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Abstract

We study the stabilisation of quantum system on a subspace through reservoir engi-
neering provided the system is continuously monitored. We show that the target subspace
is almost surely invariant if and only if it is invariant for the average evolution. We show
the same equivalence for the global asymptotic stabilisation towards the target subspace.
We moreover prove a converse Lyapunov theorem for the average evolution. From this
theorem we derive sharp bounds on the Lyapunov exponents. We show that taking into
account the measurements can lead to a stability rate improvement. We make discuss
explicit situations where the almost sure stability rate can be made arbitrary large while
the average one stays constant.

1 Introduction

Pure quantum states play a key role in many aspects of quantum theory, and quantum dy-
namics in particular: eigenstates of Hamiltonians with non-degenerate spectrum are invariant,
and ground states of Hamiltonians represent the zero-temperature equilibrium for the system;
they are the output of measurement processes corresponding to non-degenerate observables;
pure states are typically used to represent information in quantum information processing
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and communication; nonclassical correlations in quantum mechanics are best exhibited by
maximally entangled states for joint systems, which are pure. This central role motivates a
growing interest in characterizing evolutions that converge to classes of pure states of interest.

A similar interest lays on convergence to subspaces of Hilbert space, whether they represent
energy eigenspaces, they are associated to certain excitation numbers or symmetric states, or
represent the support for a quantum error-correcting code.

In order for a quantum dynamical system to converge to a pure state or a subspace
irrespective of the initial state, it needs to include some interaction with its environment,
namely it needs to be an open system. We shall focus on Markov quantum systems associated
to Stochastic Master Equations (SME) and their corresponding semigroups [2, 11, 29]. This
class of models emerges naturally in many quantum atomic, optical and nanomechanical
systems [37, 38, 47]. It is of interest in measurement and decoherence theory [1, 15, 16, 20, 39,
41, 42, 52], and it has a central role in quantum filtering and measurement-based feedback
control systems [5–8,21,22,40,44,45,53].

In many applications, convergence is not enough: a fast preparation of the target set needs
to be enacted. Different ways to characterize the speed of convergence, as well as asymptotic
invariant sets, have been developed for Markovian evolutions [26,48].

In [4], a general approach to stabilisation of diffusive SME has been proposed, which
relies as much as possible on open-loop control and resorts to feedback design only when
the open-loop control cannot achieve the desired task. The motivation for this choice is
twofold: on the one hand, open-loop control is easier to implement, as it does not require
the taxing computational overhead of integrating the SME in real time. On the other hand,
simulations showed that the open-loop controlled evolution converged exponentially. This is
not completely surprising, as it is in agreement with another result of the paper: convergence
in probability to subspaces for the SME can be proved by checking if the mean evolution
converges to the same subspace.

In this paper we make those preliminary observations rigorous, and further develop them
investigating the speed of convergence to the target. More precisely, we study the exponential
stability of stochastic evolutions by deriving upper bounds for the Lyapunov exponent. The
main results we present include:

• A proof for the equivalence of both invariance and asymptotic stability in mean and
almost surely for general SMEs, i.e. including both diffusive and jump processes. This
generalises the corresponding results in [4] to SMEs that include jump processes, while
providing a stronger convergence with proofs that are both more direct and simpler.
This result is of interest for applications since invariance in mean corresponds to invari-
ance of the subspace for a corresponding semigroup evolutions, and the latter can be
checked, at least in the finite-dimensional case, by using simple linear algebraic tech-
niques [48–50].

• As a technical result, we show that the Perron-Frobenius Theorem for completely pos-
itive evolutions [28] can be used to systematically derive a linear Lyapunov function
that shows that a subspace is GAS. The result can be seen as a converse Lyapunov
Theorem, which is of practical interest in many situations in which one would like to
prove that a given controlled dynamics converges to a target pure state, as well as to
develop insights in design methods for dissipative quantum control [43,48,51].

• A proof of almost sure exponential stability of GAS subspaces, including a bound on the
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stability exponent is provided, by exploiting the converse Lyapunov result. Not only:
it is shown that a better stability exponent can be obtained, by exploiting the effect of
the measurement.

2 Quantum Stochastic Master Equations

This section is devoted to the presentation of the stochastic models that are used to describe
finite-dimensional quantum systems undergoing indirect continuous measurement. The math-
ematical description of a finite-dimensional system is built on a finite-dimensional Hilbert
space H, which we assume of dimension d. Let B(H) denote the linear (bounded) oper-
ators on H. Such operators can always be associated (up to a choice of basis) to d × d
matrices. The system state is described by a density operator ρ, namely an element of
S(H) = {ρ ∈ B(H) s.t. ρ ≥ 0, tr(ρ) = 1}. The evolution model will be given in the so-
called Schroedinger’s picture, where states are the subjects of the evolution.

Consider a filtered probability space (Ω,F , (Ft),P) satisfying the usual conditions [?].
Let (Wj(t)), j = 0, . . . , p be standard independent Wiener processes and let (Nj(dx, dt)), j =
p + 1, . . . , n be independent adapted Poisson point processes of intensity dxdt; the Nj ’s are
independent of the Wiener processes. We assume that (Ft) is the natural filtration of the

processes W,N and we assume also that F∞ =
∨
t>0

Ft = F .

We consider a family Ci, i = 0, . . . , n of operators in B(H) and let H ∈ B(H) such that
H = H∗. In order to keep the notation compact, it is convenient to introduce the following
maps on states ρ ∈ S(H):

L(ρ) = −i[H, ρ] +
n∑
i=0

(
CiρC

∗
i −

1

2

(
C∗i Ciρ+ ρC∗i Ci

))
,

Ji(ρ) = CiρC
∗
i , i = 0, . . . , n,

vi(ρ) = Tr[Ji(ρ)], i = 0, . . . , n,

Gi(ρ) = Ciρ+ ρC∗i − Tr[(Ci + C∗i )ρ]ρ, i = 0, . . . , n.

