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A rescaled method for RBF approximation

Stefano De Marchi, Andrea Idda and Gabriele Santin

Abstract In the recent paper [7], a new method to compute stable kernel-based
interpolants has been presented. This rescaled interpolation method combines the
standard kernel interpolation with a properly defined rescaling operation, which
smooths the oscillations of the interpolant. Although promising, this procedure lacks
a systematic theoretical investigation. Through our analysis, this novel method can
be understood as standard kernel interpolation by means of a properly rescaled ker-
nel. This point of view allow us to consider its error and stability properties.

1 Introduction

In the last decades radial basis functions have shown to be a flexible mathemati-
cal tool to solve scattered data interpolation problems, to model neural networks,
a meshfree method for solving differential equations, parametrizing shape and sur-
faces and so on. Interested readers can refer, for example, to the comprehensive
monographs [3, 12, 9], that give the necessary theoretical background and discuss
many of the applications here enumerated.

In the paper [7] has been presented an interpolation method for the construction
of stable kernel-based interpolants, called rescaled interpolation. It is a consistent
local method that combines the standard kernel interpolation with a properly defined
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rescaling operation, which essentially smooths the oscillations of the interpolant.
Although promising, the method lacks a systematic theoretical understanding.

After recalling some necessary notation, we present the method and prove that it
is an instance of the well-known Shepard’s method, when certain weight functions
are used. In particular, as for the Shepard’s one, it reproduces constant functions.

Second, it is possible to define a modified set of cardinal functions strictly re-
lated to the ones of the not-rescaled kernel. Through these functions, we define a
Lebesgue function for the rescaled interpolation process, and study its maximum -
the Lebesgue constant - in different settings.

Also, a preliminary theoretical result on the estimation of the interpolation error
is presented.

As an application, we couple our method with a partition of unity algorithm.
This setting seems to be the most promising, and we illustrate its behavior with
some experiments. The method has been also compared with the variably scaled
kernel interpolation studied in [?].

We summarize briefly the paper structure. In the next section we introduce some
basic definitions useful to understand the results presented in the paper. Then, in
successive section 3 we present the rescaled localized RBF interpolant and discuss
some of its properties. In particular, in the successive subsection 3.1 we present the
kernel-based approach to the rescaled interpolant, formalizing some results already
presented in [7]. In the case of kernels depending on the shape parameter, an inter-
esting property of the method is that the shape parameter can be chosen neither too
small or too big. In section 4 we show that this interpolant is indeed a Shepard’s ap-
proximant and so it reproduces constants functions “at glance”. Stability results of
this construction are detailed in the successive subsection. The most promising ap-
plication is the Partion of Unity Method (PUM). In Section 5 we apply the rescaled
interpolant to the PUM, showing then in the numerical experiments its effective-
ness. Finally in Section 5, we compare the behavior of the standand interpolant with
respect to that of the rescaled and the variably scaled ones, which was firstly stud-
ied in [?]. We will show that the combination of PUM with the rescaled interpolant
provides a stable method for interpolation.

2 Uselful notations

We start by recalling some notations useful for the sequel and necessary to under-
stand the results that we are going to present.

Given a real Hilbert space H of functions from Rd to R with inner product
〈 , 〉H , a function K : Ω ×Ω −→ R with Ω ⊂ Rd , is called reproducing kernel for
H if the two properties hold:

(i) K(·,x) ∈H for all x ∈Ω ;
(ii) 〈 f ,K(·,x)〉H = f (x) for all f ∈H and x ∈Ω .
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The kernel is symmetric (by property (ii)) and positive definite by construction (cf.
e.g. [9, §2.3] or [8, §13.1]).

Let Φ : Rd → R be a continuous function. Φ is called radial if there exists a
continuous function ϕ : R+

0 → R such that Φ(x) = ϕ(‖x‖).
We are interested on radial kernels, i.e. kernels of the form K(x,y) = Φ(x,y) =

ϕ(‖x− y‖), which means invariant under translation and rotation, with ‖ · ‖ the
Euclidean distance. Radial kernels are often referred as Radial Basis Functions of
shortly RBF. Moreover, since ϕ is a univariate function, we can call it the basic
radial function and its values are function of a positive variable r = ‖x‖.

