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ABSTRACT 

Rett Syndrome (RTT) is a neurodevelopmental disorder affecting 1 out of 10,000 females 

worldwide. Mutations of the X-linked MECP2 gene encoding methyl CpG binding protein 2 

(MeCP2) accounts for >90% of RTT cases. People with RTT and mice with Mecp2 disruption 

show autonomic dysfunction, especially life-threatening breathing disorders, which involves 

defects in brainstem neurons for breathing controls, including neurons in the locus coeruleus (LC). 

Accumulating evidence obtained from Mecp2−/Y mice suggests that imbalanced 

excitation/inhibition or the impaired synaptic communications in central neurons plays a major 

role. LC neurons in Mecp2−/Y mice are hyperexcited, attributable to the deficiency in GABA 

synaptic inhibition. Several previous studies indicate that augmenting synaptic GABA receptors 



 

 

 

(GABARs) leads to a relief of RTT-like symptoms in mice. The extrasynaptic GABARs located 

outside synaptic cleft, which have the capability to produce sustained inhibition, and may be a 

potential therapeutic target for the rebalance of excitation/inhibition in RTT. In contrast to the rich 

information of the synaptic GABARs in RTT research, however, whether Mecp2 gene disruption 

affects the extrasynaptic GABARs remains unclear. In this study, we show evidence that the 

extrasynaptic GABAR mediated tonic inhibition of LC neurons was enhanced in Mecp2−/Y mice, 

which seems attributable to the augmented δ subunit expression. Low-dose THIP exposure, an 

agonist specific to δ subunit containing extrasynaptic GABARs, extended the lifespan, alleviated 

breathing abnormalities, enhanced motor function, and improved social behaviors of Mecp2−/Y 

mice. Such beneficial effects were associated with stabilization of brainstem neuronal 

hyperexcitability, including neurons in the LC and the mesencephalic trigeminal V nucleus (Me5), 

and improvement of norepinephrine (NE) biosynthesis. Such phenomena were found in 

symptomatic Mecp2+/− (sMecp2+/−) female mice model as well, in which the THIP exposure 

alleviated the hyperexcitability of both LC and Me5 neurons to a similar level as their counterparts 

in Mecp2−/Y mice, and improved breathing function. In identified LC neurons of sMecp2+/− mice, 

the hyperexcitability appeared to be determined by both MeCP2 expression and their 

environmental cues. In conclusion, intervention to extrasynaptic GABAAR by chronic treatment 

with THIP might be a therapeutic approach to RTT-like symptoms in both Mecp2−/Y and Mecp2+/− 

mice models and perhaps in people with RTT as well. 

 

INDEX WORDS: Rett Syndrome, Mecp2, extrasynaptic GABARs, THIP, imbalance of excitation 

and inhibition, locus coeruleus (LC), mesencephalic trigeminal neurons, breathing, social 

behaviors, motor function 
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1 SPECIFIC AIMS AND HYPOTHESES 

Rett Syndrome (RTT) is a neurodevelopmental disease with ~0.01% morbidity rate in live-

born females worldwide [1]. Mutations in the X-linked MECP2 gene encoding methyl CpG 

binding protein 2 (MeCP2), a transcription repressor/regulator, accounts for >90% of RTT cases 

[1]. Mice with Mecp2 knockout (Mecp2−/Y and Mecp2+/− mice) are widely used as RTT animal 

models.  

Patients with RTT and mouse models show dysfunctions in the autonomic nervous system 

such as breathing instability, gastrointestinal disorders and cardiac arrhythmia [2, 3]. The 

norepinephrine (NE) system in the brainstem is affected. Recent studies have shown that in Mecp2

−/Y mice, NE-ergic neurons in the locus coeruleus (LC), the major NE source in central nervous 

system (CNS), manifest themselves as hyperexcitability with reduced NE synthesis and impaired 

CO2 chemosensitivity [4-9]. The inadequate synaptic GABAergic inhibition may contribute to the 

LC neuronal defects as well as the consequent breathing abnormalities [10, 11]. Indeed, several 

recent studies have shown that enhancing synaptic GABAergic inhibition alleviates breathing 

abnormalities in Mecp2−/Y mice [12, 13]. In addition to the synaptic GABAARs, there is a group of 

extrasynaptic GABAARs, interfere with which may potentially be another approach to the neuronal 

hyperexcitation. In contrast to the rich information of the synaptic GABAARs in RTT research [10, 

14-18], however, whether the extrasynaptic GABAARs are affected by the Mecp2 disruption 

remains unknown.  

The extrasynaptic GABAARs are characterized by their high sensitivity to GABA, 

capability to produce long-lasting hyperpolarization (tonic inhibition), and availability for 

modulation by conventional GABAAR ligands as well as more selective extrasynaptic GABAAR 

modulators [19, 20]. With these characteristics, the extrasynaptic GABAARs may be a potential 
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novel target for pharmacological and behavioral therapies to alleviate RTT-like symptoms. 

Therefore, we proposed studies to test the hypothesis that extrasynaptic GABAARs are potential 

therapeutical targets for alleviation of RTT-like symptoms in mouse models with RTT. These 

studies addressed four specific aims: 

1. To demonstrate how Mecp2 disruption affects LC neuronal excitability and breathing 

via extrasynaptic GABAARs. 

2. To elucidate how intervention to the extrasynaptic GABAARs moderates RTT-like 

symptoms in Mecp2−/Y mice. 

3. To determine the cellular mechanisms for the extrasynaptic GABAAR mediated 

symptom relieves in Mecp2−/Y mice. 

4. To intervene to neuronal hyperexcitability by extrasynaptic GABAAR agonists in 

Mecp2+/− mice.  
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2 GENERAL INTRODUCTION 

2.1 Rett Syndrome  

2.1.1 Overview  

Rett Syndrome (RTT) is a neurodevelopmental disease with ~ 0.01% morbidity rate in live-

born girls worldwide [1]. The disease was first described by Dr. Andreas Rett in 1966 and named 

after him. The genetic link was unknown until 1999 Zoghbi lab at Baylor reported that RTT 

patients showed mutations in MECP2 gene in the X chromosome, demonstrating the underlying 

mechanism for most cases of the disease [21]. The RTT girls are diagnosed usually within 2 years 

after birth based on their symptoms and behaviors. Over 80% of the RTT suspects are further 

confirmed by genetic tests. Although there is no cure for RTT at present, multiple interventions 

are applied clinically, including physical therapy, speech therapy, occupational therapy and 

symptom-targeting medicine treatment. With optimal treatments, the RTT girls are expected to 

live in a better condition till middle Ages. 

2.1.2 Mutations of Mecp2 gene 

Mutations of the X-linked MECP2 gene encoding methyl CpG binding protein 2 (MeCP2) 

underlie over 90% of RTT cases clinically, including T158M and R106W point mutations as well 

as C-terminal truncations [22]. The North American database shows that the missense mutations 

are slightly more common than nonsense ones in RTT clinical cases [22]. The other RTT cases 

were diagnosed clinically as atypical RTT caused mostly by mutations in Forkhead box protein 

G1 (FOXG1) and cyclin-dependent kinase-like 5 (CDKL5) genes [23]. As a general transcriptional 

regulator, MeCP2 has two major functioning domains: the methyl-binding domain (MBD) and the 
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transcriptional repression domain (TRD) where loss-of-function mutations mostly occur. As a 

transcriptional repressor, MeCP2 usually binds to methylated DNA, interacting with repressor 

complexes, including Histone deacetylases (HDAC), and reducing the gene transcription. On the 

other hand, some studies also reported other regulatory roles as a splicing modulator and 

transcriptional activator [24, 25]. MeCP2, expressed in universal cell types, is essential for the 

normal function of nerve cells and particularly important for neuron maturation of CNS. Mutations 

in the MECP2 gene fail to regulate the downstream gene expressions, leading to the development 

of RTT. 

2.1.3 Animal models  

2.1.3.1 RTT male models 

Targeting on the Mecp2 gene, a variety of murine models has been developed in the RTT 

study. The most widely used mouse model is Mecp2−/Y with complete deletions of the functional 

exon 3 and 4 in Mecp2 gene, generated first from Adrian Bird lab [26]. Although fetal death 

happens in humans carrying such mutations, these Mecp2-null mice survive with around 8-week 

lifespan, which allows the laboratory manipulation to uncover the pathology of RTT with a 

uniform genetic background. Mecp2−/− females cannot be produced as the Mecp2−/Y males are 

infertile. These animals suffer most of the severe RTT-like neurological symptoms at 

approximately six weeks old, including social defects and motor dysfunction. The life-threatening 

breathing abnormalities can be detected as early as 3 weeks of age [8, 27].  

R168X is one of most prevalent MECP2 mutations (11.5%) in clinical RTT cases[28]. A 

mouse model Mecp2R168X was developed and widely accepted as well, with truncated protein at 

residue R168 and TRD missing. A study in our lab suggests the Mecp2R168X male model 
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recapitulates the RTT-like neuronal and phenotypical characteristics as Mecp2−/Y mice [29]. 

Indeed, a variety of RTT mouse models manipulating the Mecp2 gene has been generated for 

divergent study purposes. For example, to study the role of GABA system in the development of 

RTT, the mouse model with Mecp2 deletion only in GABAergic neurons was created by Cre-Lox 

recombination system [11]. In addition, the mouse models with point mutations as Mecp2T158M, 

Mecp2308, Mecp2R106W and models with Mecp2 overexpression as Mecp2Tg1 [30] were generated 

and applied to laboratory research as well.  

Recently a novel Mecp2-knockout rat model, the SD-Mecp2tm1sage rat, has been developed 

by Sage Labs in Horizon Discovery Group (Boyertown, PA). These Mecp2−/Y rats recapitulate 

numerous RTT-like symptoms displaying growth retardation, malocclusion, anxiety, and 

breathing difficulties, defects in motor function and social interactions and short lifespan, which 

are comparable to those seen in the Mecp2−/Y mouse model, while some appeared more or less 

severe. Therefore, concerning the limitation for in vivo studies in mice due to their small size, the 

novel rat model provides a valuable alternative model in the RTT studies [31-33]. 

2.1.3.2 Mecp2+/− mice and rats 

Although current studies are mostly performed in the male models that have a uniform 

genetic background, it is necessary to show how these research findings manifest themselves in 

the heterozygous Mecp2+/− females, which usually display phenotypic heterogeneity. This is 

particularly important when potential therapeutics are concerned.  

The heterozygous Mecp2+/− mouse generated in Bird lab is the widely accepted female 

model, which recapitulates divergent RTT-like symptoms but exhibits a much later symptom onset 

as 6 months old. Somaco et al. reported that some of the phenotypes can be detected as early as 5 

weeks old, such as apneic breathing difficulties [34]. Due to the X chromosome inactivation (XCI), 
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55%~85% Mecp2 levels of wide-type (WT) littermate were maintained in the CNS of these 

heterozygous mice with variation of regions, which seems to enable heterozygous Mecp2+/− mouse 

to develop symptoms to a less severe level than the male model with Mecp2 gene completely 

deleted [34]. The Mecp2+/− female rat model was demonstrated recently, which retains a half of 

the MeCP2 protein expression compared to their WT level [33]. Similar to the female mouse model, 

the Mecp2+/− rats display robust RTT-like behavioral and motor defects as well [32, 33], which 

provide a complementary tool for the cross-species study of RTT. In general, more studies of the 

pathophysiology in female RTT models are encouraged regarding their irreplaceable role in the 

potential disease-relevant preclinical study. 

2.2 Symptom development  

2.2.1 Physical condition and lifespan  

RTT is almost exclusively a female disease, due to the fetal death of the male patients. 

Although live birth happens in some the RTT male cases, they cannot survive beyond 2 years. As 

a neurodevelopmental disease, RTT symptoms progress in four stages. In stage I, the retardation 

of the development of language and behavior skills is the characteristic symptom onset in the 

patients, which occurs from 6 to 18 months after birth. The deceleration of the head growth and 

the stereotypic movement appear in this stage as well. In stage II, usually happening between 1 to 

4 years old, the girls exhibit the regression of development, including the deterioration of language 

skills and disinterest to other people. But such communication skills could be resumed at stage III, 

which usually lasts several years. Till Stage IV, more autism-like symptoms show up and may last 

up to decades, including anxiety, seizures, social defects, motor dysfunction and life-threatening 

breathing difficulties. The RTT girls do suffer shorter lifespan. But due to the great phenotype 
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variations among individuals, these girls can be expected to survive into the 40s, 50s and even 

beyond [35].  

RTT murine models (Mecp2−/Y and Mecp2+/−) recapitulate most of the RTT-like symptoms, 

enabling studies of the pathophysiology of the RTT and the potential clinic treatment. Distinct 

from the RTT male cases in human, Mecp2−/Y mice or rats are viable and appear normal at birth. 

Most of the symptoms exhibit from 2~3 weeks old, including malocclusion, hindlimb clasping, 

weight loss, shivering and irregular breathing. These male RTT models suffer short lifespan about 

50-60 days as well [26]. The heterozygous female mice display hindlimb clasping and mobility 

problems starting at around 6 months, with much longer lifespan than the male models. Although 

the brain weight was significantly reduced in RTT female mice and rats, these two models do 

exhibit a protracted disease progression with large variations due to the remaining Mecp2 

containing X chromosome and XCI [36, 37].  

2.2.2 Autonomic dysfunction 

2.2.2.1 General phenotypes in animal models and patients, especially breathing abnormalities 

The autonomic dysfunctions are commonly found in classic RTT cases, shown as breathing 

instability, gastrointestinal disorders, and cardiac arrhythmia. The cardiac rhythm abnormalities 

are described as bradycardic events, sinus pauses, atrioventricular block, premature ventricular 

contractions, non-sustained ventricular arrhythmias, and increased heart rate variability [38]. 

Gastroesophageal reflux, vomiting, gastroparesis, constipation and straining with bowel 

movement are the commonly seen as the gastrointestinal disorder in RTT patients.  

A previous study reported that 26% of RTT patients died of unexplained causes [39]. The 

high rate of sudden death can be attributed to the breathing disorders, characterized by episodic 
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apnea, hypoventilation, hyperventilation and air swallowing, etc.[40, 41] Such breathing 

abnormalities in Mecp2−/Y mice occur at 2~3 weeks old and deteriorate with time. Indeed, long 

lasting apnea is often seen a few days before animal death [42]. Improving breathing regularities 

thus facilitates the survival of Mecp2−/Y mice [43, 44]. Therefore, the severity of breathing 

disturbances may be correlated with the lifespan of mutant mice. As one of the major challenges 

in the RTT, the life-threatening breathing abnormalities need to be concerned seriously.  

2.2.2.2 Dysfunction in neuromodulation by norepinephrine and acetylcholine  

Development of RTT-like breathing difficulties results from multiple neuronal defects, 

including the synaptic imbalance and modulatory disturbance. The neuronal hyperexcitation was 

found in the brainstem, where the respiratory centers are located, involving altered glutamatergic 

excitation and GABAergic inhibition [10, 36, 45]. The neuromodulator NE modulates the synaptic 

transmission, affecting the neuronal networks in the brainstem and the consequent phenotype. In 

the mouse model and patients with RTT, the NE level in the CNS was significantly reduced [46]. 

Pre-Bötzinger complex (PBC) is the respiratory rhythmic generator in the ventrolateral medulla of 

the brainstem. NE modulates the bursting activity and the frequency of PBC neurons via 

noradrenergic receptors respectively. Reduced NE level disturbs the modulation and leads to the 

breathing irregularities in RTT cases, and enhancing the NE content by desipramine, an NE 

reuptake blocker, significantly improves the breathing irregularities in Mecp2-null mice [44, 47].  

A recent study showed that selective disruption of Mecp2 in cholinergic neurons 

recapitulated some RTT phenotypes, such as the cardiac rhythm abnormalities, hypothermia, and 

early death, in the RTT mouse model, and restoration of the gene in cholinergic neurons rescued 

these phenotypes [48]. Thus, the defects in the acetylcholine (Ach) system are involved in the 

autonomic dysfunction, contributing to the early death in RTT. Indeed, Ach modulates the PBC 



 

9 

 

neurons via activation of muscarinic receptors, resulting in an increase in breathing frequency. 

Thus, the defect in cholinergic neurons contributes to the RTT-like breathing abnormalities as 

well. 

2.2.2.3 Locus coeruleus nuclei  

As the major NE source in the CNS, LC neurons show defects as altered intrinsic 

membrane prosperities, impaired chemosensitivity and deficit metabolic function in Mecp2-null 

mice [4, 6, 8]. Glutamate, GABA, glycine, Ach and serotonin send divergent signals to the LC 

nuclei, supporting their integrated function. Meanwhile, LC neurons project to divergent brain 

regions, such as the medulla, spinal cord, hypothalamus, and forebrain, affecting a series of 

behaviors. In Mecp2-null mice, both the GABAergic inhibition and Ach modulation in LC area 

were significantly reduced, leading to the neuronal hyperexcitability [10, 49]. This may contribute 

to the impaired NE synthesis and release in LC neurons, evidenced by the reduced expression of 

tyrosine hydroxylase (TH) and dopamine beta hydroxylase (DBH) in LC neurons and the reduced 

NE content in the brainstem [6, 50], and the consequent dysfunction of autonomic system in RTT 

mice. Interestingly, our study suggests that the severity of the breathing abnormalities is positively 

correlated to the neuronal hyperexcitability of LC neurons in Mecp2-null mice and stabilization of 

excessive firing in LC neurons alleviates the breathing difficulties [27]. Thus, the defects of LC 

neurons contribute to the development of autonomic dysfunction, especially breathing 

irregularities, via NE projections in RTT models. 
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2.2.3 Motor defects  

2.2.3.1 General phenotype and the involved systems 

A common feature of most RTT girls is the motor defect that keeps them in the wheelchair 

for the rest of their lives due to their deterioration of motor functions, including the loss of muscle 

tone, stereotypical hand movement, defects in motor coordination and mobility [26]. The abnormal 

gait (such as swaddling) and the retarded mobility are two major problems when scoring the 

phenotype severity of the RTT mouse models [51].  

The cooperation among pyramidal, extrapyramidal and propriosensory systems ensures the 

normal motor function. The pyramidal motor system starts from the motor cortex, control the 

voluntary muscles by directly innervating the motor neurons in the brainstem or spinal cord. The 

extrapyramidal system is part of the motor system contributing to the coordinated movements, 

which is also involved in the regulation or modulation of the motor neurons in the spinal cord. The 

propriosensory neurons contribute to the motor activity by sending the feedback information to 

the motor neurons to ensure the coordinated movement. Increasing evidence suggests that the 

impaired pyramidal motor system results in the motor defects in the RTT patients and mouse 

models. The mitochondria in the skeleton muscle were reported to be dysfunctional due to the 

accumulation of the free radicals and the increase of oxidative stress [52]. In comparison to the 

rich information in the pyramidal motor system, the propriosensory neurons have not been well 

studied yet. Recent studies in our lab showed the propriosensory system was impaired as well, 

contributing to the RTT-like motor defects [53]. 



 

11 

 

2.2.3.2 Mesencephalic trigeminal V nuclei 

The Me5 neurons are the only group of propriosensory neurons with soma located in the 

CNS, which provide servo feedback control to the jaw muscles. The Me5 neurons project to the 

trigeminal motor nucleus, mediating the jaw jerk reflex. In Mecp2-null and Mecp2168R/Y mice, the 

neuronal hyperexcitation was detected in Me5 neurons [29]. In vivo studies in Mecp2ZFN/Y rats 

suggested the hyperexcitation of Me5 neurons contribute the impaired jaw jerk reflex, which is 

consistent with the malocclusion in RTT rats, and defects of chewing, drinking, and teeth grinding 

in RTT [53-56]. Although the reason of Me5 neuronal hyperexcitability in Mecp2-null mice is still 

unknown, the impaired intrinsic membrane properties may contribute [27].  

2.2.4 Dysfunction in social behaviors 

RTT girls developed autism-like social defects, showing a lack of interest in other people, 

preference to be alone, impairment in social communication, etc. These neurological phenotypes 

are usually progressive and long lasting. The mouse models of RTT displayed similar phenotypes, 

which can be achieved by a series of experimental tests, such as social interaction test and three -

chamber test. Although the neurological mechanism underlying the social defects in RTT remains 

unclear, multiple brain regions are known to be involved, such as prefrontal cortex (PFC) and 

basolateral amygdala (BLA). A recent study in rats suggested a reduction of GABAergic inhibition 

in either medial PFC or BLA decreased sociability [57], which may underlie the social defects in 

RTT as the GABA transmission was globally declined in the CNS of RTT models. The impaired 

neuronal networks were widely seen in Mecp2-null mice. The autism-like social defects disorders 

were believed to be correlated to the weak connections in the default mode networks (DMN), 
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which is related to the self-reference, emotional processes, social activities and memory, involving 

the medial PFC and posterior cingulate cortex [58].  

NE plays a role in regulating the social behaviors as well. NE-ergic neurons in the LC 

project broadly to the other brain regions, including the prefrontal cortex (PFC), BLA and other 

cortical areas [59]. In Mecp2-null mice, the normal functions of these regions receiving LC-NE 

projections may be impaired due to the reduced NE content, leading to the progression of the RTT-

like phenotypes, including the social retard. A recent study also reported that the NE reuptake 

inhibitor atomoxetine decreased responding for social play in rats [60]. 

2.3 Potential cellular and molecular mechanisms underlying Symptom development 

2.3.1 Imbalanced inhibition/excitation in the CNS in Mecp2−/Y 

2.3.1.1 Neuronal hyperexcitation/ hypoexcitation  

The disruption of inhibition/excitation ratio in the CNS was believed as one of the 

mechanism of some psychiatric diseases, including schizophrenia, autism spectrum disease, 

Fragile X and Down syndrome [61, 62] [63-65]. In Fragile X syndrome, the reduced excitatory 

neuronal activity and the unaltered inhibitory neuronal activity in neocortical circuits result in the 

network hyperexcitability and consequent epilepsy and cognition problem [63]. In Down 

syndrome, the excessive synaptic inhibition contributes to the cognition impairment, and 

pharmacological innervation to the excitation/inhibition ratio rescued the behavior deficit [64]. 

Such an imbalance was found in mouse models of RTT as well, such as hypoexcited cortical 

activity, hyperexcited hippocampus network and hyperexcited neurons in pons [16, 53, 66, 67]. 

Thus, the imbalanced inhibition/excitation may underlie some pathology of the RTT-like 

symptoms, and maintaining the circuit homeostasis between excitation and inhibition may benefit 
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the patients and mouse models of RTT. Disturbances of the neurotransmission in the CNS caused 

by mutations of the Mecp2 gene may contribute to the network alteration.  

2.3.1.2 Neurotransmission abnormalities  

Although the Mecp2 gene was lost in all the cells in Mecp2-null mice, neurons do not show 

uniform responses. In general, the neuronal hyperexcitation is described in the brainstem nuclei, 

especially the neurons involved in the rhythmic respiration, whereas the neuronal hypoexcitation 

is a feature in the forebrain and midbrain [68]. The imbalanced excitation/inhibition ratio was 

attributed to the abnormal neurotransmission system, which involves GABA and glutamate.  

The GABAergic inhibition is reported to be reduced in the CNS, including the neurons of 

the brainstem, such as the Kölliker-Fuse (KF) and LC [10, 69], resulting in the neuronal 

hyperexcitability. The enhanced excitatory transmission contributes to the hyperexcitation as well 

in the nucleus tractus solitarius (nTS) [70]. The hyperexcitation in these nuclei is associated with 

defects in the autonomic system in RTT patients and mouse models, such as the RTT-like breathing 

abnormalities. On the other hand, the elevated glutamatergic excitation was reported in girls and 

mouse models with RTT [71]. In the forebrain, although the glutamatergic excitation was locally 

enhanced, the overall neuronal output show a hypoexcitation, consequent in the RTT-like 

cognition impairment, which may be related to the potential disinhibition in the neuronal network 

[68]. The downregulated excitatory postsynaptic currents (EPSCs) and the unchanged inhibitory 

postsynaptic currents (IPSCs) lead to the reduced cortical activity [16]. Indeed, ketamine, a NMDA 

glutamate receptor antagonist, rescued the phenotypes in the RTT mouse model [72]. Such a defect 

in the synaptic plasticity was reported as spatial and temporal related, which is consistent with the 

development of the symptoms. Therefore, correction of the disrupted excitation/inhibition ratio in 
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the mouse models and patients with RTT by innervating the GABAergic inhibition or 

glutamatergic excitation may be beneficial for the brain development. 

2.3.2 GABAergic inhibition in Mecp2−/Y mice 

2.3.2.1 GABAergic inhibition (synaptic and extrasynaptic) 

Previous study suggested selective deletion of the Mecp2 gene in GABA-ergic neurons 

recapitulates most RTT phenotypes in mice [11], and selective restoration of the gene in these 

GABAergic neurons resumed the multiple RTT-like symptoms in mouse models [73]. These 

indicate the crucial role of GABA system in the development of the RTT symptoms.  

As the most prominent inhibitory neurotransmitter in the brain, GABA acts via both 

synaptic and extrasynaptic GABARs. Activation of the synaptic GABAARs, usually located in the 

postsynaptic membranes, produces fast IPSCs and hyperpolarizes the postsynaptic cells. The 

extrasynaptic GABAARs known as tonic receptors are characterized by their extrasynaptic 

location, high sensitivity to GABA, and the capability to produce tonic currents with long-lasting 

hyperpolarization [19, 20].  

Both of the synaptic and extrasynaptic GABAARs are pentamers, usually composed of 2-

3 heteromeric subunits of a total 19 (α1-6, β1-3, γ1-3, δ, θ, ε, π, and ρ1-3) subunits [19]. The 

combination pattern of GABAARs shows spatial specificity. The γ2 -containing receptors are 

mainly localized at the synapse, playing a key role in the GABAergic synaptic transmission. The 

δ subunit, usually assembled with 2 α and 2 β subunits, is located exclusively out of the synaptic 

cleft [74]. These receptors are responsible for tonic GABAergic inhibition without interfering with 

synaptic transmission, which is due to their high affinity to GABA and weak desensitization. 
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2.3.2.2 Defects of the GABAergic neurons in Mecp2−/Y mice  

The impaired GABAergic inhibition is widely reported in patients with RTT and mouse 

models and mouse models. In RTT patients, a marked reduction in GABAAR density in the brain 

was reported. [75, 76]. In RTT animal models, the reduced synaptic GABAergic inhibition was 

found in multiple brain regions, including the hippocampus, substantia nigra pars reticulate (SNpr), 

cerebellum and brainstem [10, 17, 66]. Such a GABA deficit showed location-specific and age-

dependent variations in the CNS of RTT mouse model [17, 77]. An epigenetic study in a mouse 

model of RTT indicates that the GABAAR β3 subunit expression is reduced in the cerebellum, 

which was confirmed by another molecular study [78, 79]. In the ventrolateral medulla, where 

contains the respiration rhythm generators such as the pre-Bötzinger complex (PBC), the 

presynaptic GABAergic inhibition was defective and postsynaptic GABAergic inhibition was also 

impaired with reduced expression of α2 and α4 subunits in Mecp2-null mice. Such a defect in 

synaptic GABA system was found as early as 7 days in Mecp2-null mice before the RTT symptoms 

developed [18]. In LC, both GABAA and GABAB receptor mediated postsynaptic inhibition are 

reduced, and the GABA release from presynaptic terminals is significantly low [10], contributing 

to a rise in the excitability of the cells. 

