-1-phosphate, which was prepared from 

galactose by using GalK and purified by using silver nitrate precipitation method.83, 99  
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Oligosaccharides that containing 2-3-linked Neu5Ac were synthesized from appropriate 

acceptor (Lactose--Me, LacNAc, Gal-1,3-GalNAc or Galactose) in hundreds milligram scale 

using the one-pot two-enzyme system containing Tris-HCl (pH 7.5), Mg2+, PmST1, NmCSS, CTP 

(1.5 equiv.) and Neu5Ac (1.5 equiv.).214 Oligosaccharides that containing 2,3-linked Neu5Gc 

and KDN were synthesized from appropriate acceptor in hundreds milligram scale using the one-

pot three-enzyme (OPME) system containing Tris-HCl (pH 7.5), Mg2+, PmST1, NmCSS, aldolase, 

ManNAc or Mannose (1.5 equiv.), sodium pyruvate (5 equiv.), CTP (1.5 equiv.) and Neu5Ac (1.5 

equiv.).214  

Oligosaccharides that containing 2-6-linked sialic acids were synthesized from appropriate 

acceptor (Lactose--Me, LacNAc, or Gal-1,3-GalNAc) using the similar one-pot multienzyme 

system as described above, in which 2-6 sialic acid transferase Pd2,6ST instead of PmsT1 was 

employed.216 

Oligosaccharides that containing 2-8-linked Neu5Ac was prepared from the appropriate 

acceptor obtained from above using one-pot two-enzyme system containing Tris-HCl (pH 7.5), 

Mg2+, CstII, NmCSS, CTP (1.5 equiv.) and Neu5Ac (1.5 equiv.).215 

3.2.3 Substrate specificity study of CgtA with UDP-GalNAc and UDP-GalNAz 

A 20 ul mixture containing 4 mM of Neu5Ac(2-3)Gal(1-4)Glc-Me (Entry 1 in Table 

2.1) or Neu5Ac(2-6)Gal(1-4)Glc-Me (Entry 7 in Table 2.1), 0.8 ug of CgtA, 50 mM of Tris-

HCl (pH 7.5), 5 mM of MgCl2, 4 mM of UDP-GalNAc or UDP-GalNAz was incubated at 37°C 

for 20 minutes. The reaction was stopped by diluting the reaction with equal volume of cooled 

buffer acetonitrile/100 mM aqueous ammonium acetate pH 4.5 (60% acetonitrile). The diluted 

solution was analyzed by HPLC equipped with UV detector at 254 nm using ZIC®-cHILIC 
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column. The column was eluted at 30°C with acetonitrile/100 mM aqueous ammonium acetate pH 

4.5 (60% acetonitrile) at a flow rate of 0.6 ml/min. The quantitation of the formation of UDP 

showed that UDP-GalNAz (112%) has a higher relative activity than UDP-GalNAc (100%). After 

incubation of Neu5Ac(2-6)Gal(1-4)Glc-Me with UDP-GalNAz, only trace amount of UDP 

could be detected. 

3.2.4 Enzymatic synthesis of 2 from 1 using CgtA and UDP-GalNAz 

 

    Reaction was carried in a 10 ml mixture containing 10 mM of 1, 50 mM of Tris-HCl (pH 7.5), 

5 mM of MgCl2 and 0.5 mg of CgtA. 20 units of alkaline phosphatase were added to hydrolyze 

the newly formed UDP to improve the conversion. The reaction was carefully shaken at 37°C 

overnight  to allow the formation 2. 2 was purified by using Bio-Gel P-2 column. The fractions 

that containing 2 was collected and lyophilized to afford 82 mg of final product (92% yield with 

regard to 1). The product was confirmed by MALDI TOF and NMR analysis. 1H NMR (400 MHz, 

D2O) δ 4.74 (d, J = 8.6 Hz, 2H), 4.44 (d, J = 7.9 Hz, 1H), 4.32 (d, J = 8.0 Hz, 1H), 4.06 (dd, J = 

13.1, 3.2 Hz, 2H), 3.96 – 3.82 (m, 5H), 3.78 (d, J = 11.9 Hz, 1H), 3.75 – 3.60 (m, 11H), 3.54 (m, 