Examples of C ∞ kernels are in Table 1 and kernels with finite smoothness in Ta-
ble 2. An interesting review of nonstandand kernels is the paper [6] which presents
many examples of kernels besides the classical ones presented in the Tables 1 and
2. We have written the kernels by introducing the parameter ε > 0 which is simply
a shape parameter: for ε → ∞, the functions become more and more spiky while as
ε → 0 they become flatter (see Figure 1). In the case of Wendland’s kernels the pa-
rameter d denotes the maximal space dimension for which the functions are positive
definite. With the symbol .

= we denote “equal up to some constants factors”. The
parameter k indicates that they are C 2k(Rd). For example for d = 1, l = 3 we have
ϕ1,1(r)

.
= (1−r)4

+(4r+1), which is the well-known compactly supported Wendland
C 2 function. Introducing also for Wendland functions a shape parameter ε > 0, we
simply stretch the support to [0,1/ε] having δ = 1/ε as its diameter.

kernel parameter support name
ϕ(εr) = e−ε2r2

ε > 0 R+
0 gaussian

ϕ(εr) = (1+ ε
2r2)−1

ε > 0 R+
0 inverse quadrics

ϕ(εr) = (1+ ε
2r2)−1/2

ε > 0 R+
0 inverse multiquadrics

Table 1 Examples of infinitely smooth kernels

kernel parameter support name
ϕ(εr) = e−εr ε > 0 R+

0 M0
ϕ(εr) = (1+ εr)e−εr ε > 0 R+

0 M2
ϕd,0(r)

.
= (1− r)l

+ l = bd/2+ k+1c [0,1] W0
ϕd,1(r)

.
= (1− r)l+1

+ ((l +1)r+1) l = bd/2+ k+1c [0,1] W2

Table 2 Examples of kernels with finite smoothness. M0 and M2 are Matérn kernels, W0 and W2
are Wendland kernels with smoothness 0 and 2 respectively.

Now, given a function f : Ω →R, a set X = {x1, . . . ,xN}⊂Ω of N distinct points
and the values fX = ( f (x1), . . . , f (xN))

T of the function f at the set X , we seek for
interpolants of fX of the form

Pf (x) =
N

∑
i=1

ciK(x,xi), x ∈Ω . (1)
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Fig. 1 The effect of changing the shape parameter on the gaussian kernel plotted in [−10,10]

for kernels K which are strictly positive definite and radial. This means that Pf is a
function in HK(X) = span{K(·,xi), i = 1, . . . ,N}, formed by translates of K at the
point set X . The coefficients in (1) are determined by imposing the interpolation
conditions, which is equivalent to find the unique solution of the linear system Ac =
fX with Ai, j = K(xi,x j). Since the kernel K is assumed to be strictly positive definite
then the solution exists and is unique.

The Hilbert space in which the kernel K is reproducing, is known as the associate
native space. We will denote it by NK , instead of H , to underline the dependence
on the kernel. It is equipped by the scalar product (·, ·)NK , from which we get the
native space norm ‖ ‖NK (cf. e.g. [8]).

The interpolation process by kernels of functions f ∈NK , gives pointwise errors
of the form (see e.g. [9, p. 174] or [6, p. 19])

| f (x)−Pf (x)| ≤Chβ

X ,Ω‖ f‖NK (2)

for some appropriate exponent β depending on the smoothness of the kernel K, and
hX ,Ω that denotes the mesh-size (or fill-distance) hX ,Ω = maxx∈Ω minxi∈X ‖x− xi‖2 .
For functions belonging to bigger spaces than the native space, suitable estimates
are based on sampling inequalities as discussed e.g. in [9, §9.4].