In contrast to the widespread reduction of synaptic GABAergic inhibition, the 

extrasynaptic GABAARs seem well remained in the Mecp2-null mice. The extrasynaptic GABAA 

receptor-mediated tonic inhibition was dose-dependently enhanced in null mice, showing larger 

tonic GABA currents and higher expression level of δ subunit, a marker of extrasynaptic 

GABAARs [67]. The reason causing the different expression of synaptic and extrasynaptic 

GABAARs remains unclear. Considering the characteristic that the extrasynaptic GABAARs have 

the capability to change dynamically their expression levels under different physiological and 
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pathophysiological conditions [80], it is possible that compensatory neuroadaptation is involved. 

Indeed, such an enhancement of the extrasynaptic GABAA receptor-mediated tonic inhibition was 

found in Fragile X syndrome and Angelman syndrome as well, which share many phenotypical 

similarities with RTT [81, 82]. 

Taking the advantage of the GABA system defects, pharmacological interventions have 

been attempted in the RTT mouse models. The therapeutic synaptic GABAAR activators 

diazepines and the GABA reuptake blocker NNC-711 improved the RTT-like breathing 

abnormalities in animal models [12, 13]. However, intervening to the synaptic GABARs may lead 

to the several side effects, including sedation, tolerance and addiction. The extrasynaptic GABARs 

can provide an alternative to avoid such potential side effect, as manipulations of these receptors 

with selective agents do not interrupt GABAergic synaptic transmission. Indeed, exposure to the 

extrasynaptic GABAAR agonist THIP (also called Gaboxadol) relieves multiple RTT-symptoms 

in Mecp2−/Y mice, including the breathing abnormalities [67, 83].  

2.3.3 Glutamatergic excitation in Mecp2−/Y mice  

2.3.3.1 Glutamatergic transmission  

The imbalanced inhibition/excitation ratio in RTT may be attributable to the defected 

excitatory neurotransmission as well. As the major excitatory neurotransmitter present in over 50% 

neurons, glutamate usually depolarizes the postsynaptic cells by activating their metabotropic 

(mGluR) and inotropic receptors (iGluR). The iGluRs form the ion channel pore by four subunits, 

which tend to produce fast excitatory postsynaptic currents (EPSCs). According to their different 

affinity to agonists, the iGluRs are further classified into N-methyl-D-aspartate (NMDA) receptor, 

α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor and kainate (KA) 
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receptor. The mGluRs, G -protein -coupled receptors, indirectly activate ion channels through 

signaling cascades that involves G proteins, which favors producing a prolonged stimulus. 

Activation of the mGluR hyperpolarizes the postsynaptic cells by altering the K+ permeability and 

turning off the cyclic adenosine monophosphate (cAMP) -dependent pathway. 

The defects in glutamatergic signaling are believed to contribute to the autism-like 

characteristics. The enhanced glutamatergic transmission elevated the excitation/inhibition ratio, 

which is associated with epilepsy [84]. Down-regulation of the mGluR5 signaling to 50% 

rebalanced the excitation/inhibition and alleviated the symptoms in Fragile X syndrome [85]. 

Thus, glutamatergic dysfunction affects the excitation/inhibition balance, attributable to the 

development of RTT. 

2.3.3.2 Defects of glutamate system in Mecp2−/Y mice  

A recent study showed that selective deletion of the Mecp2 gene in glutamatergic neurons 

produced some RTT-like symptoms, including premature death, obesity, tremor and anxiety-like 

behaviors, which is different from the phenomena in animals without Mecp2 gene only in 

GABAergic neurons, and restoration of the gene rescued the phenotypes in RTT mouse models 

[45]. Thus, the defects of glutamatergic excitation contributes to the development of RTT 

symptoms in a distinct way from the impaired GABAergic system. 

The alteration of NMDA receptor density was reported to increase in RTT girls under 8 

years old and a reduction in girls older than 10 [71]. Such an alteration of NMDA receptor 

expression was found with location specificity as well in RTT mouse models. In the Mecp2-null 

mice, the age -dependent change of NMDA receptors was reported as bi-phasic in the visual cortex, 

whereas enhanced expression of NMDA receptors was found regardless of age in the thalamus 

[86]. Thus, mutations in the Mecp2 gene altered the glutamate transmission in the CNS as temporal 
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and spatial specificity, which contributes to the RTT-like phenotypes. Furthermore, in the nTS, 

the enhanced glutamatergic excitation leads to the neuronal hyperexcitation and the consequent 

breathing abnormalities [68, 70] in the mouse model with RTT. In the hippocampus, accompany 

with the reduced GABAergic inhibition, enhanced glutamatergic excitation was believed to 

contribute to the network hyperexcitability, consequent in the impairment of learning and memory. 

The altered synaptic trafficking of AMPA receptors contributes to the hyperexcited synaptic 

activity in hippocampus as well [87]. In general, in patients with RTT and mouse models, the 

glutamate level and the glutamate receptor expression were elevated [88], which may lead to the 

neuronal hyperexcitation in different brain regions, underling the disturbed inhibition/excitation 

ratio. Interestingly, Mecp2 mutation enhanced glutamatergic excitation in the forebrain, leading to 

the local hypoexcitation, instead of hyperexcitation, and exposure to the NMDA receptor 

antagonist ketamine alleviated the RTT‐like phenotypes, which may be related to disinhibition 

by presynaptic GABAergic neurons [68].  

2.3.4 Brain-derived neurotrophic factor and Insulin-like growth factor-1 

BDNF, as a member of growth factors, is involved in the neuronal survival, maturation, 

differentiation and synapse plasticity by activation of neurotrophic tyrosine kinase receptor type 2 

(TrkB) via signaling pathways, including PLCγ, PI3K/Akt, and MAPK/ERK. 

Previous genetic studies suggest MeCP2 acts as a transcriptional repressor of BDNF by 

binding to their promoter IV until MeCP2 is phosphorylated and released [89]. Mutations of the 

Mecp2 gene lead an early increase in BDNF content in MeCP2-deficient neurons, followed by the 

progressive reduction in total cellular BDNF in multiple brain regions, which is consistent with 

the delayed onset and the pathological phenotypes deterioration in a mouse model of RTT [90]. 
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One of the major consequences caused by the abnormal BDNF in Mecp2 mutated mice is the 

respiratory irregularity. In Mecp2-null mice, BDNF is critical for the normal development and 

maintenance in the brainstem and nodose ganglia, which are crucial in cardiorespiratory 

homeostasis and autonomic control [91]. The KF, PBC and nTS in the pons and brainstem, where 

the respiratory center located, are modulated by BDNF as well [70, 92, 93]. Reduced BDNF 

content in Mecp2 deficit mice results in the RTT-like breathing abnormalities and restoration of 

normal BDNF level rescued the defects [70, 91].  

In addition, the abnormal BDNF level in the MeCP2 deficit CNS modulates the synaptic 

transmission improperly, contributing to the imbalanced excitation/inhibition ratio and the 

consequent RTT-like symptoms. For example, in KF neurons, application of BDNF significantly 

reduced the IPSCs frequency [92]. BDNF modulates the glutamatergic transmission in nTS 

neurons as a strong reduction of AMPA receptor mediated currents by activating the TrkB 

receptors [94]. In Mecp2-null mice, indeed, the reduced BDNF resulted in the enhanced EPSCs in 

nTS, and exogenous application of BDNF rescued the synaptic defect by reducing the abnormal 

EPSCs [70]. 

Similar to BDNF, the insulin-like growth factor 1 (IGF-1) is widespread in the CNS and 

contributes to the neuron survival and synapse maturation. Studies in mouse models and patients 

with Rett syndrome also reported the beneficial effects of IGF-1, which share similar signaling 

pathways with BDNF [95]. Defects in synaptic structure and plasticity have been demonstrated in 

RTT [89]. IGF-1 treatment increased the synaptic growth and rescued a number of RTT-like 

symptoms in RTT mouse models [96]. Unlike BDNF, the capability of penetrating the blood -

brain barrier (BBB) makes IGF-1 a better candidate for clinical trials.  
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2.3.5 Epigenetic modification 

Epigenetics is a genetic process that changes the gene expression, which is heritable and 

not involved in the changes of DNA sequences. Methylation of genes, modification of histones 

and non-coding RNA (ncRNA)-associated gene silencing are the major types of mechanisms, 

leading to the phenotype changes without alteration in the genotype. Because of their methyl-CpG 

binding domain, MeCP2 binds to methylated DNA and forms a complex with histone deacetylase 

1 (HDAC1) to removes acetyl groups, leading to the chromatin condense and gene regulation. 

There are two methylated forms of DNA: hydroxymethylcytosine (hmC) and methylated cytosine 

followed by a nucleotide (mCH, where H = A, C or T) [97, 98]. These two marks on chromatin 

accumulate during the neuronal maturation and their accumulation is coincident with the increased 

MeCP2 expression. Thus, in RTT patients or mouse models, Mecp2 mutations may lead to the less 

binding to hmC and mCH markers, resulting in the onset of RTT [99]. In addition, in the Mecp2 

deficit neurons, the chromatin disorganization, evidenced by the differential localization of 

chromatin remodeling protein, coincides with phenotypic progression [100]. In general, the 

epigenetic mechanisms might contribute to the delayed onset of the RTT-like symptoms and the 

symptom progression [99].  

2.3.6 X inactivation in Mecp2+/− mice  

2.3.6.1 General information  

In female mammalians, only one copy of X chromosomes is active and the other is 

transcriptionally silenced or inactivated. Such a phenomenon is known as X chromosome 

random inactivation (XCI), which leads to the mosaic expression of the X-linked genes in the 

cells of female animals. Thematically, the X chromosomes from maternal or paternal origin 
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share the same probability to be inactivated, which renders half of the cells to express maternal 

or paternal X chromosome randomly in the early embryogenesis. However, such XCI is not 

always balanced, so that the nonrandom or skewed XCI has been reported, especially in RTT 

patients [101, 102]. Although the classic law of inheritance cannot explain XCI and the genetic 

mechanism remains unclear so far, a mathematical model of genetically influenced choice was 

proposed to fit the XCI pattern distributions [103].  

2.3.6.2 Nonrandom X chromosome inactivation and the impact on phenotypes 

RTT is mostly caused by the mutations of the X-linked Mecp2 gene in heterozygous 

females. Instead of a uniform expression, central neurons show mosaic patterns of MeCP2 

expression in the Mecp2+/− mice due to the XCI, which vary among regions and animal ages [104]. 

The XCI was believed to impact the phenotypic outcome in human patients and female animal 

models [105]. In many cases, RTT girls show random XCI with equal numbers of MeCP2 negative 

or positive cells, which theoretically renders 50% of Mecp2+/− individuals to carry the mutated 

gene. However, nonrandom XCI has been reported to contribute to clinical symptom variations in 

some RTT patients as well [106]. Skewed XCI to the WT may lead to the milder phenotypes in 

the RTT mouse model [102]. Our previous study also suggests that only ~20% the Mecp2+/− mice 

developed breathing disorders [107], which is consistent with the skewed XCI in RTT. Thus, 

nonrandom or preferential XCI may play a role in the phenotypic and individual variations of RTT.  

In addition, in heterozygous females, the MeCP2-negative neurons generally displays 

different morphology from MeCP2–positive cells as shorter dendritic length and smaller cell size 

[108]. The more skewed XCI from the WT allele, the more severe neuronal phenotype of the 

MeCP2-negative cells would be. On the other hand, the MeCP2-negative cells affect the 

development of surrounding WT cells in Mecp2+/− mice as well [109], Therefore, the nonrandom 
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XCI may contribute to the cross-interaction of the MeCP2-negative and –positive cells on 

structural and functional outcomes, depending on the skewed condition.  

2.3.7 Locus Coeruleus Nuclei  

2.3.7.1 Intrinsic membrane properties and CO2 chemosensitivity 

LC is located bilaterally in the dorsal area of the rostral pons, which is involved in many 

behaviors via the widespread projections, especially the regulating the autonomic function as 

breathing activity. Defects of LC neurons are involved in multiple neuropsychiatric disorders, 

including Parkinson's disease, Alzheimer's disease and posttraumatic stress disorder [110, 111]. 

Recent studies in our and other labs have shown that the LC neurons in Mecp2-null mice are 

defective as well, which underlie the pathology of some RTT-like phenotypes. The defect 

manifests itself as abnormal intrinsic membrane prosperities and impaired CO2 chemosensitivity 

[112, 113]. The intrinsic membrane properties of LC neurons were impaired by showing the 

shorter time constant, stronger inward rectification and smaller medium afterhyperpolarization 

(mAHP) amplitude, which may contribute to the LC dysfunction as excessive firing and reduced 

metabolic function [4, 10]. The CO2 central chemoreceptors (CCRs) were found in the brainstem, 

including the LC, which play a critical role in respiratory and cardiovascular controls. In Mecp2-

null mice, the CO2 chemosensitivity of LC neurons was defective, showing the abnormal 

response to mild hypercapnia but normal response to the severe hypercapnia. The overexpression 

of Kir4.1 channel, which reduced the pH sensitivity, in LC area may contribute, allowing the 

neurons detect CO2 until severe hypercapnia develops [8]. Such a defect in LC neurons 

contributes to the RTT-like breathing abnormalities, including high breathing frequency 

variation, apnea, and hyperventilation.  
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2.3.7.2 Norepinephrine biosynthesis and the homeostasis 

As the prominent NE recourses, LC produces ~70% NE throughout the CNS. In patients 

with RTT and mouse models, the monoamine level was significantly reduced, including NE [46], 

leading to the RTT-like phenotypes, such as abnormal breathing activity. It was confirmed by the 

later studies that the expression levels of tyrosine hydroxylase (TH) and dopamine beta 

hydroxylase (DBH), the rate-limiting enzyme in the NE synthesis, were significantly reduced in 

Mecp2-null LC neurons [114]. Desipramine, an inhibitor of NE reuptake, can improve 

respiratory rhythm activity, increases the number of NE containing neurons, and extends the 

lifespan of Mecp2-null mice [44, 47].  

The cause of the NE deficit remains unknown. Mutations of the Mecp2 gene, the general 

transcriptional regulator, may affect the enzyme expressions. The persistent hyperexcitation of 

LC neurons may contribute as well. There may be a homeostatic state between LC neuronal 

excitability and NE biosynthesis, allowing a stable release of NE at synapses. Although high LC 

neuronal excitation may lead to more NE release, persistent hyperexcitability may have adverse 

effects. In Mecp2-null mice, the excessive firing of LC neurons may contribute to their metabolic 

dysfunction by disturbing the homeostasis of NE synthesis, the NE production and NE release 

from presynaptic terminals. The idea is supported by our recent study that further stimulation of 

NE-ergic terminals in a mouse model with Mecp2 null did not improve the NE modulation to 

their target nuclei [115]. Coincidently, the LC neurons in Mecp2-null mice showed the age-

dependent deterioration [27] and the TH expression level was also progressively reduced [50], 

which is consistent with the homeostasis idea as well. Interestingly, our study has shown that the 

severity of breathing abnormalities increases with the increased LC firing rate in the 

symptomatic Mecp2-null mice at similar ages [27], which also indicate the potential linkage 
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between the neuronal hyperexcitability and the declining metabolic function. Other studies also 

reported the tight linkage between the neuronal firing activity and the behaviors of the animals. 

LC cells usually active firing during awake and become silence during rapid eye movement 

(REM) sleep [116]. The altered metabolic function or NE synthesis and release of LC neurons 

may underlie such linkage. In general, in patients with RTT and mouse models, the metabolic 

function of LC was impaired, which may be due to the imbalanced neuronal firing activity and 

NE synthesis. 

2.3.7.3 Defects of cell communications  

As the major NE-ergic nuclei, LC neurons receives signals from and projects to the broad 

brain regions and spinal cord, affecting diverse behaviors, such as breathing, cognition, attention, 

sleep, learning and memory [117]. The LC-NE system sends output to the medulla, where the 

respiratory centers are located, and regulates the breathing activities. The prefrontal cortex 

receives the LC-NE projection as well, which contributes to the cognitive functions, seizure and 

social behaviors [118]. Although previous studies indicate that the LC neurons may function as 

individual cells to innervate divergent brain area distinctively, a viral-genetic tracing study 

suggests LC-NE circuit receives convergent signals from many brain regions through axon 

projections, including cerebellar Purkinje cells, intervening the LC-NE modulation in the target 

regions and the associated behaviors [59]. GABA and glutamate are the major inhibitory and 

excitatory neurotransmitters regulating the LC-NE circuits. One study in our lab reported a local 

group of GABAergic neurons in the dorsomedial area of LC (dmLC) involves the direct or 

indirect regulation in LC-NE output [119]. In patients with RTT and mouse models, the 

abnormal synaptic input affects the normal outcome of LC-NE circuit [10, 14, 49, 67]. Together 

with their internal defects, the abnormal LC-NE circuit makes the system unable to maintain the 



 

25 

 

normal function and leads to multiple RTT-like symptoms. Improving the NE-LC circuits by 

innervating the inputs may benefit their target regions, leading to the alleviation of the associated 

abnormal behaviors in RTT. 

2.4 Therapeutical attempts 

2.4.1 Pharmaceutical intervention  

Since murine models with RTT were generated, pathophysiology of the RTT has been 

studied for decades. Increasing evidence reported the imbalanced neuronal excitation/inhibition 

may underlie the development of the disease. Targeting on the involved neurotransmitters may 

help to alleviate multiple RTT-like symptoms. As the major inhibitory neurotransmitter, GABA 

level was significantly reduced in RTT CNS, and global reduction of GABAergic inhibition shifts 

the excitation/inhibition ratio to the hyperexcitation side. The GABA reuptake blocker (NNC711), 

synaptic GABA receptor agonist (diazepam) and extrasynaptic GABA receptor agonist (THIP) 

significantly alleviate the symptoms, especially breathing irregularities [12]. The overall enhanced 

glutamatergic excitation leads to the skewed excitation/inhibition in the CNS. Ketamine, a 

glutamate receptor antagonist, alleviated the RTT-like phenotypes in the RTT as a disinhibition in 

the forebrain neuronal network [120]. Another weak NMDA receptor blocker, memantine, 

restored the post-tetanic potentiation and paired-pulse facilitation, favors the function 

reinstallation in RTT [121]. Although preclinical trials have not tested these pharmaceutical 

treatments via GABA or glutamate system, the beneficial effects on RTT mouse models 

demonstrated their potentiation.  

The reduced monoamine level was widely reported in patients with RTT and mouse 

models, including NE, dopamine, and serotonin, and increasing their level in the CNS alleviated 
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the RTT-like symptoms. Desipramine, an NE reuptake blocker, significantly ameliorated the 

breathing disorders and expanded their lifespan in Mecp2-null mice [44, 47]. Selective 5-HT1a 

receptor agonists F1599 and 8-OH-DPAT decreased apnea, corrected breathing irregularity and 

improved hand stereotypy and social skills via G protein-coupled inwardly rectifying potassium 

(GIRK) channels in both female and male RTT mouse models [122, 123]. The selective serotonin 

5-HT7 receptor agonist LP-211 rescued multiple RTT-related defective performances, including 

anxiety, motor disabilities, exploratory behavior and memory [124]. As a clinical medicine for l-

dopa-induced dyskinesia, Sarizotan, a 5-HT1a agonist and a dopamine D2-like agonist, was shown 

to have beneficial effects on breathing activity and locomotion in mouse models with RTT as well 

[125]. 

BDNF, involved in the neuronal survival and synaptic plasticity, has been widely 

demonstrated as an overall reduction in the Mecp2-null CNS by both multiple biochemistry and 

genetic methods. Application of exogenous BDNF rescued the synaptic dysfunction in nucleus 

tractors solitaries, leading to the alleviation of cardiorespiratory disorder in RTT [70]. CX546 is 

an ampakine drug, which promotes the activation of AMPA receptors. Chronic treatment of the 

CX546 resulted in the increased BDNF levels in the brainstem and nodose cranial sensory ganglia, 

leading to the rescue of normal respiration in Mecp2-null mice [70]. Environment enrichment, a 

physical intervention that enhances the synapse formation and plasticity, augmented the 

endogenous BDNF in RTT models and ameliorated several RTT-like symptoms, such motor 

coordination, motor learning, memory deficits and anxiety-related behaviors [126]. In general, 

mouse models and patients with RTT benefit from the restoration of normal BDNF level in their 

CNS. In addition, to overcome the limitation of the low-penetration to the BBB for BDNF, BDNF 

can mimic by its alternatives with similar functions were studied. Chronic administration of 7,8-
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dihydroxyflavone, which is able to activate the high -affinity BDNF receptor (TrkB), delayed the 

body weight loss, increased neuronal nuclei size, alleviated the locomotion defects and the 

breathing abnormalities in the RTT mouse model [127]. Insulin-like Growth Factor (IGF-1) was 

also reported to be beneficial to the RTT. In the RTT mouse model, treatment of an active peptide 

fragment of IGF-1 ameliorated the locomotor dysfunction, breathing abnormalities and the cardiac 

irregularities, leading to the extended lifespan [96]. 

In general, although more pharmacokinetics and pharmacodynamics work would be 

required before the clinical trials, these lab studies provide us multiple alternative targets and 

potential treatments for the RTT patients.  

2.4.2 Genetic restoration 

Genetic intervention has been shown to rescue certain phenotypes of RTT as well. Taking 

advantage of current genetic methods, such as Cre-Lox recombination system, the Mecp2 gene 

could be restored in specific nuclei or the whole CNS in RTT mouse models. Selectively 

restoration of Mecp2 gene in GABAergic neurons enhanced GABAergic inhibition, expanded 

lifespan, rescued motor defects and social abnormalities, but tremor or anxiety was not rescued in 

Mecp2-null mice. Such rescue was also detected in Mecp2+/− mice, although less dramatic [73]. 

Conditional mouse models with Mecp2 re-expressionon in glutamatergic neurons showed the 

enhanced abnormal EPSCs and the alleviation of RTT-like phenotypes [45]. Delayed global 

restoration of Mecp2 gene in the brain and body by crossing Mecp2+/− mice containing a “stop-

flox” cassette in Mecp2 gene of one allele with transgenic mice containing the tamoxifen-inducible 

estrogen receptor/Cre transgene in the ROSA26 locus improves the general phenotypic severity, 

rescued multiple RTT-like motor and social behaviors, and improves EEG oscillatory activity in 

Mecp2-deficient mice [128]. However, overexpression of Mecp2 gene in neurons leads to the 
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severe progressive neurological phenotypes as MeCP2 duplication symptom, although opposite 

changes in synaptic transmission were triggered in comparison to the Mecp2 deficiency 

(22781840). Therefore, the precise regulation of MeCP2 expression level is critical in rescuing the 

RTT-like symptoms in patients and mouse models. 

2.4.3 Other therapy 

In current clinical trials, multiple interventions have been applied aiming to improve the 

living quality of the RTT patients and their families, including physical therapy, speech therapy, 

and occupational therapy. Although these RTT patients have to limit achievements due to their 

neurological problems, proper physical interventions favor to maintain motor skills and 

transitional skills, alleviate deformities, discomfort and irritability and improve their independence 

[129]. The language retardation of these RTT girls is one of the major challenges in their daily life, 

which may obstacle the potential treatment due to the improper communication. Speech-language 

pathologists proposed the Augmentative and Alternative Communication (AAC), a 

communication method used in place of speech, could be used as the communication innervation 

in these RTT girls. Written language, body language, and facial expressions, as the typical 

examples of AAC can be used to communicate with the RTT patients [130]. Due to the 

deterioration of the symptoms, RTT girls may lose their independence gradually by reducing the 

meaningful activities in their daily life [131]. Thus, occupational therapy encourages them to 

maintain or improve these functional activities, as this has been shown to improve health. 

Therefore, although, there is no cure for the RTT, multiple innervations have been applied in the 

clinical trials and the RTT girls would benefit from the combination of the treatment. 
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3 SIGNIFICANCE 

Rett Syndrome (RTT) is a neurodevelopmental disease affecting 1 out of 10,000 female 

children worldwide. People with RTT usually develop autism symptoms, including extreme social 

anxiety and repetitive stereotype hand movements, which make RTT a serious clinical problem [1, 

132]. Currently, there is no cure for the disease, neither a therapeutic agent for symptom relieves. 

Thus, studies of seeking for therapeutic modalities are innovative and highly significant. 

Compared to synaptic GABAARs, the extrasynaptic GABAARs are characterized by their 

extrasynaptic location, high sensitivity to GABA, the capability to produce tonic currents, long-

lasting hyperpolarization, and availability for modulation by conventional GABAAR ligands as 

well as more selective extrasynaptic GABAAR modulators [19, 20]. Therefore, it is possible that 

the extrasynaptic GABAARs are potential targets for novel pharmacological and behavioral 

therapies for RTT symptom alleviation.  

THIP (also known as Gaboxadol), an agonist specific extrasynaptic GABAARs [133, 134], 

is an investigational drug, originally developed for insomnia. Clinical trials suggest that THIP 

(10mg/day) has no significant effects on sleep onset and total sleep time [135]. It does have effects 

on these measures in a higher dose (15mg) where the effects are inconsistent between genders, and 

side effects emerge including sedation and disorientation [135, 136]. Therefore, Merck and 

Lundbeck canceled further development of the drug. It is not unusual, however, that a preclinical 

drug fails in one application, but succeeds in another. The low efficacy of THIP on insomnia indeed 

may be beneficial for its applications to RTT, as the unnecessary sedation can be avoided. We 

have found that exposure of low-dose THIP alleviated the RTT-like breathing abnormalities, motor 

dysfunction, social impairment and extends lifespans of Mecp2-null mice [67]. Besides, THIP is 

currently under clinical trials for the Angelman Syndrome and Fragile X Syndrome, which share 
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many similarities with RTT. Therefore, pre-clinical studies of the drug in RTT-models as proposed 

in our studies are significant.  

 

  



 

31 

 

4 MATERIAL AND METHODS 

4.1 Animal models 

Female heterozygous mice (Genotype: Mecp2+/−; Strain name: B6.129P2(C)-

Mecp2tm1.1Bird/J; Stock number 003890, Jackson Lab) from were crossbred with male C57BL/6 

mice to produce the RTT model mice with the genotype Mecp2+/− and Mecp2−/Y for further study. 

The PCR protocol from Jackson Lab was used to identify the genotypes. All experimental 

procedures were conducted in accordance with the National Institutes of Health (NIH) Guide for 

the Care and Use of Laboratory Animals and were approved by the Georgia State University 

Institutional Animal Care and Use Committee.  

