

For Those Who Lover Sputum: Bronchiectasis

Douglas B. Hornick, MD

Pulmonologist w/ an Infectious Attitude
Division of Pulmonary/Critical Care & Occ Med
Carver UI College of Medicine

Objectives

- Increase understanding of the general characteristics of non-CF Bronchiectasis
- Develop an approach to work-up & management
- Categorize & review heterogeneous causes

Disclosure: No Conflicts of Interest

Key References

- McShane P, et al. Non CF Bronchiectasis Review. Am J Respir Crit Care Med 2013;188:647-56
- Pasteur MC et al, BTS Guidelines for Non-CF Bronchiectasis Thorax 2010;65:i1-i58
- Clinics in Chest Med, May 2013
- Barker AF: NEJM 2003; 346:1383-1393
- Ten Hacken NHT, et al: BMJ 2007;335:1089-93

Bronchiectasis

- Irreversible abnormal dilation of bronchial tree
- Inflamed, collapsible airways
- Bacterial Colonization (S. aureus, H. influenzae, P. aeruginosa)
- Chronic productive cough (wet vs. dry)
 - Collected sputum→3 layers (foam, clear, purulent)
 - cough 90%, sputum 76%, dyspnea 72%, hemoptysis 56%
- Exam: rales 70%, rhonchi 44%, wheeze 34%.
- Obstructive physiology
 - Low FEV1, FVC preserved
 - Decreased DLCO

Bronchiectasis

- Irreversible abnormal dilation of bronchial tree
- Inflamed, collapsible airways
- Bacterial Colonization (S. aureus, H. influenzae, P. aeruginosa)
- Chronic productive cough (wet vs. dry)
 - Collected sputum→3 layers (foam, clear, purulent)
 - cough 90%, sputum 76%, dyspnea 72%, hemoptysis 56%
- Exam: rales 70%, rhonchi 44%, wheeze 34%.
- Obstructive physiology
 - Low FEV1, FVC preserved
 - Decreased DLCO

US Prevalence of Non-CF Bronchiectasis

Total Prevalence: ~52/100,000

Prevalence may be increasing SI F>M predominance

Weycker D et al: Clin Pulm Med 2005

Useless Morphology Classification

- Bronchiectasis can be:
 - Focal (lobe/segment)
 - Diffuse
- Cylindrical: creates tram track lines
- Varicose: beaded bronchi.
- Cystic: occ large cysts imitate cavity or give grape cluster pattern

Vicious Cycle Hypothesis

- Microbial colonization initiates & perpetuates airway inflammation
- PMNs infiltrate lungs & cause structural airway damage
- Impaired mucociliary clearance.
- Optimal for bacterial growth & certain spp.
 Selection (eg, S aureus, H flu, P aeruginosa)

Bronchiectasis Differential Diagnosis

- Idiopathic (50→10%...)
- Airway obstruction
- Primary Ciliary Dyskinesia Syndrome (PCD)
- Immunodeficiency (Ig Def, CLL/Rx, GVHD, HIV)
- Post-infectious
- Diffuse Panbronchiolitis
- Inflammatory Disease
- Alpha-1-Antitrypsin Syndrome
- Cystic Fibrosis

Airway Obstruction

- Foreign Body Aspiration
 - Lower lobes, posterior segment upper lobe
- Obstruction broncholith, slow growing/B9 tumor
- Lymph nodes enlargement
 - Middle Lobe Syndrome

Differential Diagnosis

- Idiopathic (50→10%...)
- Airway obstruction
- Primary Ciliary Dyskinesia Syndrome (PCD)
- Immunodeficiency (Ig Def, CLL/Rx, GVHD, HIV)
- Post-infectious
- Diffuse Panbronchiolitis
- Inflammatory Disease
- Alpha-1-Antitrypsin Syndrome
- Cystic Fibrosis

Primary Ciliary Dyskinesia (PCD)

- Incidence ~ 1/15000 1/60000
- Autosomal recessive (some DNAH11)
- Classic triad
 - Bronchiectasis
 - Sinusitis
 - Variable male sterility
- Situs inversus (50%) = Kartagener's
- Classic ultrastructure defect...