(1)

Physically, H corresponds to the effective Hamiltonian for the system which includes its
internal Hamiltonian and a perturbation (Lamb shift) induced by the interaction with its
environment. The environment is typically associated to a number of quantum fields, and
the interaction of the system with the latter is described by the operators Ci. The canonical
stochastic processes correspond to the fluctuations of the outcome of continuous measurements
performed on the fields, after their interaction with the system. Poisson processes correspond
to particle counting measurements (typically, photons), whereas Wiener processes correspond
to particle currents or field quadrature measurements [11,15,16,21,39,42].

The presence of the system induce a change of statistic of these processes [11]: the mea-
surement results and the system state become correlated via the interaction between the
system and the environment. The evolution of the state (ρ(t)), conditional to the knowledge
of the measurement outcome, is given by the following stochastic differential equation.
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ρ(t) = ρ0 +

∫ t

0
L(ρ(s−))ds

+

p∑
i=0

∫ t

0
Gi(ρ(s−))dWi(s)

+
n∑

i=p+1

∫ t

0

∫
R

(
Ji(ρ(s−))

vi(ρ(s−))
− ρ(s−)

)
10<x<vi(ρ(s−))[Ni(dx, ds)− dxds].

(2)

In particular, the solution of (2) is called a quantum trajectory. Results of existence and
uniqueness of the solution of (2) can be found in [11,12,39,41,42].

From Eq. (2), one can introduce the measurement record for counting processes:

N̂i(t) =

∫ t

0

∫
R

10<x<vi(ρ(s−))Ni(dx, ds), i = p+ 1, . . . , n.

These processes are counting processes with stochastic intensity given by∫ t

0
vi(ρ(s−))ds, i = p+ 1, . . . , n.

In particular, for any i ∈ {p + 1, . . . , n}, the process (N̂i(t) −
∫ t

0 vi(ρ(s−))ds) is a (Ft) mar-
tingale under the probability P.

In terms of N̂i(t), Eq. (2) can be written as

dρ(t) = L(ρ(t−))dt+

p∑
i=0

Gi(ρ(t−))dWi(t)

+

n∑
i=p+1

(
Ji(ρ(t−))

vi(ρ(t−))
− ρ(t−)

)
(dN̂i(t)− vi(ρ(t−))dt), (3)

which is called a SME [11], or filtering equation, in the control-oriented community [5, 6,
21, 44, 45]. The stochastic processes (N̂i(t)) describe discrete measurement outcomes such as
particle counting. The processes (Yi(t)), Yi(t) = Wi(t) +

∫ t
0 tr[(Ci + C∗i )ρ(s)]ds, on the other

hand, describe continuous measurement outcomes such as particle current or field quadrature
measurements.

The class of evolutions captured by (2) comprises all evolution of a system (an atom or
a spin) interacting with a electromagnetic field which is monitored [11, 37] as well as nano-
mechanical devices [38], and hence most typical models used for (measurement-based) feed-
back stabilization of states and subspaces of interest [5]. Similar models can also be derived
for discrete-time evolutions, and have received particular attention given their applicability to
new experimental setups [24,33]. In the continuous time limit these discrete models converge
weakly to solutions of SME [15,16,39,41,42]

In Eq. (2), the operator L is the generator of the Markov semi group associated to the
stochastic model, and has the form of the generator of a semi group of completely positive,
trace preserving maps [32, 36] on B(H). They represent the best description of the state
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evolution when the measurement record is not accessible, and can thus obtained as the ex-
pectations of (2) over the outcomes of the measurement processes. In the sequel, we shall use
the following notation for the expectation of the process (ρ(t)):

ρ̂(t) = E[ρ(t)].

It is well know that
d

dt
ρ̂(t) = L(ρ̂(t)).

These generators are associated to master equations in the Markov approach of open quantum
systems [2, 25], and have been extensively studied. Being linear dynamical system on a
convex, positive set the study of their properties is generally simpler than studying directly the
stochastic evolution. Their stability and controllability properties are discussed for example
in [3, 27, 48–50]. In this work, we will exploit known results on the semigroup evolution to
obtain new results on the stochastic ones.

3 Invariant and Stable Subspaces

This section is devoted to the presentation of the notion of stability we are interested in. Our
aim is to study Globally Asymptotic Stable (GAS) subspaces for the SME (3). This notion
is naturally linked with a decomposition of the underlying Hilbert space H and, with it, a
corresponding block-decomposition of the matrices of interest.

Let HS be a subspace of H. Let us denote its orthogonal complement by HR. We thus
haveH = HS⊕HR, with ⊕meant as the orthogonal direct sum. We denote PS the self-adjoint
projector on HS and IS(H) the set of states

IS(H) = {ρ ∈ S(H) s.t. tr(PSρ) = 1}.

Hence IS(H) is the set of states whose support is HS or a subspace of HS . When we are
concerned with pure state preparation, we have HS = C|φ〉, with |φ〉 the pure state to be
prepared.

In the finite-dimensional case we are considering, we can use a matrix representation for
all the operators involved. The definition ofHS andHR allows for a convenient decomposition
of all the matrices. Let X ∈ B(H), then its matrix representation can be written as

X =

(
XS XP

XQ XR

)
,

where XS , XR, XP , XQ are operators from HS to HS , from HR to HR, from HR to HS and
from HS to HR, respectively. In the rest of the paper, the indexes S,R, P,Q will refer to the
same blocks as above.

We are now in position to introduce the two notions of subspace invariance for the solution
of the SDE (3). Let PS be the self adjoint projector onto the subspace HS , and ‖ · ‖ be any
matrix p-norm. With a slight abuse of language1 we say that:

Definition 1. The subspace HS is said invariant

1In fact, the dynamics takes place in B(H) and not H, but we are here interested in the invariance of the
support of the solution ρ(t).
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• in mean if
ρ0 ∈ IS(H)⇒ ρ̂(t) ∈ IS(H), ∀t > 0.