3 The rescaled interpolant

In [7] the authors have proposed a new compactly supported RBF interpolant with
the aim of a more accurate interpolantion even by using a small diameter for the
support. More precisely, on the set of points X , we consider the constant function
g(x) = 1 ∀x ∈ Ω , and we denote by Pg(x) the corresponding kernel-based inter-
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polant, that is

Pg(x) =
N

∑
i=1

diK(x,xi) ,

whose coefficients d = (d1, . . . ,dN)
T can be determined as the solution of the linear

system Ad = 1, with the vector 1 of ones.
Then, the rescaled interpolant is

P̂f (x) =
Pf (x)
Pg(x)

=
∑

N
i=1 ciK(x,xi)

∑
N
i=1 diK(x,xi)

. (3)

As a simple illustrative example we want to interpolate f (x) = x on the interval [0,1]
by using the W2 function at the points set X = {1/6,1/2,5/6}with shape parameter
ε = 5. The function, the interpolant and the errors | f (x)− Pf (x)|, | f (x)− P̂f (x)|
are displayed in Figure 2. The shape parameter has been chosen as the reciprocal

Fig. 2 Left: the function f (x) = x interpolated with the compactly supported W2 function and
the rescaled interpolant at the data set X = {1/3,2/3,5/6} and ε = 5. Right: the corresponding
absolute errors.

of the support radius of the corresponding basis function. Indeed, in this example
the interpolant is the combination of three W2 radial functions all having radius
of the support r j = 1/5, j = 1,2,3. Refining the point set, that is considering the
points set X = {0,1/6,1/3,1/2,2/3,5/6,1}, we get the results shown in Figure 3
showing the most interesting behavior of the rescaled interpolant, the property to
reduce oscillations and so the interpolation error.

We show in Figure 4 the RMSE (Root Mean Square Error) of the stationary
interpolation with the rescaled interpolant (1) w.r.t. the classical one (1) on a grid
of 25 data points of the square [0,1]2 at different values of the shape parameter, by
using the W2 radial function for the 2d Franke function
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Fig. 3 As in Figure 2 for the set X = {0,1/6,1/3,1/2,2/3,5/6,1} and ε = 5.

Fig. 4 RMSE behavior at different values of the shape parameter for interpolation of the Franke
function with W2 radial function.

f (x,y) =
3
4
e−

1
4 ((9x−2)2+(9y−2)2)+

3
4
e−

1
49 (9x+1)2− 1

10 (9y+1) (4)

+
1
2
e−

1
4 ((9x−7)2+(9y−3)2)− 1

5
e−(9x−4)2−(9y−7)2

.

Similar results can be obtained by using different radial basis functions as studied
in [7, 10].

Remarks. On looking to the way in which the interpolant is constructed and the
previous figures we can observe

• The interpolant is smooth even for small radii of the support.
• Thanks to the normalization introduced in (3), the method can choose for each

xm a strategy to locally select the shape parameter ε in order to take into account
the data points distribution. In the paper [7] the choice is made so that the local
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radius of the compactly supported kernel gives a constant number of neighbors.
This strategy fails when the points are uniformly distributed while gives much
better results when the points are not equidistributed. In this second case we can
in fact consider different radii and neighbor points.

3.1 The rescaled kernel

Since our interest is the study of the rescaled interpolant as a new kernel which has
an associated native space we start by the following observation. An interpolation
process consists in approximating the function f by its interpolant, say Pf , that is,
for a constant k0 ∈ R,

Pf (x)≈ f (x), ∀ x ∈Ω .

where equality holds for x ∈ X . Equivalently we can say that

Pf (x)− f (x)≈ k0, ∀ x ∈Ω .

Assuming that f 6= 0, then

Pf (x)− f (x)
f (x)

≈ k0

f (x)
= k0, ∀ x ∈Ω , (5)

the last equality holds when f ≡ 1. Hence, assuming that f = k1, then from (5) we
get

Pk1(x)− k1 ≈ k0, ∀ x ∈Ω , (6)

where we used k0 to describe the new constant of the right hand side.

Proposition 1 The relation ≈ induced by (6) is an equivalence relation.

Proof. Let f ,g,h : Ω → R and X be a set of distinct points of Ω .