4.2 THIP Administration 

THIP was delivered to the test animals orally in the drinking water. THIP was given to the 

mother in her drinking water (200mg/L), and then passed to pups of WT and Mecp2−/Y male mice 

via lactation [15]. This will last till weaning at P18. After that, THIP was given through pup’s 

drinking water (20mg/L) for another 5 weeks. In the vehicle control group, THIP was replaced by 

regular water. 

In Mecp2+/− mice, identification of RTT-like symptoms was done at 6-9 months of age. 

Then, the symptomatic mice were divided into two groups treated with THIP (20mg/L in drinking 

water with the calculated dose: 6.3 mg/kg/day in animals) or water alone (vehicle) for 5 

consecutive weeks. The same protocol was applied to WT females as controls.  
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4.3 Brain slice Preparation 

Mice were decapitated after deep anesthesia with inhalation of saturated isoflurane. The 

brain stem was obtained and immediately placed in ice-cold and sucrose-rich artificial 

cerebrospinal fluid (aCSF) containing (in mM): 220 sucrose, 1.9 KCl, 0.5 CaCl2, 6 MgCl2, 33 

NaHCO3, 1.2 NaH2PO4 and 10 D-glucose. The solution was bubbled with 95% O2 balanced with 

5% CO2 (pH 7. 40). The transverse pontine sections (150-250 µm) containing the LC area were 

obtained using a vibratome sectioning system and then recovered at 33°C for 60min in normal 

aCSF containing (in mM): 124 NaCl, 3 KCl, 2 CaCl2, 2 MgCl2, 26 NaHCO3, 1.3 NaH2PO4 and 10 

D-glucose. The brain slices were kept at room temperature before use. During recording, the slices 

were perfused with oxygenated aCSF at a rate of 2 ml/min and maintained at 34°C in a recording 

chamber by a dual automatic temperature control (Warner Instruments). 

4.4 Electrophysiology  

LC and Me5 neurons were identified as described previously [14, 53]. Whole-cell voltage 

clamp and whole-cell current clamp were performed with patch pipettes. Sutter pipette puller 

(Model P-97, Novato, CA) was used to pull the patch pipettes with resistance as 3–5 MΩ. Only 

the neurons with membrane potential less than -40 mV (LC) or -50mV (Me5) and action potential 

(AP) over 65 mV were accepted for further experiments. In voltage clamp, the pipettes were filled 

with solution containing in mM: 50 KCl, 85 CsCl, 2 MgCl2, 2 Mg-ATP, 1 Na-GTP, 10 HEPES, 

0.5 EGTA (pH 7.30). The brain slices were perfused with oxygenated aCSF containing in mM: 

130 NaCl, 3.5 KCl, 1.25 NaH2PO4, 1.5 MgSO4, 10 D-glucose, 24 NaHCO3, 2 CaCl2 (pH 7.40). 

GABAAR-mediated inhibitory postsynaptic currents (IPSCs) and tonic currents were isolated with 

following agents in the bath solution: 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX, 10 µM, 



 

33 

 

Tocris, Minneapolis, MN, disodium salt), the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 

acid (AMPA) receptor antagonist; DL-2-amino-5-phosphonopentanoic acid (DL-APV, 10 µM, 

Tocris, sodium salt), the N-methyl-D-aspartate (NMDA) receptor antagonist; and strychnine (1 

µM, Sigma-Aldrich, St. Louis, MO), the glycine receptor antagonist. All recordings were 

performed at a holding potential of –70 mV. Tetrahydroisoxazolo [5, 4-c] pyridin-3-ol 

hydrochloride (THIP, also known as gaboxadol, Tocris, hydrochloride), 4-chloro-N-[2-(2-thienyl) 

imidazo [1, 2-a] pyridin-3-yl] benzamide (DS2, Tocris), bicuculline (Tocris) and picrotoxin 

(Sigma-Aldrich) were used to measure the tonic current in the study. In current clamp, the pipette 

solution containing in mM: 130 K gluconate, 10 KCl, 10 HEPES, 2 Mg-ATP, 0.3 Na-GTP and 0.4 

EGTA (pH 7. 3). The bath solution was normal aCSF bubbled with 95% O2 and 5% CO2 (pH 7. 

40). Recorded signals were amplified with an Axopatch 200B amplifier (Molecular Devices, 

Union City, CA), digitized at 10 kHz, filtered at 1 kHz, and collected with the Clampex 8.2 data 

acquisition software (Molecular Devices). The temperature was maintained at 33°C during 

recording by a dual automatic temperature control (Warner Instruments, New Haven, CT).  

Membrane potentials were measured without any current injection. In LC neurons, the 

input resistance was calculated as the slope of the linear portion in the I-V curve in response to a 

series of injected pulse hyperpolarized currents (typically from 0.15nA to 0nA). The AP overshoot 

was measured as the amplitude from 0mV to the peak of more than 20 events. The threshold was 

determined at the initiation point of at least 20 spontaneous action potentials. In Me5 neurons, APs 

were evoked with depolarizing pulses. AP properties (threshold, amplitude, rise time and D50) 

were analyzed from the first evoked APs. 
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4.5 Molecule experiments 

4.5.1 Quantitative PCR  

Brain slices were obtained from 3-4 week old mice. Transcripts were obtained from 

micropunches (~ 1.5mm in diameter) from the LC area, and cDNAs were synthesized with the 

high-capacity cDNA reverse transcription kit (Life Technologies, Grand Island, NY). PCR primers 

for GAPDH, δ subunit, α4 subunit, α5 subunit, α6 subunit, β1 subunit, β2 subunit, β3 subunit, TH 

and DBH were designed with the primer express software and synthesized from Sigma Genesis 

(Sigma-Aldrich). The Quantitative PCR (qPCR) was performed with Fast SYBR® Green Master 

Mix (Applied Biosystems, Life Technologies) following the manufacturer’s instructions in a Fast 

Real-time PCR system (Applied Biosystems 7500) for 40 cycles. GAPDH was used as the internal 

control for the quantification. 

4.5.2 Single cell PCR  

Transcripts were obtained from single LC neurons that had been studied in whole-cell 

current clamp experiments. The cDNAs were synthesized with the high-capacity cDNA reverse 

transcription kit (Life Technologies, Grand Island, NY). Three microliters of reverse transcription 

product were used to perform PCR with Taq DNA Polymerase (Promega, Madison, WI) for 30 

cycles following the manufacturer’s instructions. Three microliters of the PCR product were 

performed using the same PCR cycling protocol as before. The second PCR product was run on 

2% agarose gels, which was then imaged using an Alpha Innotech AlphaImager 3400 Multi-

Function Gel Imager (Alpha Innotech, Santa Clara, CA). Glial fibrillary acidic protein (GFAP) 

was used as the negative control. Primers for Mecp2 were designed with online primer-BLAST 

and synthesized from Sigma (Sigma-Aldrich, St. Louis, MO).  
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4.5.3 Western Blot 

Pontine slices (300 µm thick) containing the LC area were obtained from 3- to 4-week-old 

mice by vibratome sectioning system and the pons was processed in RIPA buffer (Sigma-Aldrich) 

with 1% protease inhibitor. BCA protein assay reagent (Pierce, Rockford, IL) was used to estimate 

the protein concentrations and 30 µg proteins were used to detect δ subunit signals in 10% SDS-

PAGE gels and electrophoretically transferred to nitrocellulose membranes. The membranes were 

then blocked for 2 h in 5% non-fat milk and incubated overnight at 4 °C with rabbit GAPDH 

primary antibody (1:10000, Sigma-Aldrich) and rabbit δ subunit primary antibody (1:1000, EMD 

Millipore, Billerica, MA) [137]. After washed in PBS Tween, the membranes were incubated by 

HRP-conjugate goat anti-rabbit secondary antibody (1:10000, Life Technologies) for 1h at RT. 

The chemiluminescent detection system (Pierce) was used to expose the membrane to films (Hy 

Blot CL; Denville, Metuchen, NJ) and the photographs were scanned. The immunoblotting signals 

were quantified using the ImageJ software (NIH). The δ subunit signals were normalized to the 

internal GAPDH controls. 

4.5.4 Immunocytochemistry  

Mice were anesthetized by inhalation of saturated isoflurane and transcardially perfused 

with 0.9% saline and 4% (w/v) paraformaldehyde in 0.1M PBS, sequentially. Then, the brain was 

removed, fixed with 4% (w/v) paraformaldehyde for 2 hour and transferred to a 30% sucrose 

solution in 0.1M PBS. Pontine transverse sections (30 μm) containing the LC region were obtained 

on a cryostat (Leica, Wetzlar, Germany). Catecholaminergic neurons were labeled with anti-

dopamine β-hydroxylase (TH) and cells. MeCP2 expression was detected with anti-MeCP2 

antibodies. Briefly, the sections were incubated with primary anti-TH antibodies (mouse; 1:4,000; 
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Sigma, St. Louis, MO) and anti-MeCP2 antibodies (Rabbit; 1:1,000; Sigma, St. Louis, MO), 

followed by Alexa Fluor 488-conjugated donkey anti-mouse (1:400; Life Technologies) and Alexa 

Fluor 647-conjugated goat anti-rabbit (1:500; Life Technologies) secondary antibodies. All the 

steps were performed at room temperature.  

For quantification of TH or MeCP2 immunoreactivity, each slices were captured as two 

images, which were then analyzed using ImageJ software. Around 10 images were used in each 

animal, and the immunoreactivity of each cell was scored and recorded. In general, 4 animals in 

each group were used in the experiments. The median of TH-positive cell numbers in each image 

is ~25 in each image and percentages of MeCP2-positive and MeCP2–negative cells were 

analyzed. 

4.6 Behavior Tests 

4.6.1 Plethysmograph 

The breathing activities of unanesthetized mice were recorded by the plethysmograph 

system with a ~ 40 ml plethsmograph chamber and a connected reference chamber. The 

individual animal was kept in the plethysmograph chamber flowed by air at a rate of 60ml/min 

for at least 20 min for adaptation followed by a 20 min recording. The breathing activities were 

recorded continuously as the barometrical changes between the plethysmograph chamber and the 

reference chamber with a force-electricity transducer. The signal was amplified and collected 

with Pclamp 9 software. The animals were monitored via a video camera to ensure the awake 

status during tests. The data analysis was done blindly to the treatment. Apnea was considered 

only if the breathing cycle lasts twice or longer than the previous cycle. Breathing frequency 

variation was calculated as the division of standard deviation (SD) of the frequency by their 
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arithmetic mean. All of were measured from 200~300 successive breathing events, which were 

randomly sampled from three or four stretches with at least 50 breaths in each. 

4.6.2 Grip Strength 

When lifted by the tail, the forelimbs of a mouse (age 5-6 weeks) were allowed to grasp 

the sensor lever of a force-electricity transducer. The mouse was then gently pulled upward by the 

tail until it released the grip. Forces were continuously recorded with the Clampex 9 software. The 

grip strength of each mouse was measured as the maximum force before lever release, and 

averaged from three consecutive trails.  

4.6.3 Grid Walking 

A mouse (age 5-6 weeks) was placed on the metal rigid floor of a trial box (32 cm × 20 cm 

× 20 cm). The box was elevated by 50 cm with the floor made of 11 × 11 mm metal mesh. Mouse 

walking on the metal mesh floor was videotaped for 5 minutes. In the video record, the limb 

placement error was counted. A footfault was counted only when a limb missed the metal floor 

bar (0.5mm in diameter) completely and went through the grid opening. The footfault ratio was 

calculated by the overall numbers of footfaults divided by the total steps including both forelimbs 

and hindlimbs. 

4.6.4 Open Field test of spontaneous locomotion 

The experiment was performed as we described previously [31]. Mice aged 5-6 weeks were 

tested in an open field chamber made of white plexiglass boards (50 cm L × 50 cm W × 30 cm H) 

with 10 cm × 10 cm square lines. Test animals were kept in their home cages and habituated for 

30 min in the test room before testing. When tested, each animal was placed in the center square 
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and allowed to move freely in the chamber. Spontaneous locomotion activity was monitored by a 

video camera for 5 min. With the video record, square crosses (all four paws cross) were measured 

in each mouse. To eliminate potential residual odors and potential contaminants, 70 % ethanol was 

used to clean the apparatus followed by dd H2O rinse after each test. 

4.6.5 Three Chamber (Social Interaction) 

Mice, age 6-7 weeks, were tested in a box (60 cm L × 30 cm W × 40 cm H), in which there 

were three chambers (20 cm L × 30 cm W × 40 cm H) separated with transparent walls. A door 

was arranged diagonally in each wall allowing the tested mouse to travel freely in the chambers. 

Before test, mice were placed in the test room for 30 min habituation. Then sequential tests were 

performed in each mouse. Firstly, the tested mouse was placed in the center chamber, and allowed 

to move freely over all three chambers for 10 min. Its chamber preference was analyzed by the 

time spent in each chamber. Secondly, the social behavior test was performed by introducing a 

random littermate in one of the side chambers for 10 min, while times that the tested mice spent 

with the mice were measured. The littermate was randomly assigned in either side of the chamber 

to avoid the side bias. Lastly, the social novelty test was performed by introducing a new stranger 

mouse in the chamber and switching the familiar littermate to the other chamber. The time spent 

in both side the chambers were analyzed subsequently [138].  

4.6.6 Lifespan 

Mecp2−/Y mice used in the experiment were randomly selected and divided into two groups. 

One group was treated with THIP containing water, and the other treated with regular water as 

vehicle control. Their lifespan were monitored under the identical living condition. Their daily 

activity and general physical conditions, including feeding, movement, body weight, interaction 



 

39 

 

with other mice, were observed. Death date of each mouse was recorded when it occurred naturally 

or reached the humane end point that was determined by staff members in the animal facility at 

Georgia State University without any consultation with the investigators. One outlier, which was 

1.5 interquartile range (IQR) above the third quantile and below the first quantile, was removed 

from each group to minimize data variations.  

4.6.7 Phenotype scoring system 

To separate the Mecp2+/− mice, a two-step identification procedure was used. Firstly, we 

adopted the scoring system proposed previously [51] with modifications to determine potential 

symptomatic Mecp2+/− mice, which consisted of 1) abnormal mobility, 2) abnormal gait, 3) 

hindlimb clasping, 4) tremor, 5) abnormal breathing, and 6) weak general condition. Score 0 was 

assigned to a mouse if none of these signs was found; the animal was scored 1 if any one of the 6 

signs was shown to be mild (score 6 if the mouse showed all); score 2 if any of the signs was severe 

(maximum 12). The Mecp2+/− mouse was placed in the potential symptomatic group if it received 

3 scores or more. Secondly, the mouse was considered to be symptomatic when it also showed 

breathing abnormality in the plethysmograph test as we reported previously [107]. Only were the 

symptomatic Mecp2+/− (sMecp2+/−) mice used in the present study, which were divided into two 

groups and treated with vehicle or THIP.  

4.7 Double Blind 

The animals used in the study were randomly separated into vehicle group and THIP group. 

The patch experiments were done double-blindly by two to three people without information of 

mouse genotype and treatment. All the data analysis of behavior experiments, including breathing 
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activity, motor function and social behavior were done with no information of the genotype and 

treatment. 

4.8 Data Statistics 

The electrophysiological data and the plethysmograph data were analyzed with Clampfit 

10.3 software. The sample sizes in the experiments were examined with G-Power Analysis to yield 

sufficient statistical power [139]. Data are presented as means ± SE or median ± IQR. Mantel-Cox 

test was used in the lifespan experiment. Two-tailed Student’s t-test, ANOVA, Tukey’s or Fisher’s 

LSD post-hoc, Kruskal-Wallis test, Pearson correlation and Spearman’s correlation were used to 

perform the statistical analysis. Difference was considered significant when P < 0.05.  
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Table 4.1: Primers for PCRs 

Target gene Primers Sequences 

GAPDH  Fw: CCAGCCTCGTCCCGTAGA 

 Re: TGCCGTGAGTGGAGTCATACTG 

δ subunit  Fw: GGCTTCTTGGGCTTTACC 

 Re: CACCCCCACTGTTTTTCTC 

α4 subunit  Fw: GTGGGAAATCACTCCAGCAAG 

 Re: AATGCAGGGCGAGTGGAAG 

α5 subunit  Fw: CAAAAGAGCAGCCTCCAG 

 Re: GAAAGTGCCAAACAAGATGG 

α6 subunit  Fw: GACTTTGCCCATCGTTCC 

 Re: TGCAAAAGCTACTGGGAAGAG 

β1 subunit  Fw: TGGTTTTCGATCTTGTGTGTCAG 

 Re: AGCCACCTCTCTCTTTGTGTTTG 

β2 subunit  Fw: TTCCCACTGCTGTTTCTCACATAC 

 Re: ATCCTAACCACTTCTCCTTTTTTCC 

β3 subunit  Fw: GTTGAGTGGTTGTGTTGCCAATG 

 Re: ATGTCCCCGTGTTGGCATC 

TH  Fw: TGGCTGACCGCACATTTG 

 Re: CCTGCACCGTAAGCCTTCA 

DBH  Fw: TACCACAACCCACGGAAGATA 

 Re: CGGTCAACACAAAGGCAGTCT 

Mecp2  Fw: CCAAATCTCCCAAAGCTCCA 

 Re: GCTTGGAAAGGCATCTTGAC 

 

GAPDH; glyceraldehyde 3-phosphate dehydrogenase, TH; tyrosine hydroxylase, DBH; 

dopamine b-hydroxylase. 
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5 CHAPTER1: MECP2 GENE DISRUPTION AUGMENTS GABAAR MEDIATED 

INHIBITION IN LOCUS COERULEUS NEURONS: IMPACT ON NEURONAL 

EXCITABILITY AND BREATHING 
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5.1 Abstract 

People with Rett Syndrome (RTT) and mouse models show autonomic dysfunction 

involving brainstem locus coeruleus (LC). Neurons in the LC of Mecp2-null mice are overly 

excited, likely to result from defect in neuronal intrinsic membrane properties and deficiency in 

GABA synaptic inhibition. In addition to the synaptic GABA receptors, there is a group of GABAA 

receptors (GABAARs), which is located extrasynaptically, and mediates tonic inhibition. Here we 

show evidence for augmentation of the extrasynaptic GABAARs in Mecp2-null mice. In brain 

slices, exposure of LC neurons to GABAAR agonists increased tonic currents that were blocked 

by GABAAR antagonists. With 10 µM GABA, the bicuculline-sensitive tonic currents were ~ 4 

folds larger in Mecp2-null LC neurons than the wild-type (WT). Single-cell PCR analysis showed 

that δ subunit, the principal subunit of extrasynaptic GABAARs, was present in LC neurons. 

Expression levels of the δ were ~ 50% higher in Mecp2-null neurons than in the WT. Also 

increased in expression in Mecp2-null mice was another extrasynaptic GABAAR subunit α6 by ~ 

4 folds. The δ subunit-selective agonists THIP and DS2 activated the tonic GABAA currents in LC 

neurons and reduced neuronal excitability to a greater degree in Mecp2-null mice than in the WT. 

Consistent with these findings, in-vivo application of THIP alleviated breathing abnormalities of 

conscious Mecp2-null mice. These results suggest that extrasynaptic GABAARs seem to be 

augmented with Mecp2 disruption, which may be a compensatory response to the deficiency in 

GABA-ergic synaptic inhibition and allow a control of neuronal excitability and breathing 

abnormalities.  
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5.2 Introduction 

Rett Syndrome (RTT) is a neurodevelopmental disease with ~ 0.01% morbidity rate in live-

born females worldwide [1]. Over 90% of RTT cases are caused by mutations of the X-linked 

MECP2 gene encoding methyl CpG binding protein 2 (MeCP2), a transcription regulator [1]. 

People with RTT usually develop autism-like symptoms 6 to 18 months after birth, which include 

stereotypical repetitive hand movements, social anxiety and seizures. Dysfunctions in the 

autonomic nervous system such as breathing instability, gastrointestinal disorders and cardiac 

arrhythmia are common [2, 3].  

The NE system in the brainstem is involved in autonomic function, especially NE-ergic 

neurons in the locus coeruleus (LC). Recent studies in our and other labs have shown that the LC 

neurons in Mecp2-null mice are abnormal or defective. The defect manifests itself as reduced 

expression of NE synthetic enzymes, hyperexcitability and impaired CO2 chemosensitivity [4-9]. 

The hyperexcitability of LC neurons is attributable to the intrinsic membrane properties of the cells 

and a decrease in synaptic inhibition mediated by γ-aminobutyric acid (GABA) [4, 10]. Both 

GABAA and GABAB receptor mediated postsynaptic inhibition are reduced, and the GABA 

release from presynaptic terminals is significantly low [10]. Consistent with these observations, 

defects in the GABAA receptor (GABAAR) system are also found in other brain regions [17, 18, 

78, 140]. Selective deletion of the Mecp2 gene in GABA-ergic neurons recapitulates most RTT 

phenotypes in mice [11]. These findings indicate that the GABA system plays an important role 

in the development of RTT.  

GABA is the most prominent inhibitory neurotransmitter in the brain acting on both 

synaptic and extrasynaptic GABARs. The synaptic GABAARs are found in postsynaptic 

membranes of neurons. In adult neurons, activation of the synaptic GABAARs produces fast 
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inhibitory postsynaptic currents and hyperpolarization of the postsynaptic cells. The extrasynaptic 

GABAARs known as tonic receptors are characterized by their extrasynaptic location, high 

sensitivity to GABA, capability to produce tonic currents with long-lasting hyperpolarization, and 

availability for modulation by conventional GABAAR ligands as well as more selective 

extrasynaptic GABAAR modulators [19, 20]. 

Both of the synaptic and extrasynaptic GABAARs are pentamers, usually composed of 2-

3 heteromeric subunits with a total 19 (α1-6, β1-3, γ1-3, δ, θ, ε, π, and ρ1-3) [19]. GABAARs with 

different combinations of subunits are found in different neurons. γ2 containing receptors are 

mainly localized at the synapse, playing a key role in the GABA synaptic transmission [141, 142]. 

The δ subunit, usually assembled with 2 α and 2 β subunits, is the major contributor of the 

extrasynaptic GABAARs [20, 142]. These receptors are responsible for tonic GABA inhibition 

without interfering with synaptic transmission, which is due to their high affinity to GABA and 

weak desensitization. 

The findings of defects in synaptic GABAAR-mediated synaptic inhibition in Mecp2-null 

mice are encouraging because therapeutical GABAAR activators are widely available. These drugs 

may be used to correct the defects in the GABA system and relieve RTT-like symptoms. Indeed, 

several recent studies have shown that the breathing disorders of Mecp2-null mice can be alleviated 

by augmenting GABA synaptic inhibition [12, 13]. In contrast to the rich information of the 

synaptic GABAARs in RTT research [10, 14-18], how the extrasynaptic GABAARs are affected 

by the Mecp2 disruption remains unknown. The capability of these tonic GABAARs to reduce 

neuronal excitability without interrupting synaptic transmission suggests that these receptors may 

allow an alternative therapeutic intervention to RTT. Therefore, we studied the extrasynaptic 

GABAA currents in LC neurons in wild-type (WT) and the mouse model of RTT. 
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5.3 Results 

5.3.1 GABAA-ergic tonic currents in WT neurons 

To determine the GABAA tonic currents in LC neurons, whole-cell voltage clamp was 

performed in brain slices of WT mice. Inward Cl− currents were studied, with 135 mM Cl− in both 

the pipette and bath solutions at a holding potential of -70 mV, with glutamatergic and glycinergic 

currents were blocked (see Methods). Under this condition, the LC neurons showed spontaneous 

GABA-ergic IPSCs that were blocked by bicuculline (50 µM) or picrotoxin (20 µM). Meanwhile, 

we found that these GABAA-R blockers also suppressed tonic inward currents. Thus, we studied 

the GABAA-ergic tonic currents. The currents histograms were generated at stable condition before 

and after GABAAR blockade, which were then fit with Gaussian distribution. The opening of the 

ionotropic receptors also increases the current noise levels, which were measured as the standard 

variation of the Gaussian distribution. We analyzed the ratio of noise levels before vs after a 

treatment with GABAAR blockers.  

Bicuculline reduced the tonic currents by 2.9 ± 0.6 pA (n = 5), and the noise ratio is 1.31 

± 0.06 (n = 5) (Fig. 5-1B). Similar results were obtained with picrotoxin (Fig. 5-1A). The effects 

of bicuculline on the tonic currents and the noise ratio were more obvious in the presence of GABA 

in the perfusion solution. A pre-treatment with 1 μM GABA augmented the tonic currents to 5.0 

± 1.0 pA, and the noise ratio to 1.37 ± 0.08 (n = 5) (Fig 5-1C). With 10 μM GABA, the tonic 

currents were raised to 13.6 ± 1.4 pA (n = 6), and the noise ratio to 3.97 ± 0.76 (n = 6) (Fig 5-1D). 

The bicuculline sensitive tonic currents and noise augmentation increased dose-dependently with 

increased GABA concentrations (P < 0.001, One-way ANOVA) (Fig. 5-1E, F, G).  
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5.3.2 Enhancement of GABAA-ergic tonic currents in Mecp2-null mice  

At baseline, the bicuculline-sensitive tonic currents were significantly larger in Mecp2-null 

mice than in WT mice (6.4 ± 0.8 pA, n = 5 vs. 2.9 ± 0.6 pA, n = 5; P ˂ 0.01, Student’s t-test; Fig. 

5-2A, D, E). These tonic currents in Mecp2-null mice became even greater in the presence of 1 

µM or 10 µM GABA, which were 13.5 ± 1.7 pA (n = 5) and 49.8 ±10.7 pA (n = 6) respectively. 

Both were significantly higher than in the WT neurons (P ˂ 0.001 and P ˂ 0.01, Student’s t-test; 

Fig. 5-2B, C, D, E). In Mecp2-null mice, the noise ratio also increased dose-dependently with these 

GABA concentrations (1.74 ± 0.08 and 7.77 ± 1.21, respectively; P < 0.01 and P < 0.05, 

respectively; Student’s t-test; Fig. 5-2F) although significant difference was not found at baseline. 

These results suggest that the bicuculline-sensitive tonic currents are significantly increased in 

Mecp2-null LC neurons. 

5.3.3 Effects of specific agonists for extrasynaptic GABAARs 

The GABAA-ergic tonic currents are likely to be mediated by extrasynaptic GABAARs 

expressed in the LC neurons. Because the molecular compositions of extrasynaptic GABAARs are 

different from those of synaptic GABAARs, these extrasynaptic receptors can be activated with 

selective agonists such as THIP and DS2 that do not affect the synaptic GABAARs [133, 134]. In 

the presence of 1 µM THIP in the bath solution, the GABAA-ergic tonic currents (18.6 ± 2.9 pA, 

n = 5) and noise ratio (1.94 ± 0.07, n = 5) were both augmented in WT neurons (Fig. 5-3A). In 

Mecp2-null neurons the same concentration of THIP raised the tonic currents (55.3 ± 6.6 pA, n = 

5) and the noise ratio (2.91 ± 0.29, n = 5) to significantly greater degrees than in the WT neurons 

(P < 0.001 and P < 0.01, respectively, Student’s t-test; Fig. 5-3B-E). THIP did not affect frequency 
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and amplitude of the GABA-ergic IPSCs in both WT and Mecp2-null LC neurons (Student’s t-

test; Fig. 5-3F-I).  