4H), 3.49 (s, 4H), 3.38 (d, J = 8.3 Hz, 1H), 3.24 (dt, J = 16.9, 8.7 Hz, 2H), 2.63 – 2.52 (m, 1H), 

1.95 (s, 3H). 13C NMR (100 MHz, D2O) δ 175.00, 173.95, 170.96, 103.05, 102.58, 102.41, 101.58, 

78.51, 76.95, 74.70, 74.37, 74.01, 73.01, 72.70, 72.18, 71.03, 70.01, 68.67, 67.98, 67.78, 62.82, 

61.13, 60.55, 60.09, 57.20, 52.41, 51.79, 51.60, 37.09, 22.05. 
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Figure 3.12 MS and MS/MS analysis of 1 and 2 (negative scanning mode). The MS 

spectrum for each compound is shown on top; the MS/MS spectrum for the most abundant ion is 

shown on the bottom. The corresponding fragmentation products and probable cleavage sites are 

denoted in the respective structures. 

3.2.5 Kinetic analysis of CgtA with UDP-GalNAc and UDP-GalNAz 

Reactions were performed in  three repetitions with  50 mM Tris-HCl (pH 7.5), 100  µM  

acceptor  substrate 1, 5 mM of Mg2+, 0.4  µg  of CgtA,  and  varying  concentrations  of  UDP-

GalNAz or UDP-GalNAc (50 to 800 µM) in a total volume of 20 µL. The reactions were carried 

at 37°C for 5 minutes and were stopped by adding equal volume of a cold buffer containing 

acetonitrile/100 mM aqueous ammonium acetate pH 4.5 (60% acetonitrile). The reactions were 

analyzed by quantifying the formation of UDP by HPLC equipped with UV detector at 254 nm 

using ZIC®-cHILIC column. The column was eluted at 30°C with acetonitrile/100 mM aqueous 
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ammonium acetate pH 4.5 (60% acetonitrile) at a flow rate of 0.6 ml/min. The kinetic parameters, 

Km, Vmax, and kcat, were obtained by linear regression analysis of initial velocity vs. donor substrate 

concentration using software KaleidaGraph (Table 3.1). 

Table 3.1 Kinetic parameters for UDP-GalNAz and UDP-GalNAc by CgtA 

Substrate Vmax (nmol-1min-1) Km 

(uM) 

Kcat/Km (nM-1min-1) 

UDP-GalNAc 0.254 16.887 1.34 

UDP-GalNAz 0.249 14.725 1.51 

 

3.2.6 Substrate specificity study of CgtA with sialylated oligosaccharides 

Substrate specificity of CgtA with UDP-GalNAz was studied by the reactions that were 

performed in 20 ul reaction mixture containing a Tris-HCl buffer (50 mM, pH 7.5), 4 mM of 

oligosaccharides (prepared as described above), 5 mM of Mg2+, and 0.4 ug of CgtA. The reactions 

were carried at 37°C for 20 minutes, and were stopped by adding equal volume of cold buffer 

containing acetonitrile/100 mM aqueous ammonium acetate pH 4.5 (60% acetonitrile). The 

reactions were quantified by analyzing the formation of UDP by HPLC equipped with UV detector 

at 254 nm using ZIC®-cHILIC column. The column was eluted at 30°C with acetonitrile/100 mM 

aqueous ammonium acetate pH 4.5 (60% acetonitrile) at a flow rate of 0.6 ml/min. Relative 

specificity towards oligosaccharides was shown in Table 2.1.  

3.2.7 Chemoenzymatic detection Neu5Aca(2,3)Gal glycans on bovine fetuin using 

CgtA and UDP-GalNAz. 

Fetal bovine fetuin was dissolved in water to a final concentration 2 mg/ml. To perform a 

control reaction, 2-3-linked sialic acid that attached on the terminal of glycans was hydrolyzed 

by NanC. Briefly, a 200 ul solution containing 2 mg/ml of fetuin, 5 mM of Mg2+, and 10 ug of 
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NanC was carefully shaken at 37°C for 1 hour. After the treatment of NanC, a slight migration 

change compare to native feutin was observed on SDS-PAGE gel, indicating the remove of 2-3- 

linked Neu5Ac (Figure 2.4 A). To perform labeling reaction, a 200 ul of above-mentioned solution 

containing 20 mM Tris-HCl buffer (pH 7.5), 5 mM of Mg2+, 10 ug of CgtA, and 100 uM of UDP-

GalNAz was carefully shaken at 37°C for 1 hour to allow the introduction of GalNAz onto 

Neu5Ac(2-3)Gal. Meanwhile, the controls with the absence of either enzyme or substrate were 

performed parallel. Afterwards, protein was precipitated using methanol/chloroform/water. 