Nasal NO for PCD Diagnosis

	Subjects:	Measurements*	Age in Years [†]		nNO (nl/min)		
	Total No. (No. Females)	No.	Mean (SD)	(min, max)	Mean (SD)	(min, max)	
UNC PCD (with PCD-specific EM defect)							
Subjects with cross-sectional data only	103 (61)	103	29.3 (17.6)	(5.2, 73.0)	20.0 (19.8)	(1.5, 125.3)	
Subjects with longitudinal data PCD (with biallelic DNAH11 mutations)	40 (21)	132	9.0 (3.2)	(5.1, 16.7)	21.0 (27.5)	(1.8, 207.3)	
Subjects with cross-sectional data only	4 (2)	4	26.2 (9.2)	(12.4, 31.9)	21.0 (7.4)	(9.8, 24.5)	
Subjects with longitudinal data	2 (2)	6	14.2 (0.3)	(13.9, 14.4)	25.9 (19.4)	(12.3, 65.0)	
All PCD measurements at UNC	149 (86)	245	19.1 (14.8)	(5.1, 73.0)	, ,	(1.5, 207.3)	
Healthy control subjects Disease control subjects	78 (45)	78	20.9 (15.7)	(5, 73.6)	304.6 (118.8)		
Subjects with asthma	37 (16)	37	14.8 (11.5)	(5.4, 53.5)	267.8 (103.2)	(125.0, 589.7)	
Subjects with cystic fibrosis	77 (41)	77	16.0 (9.4)	(5.5, 56.0)	134.0 (73.5)	(15.6, 386.1)	
Subjects with COPD	32 (10)	32	61.1 (8.9)	(43.2, 77.8)	223.7 (87.1)	(109.7, 449.1)	
Validation subgroups (non-UNC sites)							
Confirmed PCD [‡]	71(45)	71	23.3 (18.0)	(5.1, 69.0)	19.6 (16.6)	(0.66, 31.3)	
Indeterminate [§]	84 (46)	84	31.8 (22.3)	(5.5, 79.6)	216.4 (174.5)	(1.8, 991.7)	

- Proper SOP, nNO <77: Sensitivity 98%, Spec 99%
- 6 other centers: Identified correctly 70 out of 71 PCD
- Technology more user friendly
- nNO for screening then confirm by EM, in vitro/vivo assess

Differential Diagnosis

- Idiopathic (50→10%...)
- Airway obstruction
- Primary Ciliary Dyskinesia Syndrome (PCD)
- Immunodeficiency (Ig Def, CLL/Rx, GVHD, HIV)
- Post-infectious
- Diffuse Panbronchiolitis
- Inflammatory Disease
- Alpha-1-Antitrypsin Syndrome
- Cystic Fibrosis

Immunodeficiency

- Hypogammaglobinemia presents in children
 - Recurrent sinopulmonary infections (middle ear)
 - Can be acquired in elderly
 - Measure IgA, IgG, and IgG subclasses
 - Measure response to protein, polysaccharide vaccine
 - NB: D/t dysregulated T-cell function lung/LN bx may show granuloma → misDx sarcoid/TB/NTM
 - Treatment: IVIG infusion q mo.
- Heme-Malig: CLL, post rituximab, GVHD
- AIDS associated bronchiectasis (recurrent infection)
- Jobs Syndrome

Differential Diagnosis

- Idiopathic (50→10%...)
- Airway obstruction
- Primary Ciliary Dyskinesia Syndrome (PCD)
- Immunodeficiency (Ig Def, CLL/Rx, GVHD, HIV)
- Post-infectious
- Diffuse Panbronchiolitis
- Inflammatory Disease
- Alpha-1-Antitrypsin Syndrome
- Cystic Fibrosis

Post-Infectious

- Viral, Mycoplasma
- TB
- Pertussis
- Nontuberculous mycobacteria & Nodular Bronchiectasis
- Aspergillus
- Severe/recurrent bacterial pneumonia
 - Post-op. nosocomial pneumonia
 - Associated with kyphoscoliosis

What do you know about Nodular/Bronchiectasis Form of MAC Lung Infection?
What about Rapid Growers?
NTM Lung Infection a/w Pre-existing Bronchiectasis or CF?

Fascinating Stuff???...