• almost surely if
ρ0 ∈ IS(H)⇒ ρ(t) ∈ IS(H), ∀t > 0 a.s.

Definition 2. The subspace HS is said globally asymptotic (GAS)

• in mean if ∀ρ0 ∈ S(H),
lim
t→∞
‖ρ̂(t)− PS ρ̂(t)PS‖ = 0

• almost surely if ∀ρ0 ∈ S(H),

lim
t→∞
‖ρ̂(t)− PS ρ̂(t)PS‖ = 0 a.s.

The invariance and GAS properties in mean are directly related to the Jordan structure
and/or irreducibility of the completely positive map semi group etL. Stability of pure states
and subspaces for these maps has been discussed in [49,50]. We here recall the relevant results
without proof and refer the interested reader to the original articles.

Theorem 1. The subspace HS is invariant in mean if and only if

∀j, Cj,Q = 0 and iHP −
1

2

∑
j

C∗j,SCj,P = 0.

Theorem 2. The subspace HS is GAS in mean if and only if no invariant subspace is included
in
⋂
j ker(Cj,P ).

The rest of the section is dedicated to show that invariance and GAS properties in mean are
equivalent to the corresponding properties almost surely. These results improve those of [4],
in the sense that the proofs are more direct and it is shown that invariance and convergence
in mean imply not only invariance and convergence in probability, but also almost surely.
The proofs make use of the Lyapunov function

V :S(H)→ [0, 1]

ρ 7→ tr(PRρ)

with PR the self adjoint projector on HR, and of the following Lemma (see also e.g. [4]).

Lemma 1.
V (ρ) = 0⇔ ρ ∈ IS(H),

and the process (V (ρ(t)) is a positive super-martingale.

Proof. The first part and the positivity of V are obvious by definition of V and the fact that
ρ ≥ 0 for any ρ ∈ S(H).

For the second part, using the expression (3) we get for all t ≥ s ≥ 0

E(V (ρ(t))|Fs) = V (ρ(s)) +

∫ t

s
E(V (L(ρ(u))|Fs)du.

6



Now explicit computations give

V (L(ρ)) = tr[PRLρ] = −
∑
j

tr[Cj,P
∗Cj,P ρR] ≤ 0,

for all ρ ∈ S(H). This way we get for all t ≥ s ≥ 0

E(V (ρ(t))|Fs) ≤ V (ρ(s))

which corresponds to the super-martingale property.

We are now ready to state our equivalence results. The first concerns invariance of a
subspace.

Theorem 3. The subspace HS is invariant in mean if and only if it is invariant almost
surely.

Proof. Given Lemma 1, it is sufficient to prove

V (ρ̂(t)) = 0, ∀t ≥ 0⇔ V (ρ(t)) = 0, ∀t ≥ 0 a.s.

Since V is linear, we have for all t ≥ 0

V (ρ̂(t)) = E(V (ρ(t))) (4)

and then the implication almost surely ⇒ in mean is immediate.
For the opposite direction, let us remark that V (ρ(t)) ≥ 0 for all t ≥ 0. This way if we

assume that E(V (ρ(t))) = V (ρ̂(t)) = 0 for all t > 0, it follows that V (ρ(t)) = 0, for all t ≥ 0
almost surely and the result holds.

Next we have the result regarding GAS.

Theorem 4. The space HS is GAS in mean if and only if it is GAS almost surely.

Proof. Once again, given Lemma 1, it is sufficient to prove

lim
t→∞

V (ρ̂(t)) = 0⇔ lim
t→∞

V (ρ(t)) = 0 a.s.

The implication almost surely ⇒ in mean follows from dominated convergence Theorem
applied on V . Indeed, we have limt→∞ V (ρ(t)) = 0 a.s. and V (ρ(t)) ≤ 1, for all t ≥ 0. It
follows

lim
t→∞

V (ρ̂(t)) = lim
t→∞

E(V (ρ(t))) = E( lim
t→∞

V (ρ(t))) = 0.

The opposite direction relies on convergence for positive super-martingales. On one hand,
the subspace being GAS in mean implies that limt→∞ E(V (ρ(t))) = 0 for any initial state
ρ0 ∈ S(H). Since V (ρ(t)) ≥ 0, this convergence corresponds to a L1 convergence to 0. On
the other hand, since 0 ≤ V (ρ(t) ≤ 1 and given Lemma 1, the process (V (ρ(t)) is a positive
bounded super martingale. It follows from a usual Theorem in martingale theory, that this
process converges almost surely and in L1 to a random variable V∞. The uniqueness of the
L1 limit implies V∞ = 0 almost surely. That completes the proof.

Given the two notion of GAS are equivalent, from now on we do not specify to which notion
we refer when we say that a subspace is GAS.
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4 A Converse Lyapunov Theorem

The focus of this paper is on the exponential stability (or equivalently, on the estimation of a
Lyapunov exponent) of a stochastic evolution to a given GAS subspace: a key tool in deriving
proper exponential estimation on such stability is represented by a general construction of a
suitable linear Lyapunov function for the corresponding semigroup evolution. While typically
this is not possible for linear systems, where the natural Lyapunov functions are quadratic,
in this case we exploit the fact that the evolution is positive, so that a Perron-Frobenius-type
results holds, and that the stable set has support on a strict subspace of H.

We shall focus on the completely-positive semigroup dynamics. A continuous semigroup
on B(H) is completely positive if and only if its generator has the form [31,36]:

d

dt
X = K(X) = G∗X +XG+ Ψ(X), (5)

where Ψ(X) is a completely positive map and G is a complex d×d matrix. A positive map on
S(H) is called irreducible if it does not admit nontrivial invariant subspaces or, equivalently,
invariant operators are full rank. A generator is said to be irreducible if the semigroup it
generates is of irreducible maps.