• Reflexivity. Since f = f , then f (Ω) = f (Ω) implies f (X) = f (X) and so f ≈ f .
• Symmetry. Let f ≈ g, then f (X) = g(X) that can be read from right to left and

so g≈ f .
• Transitivity. Let f ≈ g and g ≈ h. This means f (X) = g(X) and g(X) = h(X).

Hence f (X) = h(X), that is f ≈ h.

This concludes the proof. ut
We can use the transitive property of ≈ to combine (5) and (6) to get

Pf (x)
f (x)

− k1 ≈ Pk1(x)− k1

Pf (x)
f (x)

≈ Pk1(x)

Pf (x)
Pk1(x)

≈ f (x) .
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Therefore, functions of the form
Pf (x)
Pk1(x)

are rescaled interpolants.

In our setting, we can notice that both Pf (x) and Pg(x) are constructed by using
the kernel K with associate native space NK . In order to identify the native space
associated to the rescaled interpolant, we may proceed as follows. Letting

P̂f (x) =
Pf (x)
Pg(x)

, (7)

we may introduce a new kernel, say Kr, associated to the rescaled interpolant, from
which we will characterize the associated native space NKr .

Observing that

P̂f (x) =
Pf (x)
Pg(x)

=
N

∑
j=1

cj
K(x,xj)

∑
N
i=1 diK(x,xi)

(8)

and recalling that the denominator is the interpolant of the constant function g(x) =
1, we have

P̂f (x) =
N

∑
j=1

cj

 K(x,xj)
N

∑
i=1

diK(x,xi)
N

∑
i=1

diK(xj,xi)


Denoting q(x) = ∑

N
i=1 diK(x,xi), then the square brakets can be re-written as the set

of functions
K(x,xj)

q(x) ·q(xj)
, j = 1, . . . ,N

which can be interpreted as a new basis for the rescaled interpolant.
This theorem finds application in our setting.

Theorem 1 (cf. [1]). Let K : Ω ×Ω → R be a (strictly) positive definite kernel. Let
s : Ω → R be a continuous and nonvanishing function in Ω . Then

Ks(x,y) = s(x)s(y)K(x,y) (9)

is (strictly) positive definite.

In fact, letting Pg the interpolant of the constant g ≡ 1 which is by construction
continuous in Ω , if it is also non-vanishing, then s = 1/Pg. But this property follows
from the general error estimation (2), since we can find a set of points X so that
‖Pg(x)−g‖∞ < g that implies Pg(x) 6= 0, ∀x ∈Ω .

It follows that we can consider s = 1/Pg, which is continuous, non-vanishing on
Ω and consider the rescaled kernel

Kr(x,y) =
1

Pg(x)
1

Pg(y)
K(x,y) (10)
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which turns out to be (strictly) positive definite and we will denote its associate
native space by NKr .

This discussion shows that the rescaled kernel Kr is a kernel approximation pro-
cess which is well-posed and preserves the properties of the kernel K.

Moreover, we can rewrite the rescaled interpolant as

P̂f (x) =
N

∑
j=1

c jKr(x,x j)

=
N

∑
j=1

c j

{
1

∑
N
i=1 diK(x,xi)

1

∑
N
i=1 diK(xi,x)

}
K(x,x j)

=
N

∑
j=1

c j
1

∑
N
i=1 diK(x,xi)

K(x,x j) ,

since 1
∑

N
i=1 diK(x,xi)

= 1 , ∀x∈Ω is the interpolant of the function g= 1. This formula-

tion allows to prove formally that the rescaled interpolant reproduces the constants.

Theorem 2. Let K be a strictly positive definite kernel, f : Ω → R\{0} such that
f (x) = a, a ∈ R\{0} and X = {x1, . . . ,xN} ⊂ Ω . Then the associated rescaled in-
terpolant (3) (or equivalently (8)) is such that P̂r,a(x) = a, ∀x.