Similarly, application of DS2 (20 µM), a positive allosteric modulator of extrasynaptic 

GABAARs, augmented the tonic currents and noise ratio. This effect was larger in Mecp2-null 

mice (19.5 ± 2.3 pA, 2.32 ± 0.21, respectively; n = 5) than in the WT mice (8.5 ± 1.2 pA, 1.53 ± 

0.07, respectively; n = 5; P < 0.01 and P < 0.01, respectively, Student’s t-test; Fig. 5-4A-E). Unlike 

THIP, DS2 augmented the frequency and amplitude of the GABA-ergic IPSCs in LC neurons, 

which may be attributed to their affinity for the αβ type GABAARs. Despite this, we did not find 

significant differences between WT and Mecp2-null mice (Student’s t-test; Fig. 5-4F-I). These 

results indicate that the extrasynaptic GABAARs existing in LC neurons seem to have a greater 

effect on LC neuronal activity in Mecp2-null mice. 

5.3.4 Differential expression of GABAAR subunits in WT and Mecp2-null mice 

The δ subunit is the principal component of extrasynaptic GABAARs, which is localized 

exclusively outside of the synaptic cleft, mediating the GABAA-ergic tonic currents [143]. If 

Mecp2-null LC neurons have more extrasynaptic GABAARs, the δ subunit should be expressed in 

these cells at a higher level than in the WT neurons. To test this possibility, we studied the δ subunit 

expression in mRNA and protein levels. Single-cell PCR analysis showed that the δ subunit was 

expressed in most LC neurons in both WT and Mecp2-null mice (14 of 14 WT neurons and 15 of 

17 Mecp2-null cells; Fig. 5-5A), consistent with the presence of GABAA-ergic tonic currents in 

the LC neurons.  

In quantitative PCR (qPCR), the δ subunit was found to be expressed in the WT LC neurons 

with the 2−∆Ct method. With the 2−∆∆Ct method, the expression level of the δ subunit increased by 
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1.8 ± 0.5 folds in LC tissue micropunches obtained from Mecp2-null mice in comparison to the 

WT (n = 9, P < 0.01, Student’s t-test; Fig. 5-5B-D). The Western blot analysis showed that the δ 

subunit protein expression was increased by 1.6 ± 0.1 folds in Mecp2-null mice over the WT (n = 

6, P < 0.01; Student’s t-test, Fig. 5-5E, F). These results suggest that the δ subunit is expressed in 

LC neurons, and its increased expression in Mecp2-null mice may contribute to the abundant tonic 

GABAA currents. 

The α5 subunit is another important contributor to the extrasynaptic GABAARs [144, 145]. 

In single-cell PCR, the α5 transcript was barely detected in LC neurons (0 out of 14 in WT and 2 

out of 17 in Mecp2-null). The qPCR analysis showed that α5 expression in LC neurons was only 

about one third of δ subunit expression in WT mice. There was a significant reduction of α5 

expression in Mecp2-null mice (n = 5, P < 0.05, Student’s t-test; Fig. 5-5B-D), suggesting that the 

large tonic currents in Mecp2-null mice were unlikely to be produced by increased α5 expression.  

The δ containing extrasynaptic GABAARs are usually composed of 2 α and 2 β subunits. 

Previous studies report that all the 3 β subunits (β 1 – 3) and α4, α6 subunits contribute to the 

assembling of extrasynaptic GABAARs [20, 74, 146]. In qPCR, α6 expression was increased by ~ 

4 folds in Mecp2-null mice over the WT levels, while α4 expression was reduced (n = 4, P < 0.001, 

Student’s t-test; Fig. 5-5H). Transcript levels of β1 and β2 subunits were both reduced (n = 5, P < 

0.001, Student’s t-test), while β3 transcript did not change (Fig. 5-5H).  

5.3.5 Modulation of LC neuronal firing activity by extrasynaptic GABAAR agonists 

LC neuronal electrophysiological activity was studied in current clamp. In WT mice, THIP 

reduced the input resistance (Rm) from 480.5 ± 7.1 MΩ to 458.7 ± 7.6 MΩ. Meanwhile, THIP 

hyperpolarized the cells by 1.1 ± 0.4 mV and decreased firing rate by 17.3 ± 3.3% (n = 14, Fig. 5-
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6A1-A3, C, D, E). In Mecp2-null mice, the same THIP treatment reduced the input resistance from 

500.5 ± 8.7 MΩ to 424.9 ± 17.7 MΩ, hyperpolarized the cells by 3.0 ± 0.5 mV, and lowered the 

firing rate from 5.1 ± 1.3 Hz to 3.6 ± 1.6 Hz (n = 9; P < 0.05, P < 0.05 and P < 0.05, respectively, 

Student’s t-test; Fig. 5-6B1-B3, C, D, E), which is approximate to the baseline level in WT LC 

neurons (2.9 ± 0.2 Hz in WT baseline, n = 14, Fig 5-6E). All these percentile changes were 

significantly greater than in the WT neurons (P < 0.01, P < 0.01 and P < 0.05, respectively, 

Student’s t-test; Fig. 5-6F-H).  

In either WT or Mecp2-null mice, 1 μM THIP did not affect the super-threshold and 

repetitive firing properties, including action potential morphology, afterhyperpolarization (Fig. 5-

7), spike frequency adaptation (Fig. 5-8), and delayed excitation (Fig. 5-9), when synaptic 

transmission was deliberately blocked. Post inhibitory rebound and bursting activity were not 

found in LC neurons before and after THIP treatment in neither WT mice nor Mecp2-null mice. 

Taken together, these results indicate that activation of δ-subunit containing GABAARs leads to 

an inhibition of LC neurons, an effect that is greater in Mecp2-null mice than in the WT, which 

brings the neuronal firing from hyperexcitable status to the level of WT neurons. 

5.3.6 The effect of extrasynaptic GABAAR agonist on breathing 

Previously studies indicate that LC neurons are sensitive to high CO2 and low pH, and they play 

an important role in regulating the breathing activity [8]. In Mecp2-null mice, several groups of 

neurons including the LC neurons are hyper-excitable [4, 12, 15, 147], which appears to contribute 

to the breathing disorders in Mecp2-null mice. To test whether activation of the extrasynaptic 

GABAARs can alleviate the breathing abnormities, we studied breathing activity using 

plethysmography in conscious Mecp2-null mice. The mice were divided into two groups with one 
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receiving THIP injections (10 mg/kg, i.p.), and the other was given saline injection. At the 3 weeks 

of age, Mecp2-null mice start to develop breathing disorders with obvious breathing frequency 

variation and frequent apneas. Therefore, we monitored the breathing activity of Mecp2-mull mice 

with THIP/saline injection once a day for 7 consecutive days starting from 26 days of age. After 

the 7 day treatment, Mecp2-null mice with saline injection continued to develop severe breathing 

disorders with 89 ± 16 apneas/hour, a ~ 50% increase compared to day 0 (n = 5, Fig. 5-10A, C), 

and 0.29 ± 0.03 F variation, a ~ 20% increase (n = 5, Fig. 5-10A, D). THIP treatment markedly 

reduced breathing disorders to 46 ± 6 apnea/hour, a 18% reduction compared to day 0 (n = 5, Fig. 

5-10B, C), and 0.17 ± 0.04 F variation, a 32% reduction (n = 5, 6-. 5-10B, D). Both the breathing 

parameters are significantly improved in the THIP group over their saline counterparts (Fig. 5-

10C, D, two-way ANOVA and Tukey’s post-hoc test). Therefore, the results suggest that the 

extrasynaptic GABAAR agonist THIP alleviates the breathing disorders of Mecp2-null mice. 

 

5.4 Discussion 

To our knowledge, this is the first demonstration of extrasynaptic GABAA currents in the 

mouse model of RTT. Our results have shown that tonic GABAA currents in LC neurons are 

significantly larger in Mecp2-null neurons than in the WT, likely to be due to the overexpression 

of the GABAAR species containing δ and α6 subunits. Furthermore, activation of the extrasynaptic 

GABAARs appears to reduce neuronal excitability and alleviate breathing abnormalities of Mecp2-

null mice.  
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5.4.1 Defects in synaptic GABAARs in Mecp2-null mice 

Previous studies have shown that the GABAA system is defective in Mecp2-null mice and 

people with RTT. In mice, this is associated with multiple RTT-like phenotypes, including 

progressive motor dysfunction and abnormal breathing [11]. In GABA-ergic neurons, impaired 

GABA synthesis and the consequent reduction in the GABA quanta release have been found [10, 

11, 18]. In postsynaptic cells, there is a marked reduction in GABAAR density in the brain of RTT 

patients and Mecp2-null mice [75, 76]. An epigenetic study in a mouse model of RTT indicates 

that the GABAAR β3 subunit expression is reduced in the cerebellum, and another molecular study 

confirmed the down-regulation of β3 subunit in cerebellum [78, 79]. The α1 subunit in the frontal 

cortex, and α2 and α4 subunits in the ventrolateral medulla were also reduced in Mecp2-null mice 

[18]. In LC neurons our previous studies have shown that the postsynaptic GABAA and GABAB 

currents both are defective in Mecp2-null mice [10]. Consistent with these findings, the therapeutic 

GABAAR activators diazepines and the reuptake blocker NO-711 improve RTT symptoms in 

animal models, including breathing [12, 13]. However, it is still unclear how the extrasynaptic 

GABAARs are affected in Mecp2-null mice, which makes our present study remarkable.  

5.4.2 Presence of extrasynaptic GABAARs in LC neurons 

Extrasynaptic GABAARs were first described in cerebellar cortical grey matter [148], and 

later found in many other brain areas, such as cerebral cortex, dentate gyrus granule, thalamus and 

neocortex [149-154]. The extrasynaptic GABAARs are sensitive to low levels of ambient GABA 

with little desensitization. They are likely key targets for neurosteroids and alcohol [143, 155-157], 

and useful targets for the treatment of some neuronal disease such as sleep disorders, epilepsy, 

stroke and Parkinson’s disease [158, 159]. The δ subunit is the primary component of extrasynaptic 
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GABAARs found exclusively in extrasynaptic locations meditating tonic inhibition [20, 142]. 

Some other GABAAR subtypes may be also involved in extrasynaptic GABAARs, such as α5-

subunit containing receptors [144, 145, 160]. Our results from this study suggest that extrasynaptic 

GABAARs are also present in LC neurons. Activation of these receptors results in tonic 

hyperpolarizing currents that are sensitive to GABA and the GABAAR blockers bicuculline and 

picrotoxin. Consistent with these electrophysiological studies, our molecular biological evidence 

indicates that the δ subunit is expressed in LC neurons.  

Accompanying with the δ subunit are another 2 α and 3 β subunits forming pentameric 

extrasynaptic GABAARs. Our qPCR results suggest that the α6 containing extrasynaptic 

GABAARs seem to play a major role in Mecp2-null LC neurons, which has been described in 

mature cerebellar granule cells [161]. The β1 – 3 subunits are necessary components in both 

extrasynaptic and synaptic GABAARs. Previous studies report a ~ 30% reduction in postsynaptic 

GABAergic IPSCs in Mecp2-null LC neurons. The reduced α4 level found in this study is thus 

consistent with the deficiency in synaptic GABAARs. Regarding the increase in the α6 transcript 

level, it is possible that deletion of Mecp2 leads to reorganization of the GABA receptor species 

in LC neurons by increasing the α6 subunit expression and reducing the expression of other α 

subunits. Similar reorganization has been found in nicotinic ACh receptors in Mecp2-null LC 

neurons [49]. The increased α6 subunits may assemble the extrasynaptic receptors together with 

the δ subunit as well as synaptic GABAARs with β and γ subunits. Because all the β subunits 

contribute to the synaptic GABAARs, and because the synaptic GABAARs are lowered with the 

Mecp2 knockout, it is possible that their overall reduction masks the potential up-regulation of 

some subunits in the extrasynaptic location. Another possibility is that the extrasynaptic 

GABAARs in Mecp2-null mice might be composed of more than 2 α subunits, which may explain 
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the reduced expression of β subunits and the unproportionally increased expression of α6 subunits 

although the 2 α, 2 β, and 1 δ stoichiometry of GABAARs has previously been shown in an 

exogenous expression system [162]. Despite the uncertainty of β subunits, it is likely that the 

overly expressed GABAAR species in Mecp2-null mice appears to contain δ and α6 subunits. 

5.4.3 Tonic GABAA currents in Mecp2-null mice 

The presence of tonic GABAA currents in LC neurons motivated us to study the 

extrasynaptic GABAARs in Mecp2-null mice. We found that the bicuculline-sensitive GABAA-

ergic tonic currents not only existed in Mecp2-null mice, but also were markedly enhanced, as 

extrasynaptic GABAAR agonists also elicited significantly larger tonic GABAA currents in Mecp2-

null neurons. What underlies the large tonic GABAA currents in Mecp2-null neurons is unclear, 

which may result from a relief of direct transcription repression by MeCP2 or its indirect effects 

on other transcriptional regulators and second messenger systems as a result of the Mecp2 

disruption. It is also possible that the increased GABAA tonic currents result from compensatory 

mechanisms for insufficient GABA synaptic input in Mecp2-null neurons [10]. Multiple types of 

neurons are hyperexcitable in Mecp2-null mice, such as hippocampal neurons, neocortical 

neurons, LC neurons, hypoglossal neurons, etc. [4, 12, 18, 147, 163-165], which is likely to be due 

to impaired synaptic transmission and intrinsic membrane properties. The highly excitable state of 

some of these neurons seems to contribute to cognitive defects, motor abnormality and breathing 

disturbances [8, 12, 163, 164]. Clearly, such an over-excitation in central neurons can be alleviated 

by GABA-ergic inhibition, in which excessive extrasynaptic GABAARs are beneficial. 

Interestingly, this seemingly compensatory up-regulation of GABA-ergic inhibition has been 

reported in the synaptic GABAA system [16, 166, 167]. In neocortical layer 5 neurons of Mecp2-

null mice, an increase of spontaneous IPSCs were recorded, which seems to result from the deficit 
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in GABA release from presynaptic terminals [16]. Therefore, the large tonic GABAA-ergic 

currents in LC neurons of Mecp2-null mice found in the present study might be a compensatory 

response to the deficient GABA synaptic inhibition. 

Although the expression level suggests that the large tonic GABAA currents in Mecp2-null 

mice are likely to be due to the overexpression of δ subunit-containing receptors, our data cannot 

rule out the possibilities that other expression patterns of GABAARs or a change in GABA affinity 

could also contribute to the enhanced tonic GABA inhibition in Mecp2-null mice. Nevertheless, 

RTT patients and Mecp2-null mice with insufficient GABA-ergic inhibition may benefit from 

these overexpressed extrasynaptic GABAARs, as they may provide alternative targets for 

pharmaceutical interventions in addition to synaptic GABAARs. 

5.4.4 Modulation of neuronal activity and breathing 

Experimental evidence suggests that LC neurons play an important role in brainstem CO2 

chemosensitivity and breathing regulation [8, 42, 147]. Several groups of respiratory neurons and 

motoneurons are modulated by NE, in which NE augments cellular excitability via α adrenoceptors 

[168, 169]. This NE-ergic modulation relies on firing activity and NE biosynthesis in LC neurons. 

It is possible that there is a homeostatic state between LC neuronal excitability and NE 

biosynthesis, allowing a stable release of NE at synapses. Although high LC neuronal excitability 

may lead to more NE release, persistent hyperexcitability may have adverse effects. 

Hyperexcitability often leads to Ca++ overload, while a persistent elevation of cytosolic Ca++ can 

activate a variety of degradative enzymes including proteases, lipases and endonucleases [170, 

171]. These may trigger a cascade of events leading to abnormal cellular activity and metabolic 

dysfunction, which may paradoxically compromise NE biosynthesis.  
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Mecp2 disruption in mice also causes hyperexcitability in LC neurons and impaired 

metabolic activity, which is attributable to the defects in neuronal intrinsic membrane properties 

and insufficient GABA inputs [4, 8, 147]. Consistent with these findings, treatment with GABA 

or diazepam rebalances the hyperexcitability of expiratory neurons, and improves the breathing 

activity in Mecp2-null mice [12, 13]. In the present study, we have found that administration of 

THIP activates extrasynaptic GABAARs and reduces excitability of LC neurons as well. Like 

diazepam, the THIP treatment alleviates the breathing abnormalities of Mecp2-null mice. 

Therefore, the excitability stabilization appears crucial for reinstallation of brainstem autonomic 

function. To avoid potential effects of THIP on arousal states, we monitored the animal activity 

with a video camera during plethysmograph recordings and confirmed that they were not in 

behavioral sleep. 

In Mecp2-null mice, over-excitation of LC neurons may contribute to their metabolic 

dysfunction by disturbing the homeostasis of NE synthesis, the NE production and NE release by 

presynaptic terminals. A previous study reported that in Cos-7 cells, chronic over-excitation 

impaired the homeostatic synaptic plasticity by decreasing the AMPA receptors expression [172]. 

Indeed, decreased expression of tyrosine hydroxylase (TH) and dopamine β hydroxylase (DBH) 

are known to occur in LC neurons of Mecp2-null mice, leading to insufficient NE biosynthesis [6, 

50]. THIP application seems to correct the LC neuronal hyperexcitability by activation of 

extrasynaptic GABAARs as shown in this study, which we believe may stabilize neuronal activity 

and metabolism rebalancing the homeostatic state and improving the NE biosynthesis.  

In conclusion, bicuculline-sensitive tonic currents were recorded from LC neurons, which 

were increased dose-dependently with increased GABA concentrations. In comparison to WT 

mice, these GABAA-ergic tonic currents were increased significantly in Mecp2-null mice. 
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Agonists specific to extrasynaptic GABAARs triggered larger tonic GABAA currents in Mecp2-

null LC neurons. Consistently, the δ subunit, the principal component of extrasynaptic GABAARs, 

was expressed in LC neurons, whose expression level together with the α6 expression in the LC 

area became higher in Mecp2-null mice than in the WT, which may contribute to the enhanced 

tonic GABAA currents. The presence of extrasynaptic GABAARs in Mecp2-null mice seems to 

allow a control of neuronal excitability and breathing abnormalities with GABAAR activators. 
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Figure 5- 1. GABAAR antagonists reduce the tonic currents of LC neurons in WT mice.  

Tonic GABAA currents were recorded in whole-cell voltage clamp by ion substitution and 

selective receptor blockers. (A-B) In the absence of exogenous GABA in the bath solution 

(baseline), tonic currents were measured as the difference before and after treatment of 

GABAARs antagonists. Picrotoxin (20 µM) and bicuculline (50 µM) reduced the both the 

synaptic GABAA currents (IPSCs) and the tonic GABAA currents of LC neurons in WT mice. 

Noise was measured as standard deviation of the currents, and shown as a ratio with vs. without 

GABAARs antagonist treatment. The noise level was reduced with the treatment of these two 

GABAARs antagonists. (C-D) Pre-treatments with 1 µM and 10 µM GABA boost larger 
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bicuculline-sensitive tonic current in WT LC neurons. (E-G) The effects of bicuculline on the 

tonic currents and noise ratio increased dose-dependently with an increased in GABA 

concentrations (*, P < 0.05; **, P < 0.01; ***, P < 0.001; One-way ANOVA).  
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Figure 5- 2. Bicuculline sensitive tonic currents are increased in Mecp2−/Y mice. 

 (A) In comparison to WT mice, bicuculline (50 µM) reduced more tonic currents and noise in 

Mecp2-null mice in the absence of exogenous GABA (baseline). (B-C) In the presence of 1 µM 

or 10 µM GABA, the bicuculline effects on the tonic currents and noise ratio were significantly 

even larger in Mecp2-null neurons than the WT. (D-F) Both tonic currents and the noise ratio 

increased dose-dependently with an increase in GABA concentrations. Such effects were more 

obvious in Mecp2-null mice (*, P < 0.05; **, P < 0.01; ***, P < 0.001; Student’s t-test).  
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Figure 5- 3. THIP boosts larger tonic currents in Mecp2−/Y mice. 

 (A-E) THIP (1 µM) applied to the bath solution triggered bicuculline-sensitive tonic currents 

measured 18.6 ± 2.9 pA and noise ratio 1.94 ± 0.07 in WT neurons. In Mecp2-null neurons, the 

THIP activated tonic currents were augmented by 3 folds compared to WT cells, and the noise 

ratio was also significantly increased. (F-G) The effects of THIP on IPSC frequency and amplitude 

were not significantly different between WT and Mecp2-null LC neurons. (H-I) Analysis of 

cumulative fraction of IPSCs showed that 1 µM THIP treatment did not alter the inter-event 

interval and amplitude of GABA-ergic IPSCs in WT neurons; (*, P < 0.05; **, P < 0.01; ***, P < 

0.001; Student’s t-test). 
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Figure 5- 4. DS2 raises tonic currents in Mecp2−/Y mice. 

(A-E) Application of DS2 (20 µM) enhanced the tonic currents by ~ 3 folds and raised the noise 

ratio to a significantly greater degree in Mecp2-null neurons than in the WT. (F-G) The effects of 

DS2 on IPSC frequency and amplitude were not significantly different between WT and Mecp2-

null LC neurons. (H-I) The cumulative analysis of IPSCs showed that DS2 shifted the inter-event 

interval to the higher frequency range without altering the amplitude of IPSC in WT LC neurons 

(**, P < 0.01; Student’s t-test).  
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Figure 5- 5. GABAAR δ subunit was overexpressed in the LC region of Mecp2−/Y mice. 

(A) Single-cell PCR showed δ subunit, the essential subunit for extrasynaptic GABAARs, was 

expressed in most LC neurons with negative GFAP and positive GAPDH expression in both WT 
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and Mecp2-null mice. (B-D) qPCR analysis indicated the expression level of the δ and α5 subunits 

in WT mice (B, 2−∆Ct). The δ subunit level was significantly increased and α5 subunit level was 

significantly reduced in Mecp2-null mice (C, 2−∆∆Ct); E-F: Western analysis showed a significant 

increase of δ subunit protein expression in Mecp2-null mice; (G-H) qPCR analysis showed the 

transcript level of α4, α6, β1 – 3 subunits in WT mice (G, 2−∆Ct). The α6 subunit level was 

significantly increased in Mecp2-null mice (H, 2−∆∆Ct). (*, P < 0.05; **, P < 0.01; Student’s t-test) 
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Figure 5- 6. THIP inhibits the LC firing activity by activating extrasynaptic GABAARs. 

(A1-A3) Application of 1µM THIP suppressed the spontaneous firing activity with a 

hyperpolarization and a decrease in input resistance (Rm) of LC neurons in WT mice. The effects 

were abolished in the presence of bicuculline. Magnified inset with hyperpolarizing current 

injection indicates the input resistance. (B1-B3) LC neurons in Mecp2-null mice showed the 

similar response to 1 µM THIP; (C-E) Membrane potential and firing rate showed significant 
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differences at the baseline (normal aCSF without exogenous GABA) between WT and Mecp2-null 

neurons, and THIP abolished the differences. THIP treatment also produced a significant decrease 

in input resistance. (F-H) In comparison to the WT, THIP had significantly larger effects on input 

resistance, membrane potential and firing rate in Mecp2-null neurons (*, P < 0.05; **, P < 0.01; 

Student’s t-test).  
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Figure 5- 7. THIP does not affect the morphology of action potential (AP) and 

afterhyperpolarization (AHP) in either WT or Mecp2-null neurons.  

(A) Spontaneous APs recorded from an LC neuron. No obvious changes in AP morphology were 

found after exposure to THIP. (B-E) In the presence of ionotropic receptor blockers (AP5, CNQX 

and strychnine) in the bath solution, THIP did not change the AP threshold (the potential at AP 
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initiation point), AP amplitude (the amplitude from threshold to peak), rise time and half width 

(D1/2, measured at 50% amplitude) of APs in either WT or Mecp2-null neurons (n = 7 and n = 12; 

P > 0.05 and P > 0.05, respectively; Student’s t-test). (F-G) In the presence of ionotropic receptor 

blockers, AHP was also not affected by THIP in WT and Mecp2-null neurons. AHP amplitude was 

measured from AP threshold to the lowest hyperpolarization point, and the time constant of AHP 

was described with single exponential in the period from 10% to 90% of the AHP amplitude (n = 

7 and n = 12; P > 0.05 and P > 0.05, respectively; Student’s t-test).  
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Figure 5- 8. THIP does not affect the spike frequency adaptation (SFA) in either WT or 

Mecp2-null neurons. 

(A) The SFA was studied with series of depolarizing currents (0 – 0.15 nA). The firing rate of the 

neurons declined with a long period of depolarization. (B) The SFA ratio was obtained by division 

of peak frequency, measured between the first two APs, by steady state frequency, measured 

between the last two APs with the same current injection. The SFA ratio was increased with the 

increasing depolarizing currents. THIP treatment did not affect the SFA ratio in both WT and 

Mecp2-null neurons. (C) With a 0.06 nA current injection, THIP affected the SFA ratio neither in 

WT nor Mecp2-null neurons (n = 6 and n = 9; P > 0.05 and P > 0.05, respectively; Student’s t-

test). 
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Figure 5- 9. THIP does not affect the delayed excitation (DE) in both WT and Mecp2-null 

neurons.  

 (A) The DE was measured as the time delay between the starting point of depolarization pulse 

and initiation of the first action potential after a prior hyperpolarization. (B) The DE was 

described as the function of the conditioning hyperpolarization, which was fit with Boltzmann 
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Equation as D = Dmax/{1+exp[(V-V1/2)/k]}, where Dmax is the maximum DE period, V is the 

hyperpolarizing membrane potential, V1/2 is the half-inactivation, and k is the Boltzmann 

constant or slop factor. (C-E) Neither WT nor Mecp2-null neurons showed significant difference 

on V1/2, slop factor and DE period before and after THIP treatment (n = 8 and n=7; P > 0.05 and 

P > 0.05, respectively; Student’s t-test). 
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Figure 5- 10. THIP alleviates the breathing abnormalities in Mecp2−/Y mice. 