Recall that HR is the orthogonal complement of the GAS subspace HS . Let ρS ∈ B(HS)
and ρR ∈ B(HR) such that ρS ≥ 0 and ρR ≥ 0, but not necessarily trace normalized. Define,
by using the notation for the block-decomposition introduced before, the following maps:

LS(ρS) =− i[HS , ρS ] +
∑
j

Cj,SρSC
∗
j,S −

1

2
{C∗j,SCj,S , ρS}

LR(ρR) =− i[HR, ρR] +
∑
j

Cj,RρRC
∗
j,R −

1

2
{C∗j,PCj,P + C∗j,RCj,R, ρR}.

We have the following:

Proposition 1. The family {etLS}t≥0 is a semi group of trace preserving completely positive
maps, and {etLR}t≥0 is a semi group of trace non-increasing completely positive maps.

Proof. Both generator have the form (5) and thus generate semigroups of completely positive
maps. The maps etLS are positive, thus ρS ≥ 0 implies etLSρS ≥ 0. Moreover etLSρS =
ρS+

∫ t
0 LSe

sLSρSds and direct calculation yields tr(LSρS) = 0 for all ρS ∈ B(HS). Thus etLS is
trace preserving for all t ∈ R+. Since the etLR are positive maps, we have ρR ≥ 0⇒ etLRρR ≥
0. Moreover etLRρR = ρR +

∫ t
0 LRe

sLRρRds and tr(LRρR) = −
∑

j tr(C∗j,PCj,PρR) ≤ 0 for all

ρR ∈ B(HR). Thus etLR is trace non-increasing for all t ∈ R+.

The following proposition clarifies the signification of the semi groups we just defined. Recall
the averaged evolution is given by

ρ̂(t) = etLρ0,

where L has the completely-positive form given in (1).

Proposition 2. Assume HS is invariant. If ρ ∈ IS(H), then

etLρ =

(
etLSρS 0

0 0

)
(6)
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and any ρ ∈ S(H),
ρ̂R(t) = etLRρR. (7)

Proof. Assuming ρ ∈ IS(H), the invariance of HS imply etLρ ∈ IS(H). From the invariance
condition of Theorem 1, it follows that for any ρ ∈ IS(H),

Lρ =

(
LSρS 0

0 0

)
.

Thus ρ̂S(t) is the unique solution of dρ̂S(t)
dt = LS ρ̂S(t) which is etLSρS . The invariance condi-

tion of Theorem 1 gives immediately

dρ̂R(t)

dt
= LRρ̂R(t)

and the result follows from the uniqueness of the solution.

The main result of the section, from a stability theory viewpoint, is the following:

Theorem 5 (Linear Lyapunov Function for GAS Subspaces). A subspace HS is GAS if and
only if there exists VK = (Kρ) such that:

VK(ρ) ≥ 0, with VK(ρ) = 0 if and only if ρ ∈ IS(H); (8)

VK(L(ρ)) < 0 for all ρ /∈ IS(H). (9)

In showing that a strict Lyapunov function exists when HS is GAS, we will need some pre-
liminary results. The following technical Lemma is a weaker version of [35, Theorem 2.3]. We
reproduce the proof from [35] for convenience.

Lemma 2. Let KX = G∗X + XG + Ψ(X) be the generator of a semi group of completely
positive maps on B(Cd), d ∈ N. If Ψ is irreducible, then etK is irreducible ∀t ∈ R+.

Proof. The proof provides actually a stronger result. Namely, it shows that for any nonzero
|φ〉, |ψ〉 ∈ Cd, for any t > 0, 〈ψ|etK(|φ〉〈φ|)ψ〉 > 0. This property is called positivity improving
in [35].
First, from [28, Lemma 2.1], Ψ irreducible implies that

〈ψ|(Id + Ψ)d−1(|φ〉〈φ|)ψ〉 > 0

for any nonzero φ, ψ ∈ Cd. Making an expansion of both etΨ and (Id + Ψ)d−1 one see that
all the terms are positive, and all the terms in the second expansion also appear in the first
one. Hence, for any t > 0, there exists c > 0 such that etΨ ≥ c(Id + Ψ)d−1. Therefore, etΨ is
positivity improving.

Now notice that that etK0 : X 7→ etG
∗
XetG is a semi group of completely positive maps.

We define the family of completely positive maps:

Γt(X) = e−tK0etKX.

Since for any t > 0 and |φ〉 ∈ Cd, |φ〉 6= 0, etG|φ〉 6= 0, it remains to show that for any t > 0,
|φ〉, |ψ〉 ∈ Cd, |φ〉 6= 0, |ψ〉 6= 0, 〈ψ|Γt(|φ〉〈φ|)ψ〉 > 0.

9



Suppose 〈ψ|Γt0(|φ〉〈φ|)ψ〉 = 0 for a fixed t0. The Dyson expansion of Γt0 is

Γt0 = Id +
∑
n

∫
0<s1<...<sn<t0

Ψs1 ◦ · · · ◦Ψsnds1 . . . dsn

where s→ Ψs = e−sK0 ◦Ψ◦esK0 is a family of continuous completely positive maps. It follows

〈ψ|Γt0(|φ〉〈φ|)ψ〉 =

|〈ψ|φ〉|2 +
∑
n

∫
0<s1<...<sn<t0

〈ψ|Ψs1 ◦ · · · ◦Ψsn(|φ〉〈φ|)ψ〉ds1 . . . dsn.

All the integrands are positive and continuous in s1, . . . , sn. Hence the assumption 〈ψ|Γt0(|φ〉〈φ|)ψ〉 =
0 implies 〈ψ|Ψs1◦· · ·◦Ψsn(|φ〉〈φ|)ψ〉 = 0 for all (s1, . . . , sn) ∈ [0, t0]n. Especially 〈ψ|Ψ◦n(|φ〉〈φ|)ψ〉 =
0 for all n ∈ N\{0}. It follows that for all t > 0, 〈ψ|etΨ(|φ〉〈φ|)ψ〉 = 0. This implies that either
φ or ψ must be 0. Hence for all non zero φ and ψ, and for all times t, 〈ψ|Γt(|φ〉〈φ|)ψ〉 > 0
thus, setting ψ = etGψ′ one obtain that for any t,

〈ψ′|etK(|φ〉〈φ|)ψ′〉 > 0.