Post-Infectious

- Viral, Mycoplasma
- TB
- Pertussis
- NTM and nodular bronchiectasis
- Aspergillus
- Severe/recurrent bacterial pneumonia
 - Post-op. nosocomial pneumonia
 - Associated with kyphoscoliosis

Allergic Bronchopulmonary Aspergillosis (ABPA)

- 1. Asthma
- 2. Skin test reactivity to Aspergillus fumigatus
- 3. Serum precipitins to Aspergillus fumigatus
- **4.** IgE elevation (>1000 ng/ml or >500 IU/ml)
- 5. Specific IgE (IgG) antibodies to Aspergillus fumigatus
- 6. Proximal Bronchiectasis
- 7. Pulmonary Infiltrates (eg. fleeting, upper lobes, mucoid impaction)
- 8. Eosinophilia with pulmonary infiltrates
- Note: Positive sputum culture not essential for diagnosis

 Allergic Bronchopulmonary Mycosis (other Aspergillus spp,

 Candida, other fungi)

Post-Infectious

- Viral, Mycoplasma
- TB
- Pertussis
- NTM and nodular bronchiectasis
- Aspergillus
- Severe/recurrent bacterial pneumonia
 - Post-op. nosocomial pneumonia
 - Associated with kyphoscoliosis

Differential Diagnosis

- Idiopathic
- Airway obstruction
- Dyskinetic Cilia Syndrome
- Immunodeficiency (Agammaglobulinemia)
- Post-infectious
- Diffuse Panbronchiolitis
- Inflammatory Disease
- α-1 Antitrypsin Syndrome
- Cystic Fibrosis

Diffuse Panbronchiolitis (DPB)

- Japanese, Korean, M:F 2:1, onset 20-80 y.o
- Clinical characteristics
 - Chronic sinusitis 75%, precedes lung disease (yrs or decades)
 - Productive cough, dyspnea, wheezing, weight loss, clubbing uncommon
 - Sputum: H. influenzae, S. aureus, P. aeruginosa
 - Acquisition of Psa→poor survival (8%@ 5 yr)
 - PFTs: obstructive, mixed obstructive/restrictive
 - Histopath: localized to resp bronch.
 transmural inflammation (lymphocytes, foamy macrophages)
 - No: exocrine dysfunction, ↑ sweat CI, CFTR abnormality

Survival Curves According to Year of Diagnosis

DPB and Macrolide Rx

- Serendipitous discovery 1982
- Standard: E-mycin 400-600 mg/day continuous
- No significant change in bacterial flora & serum levels (1 μg/ml) don't exceed MICs
- Clinical factors improved
 - Randomized blinded trial (Yamamoto et al, 1991)
 - 3 mos E-mycin vs. placebo
 - Improved DOE, sputum volume, CRP, PFTs, CXR)
 - PFTs
 - P. aeruginosa infected group improves also
 - Mortality rates decreased
- Other macrolides tested (clari-, roxi-, azithromycin)

In vitro data: Macrolides modulate inflammatory response & Inhibit *P. aeruginosa* virulence factors (eg, biofilm)

Differential Diagnosis

- Idiopathic (50→10%...)
- Airway obstruction
- Primary Ciliary Dyskinesia Syndrome (PCD)
- Immunodeficiency (Ig Def, CLL/Rx, GVHD, HIV)
- Post-infectious
- Diffuse Panbronchiolitis
- Inflammatory Disease
- Alpha-1-Antitrypsin Syndrome
- Cystic Fibrosis

Young's Syndrome

- Similar to CF
- Sinusitis, bronchiectasis, azoospermia
- NI Sweat CI, NPD
- NI pancreas function
- No genetic link yet found
- Infertile middle age males
- Decreasingly found (toxic exposure births/prior era?)

Inflammatory Diseases & Bronchiectasis

- Sjogren's Syndrome
- Rheumatoid Arthritis
- Ulcerative Colitis >> Crohn's disease

Alpha-1-Antitrypsin Deficiency

- Radiographic:
 - Cystic bronchiectasis 10-20%
 - Emphysema co-exists or overshadowed
 - No other predisposing illness
- Uncertain clinical correlation (sputum production)
- No pathophysiologic association
 - All causes bronchiectasis: no increase in AAT alleles (Cuvilier et al: Chest 2000)

Differential Diagnosis

- Idiopathic (50→10%...)
- Airway obstruction
- Primary Ciliary Dyskinesia Synchome (PCD)
- Immunodeficiency (Ig Def, CL/Rx, GVHD, HIV)
- Post-infectious
- Diffuse Panbronchionis
- Inflammatory Disease
- Alpha-1-Antitrypsin Syndrome
- Cystic Fibrosis

Differential Dx (Mnemonic: IA_SPICE)

- Idiopathic
- Airway Obstruction
- Sjogren's & other Inflammatory (RA, IBD)
- Post-Infectious (TB, non-tuberculosous mhycobacteria, Aspergillus, Pertussis, NP, virus)
- mmunodeficiency (Ig, AIDS)
- CF & other genetic/congenital (Primary Ciliary Dyskinesia, Sequestration, α-1 Anti-trypsin)
- Esoteric (Diffuse Panbronchiolitis, Yellow Nail Syn., Tracheobronchomegaly [Mounier-Kuhn], Cartilage deficiency [Williams-Campbell], Swyer James)

How do you evaluate a patient for bronchiectasis?