 (A-B) The Mecp2-null mice were injected with THIP (10 mg/kg, i.p.) or saline for 7 consecutive 

days. Breathing activity was recorded in plethysmograph system 2 days before the injection. The 

injection started at Day 0 when mice were 26 days after birth. All the animals developed breathing 

disorders before THIP injection, showing apnea and clear breathing frequency (f) variation at day 

0. At Day 8, both were alleviated after the THIP treatment for 7 days by showing less apnea and 

smaller breathing f variation. (C-D) When apnea occurrence (events/h, C) and breathing f variation 

(SD/mean, D) were compared between THIP and saline injected groups, THIP improved 

significantly both apnea and f variation in Mecp2-null mice. In box a & box c, there was no 

significant difference (NS) in the main effect, neither significant interaction. In box b & box d, 

there was significant difference in the main effect (##, P < 0.01; Two-way ANOVA) of drug 
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treatment. No significant effect of age and no significant age-drug interaction were found (*, P < 

0.05; **, P < 0.01; Tukey’s post-hoc test). 
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6 CHAPTER2: THE BENEFICIAL EFFECTS OF EARLY INTERVENTION TO THE 

EXTRASYNAPTIC GABAARS ON PHENOTYPE DEVELOPMENT IN THE 

MECP2-NULL MOUSE MODEL OF RETT SYNDROME 

 

 

 

 

 

 

 

 

Publication: Zhong W, Johnson CM, Cui N, Wu Y, Xing H, Zhang S and Jiang C. (2016) Effects 

of early exposure to gaboxadol on phenotype development in a mouse model of Rett syndrome. J 

Neurodev Disord. 2016 Oct 19;8:37 

 

 

 

Contribution disclosure: Weiwei Zhong and Dr. Chun Jiang designed the research and write the 

article. Weiwei Zhong performed the experiments and analyzed the data. Christopher M Johnson 

and Ningren Cui assisted in the electrophysiology experiments. Christopher M Johnson and Yang 

Wu assisted in the behavior and molecular experiments. Christopher M Johnson, Ningren Cui, 

Yang Wu, Hao Xing and Shuang Zhang assisted in the behavior data analysis.  



 

76 

 

6.1 Abstract 

Rett Syndrome (RTT) is a neurodevelopmental disorder caused mostly by disruptions in 

the MECP2 gene. Mecp2-null mice show imbalances in neuronal excitability and synaptic 

communications. Several previous studies indicate that augmenting synaptic GABA receptors 

(GABAARs) can alleviate RTT-like symptoms in mice. In addition to the synaptic GABAARs, 

there is a group of GABAARs found outside synaptic cleft with the capability to produce sustained 

inhibition, which may be potential therapeutic targets for the control of neuronal excitability in 

RTT. Enhancing the GABARergic synaptic inhibition alleviated the RTT-like breathing 

difficulties. It is possible that intervention to such extrasynaptic GABAARs would have beneficial 

effects on RTT-like symptoms in Mecp2-null mice as well. Therefore, in our study, we randomly 

divided wild-type and Mecp2-null mice into four groups, which received the extrasynaptic 

GABAAR agonist THIP and vehicle control, respectively. Low-dose THIP was administered to 

neonatal mice through lactation. RTT-like symptoms including lifespan, breathing, motor function 

and social behaviors were studied when mice became mature. Changes in neuronal excitability 

and NE biosynthesis enzyme expression were studied in electrophysiology and molecular biology. 

With no evident sedation and other adverse side-effects, early-life exposure to THIP extended the 

lifespan, alleviated breathing abnormalities, enhanced motor function, and improved social 

behaviors of Mecp2-null mice. Such beneficial effects were associated with stabilization of locus 

coeruleus neuronal excitability and improvement of NE biosynthesis enzyme expression. In 

conclusion, THIP treatment in early lives might be a therapeutic approach to RTT-like symptoms 

in Mecp2-null mice and perhaps in people with RTT as well. 
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6.2 Introduction 

Rett Syndrome (RTT) caused mostly by disruptions in the Mecp2 gene is a 

neurodevelopmental disorder occurring in 1/10,000 live female births [1]. One of the major 

consequences of the Mecp2 disruption is dysfunction of brainstem neurons [3, 107, 147, 173]. In 

Mecp2-null mice, several groups of brainstem neurons including those in the locus coeruleus (LC) 

show increased membrane excitability. As a result of the excessive neuronal excitability, the 

balance of excitation and inhibition in local neuronal networks is impaired, affecting normal 

brainstem functions for breathing control, cardiovascular regulation, gastrointestinal activity, 

arousal and locomotion, consistent with RTT manifestations in humans [3, 8].  

The increased neuronal excitability in the brainstem is attributable to abnormal intrinsic 

membrane properties and deficiency in GABAergic synaptic inhibitions [4, 10, 14, 18, 49]. In 

Mecp2-null mice, both GABAA and GABAB synaptic currents are reduced in LC neurons [10]. In 

contrast, our recent studies indicate that extrasynaptic GABAA currents are well retained in LC 

neurons of Mecp2-null mice [67], which is encouraging as the extrasynaptic GABAARs may 

provide an alternative pharmaceutical target to relieve the excessive neuronal excitability and its 

associated RTT symptoms. Indeed, we have found that the extrasynaptic GABAAR agonist THIP 

(tetrahydroisoxazolo [5,4-c]-pyridin-3-ol) is beneficial to RTT-like symptom relief in Mecp2−/Y 

mice.  

THIP or gaboxadol is an investigational drug, originally developed for insomnia, Clinical 

trials suggest that THIP (10mg/day) has no significant effects on sleep onset and total sleep time 

[135]. It does have effects on these measures in a higher dose (15mg) where the effects are 

inconsistent between genders, and side effects emerge including sedation and disorientation [135, 

136]. Therefore, Merck and Lundbeck canceled further development of the drug. It is not unusual, 
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however, that a preclinical drug fails in one application, but succeeds in another. The low efficacy 

of THIP on insomnia indeed may be beneficial for its applications to RTT, as the unnecessary 

sedation can be avoided. We have found that intraperitoneal injection of THIP alleviates the 

breathing abnormalities and extends lifespans of Mecp2-null mice [67]. However, intraperitoneal 

injection may introduce stress and subject the animals to infection. To overcome this potential 

problem, oral administration was given to mice in this study. Also we chose to use a low and non-

sedative dose of THIP to avoid potential side-effects. RTT symptoms start in 6-18 months after 

birth, causing a loss of certain acquired motor and language skills in humans. To intervene to this 

early period of development, we exposed neonatal mice to THIP one day after birth before the 

RTT-like symptoms manifest themselves. Therefore, this study was conducted in a way that was 

close to therapeutic condition and very much different from our previous study [67]. 

 

6.3 Results 

6.3.1 THIP Administration 

Symptoms of RTT patients and mouse models start after a period of postnatal development. 

In Mecp2-null mice, breathing disorders started at 2-3 weeks after birth, and defects in motor and 

social behaviors begin at 4-6 weeks [42, 174]. Early intervention to extrasynaptic GABAARs may 

affect the development of the symptoms. Therefore, we started the THIP treatment of Mecp2-null 

mice from the birth day, and maintained the level till mice were fully mature.  

Following strategies were used to determine THIP dosing. a) Based on water consumptions 

in our studies, the dose given to the mother was 61.0 ± 2.2 mg/kg/day. Consistent with previous 

studies, the mother with this dose did not show any evident sedation, neither had any behavioral 
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alterations [175]. The infants received maximally one tenth of the dose to the mother via lactation 

[176-178], i.e., ~6 mg/kg/day. After weaning, these mice received 6.3 ± 0.4 mg/kg/day THIP in 

their drinking water, which were also calculated based on their daily water intake. b) According to 

a THIP patent report, the LD50 in mice is 320mg/kg orally, which is 2.2 times higher than i.p. 

(LD50 145mg/kg) [179]. The THIP dose used in mouse models of Angelman syndrome and 

Fragile X syndrome is 2-3mg/kg i.p. [81, 82, 180], equivalent to 5-7 mg/kg in oral after 

multiplication by 2.2, which is approximately the same as used in our studies. c) THIP 

pharmacokinetics has been well studied in humans and laboratory animals [181-184]. According 

to the visual observation, THIP treatment had no evident effects on feeding, movement, body 

weight, and other general physical conditions in both WT and Mecp2-null mice. 

6.3.2 Lifespan 

Lifespan of the mice was studied with THIP or vehicle treatment. In the vehicle group, 

about 50% of the Mecp2-null animals died at P52 with only 1 out of 14 tested animals surviving 

beyond P80. In contrast, Mecp2-null mice with THIP treatment reached 50% fatality (LD50) on 

P82, and one third (5 out of 15) mice lived beyond P90 (Fig. 6-1A-B). When comparing LD50, 

the THIP administration extended the lifespan of Mecp2-null mice by over 50%, which was 

statistically significant as well (Fig. 6-1A; P = 0.004, Mantel-Cox test). The same THIP and 

vehicle treatments did not cause any lethality in WT mice. 

6.3.3 Breathing Abnormalities 

Like people with RTT, Mecp2-null mice developed severe breathing abnormalities by 

showing significantly high apnea rate and high breathing frequency variation [8, 185], which may 

lead to the early death or unexpected sudden death seen in RTT patients and the RTT mouse model. 
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It is possible that the extended lifespan in Mecp2-null mice is attributable to the alleviation of 

breathing abnormalities through THIP treatment. Therefore, we studied mouse breathing activity 

using plethysmography. Early-life administration of THIP prevented the development of breathing 

abnormalities in Mecp2-null mice (Fig. 6-2B, D). In age 6 – 8 weeks, both the apnea rate and 

breathing frequency variation were significantly reduced in Mecp2-null mice treated with THIP 

(Fig. 6-2A1, A2, C, E).  

6.3.4 Motor Function 

The grip strength and grid walking tests were performed to evaluate muscle strength and 

motor coordination, respectively. Our results showed that in 5-6 week-old Mecp2-null mice, THIP 

treatment improved the grip strength from 58.5 ± 2.1 g to 74.0 ± 1.7 g (Fig. 6-3A), and the footfault 

ratio from 4.3 ± 0.5 % to 2.7 ± 0.2 % (Fig. 6-3B). Both were significantly different from those of 

the vehicle controls. These results were unlikely to be due to the sedative effects of THIP, as in 

the open field test THIP did not affect the spontaneous locomotion of either WT or Mecp2-null 

mice (Fig. 6-3C). Therefore, chronic treatment of THIP moderated certain motor defects in Mecp2-

null mice, such as muscle strength and motor coordination.  

6.3.5 Social Behaviors 

The three-chambered tests are used widely in the studies of sociability and social novelty 

[138]. In our current study, only the animals showing no preference to either side chamber during 

the exploration period were used for further testing (Fig. 6-4A). Both of the WT and Mecp2-null 

mice in the experiments showed the similar time spending in the side chambers, indicating that 

none of the animals were in the sedative state. THIP treatment did not alter the chamber transitions 

or the chamber preference either (Fig. 6-4B).  
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In the sociability test, we found that WT mice tended to spend significantly longer time in 

the chamber with an animal than without (267.9 ± 16.7 sec in the animal chamber vs. 155.9 ± 14.6 

sec in the empty chamber), whereas Mecp2-null mice in the vehicle group did not show such 

preference (252.7 ± 36.3 sec in the animal chamber 1 vs. 240.0 ± 39.4 sec in the empty). THIP 

administration improved significantly the social interaction or sociability of the Mecp2-null mice 

(313.5 ± 43.1 sec in the animal chamber 1 vs. 153.5 ± 35.9 sec in the empty) (Fig; 6-4C).  

In the social novelty preference test, WT mice spent significantly more time in the chamber 

with novel animals than the chamber with the familiar one (349.3 ± 32.1 sec in the animal 1 

chamber vs. 138.4 ± 22.8 sec in the animal 2 chamber), whereas the Mecp2-null mice did not show 

such a preference (321.7 ± 44.1 sec in the animal 1 chamber vs. 200.9 ± 50.9 sec in the animal 2 

chamber). THIP treatment improved significantly the social novelty preference of the Mecp2-null 

mice (386.7 ± 29.1 sec in the animal 1 chamber vs. 122.2 ± 22.6 sec in the animal 2 chamber) (Fig. 

6-4D), suggesting that THIP treatment seems to alleviate the defects of sociability and social 

novelty as well.  

 

6.4 Discussion 

In these studies, we have shown that early-life exposure of the Mecp2-null mice to a non-

sedative dose of the extrasynaptic GABAARs agonist THIP has several beneficial effects on 

lifespan, breathing activity, motor function and social behaviors.  

The extrasynaptic GABAARs have several properties different from the synaptic 

GABAARs, which may be unique in interventions to neuronal excitability. They are located outside 

the synaptic area, produce tonic or long-lasting Cl⁻ currents, show very little desensitization upon 

activation, and are sensitive to some synaptic GABAAR agonists and extrasynaptic GABAAR-
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specific agonists [20, 141, 186]. They have the capability to change dynamically their expression 

levels under different physiological and pathophysiological conditions [67, 80, 187]. 

Manipulations of these receptors with selective agents do not interrupt GABAergic synaptic 

transmission mediated by the synaptic GABAARs. Thus, therapeutic activation of these 

extrasynaptic GABAARs may avoid several side effects of the synaptic GABAAR activators 

including sedation, tolerance and addiction. 

To minimize potential side-effects of THIP, we chose to use THIP chronically in low 

dosage. Although pharmacokinetic studies were not performed in this report, such information has 

been collected in previous studies on mice, rats, dogs and humans [181-184]. With a daily dose of 

10 mg in humans, THIP reaches the maximum plasma concentration ~140ng/ml in 2.0 h, and the 

terminal plasma half-life time is 1.7 h [181]. Another preclinical study in humans, rats and mice 

shows a rapid and complete absorption of THIP with the peak concentration reached within 0.5 h 

in several organs include the brain [29]. A clinical report indicates that therapeutic dosages of 

THIP by long-term oral administration range from 20-120mg daily in human patients [188]. 

Higher doses of THIP may cause adverse side effects, including sedation, confusion and dizziness 

[136]. In our present study, the oral dose of THIP was calculated to be ~ 6 mg, which appears 

effective for alleviating multiple RTT-like symptoms in Mecp2-null mice. Our test of spontaneous 

locomotion supports the non-sedative effects of the dosage. The dosage given to the mother during 

lactation was 61.0 ± 2.2 mg/kg/day, which was also reported to have no sedative effects and neither 

behavioral alterations [175].  

Similar to the dosages that we used in the study, several previous studies have reported to 

use THIP for treatment of mouse models of Fragile X syndrome and Angelman Syndrome. Since 

these diseases share multiple similarities to RTT, such as impaired GABA system, neuronal 



 

83 

 

hyperexcitability and autism-like symptoms [81, 82, 189], the information shown in the present 

study is likely to benefit to moving the drug for further clinical trials in all these diseases.  

The impaired neuron networks were widely seen in Mecp2-null mice [80, 190]. The social 

defects of autism spectrum disorders were believed to be correlated to the weak connections in the 

default networks including the medial prefrontal cortex and posterior cingulate cortex [58]. With 

the beneficial effects found in this study, we speculate that THIP might contribute to reinforcement 

of these connections as well as amelioration of the phenotypes. 

In comparison to the Mecp2-null mice the most widely used RTT mouse model, the 

Mecp2+/− mice tend to display large variations in RTT-like symptoms due to the random X-

chromosome inactivation. According to our previous study, only 15-20% Mecp2+/− mice showed 

the RTT-like symptom of breathing abnormalities, suggesting that the wild-type allele is not 

randomly inactivated [107]. Generally, ~50% the neurons in the CNS of Mecp2+/− mice retained 

MeCP2 expression [102, 191], which may allow the Mecp2+/− mice to recapitulate the normal 

behaviors to some degree, compared to the Mecp2-null mice. However, the MeCP2 mosaic 

expression pattern is not uniform in the CNS, and it varies between individuals, ages and brain 

regions [102, 191]. Regional expression levels of MeCP2 was reported be correlated to the specific 

symptoms in the Mecp2+/− mice. Hippocampus MeCP2 expression is related to the exploratory 

activity behaviors and anxiety-like behaviors. Cortical MeCP2 expression affects the general 

symptomatic severity [104]. The age-dependent mosaic pattern suggests that even the X-

chromosome inactivation ratio may also be affected by MeCP2 deficiency in the RTT mice brain 

and the consequent variation of postnatal brain functions in RTT [191]. Thus, the age-dependent 

and region-specific expression pattern of MeCP2 in the CNS contributes to the large variation of 

the phenotypic outcome in Mecp2+/− mice, which all need to be considered in studies of female 
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RTT models. Furthermore, Mecp2+/− mice usually develop the diagnostic symptoms when they 

become sexually mature. The periodical hormone alternations in Mecp2+/− mice may affect mouse 

performance in the behavioral tests complicating the interpretation of the THIP effects. A previous 

study reports significant variations in the open field, tail flick and suspension tests in female mice 

during their estrous cycle [192]. With all these complications in the female models, therefore, 

studies under Mecp2-null condition in the male model seems beneficial as the first step of 

investigation before sophisticated preclinical trials are conducted, which can be based on Mecp2+/− 

female mice and may benefit from the experimental evidence obtained from the male RTT models. 

Selective restoration of Mecp2 in GABAergic neurons rescues multiple phenotypes in both 

Mecp2−/Y and Mecp2+/− mice [73], which suggests that the GABA system is a feasible target to 

manipulate in RTT female mouse model and RTT patients. Although the sexual difference of LC 

neurons might be a concern of the potential effects of THIP, a morphological study suggested 

female LC neurons showed a higher frequency of communication with dmLC neurons in 

comparison to the male [119, 193], indicating that THIP may have a greater effect in female RTT 

mouse model or patients. A previous study reports that for some unknown reasons, THIP tends to 

have a greater efficacy in women than in men [135], further suggesting that the potential beneficial 

effects of THIP in RTT female mouse model and patients. Nevertheless, further studies on 

Mecp2+/− mice are needed, which may be conducted as deliberate, thorough and systematic 

investigations that might benefit from our findings in the male model. 

In conclusion, consistent with our previous study showing that the daily injection of THIP 

in a high dose alleviates breathing abnormalities by stabilizing the neuronal activity [67], our 

current study shows that early-life exposure to a low dose of THIP affects multiple RTT-like 

symptoms. The early-life exposure to THIP extends the lifespan of Mecp2-null mice, reduces 
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breathing disorders and motor dysfunction, and improves social behaviors. These results suggest 

that THIP has beneficial effects on RTT-like symptoms in the mouse model with complete 

knockout of the Mecp2 gene.  

  



 

86 

 

 

Figure 6- 1. THIP administration extended the lifespan of Mecp2-null mice.  

(A) Twenty-nine Mecp2-null mice were used in the survival experiment and fourteen of them 

were delivered THIP orally (solid line) and thirteen without THIP treatment (dash line). (** P < 

0.01; Mantel-Cox test). (B) Percentage of survival in the tested mice. In the vehicle group, 50% 

Mecp2-null mice died within 52 days, while THIP treatment expanded the 50% lifespan to 82 

days.  

  



 

87 

 

 

Figure 6- 2. THIP administration alleviated the breathing abnormalities in Mecp2-null 

mice.  

(A1-A2) Typical records of breathing activity from both WT and Mecp2-null mice with and 

without THIP administration. (B) Distributions of apnea count in different aged Mecp2-null mice 

with and without THIP treatment. (C) In Mecp2-null mice, THIP administration significantly 

reduced the apnea count at ages of 4-6 weeks (vehicle: n = 26, THIP: n = 8, P = 0.002) and 6-8 

weeks (vehicle: n = 19, THIP: n = 8, P = 0.021), although the significance was not found in 2-4 
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weeks (vehicle: n = 45, THIP: n = 7, P = 0.081; ### P < 0.001 in Kruskal-Wallis test; * P < 0.05, 

** P < 0.01 in Mann-Whitney post hoc comparison). (D-E) Similar effects of THIP treatment on 

breathing frequency variation was observed in these mice (2-4 weeks: P = 0.037; 4-6 weeks: P = 

0.004; 6-8 weeks: P < 0.001; * P < 0.05, ** P < 0.01, *** P < 0.001; One-way ANOVA and 

Tukey’s post-hoc).  
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Figure 6- 3. THIP administration improved motor function of Mecp2-null mice. 

(A) Significant main effects of THIP treatment (F = 23.74, df = 1, P < 0.001) and genotype (F = 

147.85, df = 1, P < 0.001) were observed, as well as a significant interaction (F = 12.04, df = 1, P 

< 0.001). (### P < 0.001, Two-way ANOVA) The grip strength of Mecp2-null mice was 

significantly increased with THIP treatment (WT: n = 18 and n = 18 mice; Mecp2-null: n = 23 

and n = 22; vehicle and THIP, respectively; *** P < 0.001, Tukey’s post hoc). (B) Significant 



 

90 

 

main effects of THIP treatment (F = 5.26, df = 1, P < 0.05) and genotype (F = 30.4, df = 1, P < 

0.001) were observed, as well as a significant interaction (F = 13.25, df = 1, P < 0.001) (# P < 

0.05, Two-way ANOVA). THIP administration significantly reduced the footfault ratio 

(including both hindlimb and forelimb) of Mecp2-null mice (WT: n = 22 and n = 23 mice; 

Mecp2-null: n = 20 and n = 25; vehicle and THIP, respectively; *** P < 0.001, Tukey’s post 

hoc) (C) The spontaneous locomotion of WT and Mecp2-null mice was not significantly affected 

by THIP treatment. The main effect of THIP treatment was not significant (F = 0.26, df = 1, P = 

0.614), as the main effect of genotype (F = 3.00, df = 1, P = 0.095). The interaction of these two 

factors was not significant (F = 0.99, df = 1, P = 0.329) (WT: n = 8 and n = 7 mice; Mecp2-null: 

n = 9 and n = 6; vehicle and THIP, respectively; Two-way ANOVA).  
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Figure 6- 4. THIP administration alleviated the defects of social behaviors in Mecp2-null 

mice.  

(A-B) During the habituation period in the three chamber test, both WT and null mice took 

similar amount of times (A) and transitions (B) in either side of the chambers indicating no 

preference. The main effect preference was not significant. (A: F = 1.72, df = 1, P = 0.195; B: F 

= 0.20, df = 1, P = 0.656; Three-way ANOVA). The transitions between the chambers also 

suggested that the tested animals are not in a sedative state. (C) In the sociability test, a 

significant difference was detected within the main factor of preference (F = 23.31, df = 1, ### P 

< 0.001, three-way ANOVA). WT mice spent significantly more time in the chamber containing 

an animal than the empty one, whereas the Mecp2-null mice lost such a preference. THIP 

administration increased the time expenditure of Mecp2-null mice in interacting with another 

mouse (* P < 0.05; Tukey’s post hoc). No significant differences were found in the main factor 

of genotype (F = 1.20, df = 1, P = 0.278) or THIP treatment (F = 0.03, df = 1, P = 0.863). The 

interactions of genotype × treatment (F = 0.46, df = 1, P = 0.500), genotype × preference (F = 



 

92 

 

1.41, df = 1, P = 0.239), treatment × preference (F = 3.31, df = 1, P = 0.074) or genotype × THIP 

treatment × preference (F = 2.08, df = 1, P = 0.155) were not significant as well (Three-way 

ANOVA). (D) In the social novelty test, the main factor of preference showed a significant 

difference (F = 54.48, df = 1, ### P < 0.001, three-way ANOVA). WT mice spent significantly 

more time in the chamber with a novel animal than the chamber with a familiar one, whereas the 

Mecp2-null mice did not show the preference to either chamber. With THIP treatment the 

novelty preference was improved in the Mecp2-null mice; (** P < 0.01, *** P < 0.001; Tukey’s 

post hoc). No significant differences were found in the main factor of genotype (F = 0.57, df = 1, 

P = 0.453) or THIP treatment (F = 0.17, df = 1, P = 0.681). The interactions of genotype × 

treatment (F = 0.02, df = 1, P = 0.888), genotype × preference (F = 0.49, df = 1, P = 0.487), 

treatment × preference (F = 1.58, df = 1, P = 0.213) or genotype × THIP treatment × preference 

(F = 1.35, df = 1, P = 0.250) were not significant as well (Vehicle: n = 12 and n = 9; THIP: n = 8 

and n = 6; WT and Mecp2-null, respectively; Three-way ANOVA). 
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7 CHAPTER3: CELLULAR MECHANISMS OF THE BENEFICIAL EFFECTS OF 

EARLY-LIFE EXPOSURE TO THE EXTRASYNAPTIC GABAAR AGONIST THIP 

IN THE MECP2-NULL MOUSE MODEL OF RETT SYNDROME BEFORE  
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7.1 Abstract 

Rett syndrome (RTT) is mostly caused by mutations of the X-linked MECP2 gene. 

Although the causal neuronal mechanisms are still unclear, accumulating experimental evidence 

obtained from Mecp2−/Y mice suggests that imbalanced excitation/inhibition in central neurons 

plays a major role. Several approaches may help to rebalance the excitation/inhibition, including 

agonists of GABAA receptors (GABAAR). Indeed, our previous studies have shown that early-life 

exposure of Mecp2-null mice to the extrasynaptic GABAAR agonist THIP alleviates several RTT-

like symptoms including breathing disorders, motor dysfunction, social behaviors, and lifespan. 

However, how the chronic THIP affects the Mecp2−/Y mice at the cellular level remains elusive. 

Here, we show that the THIP exposure in early lives markedly alleviated hyperexcitability of two 

types of brainstem neurons in Mecp2−/Y mice. In neurons of the locus coeruleus (LC), known to be 

involved in breathing regulation, the hyperexcitability showed clear age-dependence, which was 

associated with age-dependent deterioration of the RTT-like breathing irregularities. Both the 

neuronal hyperexcitability and the breathing disorders were relieved with early THIP treatment. 

In neurons of the mesencephalic trigeminal nucleus (Me5), both the neuronal hyperexcitability and 

the changes in intrinsic membrane properties were alleviated with the THIP treatment in Mecp2-

null mice. The effects of THIP on both LC and Me5 neuronal excitability remained one week after 

withdrawal. Persistent alleviation of breathing abnormalities in Mecp2−/Y mice was also observed 

a week after THIP withdrawal. These results suggest that early-life exposure to THIP, a potential 

therapeutic medicine, appears capable of controlling neuronal hyperexcitability in Mecp2−/Y mice, 

which occurs in the absence of THIP in the recording solution, lasts at least one week after 

withdrawal, and may contribute to the RTT-like symptom mitigation. 
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7.2 Introduction 

Rett syndrome (RTT) is a neurodevelopmental disorder, caused mostly by mutations of the 

X-linked Mecp2 gene, a transcriptional regulator. Patients with RTT, almost exclusively girls, 

develop various symptoms, such as stereotype behaviors, autism-like social defects, motor 

dysfunctions and life-threatening breathing abnormalities [194]. As a widely used RTT mouse 

model, Mecp2−/Y mice with Mecp2 gene turned off in all cells recapitulate most of these RTT-like 

symptoms and die in early ages [26]. Besides uncovering RTT symptomatic and pathological 

changes, the mouse model is useful for finding potential therapeutic agents. 