The map etK is positivity improving and therefore irreducible.

The next Lemma is the key one, and it builds on the Perron–Frobenius Theorem for
completely positive maps [28]. Let us denote the spectral abscissa of LR as:

α0 = min{−Re(λ) |λ ∈ sp(LR)}. (10)

Lemma 3. For any ε > 0 there exists KR > 0 such that

L∗R(KR) ≤ −(α0 − ε)KR

where L∗R is the adjoint of LR with respect to the Hilbert–Schmidt inner product on B(HR).

Proof. By definition, for any t ∈ R+, the spectral radius of etLR is e−α0t. If the completely
positive maps of the semi group etLR are irreducible the existence of KR > 0 follows directly
from Perron–Frobenius Theorem [28]. There exists KR > 0 such that L∗RKR = −α0KR.

We now deal with the cases where LR generate a semi group of reducible completely
positive maps. Let Ψ : B(HR) → B(HR) be an irreducible completely positive map. From
Lemma 2, it follows that for all η > 0, Lη = L∗R + ηΨ is a generator of a semi group of
irreducible completely positive maps. Let αη = min{−Re(λ) |λ ∈ sp(Lη)}. From Perron–
Frobenius Theorem [28], there exists Kη > 0 such that LηKη = −αηKη.

Since limη→0 Lη = L∗R, we have limη→0 αη = α0. Hence for any ε > 0 there exists a η small
enough such that αη ≥ α0 − ε. Thus L∗RKη = −αηKη − ηΨ(Kη) ≤ −(α0 − ε)Kη − ηΨ(Kη).
Since Ψ is positive, L∗RKη ≤ −(α0 − ε)Kη and the result follows setting KR = Kη.

In the construction of our Lyapunov function we shall need the following notation. For
any operator KR on HR we extend it as an operator H by putting

K =

(
0 0
0 KR

)
.
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and we introduce the function VK defined by

VK :S(H)→ [0, 1] (11)

ρ 7→ tr(Kρ) = tr(KRρR).

.
Finally, in order to get the strict negativity in Eq (9), we need the strict positivity of α0

Lemma 4. The subspace HS is GAS, if and only if

α0 > 0

Proof. Let us first prove that if HS is GAS, we have α0 > 0. Assume α0 ≤ 0. From Perron–
Frobenius Theorem [28] there exists µ ∈ S(H) such that µR 6= 0 and etLRµR = e−tα0µR. It
follows V (µ̂(t)) = e−α0tV (µ) ≥ V (µ) for all t ∈ R+. That contradicts the GAS assumption
limt→∞ V (µ̂(t)) = 0. Hence α0 > 0.

Concerning the other implication. Assume α0 > 0 and fix ε such that α0 > ε, then by
Lemma 3, there exist KR > 0 such that L∗RKR ≤ −(α0 − ε)KR. Using Gronwall’s inequality,
we get VK(ρ̂(t)) ≤ e−(α0−ε)tVK(ρ0). Since KR > 0, there exists a constant C such that
PR ≤ CK, then V (ρ̂(t)) ≤ Ce−(α0−ε)tVK(ρ0). This implies that HS is GAS.

Proof of Theorem 5. The “if” implication is a direct application of Krasovskii-LaSalle in-
variance principle. Let us focus on the converse implication. From Lemma 4 we can choose
a strictly positive operator KR on HR fulfilling Lemma 3 with ε = α0/2. We then clearly
have VK(ρ) ≥ 0, and equal to zero if and only if ρ ∈ IS(H) by construction. If we compute
VK(L(ρ)), with ρ /∈ IS(H), we get:

VK(L(ρ)) = tr(KL(ρ)) = tr(KRLR(ρR))

= tr(L∗R(KR)ρR)

≤ −α0/2 tr(KRρR)

< 0.

Note that the Lemma 3 not only provides us with a linear Lyapunov function, but also with
a first bound on the exponential stability without measurements. In terms of Lyapunov
exponent for V we have:

Proposition 3.

lim sup
t→∞

1

t
ln(V (ρ̂(t))) ≤ −α0

Proof. From the proof of Lemma 3, there exist KR such that V (ρ̂(t)) ≤ Ce−(α0−ε)tVK(ρ0).
This way for all ε > 0 and for all t > 0

1

t
ln(V (ρ̂(t))) ≤ −(α0 − ε) +

ln(CVK(ρ0))

t

Taking first the limsup and then ε goes to zero we get the expected result.

The purpose of the next section is to investigate the exponential stability by using this
Lyapunov function.
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5 Exponential stability

In this section we study the exponential stability of the stochastic dynamics. The key issue
is an estimation of the Lyapunov exponent of V , namely an upper bound to

lim sup
t→∞

1

t
ln(V (ρ(t)).

We address this issue from two different points of view, and provide necessary conditions
leading to two different bounds for the Lyapunov exponent. In Section 6, we further discuss
the significance and differences of these two bounds by studying some specific examples.

5.1 Preliminaries

We start by introducing a number of functions that will be instrumental to the derivation of
the main results. For ρ ∈ S(H), ρS ∈ S(HS) and ρR ∈ S(HR), and for j = 1, . . . , p, define:

rj(ρ) =tr[(Cj + C∗j )ρ]

rj,S(ρS) =tr[(Cj,S + C∗j,S)ρS ]

rj,R(ρR) =tr[(Cj,R + C∗j,R)ρR].

These play the role of the expectations of the measurement records associated to diffusive
processes. On the other hand, for j = p+ 1, . . . , n,

vj,S(ρS) =tr[C∗j,SCj,SρS ]

vj,R(ρR) =tr[C∗j,RCj,RρR].