Proof. The interpolation conditions give the linear system

Arc = a

where a = (a, . . . ,a)T and Ar denotes the collocation matrix w.r.t. the rescaled basis
of the function f (x) = a. The previous system can be written as

a ·
(

1
a

Arc
)

= a ·1 ,

1
a

Arc = 1 .

where 1 = (1, . . . ,1)T . Hence, denoting as P̂r,a the rescaled interpolant of the con-
stant a

P̂r,a(·) = a · P̂g(·) = a ·
Pg(·)
Pg(·)

= a , (11)

as required. ut

Obviously the previous results holds for a = 0. This comes immediately from (11).
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4 Rescaling is equivalent to the Shepard’s method

We take into account here a different point of view. We firstly compute the cardinal
function form of the interpolatant, then we show the connection with the Shepard’s
method (see e.g. [8, §23.1]) and provide a stability bound based on the Lebesgue
constant. We need to recall the following result (cf e.g. [8, §14.2] or [13]).

Proposition 2 For any set XN = {x1, . . . ,xN} ⊂Ω of pairwise distinct points, there
exists a unique cardinal basis U = {u j}N

j=1 of the span{K(·,x),x ∈ XN}, i.e.
a set of functions such that u j(xi) = δi j, 1≤ i, j ≤ N.

Using the basis U , the standard interpolant of a function f ∈H can be written
in the form Pf = ∑

N
j=1 f (x j)u j, and the interpolant of the function g ≡ 1 reads as

Pg = ∑
N
j=1 u j. The rescaled interpolant of f then takes the form

P̂f =
∑

N
j=1 f (x j)u j

∑
N
k=1 uk

=
N

∑
j=1

f (x j)
u j

∑
N
k=1 uk

=:
N

∑
j=1

f (x j)û j,

where we introduced the N functions û j := u j/
(
∑

N
k=1 uk

)
. These functions are

still cardinal functions, since û j(xi) = δi j, but they do not belong to the subspace
span{K(·,x),x ∈ XN}, in general. But they form a partition of unity, in the sense
that, for all x ∈Ω , we have

N

∑
j=1

û j(x) =
N

∑
j=1

u j(x)

∑
N
k=1 uk(x)

=
∑

N
j=1 u j(x)

∑
N
k=1 uk(x)

= 1.

This construction proves the following result.

Proposition 3 The rescaled interpolation method is a Shepard’s method, where the
weight functions are defined as û j = u j/

(
∑

N
k=1 uk

)
, {u j} j being the cardinal basis

of span{K(·,x),x ∈ X}.

Remarks

• Looking at Figures 2 and 3, we notice the typical “flat-spot” behaviour of the
Shepard’s approximation.

• Although this connection allows to relate our work with other existing methods,
we remark that it also highlights some possibly severe limitations in the present
approach. Indeed, the main reason to consider Shepard’s methods relies on the
easy computation of the weight functions {û j} j, which are usually constructed
by solving a small linear system instead of a full interpolation problem. In our
case, instead, the computation of the weights requires the computation of the
cardinal basis, that is the solution of the full interpolation problem. In this view,
we can’t expect good numerical results when the number of points increases. On
the other hand, when the method is coupled with a partition of unity procedure,
as will be discussed in the next sections, the systems to be solved are of small
size, hence a stable computation of the interpolation of g = 1 can be expected.
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From this construction we can easily derive stability bounds for the rescaled in-
terpolation process. In fact, as happens in polynomial interpolation by using the
cardinal functions, we can define the Lebesgue function ΛN(x) := ∑

N
j=1 |u j(x)|, and

its maximum over Ω , λN := ‖ΛN‖∞. that is the Lebesgue constant which controls
the stability of the interpolation process. In fact, for any x ∈Ω

|Pf (x)|=

∣∣∣∣∣ N

∑
j=1

f (x j)u j(x)

∣∣∣∣∣≤
(

N

∑
j=1
|u j(x)|

)
‖ f‖∞,X ≤ λN ‖ f‖∞,X .

Extending the setting to our case, and by using the rescaled cardinal functions {û j} j
instead of the classical cardinals, we can write

Λ̂N(x) :=
N

∑
j=1
|û j(x)|, λ̂N := ‖Λ̂N‖∞,

which gives the stability bound

‖P̂f ‖∞ ≤ λ̂N‖ f‖∞,X .