Briefly, 600 µL of MeOH, 200 µL of CHCl3 and 450 µL H2O were added sequentially. The resulted 

solutions were centrifuged at 23,000 g for 10 min. The upper and lower solutions were carefully 

removed by pipette. Precipitated protein that existed in intermediate layer was washed twice with 

1ml of cooled MeOH and centrifuged at 23,000 g for 10 min. After the protein pellet was allowed 

to dry briefly, the precipitated protein was redissolved in PBS containing 1% SDS. The solution  

 

Figure 3.13 Chemoenzymatic detection fetuin Neu5Ac(2-3)Gal glycans. After labeling of 

fetuin with CgtA and UDP-GalNAz, different concentration (0.5, 5, and 50 ng) were loaded for 

western blot detection. M: protein marker. 

was diluted to 1 mg/ml using PBS. The resuspended protein was subsequently reacted DIBO-biotin 

(10 uM) at room temperature for 1 hour in dark. Then, protein was precipitated using 

chloroform/methanol/water as described above and washed by 1 ml of MeOH twice. The protein 

was finally redissolved in 2% SDS and the concentrations were determined as described above. 3 

ug of protein was loaded for coomassie brilliant blue staining. 0.5 ug of protein was loaded for 
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western blot analysis using S-HRP. For sensitivity experiment, 0.5, 5 and 50 ng of labeled fetuin 

was loaded for western blot analysis using S-HRP (Figure 3.13).  

 

3.2.8 Lectin binding experiments.  

 

Figure 3.14 B-SNA detection of α2-6-linked Neu5Ac on fetal bovine fetuin to double check 

that NanC not affect α2-6-linked sialic acids on glycoproteins. NanH: a sialidase that could 

hydrolyze both α2-3- and α2-6-linked sialic acid. 1, native fetal bovine fetuin. 2, native fetal 

bovine fetuin was treated with NanC to hydrolyze α2-3-linked Neu5Ac. 3, native fetal bovine 

fetuin was treated with NanH to hydrolyze both α2-3- and α2-6-linked Neu5Ac. 

    Biotinylated Sambucus Nigra Lectin (B-SNA) and biotinylated Maackia Amurensis Lectin II 

(B-MAL II), which binds α2-6-linked sialic acids or α2-3-linked sialic acids in O-glycans, were 

from Vector Laboratories. Fetal bovine fetuin (3 ug) prepared as described above were separated 

on SDS-PAGE gel and transferred to a polyvinylidene difluoride (PVDF) membrane (Millipore). 

The membranes were blocked in blocking buffer (10 mM HEPES (pH 7.5), 150 mM NaCl, 0.02% 

Tween 20, 0.08% NaN3, 2% BSA) at room temperature for 2 hour. The membranes were probed 

overnight with 10 mL of 10 μg/mL lectin in probing buffer (10 mM HEPES (pH 7.5), 150 mM 

NaCl, 0.02% Tween 20, 0.08% NaN3, 2% BSA, 1mM CaCl2, 1 mM MgCl2, 1 mM MnCl2). The 

membranes were washed three times for 10 min with 10 mL of binding buffer (10 mM HEPES 

(pH 7.5), 150 mM NaCl, 0.02% Tween 20, 0.08% NaN3) and then probed with Streptavidin HRP 

(1: 20000) in blocking buffer at room temperature for 2 hour. The membranes were washed three 



116 

 

times for 10 min and imaged with ECL reagents. After probing by SNA, strong fluorescence could 

be observed in native bovine fetuin and NanC-treated fetuin, demonstrating that NanC selectively 

hydrolyze α2-3-linked sialic acids on protein but not affect α2-3-linked sialic acids (Figure 2.4). 