These correspond to expectations for jump-type processes. We define the related vectors,

r(ρ) = (rj(ρ))j=1,...,p, rS(ρS) = (rj,S(ρS))j=1,...,p, rR(ρR) = (rj,R(ρR))j=1,...,p,

v(ρ) = (vj(ρ))j=p+1,...,n,vS(ρS) = (vj,R(ρS))j=p+1,...,n

vR(ρR) = (vj,R(ρR))j=p+1,...,n.

In the following, for two vectors a,b, the division a
b is meant element by elements: a

b = (
aj
bj

)j ;

a.b denotes the inner product. Similarly for any function f of R, f(a) = (f(aj))j .
We next give a set of technical conditions that it is going to be useful in avoiding conver-

gence in finite time. While not really restrictive they are essential to our proofs.

Assumption SP: C∗j,RCj,R > 0 for all j = p+ 1, . . . , n.

It particularly implies that for any j = p+ 1, . . . , n and any ρ ∈ S(H) \ IS(H), vj,R(ρR) > 0.
The following function will play an important role in the rest of the section:

α : S(H)× S(HR)→ R+

(ρ, ρR) 7→{
0 if ∃j = p+ 1, . . . , n s.t. vj,R(ρR) = 0
1
2‖r(ρ)− rR(ρR)‖2 + (vR(ρR)− v(ρ)).1 + v(ρ). ln

(
v(ρ)

vR(ρR)

)
else,

with the convention x ln(x) = 0 whenever x = 0 and 1 = (1)j=p+1,...,n. Given that definition
we have:
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Lemma 5. Provided assumption SP is fulfilled, α is continuous on S(H) × S(HR) and the
following minimum is well defined:

α1 = min{α(ρ, ρR) | ρ ∈ IS(H), ρR ∈ S(HR)}.

Proof. Let introduce the set

A = {(ρ, ρR) ∈ S(H)× S(HR)|∃j = p+ 1, . . . , n, vj,R(ρR) = 0}

The set A corresponds to the set of possible points of discontinuity for the function α. By
definition α = 0 on A. Nevertheless under the assumption SP, since S(HR) is compact, we
get that

min
j=p+1,...,n

min
ρR∈S(HR)

vj,R(ρR) > 0.

It follows that A is empty and that α is continuous. Since the underlying set is compact and
since α is continuous, the minimum is well defined.

5.2 Statement of main results

Recall that

• −α0 is the eigenvalue of LR with minimum real part,

• α1 is given in Lemma 5,

and define

• α′0 = min spec
(∑n

j=1C
∗
j,PCj,P

)
.

The main results of this section are summarized in the following Theorem.

Theorem 6. Provided HS is GAS,

lim sup
t→+∞

1

t
ln(V (ρ(t)) ≤ −α0 a.s. (12)

If moreover assumption SP is fulfilled,

lim sup
t→+∞

1

t
ln(V (ρ(t)) ≤ −(α′0 + α1) a.s. (13)

Remark Note that, without measurements, from Proposition 3 we already have

lim sup
t→+∞

1

t
ln(V (ρ̂(t)) ≤ −α0

for the mean evolution. This way in the case where α0 < α′0 + α1, the above Theorem says
that the subspace stability is improved in presence of measurements. Note that in general
this is not always true but one can taylor experiment where this is satisfied (see Section 6).
In general, as shown in the next proposition, one has α′0 ≤ α0. Then we, at least, need α1 > 0
for improving the stability via measurements (sufficient condition will be given in the sequel,
see assumption ND below).
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Proposition 4. Assume HS is GAS, then

0 ≤ α′0 ≤ α0.

Proof. First, α′0 is an element of the spectrum of a positive semi definite operator. It is thus
non negative. Second, on the one hand, we have for any µR ∈ S(HR), tr(LR(µR)) ≤ −α′0,
then by Gronwall’s inequality,

tr(etLRµR) ≤ e−α′0t. (14)

On the other hand, from completely positive maps Perron–Frobenius spectral Theorem [28],
there exits ρR ∈ S(HR) such that etLRρR = e−tα0ρR. Then, applying (14) with ρR we get
e−tα0 ≤ e−tα′0 which gives the announced inequality.

The following assumption gives a sufficient condition to have α1 > 0. It is similar to a
non degeneracy condition in non demolition measurements [10,13,15,23].

Assumption ND. For any ρS ∈ S(HS), ρR ∈ S(HR), there exists j = 1, . . . , n
such that

rj,S(ρS) 6= rj,R(ρR) if j = 1, . . . , p,

or
vj,S(ρS) 6= vj,R(ρR) if j = p+ 1, . . . , n.

Proposition 5. Assume SP is fulfilled. The assumption ND is equivalent to

α1 > 0.

Proof. First we prove ND ⇒ α1 > 0. From Lemma 5, since assumption SP is provided, α
is continuous on IS(H) × S(HR), which is a compact set. Thus the minimum is reached for
some (ρ, ρR) ∈ IS(H)× S(HR). Since for any ρ ∈ IS(H), r(ρ) = rS(ρS) and v(ρ) = vS(ρS),
it follows from assumption ND that there exists at least one j such that rj,S(ρS) 6= rj,R(ρR)
if j ≤ p or vj,S(ρS) 6= vj,R(ρR) if j > p. The functions (x, y) 7→ (x − y)2 and (x, y) 7→
y− x+ x ln(x/y) are positive on respectively R2 and R+×R+ \ {0}. They vanish if and only
if x = y. Thus from the definition of α, we get α1 = α(ρ, ρR) > 0.

The backward implication is obtained by contradiction. Assume α1 > 0 and there exists
a couple (ρ, ρR) ∈ IS(H) × S(HR) such that r(ρ) = rR(ρR) and v(ρ) = vR(ρR). Then
α(ρ, ρR) = 0 and thus α1 = 0 which contradicts the assumption α1 > 0.

5.3 Proof of Theorem 6: Part 1

The following proposition is the key result leading to (12). We recover the stability rate
bound obtained for the convergence without measurements.

Proposition 6. Assume HS is GAS. Then ∀ε > 0,

V (ρ(t)) = o(e−(α0−ε)t) a.s. and in L1–norm.