The studies in Mecp2−/Y mice suggest that imbalanced excitation/inhibition in the central 

nervous system (CNS) play a major role in the development of RTT. The altered excitation and 

inhibition have been found in multiple brain regions, including the brainstem [53, 147, 168] and 

the hippocampus [66]. In Mecp2-null mice, excessive excitatory activity was seen in expiratory 

cranial and spinal nerves [12]. Neurons in the LC, the major NE source in the CNS, are overly 

excitable in Mecp2-null mice, which is attributable to their defective intrinsic membrane properties 

and the reduced GABAergic inhibition, and may contribute to breathing abnormalities [4, 10, 147]. 

Neurons in the mesencephalic trigeminal nucleus (Me5) nucleus, located adjacent to the LC, were 

found hyperexcitable as well [53, 56], which may contribute to the difficulties in chewing and 

eating in people with RTT [54, 55].  

The neuronal hyperexcitability involves the GABA system. Mice with Mecp2 gene 

deletion selectively in the GABAergic neurons display RTT-like phenotypes [11]. Restoration of 

the gene in the Mecp2-null GABAergic cells rescued these symptoms, including lifespan, social 

behaviors and motor functions [73]. Therefore, enhancing GABAergic inhibition may help to 
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rebalance the excitation/inhibition in mouse models and perhaps human patients with RTT, leading 

to alleviation of the RTT-like symptoms. Consistent with the idea, treatment with GABA reuptake 

blocker NO711 and synaptic GABAR agonist benzodiazepine relieves the RTT-like breathing 

difficulties in Mecp2-null mice [12, 13].  

In Mecp2-null LC neurons, both GABAAR and GABABR are deficient [10]. In contrast to 

the synaptic GABAA receptors, the expression level of extrasynaptic GABAAR is well maintained 

in Mecp2-null LC neurons [67]. They may provide an alternative target to alter the 

excitation/inhibition balance. Indeed, we have recently shown that early treatment with THIP (also 

known as Gaboxadol), an extrasynaptic GABAAR agonist, alleviates the RTT-like motor 

dysfunction, breathing abnormalities and the defects in social behaviors, expands the lifespan by 

enhancing the tonic GABAergic inhibition in Mecp2-null mice [83]. However, several questions 

remain: How does the THIP treatment affect the Mecp2-null mice at the cellular level? Will the 

systemic THIP treatment affect other brainstem neurons? Are the THIP effects lost totally after 

THIP clearance with withdrawal? Does a rebound excitation occur after THIP withdrawal? To 

address these questions, therefore, we performed the experiments. 

 

7.3 Results 

7.3.1 Age-dependent hyperexcitability of LC and Me5 neurons in Mecp2−/Y mice 

All experiments were done in male Mecp2−/Y mice because the males offer a completely 

Mecp2-null condition that is not always available in Mecp2+/− females owing to X-chromosome 

inactivation. 
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Previous studies indicate that LC neurons are overly excitable in Mecp2-null mice 

compared to the WT [4, 147]. To show how such hyperexcitability progresses with age, we studied 

LC neuronal excitability in three age groups of WT and Mecp2-null mice. Our results showed that 

such neuronal hyperexcitability was age-dependent (Fig. 7-1A1-2). When the spontaneous firing 

rate of LC neurons was plotted against ages, a linear age-dependent increase in the firing rate is 

seen, in which the regression is significant in Mecp2-null but not WT mice (Fig. 7-1A3; WT: R = 

0.14, n = 82, P = 0.21; Mecp2-null: R = 0.65, n = 79, P < 0.001; WT vs. Mecp2-null: P = 0.001). 

A significant increase in spontaneous firing activity of LC neurons started at 2-4 weeks, and 

became more obvious at age 4-6 weeks. The neuronal firing rate doubled that of the WT at 6-8 

weeks (Fig. 7-1A4; 2-4 weeks: n = 45 and n = 38; 4-6 weeks: n = 17 and n = 20; 6-8 weeks: n = 12 

and n = 21; WT and Mecp2-null, respectively). Both are consistent with the onset time of RTT-

like symptoms and the age-dependent symptom deterioration of Mecp2-null mice. In contrast, the 

age-dependent increase in LC neuronal excitability was not observed in WT mice (Fig. 7-1A4). 

Me5 neurons were silent at basal condition without current injection in both WT and 

Mecp2-null mice. In response to depolarizing current injection, the Me5 neurons in Mecp2-null 

mice tended to fire multiple action potentials (APs) in comparison to one or two APs in their WT 

counterparts (Fig. 7-1B1-B2). With comparable levels of current injection, Me5 neurons showed 

significantly higher firing rate in Mecp2-null mice than in the WT, indicating that they also are 

hyperexcitable. Unlike LC neurons, the Me5 neuronal hyperexcitability did not show significant 

age dependence (Fig. 7-1A4; WT: n = 14; Mecp2-null 4-6 weeks: n = 17; Mecp2-null 6-8 weeks: 

n = 14; Fig. 7-1B3). 
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7.3.2 Relationship of LC neuronal excitability with breathing abnormalities 

It is possible that inhibition of LC neuronal hyperexcitability by THIP may affect breathing 

abnormalities, as LC neurons play a role in breathing regulation, and as the age-dependent 

deterioration was found the Mecp2-null mice in our previous studies [83] , Therefore, we 

performed electrophysiological recording from in 6-8 week-old mice whose breathing activity was 

measured on the same day immediately before euthanasia (Fig. 7-2A). When LC neuronal firing 

rate was plotted against apnea rate (Fig. 7-2B, n = 20) or breathing frequency variation (Fig. 7-2C, 

n = 20), we found that the LC neuronal firing rate increases proportionally with the severity of 

these breathing abnormalities. Both can be described with a linear regression (Mecp2-null: Fig. 7-

2B: R = 0.66, P < 0.01; 2C: R = 0.62, P < 0.01). Such proportional changes in firing rate with 

breathing abnormalities were not seen in WT neurons (Fig. 7-2B,C). 

7.3.3 THIP alleviates LC neuronal hyperexcitability in Mecp2−/Y mice 

One of the common features of RTT in humans and animal models is the defect in the NE 

system [5, 42, 47]. Previous studies have shown that excitability of LC neurons increases in 

Mecp2-null mice [4, 147]. The LC neurons are the main source of NE in the CNS, and play an 

important role in breathing regulation, locomotion, arousal, emotion and other behaviors [3, 8, 

195]. Therefore, we chose these neurons to find whether THIP treatment may stabilize LC 

neuronal excitability in Mecp2-null mice.  

In the brain slice preparation, whole-cell current clamp was performed in LC neurons from 

mice with and without THIP treatment. Of four groups of mice, only did the LC neurons from 

Mecp2-null mice in vehicle control show an obvious increase in spontaneous firing activity (Fig. 

7-3A, B). Detailed analysis of the passive and active membrane properties showed that the THIP 
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treatment did not significantly change membrane potential, input resistance, action potential 

overshoot and firing threshold of either groups of neurons (Fig. 7-3C, D, E, F). In Mecp2-null 

neurons, the spontaneous firing rate is significantly higher than that in WT. The THIP treatment, 

however, abolished the difference (Vehicle: 3.1 ± 0.3 Hz and 5.1 ± 0.3 Hz; THIP: 3.6 ± 0.2 Hz and 

3.7 ± 0.3 Hz; WT and Mecp2-null, respectively; Fig. 7-3G). Thus, these results suggest that the 

LC neuronal hyperexcitability in Mecp2-null mice is significantly reduced after THIP exposure.  

7.3.4 Mitigation of Me5 neuronal hyperexcitability with THIP exposure 

To test how the extrasynaptic GABAAR agonist THIP affects other hyperexcited brainstem 

neurons, such as Me5 neurons, WT and Mecp2-null mice were exposed to THIP in their drinking 

water as described in the Methods. With continuing THIP treatment for 5~6 weeks starting from 

birth, brain slices were obtained from the mice without drug withdrawal, in which neuronal activity 

was studied. Note that no THIP was added to the recording solutions. A similar excitability relief 

was found in Me5 neurons of Mecp2-null mice (Fig. 7-4B). The evoked firing activity with 

depolarizing current injection was significantly lower in Me5 cells from THIP-treated Mecp2-null 

mice than the vehicle-treated (Fig. 7-4A; vehicle: n = 14; THIP: n = 18). No significant difference 

in Me5 neuronal firing rates was found between the THIP- and vehicle-treated WT (Fig. 7-4B). 

With the current injection, some Me5 cells fired repetitive APs. The ratio of cells with multiple 

APs vs those with one or two APs was significantly higher in Mecp2-null mice than in the WT. 

Such a difference was abolished with the THIP treatment (Fig. 7-4C; vehicle: n = 14 and n = 17; 

THIP: n = 18 and n = 16; WT and Mecp2-null, respectively). Together, these results suggest that 

early-life THIP exposure significantly suppressed the hyperexcitability of both LC and Me5 

neurons in Mecp2-null mice. 
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7.3.5 THIP effects on intrinsic membrane properties of null Me5 neurons 

The early-life exposure to THIP may affect these brainstem neurons by changing their 

intrinsic membrane properties. Thus, we performed detailed studies of subthreshold and 

suprathreshold properties. Since we had done similar studies in LC neurons before [4, 56], we 

were focused on Me5 neurons in the present study. 

In the Me5 neurons, AP amplitude was measured from its threshold level to the peak. The 

rise time of AP was measured as the period from the AP threshold to the peak. AP width (D50) 

measured as the width at half AP amplitude. To measure the resistance, Sag and post-inhibitory 

rebound (PIR), neurons were injected with a series of hyperpolarizing currents. After the 

termination of each command, the cell responded with a post-inhibitory depolarization or AP 

(when the rebound reached AP threshold). The three parameters were calculated based on the trace 

immediately before the AP was initiated. The input resistance was measured as the ratio of steady-

state voltage at the command current. The sag was calculated as the difference between the peak 

hyperpolarization during the current injection and the steady-state potential. The PIR was defined 

as the difference between the peak depolarization of the rebound and the resting membrane 

potential.  

Similar to LC neurons, the chronic THIP did not show significant effects on the membrane 

potential, input resistance, AP properties (amplitude, rise time and D50), Sag and PIR of Me5 

neurons (Fig. 7-5), whereas the firing threshold of Me5 neurons in Mecp2-null mice was shifted 

to more depolarizing potentials with THIP treatment, which was significant in comparison to the 

vehicle control (Fig. 7-5C). Therefore, in Mecp2-null mice, early treatment of THIP seems to raise 

firing threshold without affecting other intrinsic membrane properties of Me5 neurons.  
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7.3.6 Persistent inhibition of neuronal excitability 1-week after THIP withdrawal 

The suppression of brainstem neuronal excitability may be affected by THIP withdrawal, 

as rebound excitation usually merges with withdrawal of certain neuronal suppressants. Therefore, 

we studied neuronal activity after THIP withdrawal. To avoid the likelihood that residue THIP 

may exist in the body, we chose to do the experiments 7 days after withdrawal. 

The firing rate of LC neurons in THIP-treated mice remained significantly lower than that 

of the vehicle control (Fig. 7-6A; WT: 3.6 ± 0.8 Hz and 3.6 ± 1.2 Hz, n = 14 and n = 12; Mecp2-

null: 6.8 ± 2.2 Hz and 5.0 ± 1.6 Hz, n = 21 and n = 12; vehicle and THIP, respectively). No rebound 

excitation was found in Me5 neurons either. Instead, the evoked firing rate of Me5 neurons from 

THIP-treated Mecp2-null mice was significantly lower than that of vehicle control a week after 

THIP withdrawal (Fig. 7-6B1). Furthermore, the ratio of Me5 cells with vs without multiple APs 

remained about the same between Mecp2-null and WT mice, in comparison to the significant 

difference in the ratio between vehicle controls (Fig. 7-6B2). These results suggest that THIP 

withdrawal does not seem to cause rebound excitation. Instead, the THIP effects seem persistent, 

as both LC and Me5 neurons of Mecp2-null mice retained their excitability similar to their WT 

counterparts one week after THIP withdrawal (Fig. 7-6B1-B2; vehicle: n = 14 and n = 17; THIP: n 

= 9 and n = 13; WT and Mecp2-null, respectively). 

7.3.7 Breathing abnormalities remained suppressed one-week after THIP withdrawal 

Our previous study has shown that the same THIP treatment significantly suppressed the 

breathing abnormalities [83] . We thus studied how breathing was affected by THIP withdrawal. 

One week after THIP withdrawal, both apnea events and breathing frequency variation in 

Mecp2-null mice remained lower than the vehicle control (Fig. 7-7A1-A2). Statistical analysis 
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showed that in Mecp2-null mice, the apnea rate and breathing frequency variation were 

significantly lower in mice that had been treated with THIP than those treated with vehicle (Fig. 

7-7B-C; WT: n = 17 and n = 3; Mecp2-null: n = 19 and n = 8; sham and THIP, respectively). These 

results, consistent with the prolonged neuronal excitability depression, indicate that the effects of 

THIP treatment seem to persist at least for one week after THIP withdrawal without apparent 

rebound excitation.  

7.3.8 THIP affects the gene expressions in Mecp2−/Y mice 

Previous studies have shown that the Mecp2 disruption leads to reductions in NE content 

in the CNS and expression levels of the rate-limiting enzymes TH and DBH for NE biosynthesis 

[6, 42, 50, 147]. Persistent hyperexcitation of LC neurons may interfere with the homeostatic state 

in NE biosynthesis and release, leading to the reduced expression of TH and DBH in Mecp2-null 

mice [67]. Thus, moderation of LC neuronal hyperexcitability may improve expression of TH and 

DBH in Mecp2-null mice. To test this possibility, we studied the TH and DBH at mRNA and 

protein levels. The qPCR analysis showed that THIP treatment significantly increased both TH 

and DBH transcript levels in the pontine extracts of Mecp2-null mice (Fig. 7-8A-C). Western blot 

analysis showed ~2 fold increase in TH protein level and ~1.5 fold increase in DBH protein level 

(Fig. 7-8D-F). 

Early-life exposure to THIP might also reshuffle the GABA receptor subunits. Therefore, 

quantitative PCR was performed to detect the mRNA levels of δ, α6, β1 and β2 subunits, which 

were reported as significantly changed in Mecp2-null LC area. In comparison with vehicle control, 

a significant reduction of α6 subunit was detected in Mecp2-null mice with THIP treatment, while 

no significant changes in other subunit expression were found (Fig. 7-9). 
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7.4 Discussion 

This is the first study of the cellular outcome of early-life exposure to THIP. We have 

found that the THIP exposure markedly alleviates hyperexcitability of two types of brainstem 

neurons in Mecp2−/Y mice. In LC neurons known to be involved in breathing regulation, the 

hyperexcitability shows clear age-dependence associated with age-dependent deterioration of the 

RTT-like breathing irregularities, both of which are relieved with early THIP treatment. In Me5 

neurons of Mecp2-null mice, the hyperexcitability as well as the changes in intrinsic membrane 

properties are both improved with the THIP treatment. One week after THIP withdrawal, 

excitability of both LC and Me5 neurons remained depressed. Consistent with the proportional 

relationship between LC firing rate and breathing irregularities and the persistent effects of THIP 

on cellular excitability, RTT-like breathing abnormalities of Mecp2-null mice remain low in the 

time period after THIP withdrawal. In addition, early exposure of THIP improved the biosynthesis 

enzyme gene expression in Mecp2-null LC neurons.  

Mecp2-null mice start to display a range of RTT-like symptoms, including mobility 

problems and breathing difficulties around 3 weeks after birth, and most of the animals die within 

2 months of age [26]. The symptom development is consistent with the onset and deterioration of 

the neuronal hyperexcitation, especially LC neurons as shown in the present study. Indeed, our 

results have shown that LC neuronal excitability increases proportionally with the severity of 

breathing abnormalities. Thus, the defects in LC neuronal excitability may play a role in the 

development of the RTT-like symptoms in the mouse model. Consistent with this idea, the chronic 

THIP stabilizes LC neuronal excitability and breathing abnormalities to a similar degree (Fig. 7-

3A). Also consistent with the idea are our recent studies showing that by enhancing the tonic 
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GABAergic inhibition, early-life exposure of Mecp2-null mice to THIP alleviates various RTT-

like symptoms and extends lifespan [83].  

Although THIP may affect other brain regions by augmenting local extrasynaptic GABAA 

receptors, the stabilization of LC neuronal excitability may benefit a range of target regions. The 

LC is the major NE source in the CNS. The homeostasis of the LC neuronal excitability vs the NE 

synthesis, ensures the persistent production and release of NE. LC neuronal hyperexcitability may 

interrupt this balance and lead to impairment of the NE system, including the reduced expression 

of rate-limiting enzyme, tyrosine hydroxylase (TH) and dopamine beta hydroxylase (DBH), and 

reduced NE concentration in the CNS [5, 6, 50, 115, 147]. A relief of LC hyperexcitability may 

reinstall the homeostatic state in the cells and improve NE output, which may benefit the LC-NE 

projected target regions, including the brainstem, the spinal cord and the prefrontal cortex, brains 

areas critical for breathing, motor function and social behaviors [59, 164].  

The hyperexcitation is not limited to LC neurons. Our results have shown that Me5 neurons 

are also hyperexcitable [53]. The Me5 neurons are the only group of propriosensory neurons with 

soma located in the CNS, which provide servo feedback control to the jaw muscles. The increased 

excitability in these neurons may impair these cranial muscles, consistent with the defects of 

chewing, drinking, speaking and teeth grinding in people with RTT [53-56]. Suppression of overly 

excited Me5 neurons may lead to a correction in the proprioception of muscles, leading to the 

improvement of motor function in RTT. The Me5 neuronal hyperexcitability may be attributable 

to the impaired intrinsic membrane properties in Mecp2-null mice.  

Our results show that early-life THIP exposure suppresses the neuronal hyperexcitability 

without affecting most of the intrinsic membrane properties, which suggests that THIP seems to 

restore the normal function of Mecp2-null neurons via presynaptic inhibition. However, the firing 
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threshold is shifted to more depolarizing potentials in both LC and Me5 neurons, indicating THIP 

may also alter postsynaptic mechanisms such as Na+ channel expressions that have been shown 

abnormal in Mecp2-null mice [4, 53].  

In contrast to the neuronal hyperexcitability, hypoexcitability is found in certain forebrain 

neurons, which may contribute to the impaired sensorimotor gating function in RTT [68]. 

Interestingly, inhibition of the NMDA receptors with ketamine can reverse the neuronal 

hypoexcitability and improve associated behaviors in Mecp2-null mice, likely by disinhibiting 

cortical pyramidal cells [68, 120]. Apparently, excessive excitation may also be a problem in the 

cortical neuronal networks, which responds to NMDA receptor antagonism. Besides ketamine, 

enhancing the GABAergic inhibition might benefit hypoexcitability of certain forebrain neurons 

in Mecp2-null mice as well. 

THIP was previously tested as a potential clinical medicine for insomnia. With a short half-

life time around half an hour, the THIP concentration in the plasma diminished within 3 hours 

[183]. However, continuous oral treatment may allow the THIP to remain at a certain level for a 

long period in the plasma and CNS, leading to the persistent effects on neurons and the associated 

phenotypes.  

Due to the fast decay of the THIP, the withdrawal for one week may allow a total clearance 

of THIP from the plasma and the CNS. This time period seems adequate for evaluation of the 

persistence of its effects. Our results indicate that the THIP effects on relieving neuronal 

hyperexcitability remain one week after THIP withdrawal, which suggest chronic treatment of 

THIP may alter the expression of certain proteins involving the rebalance of excitation vs 

inhibition in the CNS. The results are consistent with the expanded lifespan in the THIP treated 

Mecp2-null mice [83] . Although neuronal activity and breathing abnormalities remained 
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alleviated with the THIP withdrawal in Mecp2-null mice, their absolute levels were higher than 

the WT, indicating a gradual decline of the THIP effects.  

Our results do not support the presence of rebound excitation one week after THIP 

withdrawal. However, the results cannot rule out the possibility of rebound excitation during the 

period of 1-6 days after THIP withdrawal. Because of the availability of these Mecp2-null mice, 

we could not perform these follow-up studies. Thus, further studies are needed to reveal the time 

course 1-6 days after THIP withdrawal.  

LC neurons, the major NE source in the CNS, projects broadly to the other brain regions, 

including the medulla where the respiratory center located, and the prefrontal cortex where the NE 

system affects cognitive functions, seizure and social behaviors [59, 164]. In Mecp2-null mice with 

THIP treatment, the target regions of LC-NE projection may benefit from the enhanced NE 

synthesis, leading to the alleviation of the associated abnormal behaviors.  

People with RTT and the mouse models show the delayed onset and progressive symptoms. 

Although the mechanism for the delayed symptom onset remains unclear, some factors may 

contribute to it, such as dynamic spatiotemporal relationship between MeCP2 and methylated 

DNA [196] and the altered allopregananallone modulation of the GABA system during perinatal 

period [14]. Thus, interfere with neuronal hyperexcitability before the symptom onset may be a 

potential way to prevent or delay the development of the disease. The δ subunit containing 

extrasynaptic GABAARs are expressed dynamically with growth [187]. Since severe defects in the 

synaptic GABAAR system have been demonstrated mature Mecp2-null mice, treatment with THIP 

in early lives may be beneficial with respect to enforcement of the inhibitory system in the 

neurodevelopment of Mecp2-null mice.  
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The reduced expression of α6 subunits suggests that early treatment of THIP may lower 

the GABAR expression and the consequent GABAergic inhibition. The α6 subunit is known to 

contribute to both the extrasynaptic receptors together with the δ subunit and the synaptic 

GABAARs with β and γ subunits [19]. The reduction in these GABAARs might possibly lead to 

rebound excitation after THIP withdraw. The stabilization of neuronal excitability, however, might 

affect cellular mechanisms reducing abnormalities, which could result in a long-term reduction in 

neuronal hyperexcitabiltiy after THIP withdraw, contributing to the outcome of THIP in breathing, 

motor function, social behaviors and lifespan. 

In conclusion, cellular hyperexcitability has been found in multiple neurons of Mecp2-null 

mice, associated with RTT-like symptoms. Early-life treatment with THIP reduces significantly 

the hyperexcitability of both LC and Me5 neurons in Mecp2-null mice without affecting most of 

the intrinsic membrane properties. The gene expressions, including the genes of biosynthesis 

enzyme gene and receptor subunits, are affected in Mecp2-null LC neurons. The THIP effect 

persists for at least one week after THIP withdrawal. The results suggest that THIP, a potential 

therapeutic medicine, seems capable of stabilizing neuronal excitability and improvement of the 

biosynthesis enzyme expression in Mecp2-null mice, which may contribute to the RTT-like 

symptom mitigation.  
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Figure 7- 1. Age-dependent increase in excitability of LC and Me5 neurons in Mecp2−/Y 

mice.  

(A1-A2) Neuronal activity was studied in whole-cell current clamp, LC neurons in Mecp2−/Y mouse 

showed increased firing frequency in comparison to its WT counterpart. Such hyperexcitability 

deteriorated with growth. (A3-A4) Statistically, the increased LC neuronal excitability in Mecp2-

null mice was significantly different from the WT, and showed age dependence (A3: Pearson 

correlation. A4: Significant differences were found in the main factors of genotype (df = 1, F = 

66.14, P < 0.001) and age (df = 1, F = 16.53, P < 0.001). Significant interaction was found between 

the two factors as well. ###P < 0.01; Two-way ANOVA and **P < 0.01, ***P < 0.001; Tukey’s 
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post-hoc). (B1-B2) With injections of a series of depolarizing currents, most of the Me5 neurons in 

WT neurons fired single action potential, while the Mecp2-null Me5 ones fired multiple action 

potentials. The excitability of Me5 neurons in Mecp2-null did not show the age dependence (NS, 

not significantly different; Student’s t-test). 
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Figure 7- 2. Relationship of LC neuronal excitability with breathing abnormalities. 

(A1-A3) Typical records of breathing activity from both WT and Mecp2-null mice at different ages 

and the breathing abnormalities deterioration with the age. (B-C) Breathing activity was measured 

immediately before Mecp2-null mice were used for brain slice studies. In the Mecp2-null mice 

older than 6 weeks, LC neuronal firing rate increased proportionally with the severities of apnea 

rate and breathing frequency variation (Pearson correlation). Such relationship was not found in 

the WT mice.  
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Figure 7- 3. THIP administration suppressed the hyperexcitability of LC neurons in Mecp2-null 

mice.  

(A1-A2) Typical recordings of spontaneous firing of LC neurons in WT and Mecp2-null mice at 

one-month of age without THIP treatment. (B1-B2) Spontaneous firing of LC neurons in WT and 

Mecp2-null mice of the same age with THIP treatment. (C-F) THIP administration did not 

significantly change membrane potentials, input resistance, action potential overshoot and action 

potential threshold in both WT and Mecp2-null mice. No significant main effect of THIP treatment 

(F = 0.09, df = 1, P = 0.765; F = 1.15, df = 1, P = 0.289; F = 0.27, df = 1, P = 0.606; F = 0.76, df 

= 1, P = 0.387; Fig C, D, E, F, respectively) and genotype (F = 1.45, df = 1, P = 0.234; F = 0.09, 

df = 1, P = 0.765; F = 0.01, df = 1, P = 0.921; F = 0.99, df = 1, P = 0.324; Fig C, D, E, F, 

respectively) were observed, either the interaction (F = 0, df = 1, P = 1.000; F = 1.46, df = 1, P = 
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0.232; F = 0.03, df = 1, P = 0.863; F = 3.58, df = 1, P = 0.064; Fig C, D, E, F, respectively). (G) 

The main effect of genotype was significant (F = 10.06, df = 1, P < 0.01), whereas the main effect 

of THIP treatment was not (F = 1.72, df = 1, P = 0.196). The interaction of these two factors was 

significant (F = 8.6, df = 1, P < 0.01) as well (## P < 0.01; Two-way ANOVA). The firing activity 

of LC neurons in Mecp2-null mice is significantly increased compared to the WT and chronic 

treatment with THIP abolished the hyperexcitability (Vehicle: n = 14 and n = 13; THIP: n = 13 

and n = 16; in WT and Mecp2-null, respectively; *** P < 0.001; Tukey’s post hoc).  
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Figure 7- 4. THIP exposure alleviated the Me5 neuronal hyperexcitability.  

(A-C) THIP significantly reduced the firing rate of Me5 neurons in Mecp2-null mice with 

comparative amount of current injections (A). Such a relief of Me5 neuronal excitability was not 

found in the WT mice (B). In comparison to the WT, a significantly larger number of Me5 neurons 
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in Mecp2-null mice fired multiple action potentials, which was also suppressed by THIP treatment 

(C) (*** P < 0.001, ** P < 0.01; Student’s t-test and χ2-test).  
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Figure 7- 5. THIP effects on intrinsic membrane properties of Mecp2-null Me5 neurons.  