There is no fluorescence could be observed when bovine fetuin was treated with NanH, which 

hydrolyze both α2-3- and α2-6-linked sialic acids (Figure 3.14).  

3.2.9 Chemoenzymatic detection Neua5Aca(2,3)Gal glycans from cell lysates 

Cells were cultured as described above and harvested by centrifugation (1000 g, 5 min). 

After two washes using labeling buffer (3% FBS in PBS), the cell was disrupted in lysis buffer (50 

mM Tri-HCl, 8.0; 150 mM NaCl; 1% NP 40; 5% glycerol) supplemented with protease inhibitor 

cocktail at 4°C for 15 minutes. Cell debris was removed by centrifugation (12000 g, 5 min). The 

supernatant was diluted to 1 mg/ml using lysis buffer. To perform a control reaction, in a 200 ul 

of above mentioned solution, 5 mM of Mg2+, and 10 ug of NanC was added. The reaction was 

carefully shaken at 37°C for 1 hour to hydrolyze the 2-3-linked Neu5Ac. To perform labeling 

reaction, 5 mM of Mg2+, 100 uM of UDP-GalNAz, and 30 ug of CgtA were added into 200 ul of 

above mentioned solutions. The reactions were shaken carefully at 37°C for 1 hour, while the 

reactions with the absence of either substrate or CgtA were performed as parallel. Afterwards, 

proteins were precipitated using methanol/chloroform/water as described above and washed three 

times using 1 ml of MeOH. After the protein pellet was allowed to dry briefly at room temperature, 

the precipitated proteins were redissolved in PBS containing 1% SDS and diluted to 1 mg/ml using 

PBS. To perform Cu(I)-catalyzed azide−alkyne cycloaddition (CuAAC) reaction, 1 mM of CuSO4, 

3 mM of THPTA, 4 mM of sodium ascorbate and 50 uM of Diazo Biotin-Alkyne were added. 

After the reaction was carried at room temperature for 1 hour in dark, the proteins were precipitated 

using methanol/chloroform/water as described above and washed twice using 1ml of MeOH. The 
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proteins were redissolved in 2% SDS. About 20 ug of protein was loaded for SDS-PAGE 

separation and western blot analysis. 

3.2.10 Chemoenzymatic detection cell surface Neu5Aca(2,3)Gal glycoproteins 

Cells were cultured as described above and harvested by centrifugation (1000 g, 5 min). 

After wash three times using labeling buffer (PBS containing 3% FBS), the cell was redissolved 

in labeling buffer. To perform labeling reaction, 500 uM of UDP-GalNAz, 10 mM of Mg2+ and 

100 ug/ml CgtA were added. The reaction was carefully at 37°C for 30 min, while the reactions 

with the absence of either substrate or CgtA were performed as parallel. Afterwards, the reactions 

were stopped by precipitating cells by centrifugation (1000 g, 5 min). After three washes by 

labeling buffer, the cells were disrupted by RIPA buffer supplemented with protease inhibitor 

cocktail. Cell debris was removed by centrifugation (12000 g, 5 min), and the supernatant solution 

was diluted to 1 mg/ml using lysis buffer. To perform labeling reaction, 1 mM of CuSO4, 3 mM 

of THPTA, 4 mM of sodium ascorbate and 50 uM of Diazo Biotin-Alkyne were added. After the 

reaction was carried at room temperature for 1 hour in dark, the proteins were precipitated using 

methanol/chloroform/water as described above and washed twice using MeOH. The proteins were 

redissolved in 2% SDS. About 15 ug of protein was loaded for SDS-PAGE separation and western 

blot analysis.  

3.2.11 Western blotting 

The purified, labeled sample from above was separated by SDS-PAGE and transferred to 

a polyvinylidene difluoride (PVDF) membrane (Millipore). The membrane was blocked in 3% 

BSA in TBST (50 mM TrisHCl, 150 mM NaCl, 0.05% Tween 20, pH 7.4) at room temperature 

for 2 hours. For biotinylated protein analysis, the membrane was incubated streptavidin-linked 

horseradish peroxidase (1:20000) at 4°C overnight. The membrane was washed three times with 
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TBST for 10 min, and the blots were developed using ECL reagents and ImageQuant LAS 4000 

mini imager (GE Healthcare). For actin western blot analysis, the membrane was incubated with 

anti-actin (1: 20000 dilution) in TBST containing 3% BSA at 4°C overnight. The membrane was 

washed three times and incubated with second antibody (Goat anti-rabbit, 1: 3000) as room 

temperature for 1hour. The membrane was washed three times with TBST for 10 min, and the 

blots were developed using ECL reagents and ImageQuant LAS 4000 mini imager (GE 

Healthcare). 