Proof. Fix ε > 0. From Lemma 3, there exists K > 0 such that L∗RK ≤ −(α0 − 1
2ε)K. From

Equation (7), we get

VK(ρ̂(t)) = tr(etL
∗
RKρ0,R) ≤ e−(α0− 1

2
ε)tVK(ρ0).
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Taking expectation, we get

E(VK(ρ(t))e(α0−ε)t) ≤ VK(ρ0)e−
1
2
εt.

It follows that
lim
t→∞

E(VK(ρ(t))e(α0−ε)t) = 0,

which corresponds to the L1 convergence.
Concerning the almost sure estimate, we first show that (VK(ρ(t))e(α0−ε)t)t∈R+ is a positive

super martingale. Using that (ρ(t)) is a Markov process and that VK linear, for any s ≤ t,
we get

E(VK(ρ(t))|Fs)e(α0−ε)t =tr[e(t−s)L∗RKρR(s)]e(α0−ε)t

≤VK(ρ(s))e−(α0− 1
2
ε)(t−s)e(α0−ε)t

≤VK(ρ(s))e(α0−ε)se−
1
2
ε(t−s)

≤VK(ρ(s))e(α0−ε)s,

then (VK(ρ(t))e(α0−ε)t)t∈R+ is a positive super martingale. It follows that this super martin-
gale converges almost surely to a random variable denoted by Z. Now, using the fact that L1

convergence implies almost sure convergence for an extracted subsequence we can conclude
that Z = 0.

Now since K > 0 there exists CK > 0 such that V (ρ) ≤ CKVK(ρ) for any ρ ∈ S(H). Then

lim
t→∞

V (ρ(t))e(α0−ε)t = 0 a.s. and in L1–norm.

and the result is proved.

Proof of Theorem 6 equation (12). Coming back to the fact that limt→∞ V (ρ(t))e(α0−ε)t =
0 a.s, there exist almost surely T such that for all t ≥ T

V (ρ(t)) ≤ e−(α0−ε)t.

This implies

lim sup
t→∞

1

t
ln(V (ρ(t))) ≤ −(α0 − ε) a.s

and taking then ε going to zero yields the result.

5.4 Proof of Theorem 6: Part 2

Now for the second bound in Theorem 6, we first show that the process (V (t)) can be written
as the solution of a Doleans Dade equation, a crucial step in obtaining the result. Before
stating the result, let us introduce the following notation

W(t) = (Wj(t))j=1,...,p and N̂(t) = (N̂j(t))j=p+1,...,n.

Furthermore we will need the following process

ρR,red.(t) =

{
ρR(t)

tr(ρR(t)) if tr(ρR(t)) = V (ρ(t)) 6= 0

µR if tr(ρR(t)) = V (ρ(t)) = 0,
(15)
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where µR is an arbitrary state of S(HR).
Remark: In the above definition, the process ρR,red.(t) can be seen as a normalized version

of the reduced state ρR, which we obtain by dividing by tr(ρR(t)) = V (ρ(t)). However, since
in general nothing ensures that tr(ρR(t)) does not vanish, we introduce an arbitrary state
µR in the case tr(ρR(t)) is zero. This is only a formal construction, as the interesting cases
are the ones where this quantity is never zero. In fact, by using the invariance property it is
easy to see that if V (ρ(t) = 0 for some t, we get V (ρ(s)) = 0 for all s ≥ t. In this situation
the exponential stability is somewhat trivial: the Lyapunov exponent is equal to −∞, as we
have convergence to zero in finite time. In the situation where (V (ρ(t))) does not vanish
in finite time, the state µR does not actually play any role. The introduction of µR is only
instrumental to a proper definition of ρR,red.(t), and the final result, in the cases of interest,
will not rely on the choice of µR.

In order to simplify the notation we put

V (t) = V (ρ(t)),∀t ∈ R+

Proposition 7. The process (V (t)) is the unique solution of the SDE

dV (t) =V (t−)
{

tr(LRρR,red.(t−))dt

+ [rR(ρR,red.(t−))− r(ρ(t−)))].dW(t)

+

(
vR(ρR,red.(t−))

v(ρ(t−))
− 1

)
.[dN̂(t)− v(ρ(t−))dt]

}
,

V (0) =tr(PRρ0).

(16)

This process is a Doleans–Dade exponential whose explicit expression is

V (t) = V (0)
n∏

j=p+1

∏
s≤t

(
1 +

(
vj,R(ρR,red.(s−))

vj(ρ(s−))
− 1

)
∆N̂j(s)

)

× exp
{∫ t

0
tr(LRρR,red.(s−))ds

− 1

2
‖rR(ρR,red.(s−))− r(ρ(s−))‖2ds

+

∫ t

0
[rR(ρR,red.(s−))− r(ρ(s−))].dW(s)

−
∫ t

0
[vR(ρR,red.(s−))− v(ρ(s−))].1ds

}
.

(17)

Proof. Since (ρ(t)) is well defined, the uniqueness of the solution of (16) and the expression
(17) follows from usual argument of stochastic calculus. Now the fact that (V (t) satisfies (16)
is obtained by applying V on (3). Indeed, let us recall that V (ρ) = 0 implies ρR = 0. This
way for all t ≥ 0, we can write ρR(t) = V (t)ρR,red.(t) and applying V (which is linear) on (3),
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we get

dV (t) =tr(LR(ρR(t−)))dt

+

p∑
j=1

(tr((Cj,R + C∗j,R)ρR(t−))− tr((Cj + C∗j,R)ρ(t))V (t−))dWj(t)

+

n∑
j=p+1

(
tr(Cj,RρR(t−)Cj,R)

vj(t−)
− V (t−)

)
[dN̂j(t)− vj(t−)dt],

which is the expansion of (16).