Hence, to quantify the stability gain of the rescaled interpolation process over the
standard one, we can simply compare the behavior of λ̂N and λN . Numerical exper-
iments showing this comparison are presented in Section 6.

5 Application to PUM

Given the domain Ω ⊂Rd , we consider its partition {Ωk ⊂Ω , k = 1, . . . ,n}with Ωk
that possibly overlap, such that Ω ⊆∪n

k=1Ωk. We then consider compactly supported
functions wk with supp(wk)⊆Ωk, forming a partition of Ω , that is

n

∑
k=1

wk(x) = 1 , ∀x ∈Ω . (12)

Then we construct of a local interpolant, pk, in RBF form

pk(x;Xk) =
nk

∑
j=1

c(k)j Φ
(k)
j (x) , (13)

where Xk is a set of distinct points of Ωk having nk = |Xk| as its cardinality and Φ (k)

the RBF kernel at Ωk. The global interpolant on Ω can be written as

Pf (x) =
n

∑
k=1

pk(x;Xk)wk(x), x ∈Ω . (14)
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If the local fit interpolates at a given data points, that is pk(xl) = f (xl), then thanks
to the partition of unity property (12) we can conclude that the global fit is also
interpolating at the same point

Pf (xl) =
n

∑
k=1

pk(xl ;Xk)wk(xl) =
n

∑
k=1

f (xl)wk(xl) = f (xl) .

We can apply the rescaled interpolant to this framework as follows

• by applying the rescaling to the global interpolant (14);
• or by applying the rescaling to every local interpolant (13).

The first approach is equivalent to apply the PUM for interpolating the constant
function 1. Hence, it makes sense to rescale every local interpolant. The application
of the rescaling to every local interpolant of the form (13) gives a global rescaled
interpolant of the form

Pf (x) =
n

∑
k=1

R̂k(x;Xk)wk(x), x ∈Ω . (15)

with

R̂k(x;Xk) =
nk

∑
j=1

c(k)j

Φ
(k)
j (x)

P(k)
1 (x)

=
nk

∑
j=1

c(k)j

Φ
(k)
j (x)

∑
nk
l=1 d(k)

l Φ
(k)
l (x)

,

where the coefficients d(k)
l are chosen so that ∑

nk
l=1 d(k)

l Φ
(k)
l (x) = 1, ∀x ∈ Xk .

6 Numerical examples

In this Section the rescaled method is tested in different instances with the aim
of analyzing its performance and validate our understandings. The first set of ex-
periments, presented in the next subsection, compare the standard and rescaled
Lebesgue functions, as defined in Section 4. In this case the tests are limited to
a small number N of samples in order to be able to stably compute the cardinal
functions, and the results have to be intended as theoretical investigation of the re-
lation between the two Lebesgue functions. In Section 6.2, instead, we focus on
the comparison between the the PUM and the Rescaled-PUM, and we consider a
more realistic number of points. This is possible by limiting the number of points in
each subdomain in the partition of unity, so that a stable computation of the rescaled
interpolant is numerically feasible.
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6.1 Comparison of the standard and rescaled Lebesgue functions

In these experiments we compare the standard Lebesgue function with that of the
rescaled one. Since we need to directly compute the cardinal functions, which is a
seriously unstable operation, we keep the example as simple as possible to avoid
comparing the effect of the ill-conditioning. To this end, we take Ω = [−1,1], a
small number of fixed node points (equally spaced) and two classical kernels: the
Gaussian kernel (globally supported and C ∞) and the Wendland W2 kernel, which
is compactly supported and C 2. The computation of the standard and rescaled
Lebesgue functions has been repeated for ε = 0.5, 1, 4, 8 (Gaussian kernel) and
ε = 0.5, 1, 2, 4 (Wendland kernel), as shown in Figures 5 and 6. In the latter case
the behavior of the Lebesgue function does not change for bigger values of the shape
parameter, that is why we stopped at ε = 4. Taking other set of nodes (like random
or Chebyshev points), due to the above observation on the computation of the cardi-
nal functions, we indeed observed essentially a similar behaviour for the Gaussian
kernel and opposite for the Wendland kernel. See Figure 7 for a simple example
with Chebsyshev points.
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Fig. 5 Standard Lebesgue function (solid line) and the rescaled Lebesgue function (dotted line)
for the Gaussian kernel on 10 equally spaced points of [−1,1] with different ε . From top left to
bottom right, ε = 0.5, 1, 4, 8.
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Fig. 6 Comparison between the standard Lebesgue function (solid line) and the rescaled Lebesgue
function (dotted line) for the C 2 Wendland kernel on 10 equally spaced points of [−1,1] with
different ε . From top left to bottom right, ε = 0.5, 1, 2, 4.