 

Figure 3.15 Chemoenzymatic detection Neu5Ac(2-3)Gal glycoproteins from HEK293T 

cell lysates. PNGF: the labeled sample was further treated with PNGF to remove N-glycans. 
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Figure 3.16 Chemoenzymatic detection Neu5Ac(2-3)Gal glycoproteins from HeLa cell 

lysates (left) and cell surface (right). NanC: The sample was treated with NanC to hydrolyze α2-

3-linked Neu5Ac before performing labeling reaction. PNGF: the labeled sample was further 

treated with PNGF to remove N-glycans. 

 

Figure 3.17 Chemoenzymatic detection Neu5Ac(2-3)Gal glycoproteins from HepG2 

cell lysates (left) and cell surface (right). NanC: The sample was treated with NanC to hydrolyze 

α2-3-linked Neu5Ac before performing labeling reaction. PNGF: the labeled sample was further 

treated with PNGF to remove N-glycans. 

 

Figure 3.18 Chemoenzymatic detection Neu5Ac(2-3)Gal glycoproteins from A549 cell 

lysates (left) and cell surface (right). NanC: The sample was treated with NanC to hydrolyze α2-

3-linked Neu5Ac before performing labeling reaction.  PNGF: the labeled sample was further 

treated with PNGF to remove N-glycans. 



120 

 

3.2.12 Fluorescence microscopy and flow cytometry analysis of Neu5Aca(2,3)Gal 

glycan on living cells. 

HeLA cells cultured overnight to allow adhesion. Monolayers were washed three times 

using labeling buffer (PBS containing 3% FBS), and were enzymatically labeled in labeling buffer 

containing CgtA (25ug/ml), UDP-GalNAz (50 uM) and Mg2+ (10 mM) at 37°C for 1 hour. After 

three washes with cooled labeling buffer, the cells were incubated with DIBO-biotin (30 uM) at 

RT for 1 hour. Next, the cells were incubated with streptavidin–Alexa Fluor 488 (10 ug/ml) in 

labeling buffer at 4 °C for 30 min in dark. Cells were washed twice with labeling buffer and fixed 

with formaldehyde (3.7% in PBS) at RT for 15 min. The nucleus was labeled with DAPI before 

imaging by fluorescence microscope (Olympus BX 63). To analyze the expression level of 

Neu5Ac(2,3)Gal glycans by flow cytometry, HeLA cells were lifted off the plate and washed  

 

Figure 3.19 Flow cytometry analysis of the expression level of Neu5Ac(2-3)Gal glycans 

on the cell surface of HeLA cells. Cells were chemoenzymatically labeled in the presence (right) 

or absence (left) of CgtA. 10,000 live cells were analyzed in each experiment. 

three times using labeling buffer. One million cells were enzymatically labeled in labeling buffer 

containing CgtA (25ug/ml), UDP-GalNAz (50 uM) and Mg2+ (10 mM) at 37°C for 1 hour. Once 

reaction finished, the cells were precipitated by centrifugation (1500g, 5 min) and washed three 

times using labeling buffer. The cells were incubated with DIBO-biotin (30 uM) at RT for 1 hour 
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and then washed three times. The fluorescence reporter was installed by incubation with 

streptavidin–Alexa Fluor 488 (10 ug/ml) in labeling buffer at 4 °C for 30 min in dark. After three 

washes using labeling buffer, the cell was resuspended in PBS containing CMF HBSS for flow 

cytometry analysis. For each experiment, 10,000 live cells were analyzed, and data analysis was 

performed on FlowJo. Robust fluorescent labeling was detected in cells subjected to enzymatic 

treatments (Figure 3.19). 