(A-B) The membrane potential and input resistance were not altered with THIP treatment in either 

Mecp2-null Me5 cells or WT ones. (C-F) THIP significantly shifted the firing threshold of Me5 
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neurons to more depolarizing potentials in Mecp2-null mice, but not in WT (C). THIP did not 

change the other parameters of AP morphology, including amplitude, rise time and half width (D50, 

measured at 50% amplitude) in either WT or Mecp2-null neurons (D-F). (G-H) In Me5 cells, Sag 

and PIR was not significantly changed with THIP treatment as well (* P < 0.05; Student’s t-test).  
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Figure 7- 6. The THIP effects on neuronal excitability one week after withdrawal.  

 (A) The hyperexcitability of LC neurons was significantly lower in Mecp2-null mice with THIP 

treatment than in those without. Significant differences were found in the main factors of genotype 

(df = 1, F = 34.27, P < 0.001) and treatment (df = 1, F = 7.55, P = 0.008). No significant interaction 

was found between the two factors (##P < 0.01, Two-way ANOVA and ***P < 0.001, Tukey’s 



 

118 

 

post-hoc). (B) In Mecp2-null Me5 neurons, the suppression of neuronal excitability by THIP was 

remained (B1). The number of cells with repetitive firing activity was significantly reduced with 

THIP treatment in comparison to those without (B2) (*P < 0.05; Student’s t-test and χ2-test).  
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Figure 7- 7. Breathing abnormalities remained suppressed one-week after THIP 

withdrawal.  

 (A1-A2) Typical records of breathing activity from both WT and Mecp2-null mice at P61. (B-C) 

The apnea rate (B) and breathing frequency variation (C) in Mecp2-null mice were significantly 

reduced in comparison to the vehicle control. Significant differences were found in the main 

factors of genotype (B: df = 1, F = 57.89, P < 0.001; C: df = 1, F = 34.44, P < 0.001) and treatment 

(B: df = 1, F = 8.11, P = 0.007; C: df = 1, F = 10.33, P = 0.003). Significant interactions were 

found between the two factors in apnea, but not in breathing frequency variation (##P < 0.01, Two-

way ANOVA and ***P < 0.001, Tukey’s post-hoc). 
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Figure 7- 8. Improvement of TH and DBH expressions with THIP administration in 

Mecp2-null mice.  

 (A-B) qPCR analysis showed that during THIP treatment (P37), both TH and DBH transcript 

levels were significantly increased (Vehicle: n = 4 and n = 4 animals; THIP: n = 5 and n = 5 

animals; WT and Mecp2-null, respectively). (C-D) The Western analysis also indicated that 

THIP treatment significantly increased the protein expressions of both TH and DBH (Vehicle: n 

= 4 and n = 4 animals; THIP: n = 4 and n = 4 animals; WT and Mecp2-null, respectively; * P < 

0.05, **P < 0.01, ***P < 0.001; One-tailed Student’s t-test).  
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Figure 7- 9. Alteration of GABAAR subunits in the LC area of Mecp2-null mice. 

qPCR analysis indicated that the mRNA levels of δ and α6 subunits were 2.0 and 3.5 Times 

higher than the WT levels, while THIP treatment significantly reduced the expression level of α6 

subunit, without alteration of δ, β1 and β2 subunits (Vehicle: n = 4 and n = 4 animals; THIP: n = 

5 and n = 5 animals; WT and Mecp2-null, respectively; ** P < 0.01; Student’s t-test). 
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8 CHAPTER4: EFFECTS OF EXTRASYNAPTIC GABAAR AGONISTS EXPOSURE 

ON BRAINSTEM NEURONAL EXCITABILITY IN THE FEMALE MOUSE 

MODEL OF RETT SYNDROME 
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8.1 Abstract 

Rett Syndrome (RTT) is a neurodevelopmental disorder caused by mutations of the 

MECP2 gene, affecting predominantly females. One of the characteristic features of the disease is 

defective brainstem autonomic function. In Mecp2−/Y mice, several groups of brainstem neurons 

are overly excitable, which causes destabilization of neuronal networks for the autonomic control. 

We have previously shown that the extrasynaptic GABAA receptor agonist THIP relieves many 

RTT-like symptoms in Mecp2−/Y mice. Although neuronal activity is inhibited by acute THIP 

exposure, how a chronic treatment affects neuronal excitability remains elusive. Thus, we 

performed studies to address whether increased excitability occurs in brainstem neurons of female 

Mecp2+/− mice, how the MeCP expression affects the neuronal excitability, and whether chronic 

THIP exposure improves the neuronal hyperexcitability. Symptomatic Mecp2+/− (sMecp2+/−) 

female mice were identified with a two-step screening system. Whole-cell recording was 

performed in brain slices after a prior exposure of the sMecp2+/− mice to a 5-week low-dose THIP. 

Neurons in the locus coeruleus (LC) and the mesencephalic trigeminal nucleus (Me5) showed 

excessive firing activity in the sMecp2+/− mice. THIP pretreatment reduced the hyperexcitability 

of both LC and Me5 neurons in the sMecp2+/− mice, to a similar level as their counterparts in 

Mecp2−/Y mice. In identified LC neurons, the hyperexcitability appeared to be determined by not 

only the MeCP2 expression, but also their environmental cues. The alleviation of LC neuronal 

hyperexcitability seems to benefit brainstem autonomic function as THIP also improved breathing 

abnormalities of these sMecp2+/− mice.  
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8.2 Introduction 

Rett Syndrome (RTT) is an X chromosome-linked neurodevelopmental disorder, affecting 

1/10,000 live-birth females worldwide [1]. The major cause of the disease is mutations in the 

MECP2 gene encoding the transcriptional regulator methyl-CpG binding protein 2 (MeCP2). 

Targeting on the Mecp2 gene, a variety of rodent models has been developed in the RTT study. 

Like humans with RTT, the animal models show many RTT-like symptoms, including the motor 

dysfunction, social behavioral defects and dysfunctions in the autonomic nervous system [3, 107, 

173].  

Mutations in the Mecp2 gene cause defects in neurons of the CNS as well. In the Mecp2−/Y 

mice, the locus coeruleus (LC) neurons show increased membrane excitability, which may 

interfere with their NE biosynthesis, leading to the defects in the autonomic functions including 

breathing abnormalities [6, 50, 147]. Hyperexcitability also occurs in neurons in the mesencephalic 

trigeminal nucleus (Me5), which may affect proprioceptive control of several cranial motoneurons 

[53, 56], consistent with clinical manifestations of RTT such as difficulties in chewing, swallowing 

and tooth grinding [54, 55]. 

The neuronal hyperexcitability may be relieved by interventions to neurotransmission and 

neuromodulation. GABA is the prominent inhibitory neurotransmitter in the brain. In Mecp2−/Y 

mice, neurotransmission mediated by both GABAA-receptors and GABAB-receptors is defective 

[10]. The insufficient GABAergic inhibition may contribute to the neuronal hyperexcitability and 

several RTT-like symptoms. Indeed, inhibition of the neuronal hyperexcitability with GABA 

reuptake blocker NO711 and the GABAA receptor agonist benzodiazepine improves the breathing 

activity in Mecp2−/Y mice [12, 13]. In addition to these synaptic GABAA receptors, there is a group 

of extrasynaptic GABAA receptors. We have recently found that 4,5,6,7-tetrahydroisoxazolo(5,4-
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c)pyridin-3-ol (THIP, also known as Gaboxadol), an extrasynaptic GABAA-receptor agonist, 

alleviated the breathing abnormalities, motor dysfunctions and defects in social activities in 

Mecp2−/Y mice by enhancing the GABAergic inhibition and stabilizing the neuronal 

hyperexcitability [67]. Thus, further studies of the effects of THIP on the neuronal 

hyperexcitability and the consequent RTT-like symptoms in animal models may lead to a potential 

therapeutic agent for the disease. 

Although current studies are mostly performed in the male models that have a clean Mecp2-

null genetic background, it is necessary to show how these research findings manifest themselves 

in the heterozygous Mecp2+/− females. This is particularly important when potential therapeutics 

are concerned. Several factors may affect the symptom development in the Mecp2+/− mice 

differently from the males. 1) The X inactivation impacts the phenotypic outcome [105]. Although 

the random X chromosome inactivation would theoretically render a half of Mecp2+/− individuals 

to carry the mutated gene, our previous study suggests that only ~20% the Mecp2+/− mice 

developed breathing disorders [107]. Indeed, the nonrandom X (or preferred) inactivation has been 

reported to contribute to clinical symptom variations [106]. 2) Instead of uniform expression, 

central neurons show mosaic patterns of MeCP2 expression in the Mecp2+/− mice, which vary 

among regions and animal ages [104]. The MeCP2 expression may affect symptom development 

in human patients and female animal models. 3) A previous study has shown that neurons with 

defective MeCP2 can affect the development of surrounding cells in Mecp2+/− mice [109], a 

phenomenon that may affect neuronal response to interfering with their membrane excitability in 

the Mecp2+/− mice.  

However, it is still unknown what happens to excitability of brainstem neurons in the 

Mecp2+/− mice, how the neuronal excitability is related to MeCP2 expression, and whether the 
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THIP treatment may lead to different effects on the neuronal excitability in the Mecp2+/− mice from 

Mecp2−/Y mice. To address these questions, we performed this study in two groups of brainstem 

neurons in the Mecp2+/− mice, and compared their excitability as well as THIP effects with those 

in Mecp2−/Y mice. A special attention was paid to the cellular outcome of the THIP administration 

in LC neurons with respect to neuronal firing activity and breathing abnormalities.  

 

8.3 Results 

8.3.1 LC neurons in symptomatic Mecp2+/− mice showed hyperexcitability that was alleviated 

with THIP exposure in early life 

Owing to random inactivation of the X chromosome, symptoms varied between 

heterozygous females. To separate these mice, a two-step identification procedure was used. 

Firstly, we adopted the scoring system proposed previously [51] with modifications to determine 

potential symptomatic Mecp2+/− mice, which consisted of 1) abnormal mobility, 2) abnormal gait, 

3) hindlimb clasping, 4) tremor, 5) breathing abnormalities and 6) weak general condition. Score 

0 was assigned to a mouse if none of these signs was found; the animal was scored 1 if any one of 

the 6 signs was shown to be mild (score 6 if the mouse showed all); score 2 if any of the signs was 

severe (maximum 12). The Mecp2+/− mouse was placed in the potential symptomatic group if it 

received 3 scores or more. Secondly, the mouse was considered to be symptomatic when it also 

showed breathing abnormality in the plethysmograph test as we reported previously [107]. Only 

were the symptomatic Mecp2+/− (sMecp2+/−) mice used in the present study, which were divided 

into two groups and treated with vehicle or THIP as described in the Methods.  
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LC neurons were recorded from the sMecp2+/− and WT Mecp2+/+ mice in whole-cell current 

clamp. In the vehicle-treated group, the LC neurons showed significantly higher firing activity in 

the sMecp2+/− mice than in the Mecp2+/+ mice (Fig. 8-1A). The firing rate of these neurons was 5.7 

± 0.3 Hz in sMecp2+/− mice and 4.0 ± 0.4 Hz in Mecp2+/+ mice, respectively. They were 

significantly different from each other (Mecp2+/+: n = 15; sMecp2+/−: n = 27; P = 0.002; Fig. 8-

1C).  

In the THIP group treated for 5 consecutive weeks, LC neuronal firing activity was similar 

between sMecp2+/− and Mecp2+/+ mice (Fig. 8-1B). Statistical analysis indicated that THIP 

treatment significantly reduced the firing rate to 3.8 ± 0.4 Hz in sMecp2+/− mice (Mecp2+/+: n = 15 

and n = 11; sMecp2+/−: n = 27 and n = 22; Vehicle and THIP, respectively; Fig. 1D, Table 1). Note 

that there was no THIP added to the recording chamber in this and the rest of our studies. Thus, 

LC neurons in the sMecp2+/− mice showed excessive firing activity like cells in their male 

Mecp2−/Y counterpart, and chronic exposure to THIP reduced the neuronal hyperexcitability. 

8.3.2 The THIP exposure affected both MeCP2-positive and MeCP2-negative LC neurons 

Because of the mosaic expression of MeCP2 in the female neurons, cells with different 

genetic backgrounds may contribute unevenly to the overall LC NE-ergic output in sMecp2+/− 

females, leading to variant responses to the THIP pretreatment. To test this possibility, single-cell 

PCR (scPCR) was performed to identify the MeCP2 expression in each individual LC cell. In the 

experiment, a strong negative pressure was applied to the recording pipette for ~10s immediately 

after the electrophysiological recording. The pipette was then placed in a cold RNAase inhibitor 

containing buffer solution with the pipette tip carefully broken, followed by PCR test (Fig. 8-2D). 
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In comparison to the WT cells, both MeCP2-positive and MeCP2-negative LC neurons 

showed increased firing activity, although the latter appeared slightly higher (Fig. 8-2A-C). 

Statistically, the firing rate of both was significantly different from WT LC neurons, whereas no 

significant difference was found between the MeCP2-positive and MeCP2-negative cells 

(Mecp2+/+: n = 13; MeCP2-positive: n = 14; MeCP2-negative: n = 11; Fig. 8-2E, Table 2), 

suggesting that the hyperexcitability of LC neurons may not be determined solely by endogenous 

MeCP2 expression, and exogenous factors or presynaptic events seem to play a role as well.  

To show how the chronic THIP exposure affects hyperexcitability of LC neurons with and 

without MeCP2 expression, we compared the firing rate of identified LC neurons with respect to 

MeCP2 expression. The chronic THIP treatment significantly reduced the firing rate of both 

MeCP2-positive and MeCP2-negative cells in sMecp2+/− mice (Mecp2+/+: n = 13 and n = 11; 

MeCP2-positive: n = 14 and n = 11; MeCP2-negative: n = 11 and n = 9; Vehicle and THIP, 

respectively; Fig. 8-3A, C, Table 2), while in the vehicle control cells from either group remained 

hyperexcitable (Fig. 8-3B). When the percentage inhibition of LC neuronal firing rate by the THIP 

exposure was compared, no significant difference was seen between MeCP2-positive cells, 

MeCP2-negative cells and cells from sMecp2+/− mice without MeCP2 identification (MeCP2-

positive: n = 11; MeCP2-negative : n = 9; sMecp2+/−: n = 20; Fig. 8-3D). Therefore, the THIP 

exposure suppressed the excessive firing activity of LC neurons in sMecp2+/− mice to a similar 

degree in MeCP2-positive and MeCP2-negative cells. 



 

129 

 

8.3.3 The THIP pretreatment did not change MeCP2 expression in LC neurons of Mecp2+/− 

mice 

To test whether THIP pretreatment alters the MeCP2 expression pattern in LC neurons of 

Mecp2+/− mice, immunocytochemistry was used to visualize the MeCP2 expression. In the LC 

area, ~70% TH-positive cells showed positive MeCP2 immunoreactivity. The THIP pretreatment 

for 5 weeks did not change the expression ratio (Vehicle: 4 animals; THIP: 4 animals; Fig. 8-

4A,B).  

The presence of MeCP2 mRNA was examined with scPCR in individual cells that had 

undergone electrophysiological studies. The scPCR experiment showed a slightly lower 

occurrence rate (~60%) of MeCP2-positive cells than immunocytochemistry. This ratio was not 

enhanced after the 5-week THIP treatment (Vehicle: 2 animals; THIP: 4 animals; Fig. 8-4C). 

Therefore, the alleviation of the LC neuronal hyperexcitability with THIP pretreatment did not 

seem to be mediated by increased MeCP2-positive cells in sMecp2+/− mice. 

8.3.4 THIP exposure relieved Me5 neuronal hyperexcitability in symptomatic Mecp2+/− mice 

It is possible that the THIP exposure improves hyperexcitability in other neurons as well. 

We have previously found that neurons in the mesencephalic trigeminal nucleus (Me5), located 

adjacent to the LC nuclei in the brainstem, are hyperexcitable in male Mecp2-null mice [53, 56]. 

Therefore, we chose the Me5 neurons to further examine the THIP effects. Although the Me5 

neurons are silent at basal condition in both WT and Mecp2-null mice, their excitability can be 

tested with depolarizing current injections.  

With step depolarizing currents the Me5 neurons showed firing activity. When the firing 

rate was compared, we found that the Me5 neurons in sMecp2+/− mice fired a significantly higher 
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frequency of action potentials than the cells in WT (Mecp2+/+) mice (Fig. 8-5A, B). With the 

comparable current injection, the Me5 neuronal firing rate was significantly higher in sMecp2+/− 

mice than in WT mice (P < 0.001; Fig. 8-5C). The chronic THIP treatment reduced Me5 neuronal 

hyperexcitability in sMecp2+/− mice (P < 0.001, Fig. 8-5D) without affecting the membrane 

potential and input resistance (Table 1) suggesting that THIP exposure affects excitability of 

multiple neuronal types in sMecp2+/− mice. 

8.3.5 The THIP effect on neuronal excitability was comparable between Mecp2−/Y and 

symptomatic Mecp2+/− mice 

How do the remaining MeCP2-positive neurons contribute to the THIP effects on neuronal 

hyperexcitability in the sMecp2+/− mice? To address this question, we compared the THIP effects 

in the sMecp2+/− mice with those in male Mecp2-null mice. Under the Mecp2-null condition, 

spontaneous firing rate of LC neurons was much higher than in the male WT, consistent with 

previous reports [67, 147]. The neuronal hyperexcitability was significantly reduced with THIP 

pretreatment compared to the vehicle control (WT: n = 14 and n = 13, Mecp2−/Y: n = 14 and n = 

13; Vehicle and THIP, respectively; Fig. 8-6A). THIP exposure also affected firing activity of Me5 

neurons in Mecp2-null mice. With comparable current injections, The THIP pretreatment 

markedly suppressed the evoked firing of Me5 neurons in Mecp2-null mice (Vehicle: n = 17, 

THIP: n = 16; P < 0.001; Fig. 8-6B2), whereas there was no significant alteration in WT cells 

(Vehicle: n = 14, THIP: n = 18; P > 0.05; Fig. 8-6B1).  

To compare the THIP effects on neuronal excitability between Mecp2−/Y and sMecp2+/− 

mice, the firing rate of these Mecp2-defective neurons was normalized to their vehicle control. 

Chronic THIP exposure reduced the excessive firing of LC neurons by 30% in sMecp2+/− mice, 
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which was similar to the Mecp2−/Y mice (sMecp2+/−: n = 22; Mecp2−/Y: n = 13; P > 0.05; Fig. 8-

7A1). The reduction in LC neuronal firing activity with the THIP pretreatment made the FR of 

sMecp2+/− mice similar to that in the WT control, which also resembled Mecp2−/Y mice when the 

data were described as the percentage of the WT levels (P > 0.05; Fig. 8-7A2). In Me5 neurons, 

THIP produced similar levels of reductions in neuronal firing activity in Mecp2−/Y and sMecp2+/− 

mice with 400-500pA injection (sMecp2+/−: n = 13; Mecp2−/Y: n = 17; P > 0.05; Fig. 8-7B1). 

Compared to the WT controls, the degree of the THIP effect was not significantly different 

between Mecp2−/Y and sMecp2+/− mice (P > 0.05; Fig. 8-7B2). Therefore, these results suggested 

that chronic THIP treatment significantly suppressed the neuronal hyperexcitability to the similar 

degree in Mecp2-null and sMecp2+/− mice. 

8.3.6 The THIP pretreatment improved breathing in symptomatic Mecp2+/− mice 

LC neurons are known to play a role in breathing regulation, and the moderation of its 

hyperexcitation may improve breathing abnormalities. Therefore, we studied breathing activity in 

plethysmography. In the experiment, 14 sMecp2+/− animals were randomly separated into two 

groups. One group was pretreated with THIP as described in the Methods and the other was 

pretreated with regular water as vehicle control. Similarly, 14 Mecp2+/+ mice were grouped, 

serving for negative controls. Breathing abnormalities were found in sMecp2+/− mice as 

significantly higher apnea rate and breathing frequency variation in comparison to their WT 

counterpart before THIP pretreatment (WT: n = 7 and n = 7, Mecp2−/Y: n = 7 and n = 7; Vehicle 

and THIP, respectively; Fig. 8-8). The chronic THIP treatment for 5 weeks abolished the difference 

between sMecp2+/− and Mecp2+/+ mice. Such an effect was not seen in the vehicle treated group. 

Therefore, the THIP pretreatment also alleviated the breathing abnormalities in sMecp2+/− mice.  
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To compare the 5-week THIP effects on breathing activity between Mecp2−/Y and 

sMecp2+/− mice, the apnea rate and frequency variation were normalized to their vehicle control. 

THIP reduced the apnea rate by half in sMecp2+/− mice, and 45% in the Mecp2−/Y mice. No 

significant difference was found (sMecp2+/−: n = 7; Mecp2−/Y: n = 8; P > 0.05; Fig 8-9A), 

suggesting THIP pretreatment seems to have similar effects on these two models. Although the 

relief of in sMecp2+/− mice was significantly lower than the Mecp2−/Y ones (P = 0.016; Fig 8-9B1), 

THIP brought the variation to their WT level similarly in both sMecp2+/− and Mecp2−/Y mice 

(sMecp2+/−: n = 7; Mecp2−/Y: n = 8; P > 0.05; Fig 8-9B2).  

 

8.4 Discussion 

We have shown evidence for increased neuronal excitability in sMecp2+/− mice. In 

identified LC neurons, the hyperexcitability seems to be determined by not only the MeCP2 

expression pattern, but also their environmental cues. The neuronal hyperexcitation is also found 

in Me5 neurons in the sMecp2+/− mice. Chronic THIP treatment reduced the hyperexcitability of 

both LC and Me5 neurons in the sMecp2+/− mice, to a similar level as their counterparts in 

Mecp2−/Y mice. The alleviation of LC neuronal hyperexcitability may benefit brainstem autonomic 

function as THIP also improves breathing abnormalities in sMecp2+/− mice.  

8.4.1 Identification of symptomatic females 

In comparison to the Mecp2-null models, heterozygous Mecp2+/− mice recapitulate only 

some of the RTT-like phenotypes, and show relatively mild symptoms. They usually develop RTT-

like symptoms around 6 months of age, which is much later than the Mecp2-null mice. The number 

of mice with clear RTT-like phenotypes is not as high as expected based on the X chromosome 
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inactivation. According to our previous study, only 15-20% Mecp2+/− mice at ages of 1-6 months 

show breathing abnormalities [107]. These variations in phenotype manifestation, defect severity 

and symptom onset time complicate the pharmacological intervention to the female models.  

A crucial step to approach the female models is to identify the sMecp2+/− mice from the 

rest. Thus, a scoring system has been used previously [51]. In the present study, we adopted this 

scoring system with modifications. In addition, we have introduced the second tier of phenotypical 

identification based on two types of breathing abnormalities. Using this new screening system, we 

have identified sMecp2+/− mice for our electrophysiological studies in a ratio of approximately one 

in every three females at age of 6-9 months. Supporting such a phenotype identification procedure 

are our data showing that LC neurons with negative expression of MeCP2 are hyperexcitable to 

the same degree as in the sMecp2+/− mice.  

8.4.2 Neuronal hyperexcitability in female and male models and the THIP effects  

Imbalance in neuronal excitation-inhibition has been found in several brain regions of 

Mecp2-null mice, including the hippocampus, medial prefrontal cortex (mPFC) and brainstem [18, 

66, 68, 140, 147, 164, 165, 168, 197, 198]. In the hippocampus, the decreased inhibitory rhythmic 

activity in hippocampal CA3 circuit makes the cells prone to hyperexcitability [66, 197]. In the 

cortex, layer 5 pyramidal neurons of the mPFC are hyperexcitable due to the reduced GABAergic 

input [164]. In the brainstem, neurons in the solitary tract nucleus in the medulla show increased 

Fos expression associated with increased frequency of spontaneous and miniature EPSCs and 

increased amplitude of evoked EPSCs in Mecp2-null mice [68]. Interestingly, suppression of 

neuronal hyperexcitability with ketamine, an NMDA receptor antagonist, has been shown to 

benefit cortical neuronal hypoexcitability [199].  
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In LC neurons of the Mecp2-null mice, we have previously shown that synaptic inhibition 

mediated by both GABAA-receptors and GABAB-receptors are markedly reduced with inadequate 

GABA release from presynaptic terminals [10], which may contribute to neuronal 

hyperexcitability, leading to the consequent defects in the autonomic system. Instability in Me5 

neuronal excitability was also reported in Mecp2-null mice [53, 56], which may affect 

proprioception of facial muscles and motor function [200-202], consistent with clinical 

manifestations of RTT showing defects in chewing, swallowing and teeth grinding [54, 55]. A 

previous study has shown that selective deletion of Mecp2 gene in GABAergic neurons 

recapitulates most of the symptoms as RTT, which indicated the GABA neurotransmission system 

may be a target to control the neuronal hyperexcitability and consequently alleviate RTT-like 

symptoms. Indeed, in Mecp2-null mice, administration of benzodiazepine or GABA reuptake 

blocker suppresses breathing defects [12, 13]. In addition, a recent study showed restoration of the 

Mecp2 gene in GABAergic neurons rescued some of the RTT-like symptoms substantially not 

only in Mecp2-null, but also Mecp2+/− mice [203]. Therefore, GABAergic neurons may be a key 

to control the excitation/inhibition balance in RTT mouse models. Indeed, we have found that 

chronic treatment of THIP reduced the LC hyperexcitability and alleviated a series of RTT-like 

symptoms in Mecp2-null mice [83]. With the chronic treatment, the GABAergic inhibition was 

persistently enhanced, which may result in the alteration of gene expression or functional 

improvement of the neuronal network, leading to the consequent persistent alleviation of neuronal 

hyperexcitability and the behavior abnormalities. 

8.4.3 MeCP2 expression and potential mechanisms underlying the THIP effects  

Although the mechanism is unclear, the X chromosome inactivation has an impact on RTT 

phenotype development [105]. The large individual variation of RTT symptoms has been 
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suggested attributable to the nonrandom X inactivation [106]. Another previous study also suggest 

that the nonrandom X inactivation caused by suppression of mutated paternal allele activation may 

lead to the milder phenotype clinically [204]. Therefore, altering the X inactivation ratio or the 

MeCP2 expression pattern in the CNS may be beneficial to the RTT symptoms. 

In this study, we have found neuronal hyperexcitability in two types of brainstem neurons 

in sMecp2+/− mice. The levels of the neuronal hyperexcitability in sMecp2+/− mice in age of 7~10 

months are comparable to those in 4~6 week old Mecp2-null mice. By grouping cells with or 

without MeCP2 expression, we have studied both types of LC neurons. Our results indicate that 

both MeCP2-positive and MeCP2-negative LC neurons show similar levels of hyperexcitability. 