Similar behaviour can be obseverd in the two dimensional setting. In Figure 8
we show the comparison between the Lebesgue functions for the Wendand function
with standard cardinal functions and the rescaled ones on the cardiod contained in
[−1,1]2.

In Figure 9 we did a similar test on the square. We have chosen ε = 3.85 because
we wanted to show that bigger values of ε are meaningless. The reason of this relies
in the support of the Wendland function which is 1/ε . In the example, we have taken
25 equally spaced points on the square, so that for values of ε bigger than εM = 2
the cardinal functions have disjoint support. Therefore for values of ε ≥ 2εM we
can not assume that the interpolant of the function 1 is always not vanishing since
some points of the domain fall outside the support of the cardinal functions (giving
a value 0 of the interpolant). This explains also why in the one dimensional case the
cardinal functions with ε = 4 give a Lebesgue function identically equal to 1.
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Fig. 7 Standard Lebesgue function (solid line) and the rescaled Lebesgue function (dotted line)
for the Gaussian kernel (first row) and Wendland kernel (second row) on 10 Chebyshev points of
[−1,1] with ε = 0.5 (left) and ε = 2 (right).

6.2 Comparison between PUM and Rescaled-PUM

We investigate here the relation between the PUM and the Rescaled-PUM (R-PUM).
Two different experiments are analyzed. First, we compare the two methods for a
fixed and relatively small number N of samples, in order to highlight the behavior of
the two methods with respect to changes in the shape parameter of the kernel. Then
we let N increase and we analyze the convergence profile of the two methods, both
for a fixed and an optimized shape parameters.

To test the two methods we use a C2 Wendland kernel K on bivariate domains
Ω ⊂ R2, and a partition of unity defined on a covering of Ω made by balls Ω j
of constant radius and equally spaced centers, such that the resulting number of
subdomains is

n2 = bN
4
c, (16)

where b·c denotes the integer part. This covering is then equipped with a partition
of unity defined by weight functions
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Fig. 8 Comparison between the Lebesgue function with standard basis (Left) and the rescaled one
(right) for the C 2 Wendland kernel on the cardiod with ε = 3.

Fig. 9 Comparison between the Lebesgue function with standard basis (Left) and the rescaled one
(right) for the C 2 Wendland kernel on the square with ε = 3.85.

w j(x) =
K(x,x j)

n

∑
k=1

K(x,xk)

,

K being the Wendland kernel itself.
The error is measured in both cases on a grid of 100×100 uniformly distributed

points in the convex hull of the sample set X . We consider both the maximal absolute
error and the root mean square error (RMSE).

The algorithm is implemented using a block-based partition of unity algorithm
presented in [4], which leads to a faster evaluation of the interpolant.

In both experiments, we use as a target function the 2d Askley’s test function
(well-known for testing optimization algorithms [11]), which is defined as

f (x,y) =−20 e−0.2
√

0.5(x2+y2)− e−0.5(cos(2πx)+cos(2πy))+20+ e. (17)
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Fig. 10 RMSE (Left) and MAXERR (Right) for the classical and the rescaled PU for ε ∈ [0.01, 2]
chosen with Trial&Error.