Evaluation for Bronchiectasis

History

- Poorly resolving/recurrent pneumonia
- Purulent sputum (quantify)
- H/O of difficult asthma management
- Family history/GI problems/infertility

Exam

- nasal polyps
- localized rales, wheezes, or rhonchi
- clubbing

Evaluation for Bronchiectasis Lab Data

- Spirometry
- Sputum Gram Stain & Culture (quantitative)
 - S. aureus, H. influenzae
 - P. aeruginosa (mucoid?)
 - AFB smear/culture (AM x3 Mail Back)

Consider:

- Immunoglobulin electrophoresis & quantification of IgG subclasses; pre/post PVX/DT titers
- Sweat Chloride, CF genetics (Ambry lab), NPD
- RF, CCP, ANA, SSA, SSB antibodies
- Exhaled nasal Nitric Oxide screen, then EM, genetics,
- Asthma?, Eos?, Aspergillus skin test, IgE (ARUP ABPA panel)
- Bronchoscopy for cultures (eg, elderly: NTM, other bacteria)

Radiology Evaluation

- Chest x-ray & High Resolution Chest CT
- Sinus CT

What are the radiographic features of bronchiectasis?

Radiography

- Bonchograms (history of medicine)
- CXR and High Resolution CT
 - Signet Ring
 - Tram Tracks

Engagement Ring

Railroad tracks

Air in dilated airway

Swollen airway wall

CT Characteristics:

- High resolution=Thin sections(1.5-3 mm)
- Normal:

Bronchus Vessel

Engagement (Signet) ring:

Bronchus

Vessel

Railroad tracks

HRCT: Other Characteristics

- Lack of tapering bronchi
- Clusters = Grape-like appearance
- Enlarged bronchi can appear cystic vs.
 Blebs of emphysema (thinner walls)

Lack of Tapering Bronchi

Grape-like Clusters

Cystic Bronchi

HRCT bronchiectasis Dx

Central→ABPA

Upper lobe → CF

Lobar → Post-infectious; obstructive (eg, LN, FB)

Correlation: # abnormal airways and severity

Traction Bronchiectasis

- Radiographic finding w/o clinical features of bronchiectasis
- Pulmonary Fibrosis
- Radiation injury

How do you identify acute exacerbation of bronchiectasis?

Sypmtoms of Acute Exacerbation of Bronchiectasis

- Change in sputum production
- Increased dyspnea
- Increased cough
- Increased wheezing
- Malaise, fatigue, lethargy, decreased exercise tolerance
- ± Fever (T>38)
- Changes in chest exam
- Reduced pulmonary function
- Radiographic changes (subtle vs. new infiltrate)

How do you treat bronchiectasis?

Rx Extrapolated from CF...

- Antibiotics generally effective for chronic Rx
 - Suppress bacteria burden: ↓ bacteria = ↓ evil cytokines
 - Nebulized tob, gent, colistin effective, small trials
 - Nebulized aztreonam (Cayston) not effective
 - Eradication Rx for P aeruginosa likely effective
 - Cycling antibiotics: no supportive data, but often done
- Exacerbation: IV antibiotics aimed at predom spp ...little supportive data
- Pulmozyme trial...not good, maybe harmful
- Anti-inflammatory Rx
 - Avoid long term steriods except ABPA
 - ICS weak data; ICS/LABA no supportive data (ex. Asthma too)
 - Macrolide randomized control trial data supportive
 Azithro MWF (EMBRACE, BAT trials) & E-mycin 250 bid (BLISS)

Bronchiectasis Treatment Overview

- Manage/alter underlying cause
- Antibiotics
 - Acute exacerbation, parenteral abx based on culture & susceptibilities
 - Preventive strategies-uncertain benefit
 - Cycling Abx (no real data to support)
 - Inhaled Abx (tobramycin [gent], colistin, not aztreonam)
- 7% saline neb bid
- Bronchodilators (widely used...no good data)
- Chest physiotherapy (various modalities) & Aerobic exercise
- Pulmozyme...No
- ICS (minimal if any benefit)
- Macrolides (must r/o NTM)
- Nutrition
- Surgery

Comprehensive Overview