3.2.13 Chemoenzymatic probing Nue5Ac(2,3)Gal Glycoproteins 

The SDS-solubilized, biotin labelled or control sample (10 mg total protein per sample) 

was diluted with PBS (100 mM phosphate, 150 mM sodium chloride; pH 7.4) into a final 

concentration of 0.2% SDS. The solution was then incubated with 150 μL of streptavidin-agarose 

beads (300 μL of a 50% slurry per sample, Pierce) for 2 h at room temperature. The beads were 

washed with 10 ml 0.2% SDS/PBS, 3 × 10 mL PBS and 3 × 10 ml H2O. Centrifugation (1300×g, 

2 min) of beads was carried out between washes. The pelleted beads were suspended in freshly 

prepared 6 M urea/PBS and 10 mM DTT (500 μL) and placed in 37 °C for 2 h. Iodoacetamide (20 

mM, from 25 × stock in H2O) was then added to the solution and incubated for 30 min at room 

temperature (25 °C). Following reduction and alkylation, the beads were washed with 5 × 1 mL of 

6 M urea/PBS, 5 × 1 mL of 2 M urea/PBS, pelleted by centrifugation (1300×g, 2 min) and 

resuspended in 200 μL of 2 M urea/PBS, 1 mM CaCl2 (10 × stock in H2O), and trypsin (2 μg). The 

digestion was allowed to proceed overnight at 37 °C. The tryptic solution and beads were then 

transferred into a spin column (Pierce) and the eluates were collected by centrifugation. The beads 

were washed twice with 200 μL of 2 M urea/PBS. The eluates and washes were combined and 

loaded onto a C18 SepPak column (Waters) pre-conditioned with 3 × 1 mL of 80% ACN 

containing 0.1% TFA and 3 × 1 mL of 5% ACN containing 0.1% TFA and washed with  3 × 1 mL 
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of 5% ACN containing 0.1% TFA. The tryptic peptides were eluted with 2 × 0.5 mL of 80% ACN 

containing 0.1% TFA and concentrated. 

3.2.14 LC-MS and data analysis 

Peptides were resolubilized in 0.1% formic acid and analyzed by a LTQ-Orbitrap Elite 

mass spectrometer (Thermo Fisher) equipped EASY-spray source and nano-LC UltiMate 3000 

high-performance liquid chromatography system (Thermo Fisher). EASY-Spray PepMap C18 

Columns (75 μm × 15 cm, 3 μm, Thermo Fisher) were used for separation. Separation was 

achieved with a linear gradient from 3% to 40% solvent B for 120 min at a flow rate of 300 nL/min 

(mobile phase A, 2% ACN, 98% H2O, 0.1% FA; mobile phase B, 80% ACN, 20% H2O, 0.1% 

FA). The LTQ-Orbitrap Elite mass spectrometer was operated in the data-dependent mode. A full-

scan survey MS experiment (m/z range from 400 to 1600; automatic gain control target, 1,000,000 

ions; resolution at m/z 400, 60,000; maximum ion accumulation time, 50 ms) was acquired by the 

Orbitrap mass spectrometer, and the 10 most intense ions were fragmented by collision-induced 

dissociation (CID). The MS/MS scan model was set as the centroid. The other conditions used 

were temperature of 200 °C, collision energy of 35 ev. 

    The raw MS data were searched against the human protein database (UniProt, Feb. 2016) using 

the SEQUEST (Proteome Discoverer 1.4, Thermo Fisher Scientific) with full MS peptide tolerance 

of 20 ppm and MS2 peptide fragment tolerance of 0.5 Da, and a false discovery rate (FDR) of 1% 

was applied to all data sets at the peptide level. Three replicate experiments of enzymatic labeling 

and their negative controls (no CgtA added) were performed for proteomics analysis. Labeled 

proteins must have been identified by at least 1 unique peptide in each of the three data sets, and 

proteins detected in negative controls (data not shown) were excluded from the final lists of 

proteins. Biological functions and pathways enriched in the generated proteomic data were 
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evaluated using IPA (Ingenuity Systems, www.ingenuity.com). Cellular location was identified 

using IPA and UniProt. Protein functional classification is available on the PANTHER website 

(http://pantherdb.org).  
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3.2.15 NMR spectra 
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