For the first test, we consider N = 103 Halton points on the disk Ω of radius 0.5
and centered in (0.5,0.5). The two methods are tested on 30 values of the shape
parameter ε ∈ [0.01,2]. The results are shown in the Figure 10. For both error mea-
surements, the PUM and R-PUM attain the same error for a flat kernel (ε ≈ 0), while
the R-PUM gives better results for a localized one (ε = 2). These results are easily
explained, since a localized interpolant is smoothed by the rescaling procedure, and
a decreasing of the error can be obtained also in the areas of Ω not well covered
by X . The differences between the two methods are more evident on looking at the
RMSE, which is a more global measurement than the pointwise maximal error.

We extend now the above comparisons by investigating the convergence behavior
as the number N of function samples increases. We let the number n of subdomains
to increase along with N (by using the formula (16)), such that each subdomain
contains a nearly constant number of points. We remark, as pointed out earlier, that
this is the only viable approach to ensure a stable computation of the interpolant
of g = 1 with the direct method, while an increased size of the local linear system
could possibly lead to severe ill-conditioning.

The kernel and partition of unity are as above, and we again address the approx-
imation of the Askley’s test function. For simplicity, we use again Halton points
on the unit square [0,1]2. We test the method for N = 103, 2 ·103, . . . , 50 ·103. The
resulting minimum, maximum, and mean number of points per subdomain are de-
picted in Figure 11.

At first, we compare the two methods by using a fixed shape parameter ε = 1: the
interpolation errors are shown in Figure 12. In this experiment the R-PUM clearly
exhibits the same convergence behavior of the PUM, with a slight improvement of
about one order of magnitude in the best case. This effect is particularly evident
when the RMSE error is computed, while the maximal error of the two methods
behave nearly the same. This is again probably due to the smoothing effect of the
rescaling procedure, which promotes a global accuracy (here, global for each sub-
domain) while it may over-regularize pointwise details, which leads to a reduced
gain in the maximal error.
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Fig. 11 Minimum, maximum, and mean number of points n per subdomain as the global number
N of points increases for the experiments of Section 6.2
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Fig. 12 RMSE (left) and maximal error (right) for the PUM (green) and the R-PUM (blue), as
functions of the global number N of points, as described in Section 6.2

We then repeat the same experiment with shape parameter validation. Namely,
the shape parameter is optimized by testing 30 equally spaced values in [0.01,2], and
by picking, for each N, the value which minimize the error. Both root mean square
error and maximal error are used, producing two different sequences of parameters
for each method. The experiment is restricted in this case to a maximal value N =
20 ·103.

In Figure 13 we report the maximal errors and the corresponding selected shape
parameters, while in Figure 14 we show the same results with respect to the RMS
error. It is worth noticing that when the RMSE is used as an error indicator, the
PUM and R-PUM select exactly the same shape parameter (the green and blue lines
overlap), while when the maximal error is employed the two methods select notably
different parameters. The results highlight once more that rescaled method behaves
better than the standard one with respect to the RMSE, while the two are essentially
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equivalent with respect to the maximal error. In both cases, the convergence order
for this setting appear to be essentially the same.
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Fig. 13 Maximal error (left) and corresponding value of the shape parameter (right) for the PUM
(green) and the R-PUM (blue), as functions of the global number N of points, as described in
Section 6.2

11. As a final remark, we observe that letting TRPU the evaluation time of the
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Fig. 14 RMS error (left) and corresponding value of the shape parameter (right) for the PUM
(green) and the R-PUM (blue), as functions of the global number N of points, as described in
Section 6.2

rescaled interpolant and TPU that of the classical one, we generally saw that TRPU <
cTPU with c≈ 1.05.
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7 Conclusions

In this paper we have studied more deeply the rescaled localized radial basis func-
tion interpolant introduced in [7]. We have proved that this interpolant gives a parti-
tion of unity method that reproduces constant functions, exactely as does the Shep-
ard’s method. One feature is that the shape parameter of the kernel can be chosen
in a safe range, not too small and “relatively large”, avoiding the classical numer-
ical instability that occours when the shape parameter is too small, or a severe ill-
conditioning in the opposite case.

The numerical experiments on the R-PUM show that the method allows to im-
prove the maximal error over a classical PUM.
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