This finding is a bit surprising as the MeCP2-positive neurons were supposed to be able to manage 

some of the defects. Although what makes both types of cells hyperexcitable is still unknown, it 

is reasonable to believe that certain exogenous factors may play a role, including the cellular micro-

environments and presynaptic modulation. This suggests that at the cellular level, defects may not 

be limited to neurons that lack MeCP2 expression in sMecp2+/− mice, while the defects seem to 

involve both pre- and postsynaptic mechanisms. Supporting the hypothesis is the GABA 

deficiency found in Mecp2-null and Mecp2+/− mice [69, 83], which is a significant presynaptic 

factor to LC neurons [10]. THIP, as the extrasynaptic GABAAR agonist, may favor the 

reinstallation of the GABAergic inhibition and lead to the consequent improvement of 

excitation/inhibition balance in the target cells in RTT mouse models. In addition, consistent with 

the hypothesis, previous studies have shown that cells expressing mutated Mecp2 gene in Mecp2+/− 

mice can affect the development of surrounding cells, including those with WT Mecp2 [109]. Also 

consistent with the hypothesis are our findings that the high firing rate of both MeCP2-positive 

and MeCP2-negative cells in sMecp2+/− mice is moderated with THIP pretreatment. The 
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hypothesis may explain the similar hyperexcitability between MeCP2-negative neurons and 

unidentified LC cells in sMecp2+/− mice as well, as both MeCP2-positive and MeCP2-negative 

cells exist in the sMecp2+/− mice, and as both these cells are hyperexcitable.  

8.4.4 Therapeutical implications 

THIP is currently under clinical trials for Angelman Syndrome, and may be moved to 

fragile X syndrome soon. As a potential therapeutical drug, THIP in the chronic exposure shows 

several beneficial effects in RTT models. In addition to counterbalancing neuronal 

hyperexcitability shown in the present study, we have recently shown that the THIP exposure 

improves general physical conditions, motor function, social behaviors and lifespan in Mecp2-null 

mice [83]. Although the genetic backgrounds of Mecp2-null and Mecp2+/− mice are different, their 

RTT phenotypical manifestations share many similarities. Also similar is the defective 

GABAergic transmission, which may allow intervention to the GABA system in both models. 

Indeed, chronic THIP treatment suppressed neuronal hyperexcitability in Mecp2+/− mice and 

alleviated mouse breathing disturbance as in Mecp2-null mice. Further studies are needed to 

evaluate systemically THIP as a potential therapeutic drug, including its effects on motor function, 

cognition and social behaviors with comparable hormone levels in each individual Mecp2+/− mouse 

as well as pharmacodynamics and pharmacokinetics. In this regard, the understanding of cellular 

changes in the CNS appears to facilitate the further studies of THIP in animal models of RTT. 
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Figure 8- 1. Firing activity of LC neurons in mice after a chronic exposure to THIP or the 

vehicle.  

 (A-B) Typical records of spontaneous firing rate in LC neurons from both WT (Mecp2+/+) and 

sMecp2+/− mice with and without prior THIP exposure. (C) The LC neurons in the sMecp2+/− mice 

showed significantly higher firing rate than the WT. (Mecp2+/+: n = 15; sMecp2+/−: n = 27; ** P < 

0.01; Student’s t-test) (D) The prior THIP exposure significantly reduced the LC neuronal 
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hyperexcitability in sMecp2+/− mice without any change in the WT. Note that open bars were from 

Figure 1C. Significant main effect of treatment (F = 11.87, df = 1, P < 0.001) and genotype (F = 

4.21, df = 1, P = 0.044) were observed, as well as the interaction of these two factors (F = 5.92, df 

= 1, P = 0.018). (Mecp2+/+: n = 15 and n = 11; sMecp2+/−: n = 27 and n = 22; Vehicle and THIP, 

respectively; ### P < 0.001; Two-way ANOVA; *** P < 0.001; Fisher’s LSD post hoc) 
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Figure 8- 2. The influence of MeCP2 expression on LC neuronal hyperexcitability in 

sMecp2+/− mice.  

 (A-C) Representative records of spontaneous firing rate from WT (Mecp2+/+), MeCP2 (+) 

(MeCP2-positve) and MeCP2 (-) (MeCP2-negative) LC neurons. (D) The MeCP2 expression 

pattern in MeCP2-positve and MeCP2-negative LC cells viewed with single cell PCR. (E) The 

firing rate of both MeCP2-positve and MeCP2-negative cells was significantly higher than the 

WT, whereas no difference was found between these two. (Mecp2+/+: n = 13; MeCP2+: n = 14; 

MeCP2-: n = 11; One-way ANOVA; * P < 0.05, ** P < 0.01; Fisher’s LSD post hoc) 
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Figure 8- 3. Chronic THIP exposure stabilized hyperexcitability of MeCP2-positve and 

MeCP2-negative LC cells.  

(A-B) Typical records of firing rate from MeCP2-positve and MeCP2-negative LC cells with and 

without prior THIP exposure. (C) The THIP exposure significantly reduced the firing rate of both 
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MeCP2-positve and MeCP2-negative LC cells without affecting the WT ones. Note that open bars 

were from Figure 2E. The main effect of treatment was significant (F = 8.81, df = 1, P = 0.004). 

No significant differences were found in the main effect of genotype (F = 2.27, df = 2, P = 0.112) 

and the interaction of these two factors was significant (F = 3.10, df = 2, P = 0.052). (Mecp2+/+: n 

= 13 and n = 11; MeCP2+: n = 14 and n = 11; MeCP2-: n = 11 and n = 9; Vehicle and THIP, 

respectively; ## P < 0.01; Two-way ANOVA; * P < 0.05, ** P < 0.01; Fisher’s LSD post hoc) 

(D) The THIP effect was compared between LC neurons that were MeCP2-positve, MeCP2-

negative and non-identified from sMecp2+/− mice after normalization of their firing rate to that of 

the vehicle control neuron. No significant difference was seen between these cells. (MeCP2+: n = 

11; MeCP2-: n = 9; sMecp2+/−: n = 20; P > 0.05; One-way ANOVA) 
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Figure 8- 4. Chronic THIP exposure did not change MeCP2 expression in LC neurons of 

Mecp2+/− mice.  

 (A) In the immunocytochemistry (ICC) experiment, similar numbers of MeCP2-positve and 

MeCP2-negative LC cells were seen in sMecp2+/− mice with or without the THIP exposure. (B) 

The ratio of MeCP2-positve vs MeCP2-negative LC cells did not show any statistical significance. 

(THIP: 4 animals; Vehicle: 4 animals; P > 0.05; χ2-test) (C) In the single cell PCR (scPCR) 
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experiment, 14 of 25 cells expressed MeCP2 in Mecp2+/− mice and THIP treatment did not 

significantly change the ratio. (THIP: 4 animals; Vehicle: 2 animals; P > 0.05; χ2-test) 
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Figure 8- 5. Chronic THIP exposure resumed Me5 neuronal excitability in sMecp2+/− mice.  

 (A-B) Me5 neurons did not fire action potentials spontaneously. With step depolarizing current 

injections, most Me5 neurons in sMecp2+/− mice fired multiple action potentials. The THIP 

exposure diminished the tendency of hyperexcitability. (C) With similar amount of current 

injections, the Me5 neurons in sMecp2+/− mice tended to fire more action potential in comparison 

to the WT (Mecp2+/+). (D) The THIP administration stabilized the neuronal excitability of Me5 

neurons in sMecp2+/− mice compared to the control. (Vehicle: n = 12 and n = 17, THIP: n = 10 and 
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n = 14, WT and sMecp2+/−, respectively; *** P < 0.001; Student’s t-test) (E-F) THIP did not affect 

the resting membrane potential (E) and input resistance (F) of the Me5 cells in both WT and 

sMecp2+/− mice (P > 0.05; Two-way ANOVA) 
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Figure 8- 6. The effect of chronic THIP exposure on neuronal excitability in Mecp2−/Y mice.  

 (A) Chronic THIP exposure significantly diminished the hyperexcitability of LC neurons in 

Mecp2−/Y mice without any significant change in WT ones. Significant differences were found in 

both main effect of genotype (F = 9.65, df = 1, P = 0.003) and treatment (F = 4.44, df = 1, P = 
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0.040). The significant interaction between the two factors (F = 12.27, df = 1, P = 0.001) was 

shown as well. (WT: n = 14 and n = 13, Mecp2−/Y: n = 14 and n = 13; Vehicle and THIP, 

respectively; # P < 0.05; Two-way ANOVA; *** P < 0.001; Fisher’s post hoc) (B1-B2) In Me5 

neurons with comparable current injections, the THIP exposure suppressed the evoked firing in 

Mecp2-null without any significant effect on WT cells. (WT: n = 14 and n = 18; Mecp2−/Y: n = 17, 

THIP: n = 16; Vehicle and THIP, respectively; *** P < 0.001; Student’s t-test) 
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Figure 8- 7. Comparison of THIP effects on neuronal excitability between Mecp2−/Y and 

sMecp2+/− mice. 

 (A1-A2) After normalization to their vehicle control, chronic THIP exposure suppressed the firing 

rate of LC neurons similarly between Mecp2−/Y and sMecp2+/− mice (A1). Also, THIP brought the 

firing rate of both Mecp2−/Y and sMecp2+/− neurons to their WT level in the mice (A2) (sMecp2+/−: 

n = 22; Mecp2−/Y: n = 13). (B1-B2) With 400~500pA injection, THIP treatment suppressed the 

firing rate of sMecp2+/− Me5 neurons by 60% after normalizing to the vehicle control, which is 

similar to the Mecp2−/Y ones (B1). In sMecp2+/− mice, the THIP treatment kept Me5 neurons firing 

high rate to 256% compared to their WT control with same current injection, but still no difference 
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was found between the Mecp2−/Y and sMecp2+/− mice due to large variations (B1). (sMecp2+/−: n = 

13; Mecp2−/Y: n = 17; P > 0.05; Student’s t-test) 
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Figure 8- 8. The chronic THIP exposure improved breathing in sMecp2+/− mice.  
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 (A-B) Typical records of breathing activity from both Mecp2+/+ and sMecp2+/− mice with and 

without THIP treatment. Inspiration: downdraft. (C-D) The sMecp2+/− mice developed severe 

breathing abnormalities showing high apnea rate (C) and breathing frequency variation (D) 

compared to their WT (Mecp2+/+) control. The chronic THIP treatment abolished the difference 

between sMecp2+/− and WT mice in both apnea rate and f variation. (* P < 0.05, ** P < 0.01, *** 

P < 0.001; Fisher’s LSD post hoc) (C) The main effect of genotype (F = 21.28, df = 1, P < 0.001) 

and time (F = 5.37, df = 1, P = 0.025) were significant. The main effect of treatment (F = 3.04, df 

= 1, P = 0.088), interactions of genotype × treatment (F = 2.51, df = 1, P = 0.120), genotype × time 

(F = 0.14, df = 1, P = 0.712), treatment × time (F = 1.60, df = 1, P = 0.212) or genotype × treatment 

× time (F = 2.65, df = 1, P = 0.110) were not significant. (### P < 0.001; Three-way ANOVA) (D) 

The main effect of genotype (F = 30.13, df = 1, P < 0.001), treatment (F = 8.67, df = 1, P = 0.005) 

and interactions of genotype × treatment (F = 7.11, df = 1, P = 0.010) were significant. The main 

effect of time (F = 2.25, df = 1, P = 0.140), interaction of genotype × time (F = 1.55, df = 1, P = 

0.219), treatment × time (F = 1.73, df = 1, P = 0.195) or genotype × treatment × time (F = 2.25, df 

= 1, P = 0.140) were not significant. (WT: n = 7 and n = 7, Mecp2−/Y: n = 7 and n = 7; Vehicle and 

THIP, respectively; ### P < 0.001; Three-way ANOVA) 
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Figure 8- 9. Comparison of THIP effects on breathing activity between sMecp2+/− and 

Mecp2−/Y mice.  

 (A1-A2) THIP reduced the apnea rate of sMecp2+/− mice to ~56% after normalization to their 

vehicle control, which is not different from the Mecp2−/Y (A1). After normalization to their WT 

control, the THIP effects were similar between sMecp2+/− and Mecp2−/Y mice, though it appeared 

higher in the latter (A2) (sMecp2+/−: n = 7; Mecp2−/Y: n = 8). (B1-B2) After normalizing to the 

vehicle control, the effect of THIP in the f variation of sMecp2+/− mice was reduced by 38%, which 

is significantly lower than the Mecp2−/Y (50%) (B1). THIP treatment made the f variation of 

sMecp2+/− mice very close to their WT control, which is similar to the Mecp2−/Y ones (B2) 

(sMecp2+/−: n = 7; Mecp2−/Y: n = 8; * P < 0.05; Student’s t-test). 
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Table 8.1. Effects of chronic THIP treatment on LC and Me5 neurons in Mecp2+/+ and 

sMecp2+/− mice. 

  

Mecp2+/+ sMecp2+/−  

Vehicle THIP Vehicle THIP 

LC 

Vm (mV) 
-43.3 ± 0.5 

(n = 15) 

-43.6 ± 1.7 

(n = 11) 

-41.9 ± 1.4 

(n = 27)  

-42.0 ± 0.9 

(n = 22) 

Rm (MΩ) 
548.4 ± 43.0 

(n = 15)  

571.2 ± 44.1 

(n = 11) 

655.9 ± 41.6 

(n = 27) 

637.7 ± 58.2 

(n = 22) 

FR (Hz) 
4.0 ± 0.4 

(n = 15) 

4.0 ± 0.3 

(n = 11)  

5.7 ± 0.3 

(n = 27) 

3.8 ± 0.4*** 

(n = 22) 

Me5 

Vm (mV) 
-51.0 ± 1.2 

(n = 12) 

-52.8 ± 1.6 

(n = 10) 

-54.2 ± 1.2 

(n = 16) 

-51.6 ± 4.1 

(n = 14) 

Rm (MΩ) 
141.5 ± 37.6 

(n = 12) 

187.6 ± 54.4 

(n = 10) 

220.4 ± 34.3 

(n = 16) 

286.5 ± 47.5 

(n = 14) 

LC, locus coeruleus; Me5, mesencephalic trigeminal V; Vm, membrane potential; Rm, input 

resistance; FR, firing rate. Data are shown as means ± SE; n, number of cells; *** P < 0.001 

compared between treatment. 
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Table 8.2 THIP effects on LC neurons with and without MeCP2 expression 

LC 

Mecp2+/+ MeCP2-positive  MeCP2-negative  

Vehicle THIP Vehicle THIP Vehicle THIP 

Vm (mV) 
-43.4 ± 0.5 

(n = 13) 

-43.6 ± 1.7 

(n = 11) 

-41.8 ± 2.1 

(n = 14)  

-41.7 ± 1.1 

(n = 11) 

-41.6 ± 2.4 

(n = 11)  

-42.5 ± 1.6 

(n = 9) 

Rm (MΩ) 
563.9 ± 46.4 

(n = 13) 

571.2 ± 44.1 

(n = 11) 

678.0 ± 56.3 

(n = 14) 

632.4 ± 99.5 

(n = 11) 

637.5 ± 75.1 

(n = 11) 

653.1 ± 80.4 

(n = 9) 

FR (Hz) 
3.9 ± 0.4 

(n = 13) 

4.0 ± 0.3 

(n = 11)  

5.4 ± 0.5 

(n = 14) 

3.3 ± 0.6** 

(n = 11) 

5.7 ± 0.3 

(n = 11) 

4.1 ± 0.7* 

(n = 9) 

Vm, membrane potential; Rm, input resistance; FR, firing rate. ** P < 0.01, * P < 0.05 compared 

between treatment. 
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9 General discussions 

9.1 THIP administration  

9.1.1 Administration protocols  

RTT patients and mouse models start to develop symptoms a period after birth. In 

Mecp2−/Y mice, breathing disorders start at 2-3 weeks after birth, and defects in motor and social 

behaviors begin at 4-6 weeks. Pharmacological intervention before symptom manifestation in 

these RTT animals may prevent further development of the symptoms. To achieve such a goal, 

appropriate targets need to be found. The existence of extrasynaptic GABARs in the CNS 

enables such early intervention with respect to their spatial and temporal variations in subunit 

expressions, especially the δ subunit [80]. Thus, we chose to deliver THIP to the test animals 

starting from the date when they were born and continued the treatment till P53 in this study. 

With such treatment, our results show beneficial effects of THIP on RTT-like behaviors which 

might come from the early intervention by preventing the development of the neuronal defects. 

Indeed, the LC biosynthesis function was reinstalled and the THIP effects persisted one week 

after withdrawal, which indicated early treatment of THIP might innervate the gene expressions 

in the CNS of RTT mice, leading to the beneficial effects.  

In this study, THIP was also delivered to the animals after RTT-like breathing difficulties 

appearance, and the symptom was alleviated as well. This is consistent with the idea that THIP 

directly benefits neuronal excitability. Besides, in Mecp2+/− mice, most of the RTT-like 

symptoms show up after 6 months of age, and the symptoms vary between individuals, which 

makes the treatment in female RTT models quite complicated. Therefore, the identification of 

symptomatic Mecp2+/− animals becomes necessary. In our results, five weeks continuous THIP 
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treatment after symptoms were identified alleviated the breathing activities in sMecp2+/− animals 

by suppressing the neuronal hyperexcitability, regardless of Mecp2 mosaic expression pattern 

[205]. Therefore, chronic treatment of THIP seems to be able to correct neuronal abnormalities, 

leading to the alleviation of symptoms. Meanwhile, early intervention may reinstall the normal 

neuronal activity, which benefits the RTT animals as well.  

9.1.2 Pharmacokinetics  

THIP is a structural analog of GABA, which enables activation of extrasynaptic GABAA 

receptors, specific for those containing the δ subunit. As an investigational drug, THIP was 

originally developed as an analgesic and anxiolytic, and put in the clinical trials to treat 

insomnia. Tested as a potential clinical medicine, the pharmacokinetics of THIP has been well 

studied in multiple species, including mouse, rat, dogs and human [181-184]. In rats, 

subcutaneously injection of 2.5, 5 and 10 mg/kg THIP rapidly entered the CNS with a peak in 

the range of 0.7 to 3 µM. A preclinical study in mice, rats, and humans using 14C-labelled THIP 

showed a rapid absorption of THIP with the highest concentration in the kidney, and the peak 

concentration reached within 0.5 h in several organs including the brain. Three different 

metabolites were detected, of which glucuronic acid conjugated THIP seems to be the main one 

[184]. Although THIP has a characteristic short half-life, chronic treatment of THIP may allow it 

to be accumulated in the plasma and CNS to keep a constant and effective therapeutical 

concentration. Another clinic report on postural sway treatment indicated that THIP reached the 

maximum plasma concentration ~140ng/ml in 2.0 h in elderly humans with a daily dose of 10 

mg, and the half-life is 1.7 h [181]. Our preliminary studies suggested that 20 mg/kg THIP orally 

reached plasma concentration around 3 nM in mice. THIP started to have effects within 0.5 h 
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after i.p. delivery, while chronic treatment remained a reasonable level in the plasma in test 

animals. 

9.1.3 Potential side effects 

THIP was withdrawal in the clinical trials of insomnia treatment, due to the less efficacy 

and potential adverse effects. Indeed, THIP has been tested in over 3,000 patients with various 

dosages, (such as 10~120mg/day), among which some cases were reported with side effects at 

high doses of THIP, including sedation, confusion, dizziness and even hallucination [135]. 

However, high dosage treatment with synaptic GABAR agonists, such as barbiturate and 

benzodiazepine, may lead to the severer adverse effects, including breathing suppression, coma 

and death. THIP thus provides a relatively safer alternative, although further studies are still 

needed. The unsatisfactory efficacy for insomnia might be good for THIP application to RTT as 

the unnecessary sedative effects may be avoided. A report indicated THIP appeared to be more 

effective on women than man (44), which seems to be good for RTT treatment when considering 

the female dominance of the disease.  

In our study, the calculated dosage used in mice is 6.3 ± 0.4 mg/kg/day, which is similar 

to that in several previous studies of Fragile X syndrome and Angelman Syndrome in mice. No 

obvious side effects were reported before. Our test of spontaneous locomotion supports the non-

sedative effects of the dosage. THIP has been under clinical trials for Angelman Syndrome by 

Ovid Therapeutics and preclinical study for Fragile X syndrome since 2015. RTT shares multiple 

similarities with these rare diseases, such as impaired GABA system, neuronal hyperexcitability, 

and autism-like behaviors. Therefore, the information obtained in the present study seems likely 

to favor moving the drug for clinical trials. 
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9.2 Homeostasis between neuronal excitability and metabolic synthesis 

In LC neurons, NE is synthesized from tyrosine by a series of enzymes, including TH and 

DBH, and released with from vesicles into the synaptic cleft. The homeostasis between the LC 

neuronal excitability and the NE synthesis ensures the constant production and release of NE. 

Although increased firing rate of LC neurons may augment the NE level in the synaptic cleft by 

increasing the NE releasing frequency, persistent LC neuronal hyperexcitability may interrupt 

this balance between NE synthesis and release, and lead to impairment of the NE system. Such 

an idea was confirmed by a recent report in our lab that further stimulation of LC terminals failed 

to improve the modulation of hypoglossal neurons in the Mecp2−/Y brainstem [115]. Also, 

previous studies suggest that the TH and DBH expression levels are drastically reduced in 

Mecp2−/Y LC neurons [6, 50], consistent with the breathing disorders onset and development in 

our study. Meanwhile, our results also showed that in Mecp2−/Y mice, LC neuronal excitability 

increased with age and proportionally with the severity of breathing abnormalities. Thus, the 

defects in LC neuronal excitability may play a role in the deterioration of NE synthesis and the 

consequent development of the RTT-like symptoms in the mouse models. A moderation of 

neuronal hyperexcitability by THIP, or other GABAR agonists, may enable LC cells to correct or 

reinstall the homeostasis of NE synthesis/release, beneficial for the NE modulation of a variety 

of systems and functions in the CNS, in consideration of the broadcast LC-NE projections, such 

as to cortex, cerebellum and medulla  [12, 27, 50, 83]. The enhanced TH and DBH expression 

with THIP treatment in our results supports the homeostasis-rebuilt idea. 
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9.3 Potential compensation in GABAR system of LC area 

Previous studies have shown that selective knockout of Mecp2 gene in GABAergic neurons 

leads to a series of RTT-like phenotypes [11], suggesting the necessity and importance of GABA 

systems in the development of the disease. In patients with RTT and mouse models, the 

GABAergic inhibition was significantly suppressed showing global reductions in GABA level and 

GABARs expressions. In Mecp2−/Y LC, the subunit combinations of GABA receptors were altered. 

Both synaptic GABAARs and GABAB receptors were significantly reduced in Mecp2−/Y mice, 

whereas the extrasynaptic GABAARs level were increased as shown in this study. The enhanced 

extrasynaptic GABAAR mediated tonic inhibition might work as a neuroadaptive process to 

compensate the insufficient GABA synaptic input. Indeed, such compensation has been reported 

in other regions of CNS. In Mecp2−/Y Me5 nuclei, the alteration of the subunits leads to the changes 

in the fast Na+ voltage-gated current and the consequent neuronal hyperexcitability. The reduced 

hyperpolarization-activated h current, resulting in smaller sag and PIR, may compensate the 

neuronal hyperexcitability [53]. Therefore, the compensatory mechanism may make the animals 

or patients with RTT viable with milder phenotypes despite the Mecp2 deficiency. In addition, our 

results suggest that the hyperexcitability of LC neurons leads to the reduced NE biosynthesis, 

although we cannot exclude the possibility that the excessive firing of the neurons was the 

compensatory results from the reduced metabolic function of the LC neurons.  

9.4 Impact of global enhancing the GABAergic inhibition 

Imbalanced inhibition/excitation ration was considered one of the mechanism leading to 

the development of a series psychiatry disease, such as schizophrenia and fragile X syndrome. 

The imbalanced inhibition/excitation ration might be one of the mechanism in the development 
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of RTT. The Mecp2 disruption causes the global deficiency of GABA and the consequent 

imbalance of excitation/inhibition, leading to the hyperexcitation or hyperactivity in central 

neurons. However, Kron et al. have shown that neuronal hypoexcitation occurs in the forebrain 

and midbrain, including PFC, somatosensory, auditory and motor cortices, which may affect 

stereotyped and repetitive behaviors consistent with the current observations of several RTT-like 

symptoms [206]. Meanwhile, neurons in the brainstem are mostly hyperexcited, especially the 

neurons in the respiratory centers, including LC and nTS [68]. Although accumulating evidence 

supports the beneficial effects of enhancing the GABAergic inhibition, its effect on the neuronal 

hypoexcitability needs to be considered. Would the global GABAergic augmentation cause 

adverse outcomes on some regions of the CNS? Available evidence suggests that enhancing the 

GABAergic inhibition ameliorated the hypoexcitability in forebrain as well. A previous study 

found that ketamine, the NMDA receptors antagonist, reversed the neuronal hypoactivity caused 

by Mecp2 deficiency via NMDA receptors, and improved the associated behaviors [68, 120]. 

This may be produced by disinhibition in the local network involving cortical pyramidal cells, so 

that reducing the glutamatergic excitation may restore this disinhibitory circuit function [125]. In 

this regard, it is possible that a global enhancement of the GABAergic inhibition may benefit the 

hypoexcitability of certain forebrain neurons and associated motor function and social behaviors 

similarly as ketamine does in Mecp2-null mice on. Furthermore, the glutamatergic excitation is 

elevated in Mecp2-null mice, which shifts the ratio to the excitatory side as well, leading to the 

region specific neuronal abnormality or disturbed network activity in the CNS of RTT. The 

global enhanced GABAergic inhibition may compensate the upregulation of excitatory 

glutamatergic regulation, leading to the amelioration of RTT-like symptoms. 
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9.5 Conclusion 

In Mecp2−/Y mice, extrasynaptic GABAAR-ergic tonic inhibition is retained in LC 

neurons and increased significantly, likely to be due to the overexpression of the GABAAR 

species containing the δ subunit. The presence of these δ containing extrasynaptic GABAARs in 

Mecp2−/Y mice allows a control of neuronal excitability with specific agonists. Early-life 

exposure to THIP, an agonist specific to δ containing extrasynaptic GABAARs, extends the 

lifespan of Mecp2−/Y mice, reduces breathing disorders and motor dysfunction, and improves 

social behaviors. Such effects persist for at least one week after THIP withdrawal. The beneficial 

effects are likely to be due to the stabilization of neuronal hyperexcitability of both LC and Me5 

neurons by THIP in mouse models of RTT without major effects on the neuronal intrinsic 

membrane properties. The expression of NE biosynthesis enzymes was also improved in 

Mecp2−/Y LC neurons. In identified LC neurons regarding their MeCP2 expression in sMecp2+/− 

mice, the hyperexcitability seems to be determined by not only the MeCP2 expression but also 

their environmental cues. Chronic treatment of THIP suppressed hyperexcitability of both 

neurons with and without the MeCP2 expression. Such a phenomenon seems to contribute to the 

relief of breathing disorders.  

Therefore, the extrasynaptic GABAAR agonist THIP in low dose with chronic exposure 

appears beneficial for symptom relief in RTT models, and seems to be a promising candidate for 

potential therapeutical intervention to RTT.  
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