In order to discuss the ”strict” positivity of (V (t)), it is interesting to write the solution
(V (t)) in the following form

V (t) =V (0) +

∫ t

0
V (s)

{
tr(LR(ρR(s−)))ds

− [vR(ρR,red.(s−))− v(ρ(s−))].1dt

+ [rR(ρR,red.(s−))− r(ρ(s−))].dW(s)
}
,

+
+∞∑
n=0

V (Tn−)
vjTn ,R(ρR,red.(Tn−))

vjTn (ρ(Tn−))
1Tn≤t,

(18)

where the sequence of stopping time (Tn) is defined by T0 = 0 and

Tn+1 = inf{t > Tn s.t. N̂(t).1 ≥ n}.

Note that the independence of Ni ensures that for all n, we have N̂(Tn).1 = 1 almost surely
(two jumps can not appear at the same time)

Remark: Under the light of the expression (17), one can introduce τ = inf{t > 0/V (t) =
0}. Using strong Markov property of the couple (ρ(t), V (t)), one can see that V (t) = 0 for all
t ≥ τ . At this stage we can underline the fact that µR in the definition of (ρR,red.(t)) will not
play any role in our final result. On {τ < ∞} it is obvious that V (t) = o(e−ct) for all c > 0
and such situation is straightforward.

In addition of the above remark, the following corollary expresses that under assumption
SP the event {τ <∞} is of probability 0.

Corollary 1. Assume SP is fulfilled. Then for all t ∈ R+, V (ρ(t)) > 0 almost surely.

Proof. Assumption SP ensures there exists c > 0 such that for all j = p + 1, . . . , n and any

ρR ∈ S(HR), vj,R(ρR) > 0. It follows that
vj,R(ρR,red.(s−))

vj(ρ(s−)) > 0 almost surely for all s ≥ 0 and

j = p + 1, . . . , n. Thus from equation (17) or (18), one can see that V (t) does not vanish
when a jump occurs (that is at a time Tn). Concerning the smooth evolution (that is the
diffusive evolution in between the jumps, i.e ∆Ni(.) = 0) one can see (from (17)) that V is
an exponential and then does not vanish.

The following lemma is a technical lemma which will be used in the next proposition (the
proof is only based on an argument regarding strong law of large numbers for martingale and
we do not give the detail of the proof)
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Lemma 6. Let FW : S(H) → Rp be a bounded function. Let also FJ : S(H) → Rn−p be a
function such that ρ 7→ v(ρ).F2

J(ρ) is bounded. The processes (MW (t)) and (MJ(t)) defined
by

MW (t) =

∫ t

0
FW (ρ(s−)).dW(s) (19)

MJ(t) =

∫ t

0
FJ(ρ(s−)).[dN̂(s)− v(ρ(s−))ds] (20)

are square integrable martingales that obey the strong law of large numbers:

lim
t→∞

1

t
MW (t) = 0 (21)

lim
t→∞

1

t
MJ(t) = 0 (22)

almost surely.

In the following lemma we use a definition similar to the one of ρR,red. for a reduced state
ρS,red. on S(HS) :

ρS,red. =

{ ρS
tr(ρS) if tr(ρS) 6= 0

µS if tr(ρS) = 0
(23)

Lemma 7. Assume HS is GAS and SP is fulfilled. Then,

lim
t→∞

α(ρ(t), ρR,red.(t))− α
((

ρS,red.(t) 0
0 0

)
, ρR,red.(t)

)
= 0

almost surely.

Proof. From the GAS property, we have

lim
t→∞

ρR(t) = 0 and lim
t→∞

ρP (t) = 0 a.s.

Hence 1− V (ρ(t)) converges almost surely to 1 and then

lim
t→∞
‖ρS(t)− ρS,red.(t)‖ = 0 a.s.

We then have

lim
t→∞

∥∥∥∥ρ(t)−
(
ρS,red.(t) 0

0 0

)∥∥∥∥ = 0

almost surely. The result then follows from the continuity of α ensured by assumption SP
and Lemma 5.

Now we are in position to prove the last part of Theorem 6 which is

lim sup
t→∞

1

t
ln(V (ρ(t))) ≤− (α′0 + α1) a.s.

Proof of Theorem 6 equation (13). If ρR(0) = 0, the result is trivial. We therefore prove
the result only for ρR(0) 6= 0. Since SP is fulfilled, Corollary 1 ensures V (t) > 0 for all t ∈ R+

almost surely.
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Now let us introduce

FW (ρ) = rR(ρR,red.)− r(ρ) and FJ(ρ) = ln

(
vR(ρR,red.)

v(ρ)

)
.

They both fulfill the assumptions of Lemma 6. Using Itô–Lévy Lemma for the logarithm
function or using the explicit expression of Proposition 7, we can express V (t) as

V (t) = V (0)× exp
{∫ t

0
tr(LRρR,red.(s−))− α(ρ(s−), ρR,red.(s−))ds

+MW (t) +MJ(t)
}
.

where

MW (t) =

∫ t

0
FW (ρ(s−)).dW(s)

and

MJ(t) =

∫ t

0
FJ(ρ(s−)).[dN̂(s)− v(s−)ds].

are square integrable martingale. At this stage, we have

1

t
ln(V (t)) =

1

t
ln(V (0))

+
1

t

∫ t

0
tr(LRρR,red.(s−))− α(ρ(s−), ρR,red.(s−))ds

+
1

t
MW (t) +

1

t
MJ(t).

Now, the strong law of large numbers of Lemma 6 implies

lim
t→∞

1

t
MW (t) = lim

t→∞

1

t
MJ(t) = 0 a.s.

Obviously

lim
t→∞

1

t
ln(V (0)) = 0.

It remains to treat the integral term. To this end, from the definition of α′0, recall that

tr(LRρR,red.(s−)) ≤ −α′0
for all s ∈ R+ almost surely. Then from Lemma 7 and the definition of α1, we have

lim sup
t→∞

−α(ρ(t), ρR,red.(t)) ≤ −α1

almost surely.
From the implication

lim sup
t→∞

f(t) ≤ C ⇒ lim sup
t→∞

1

t

∫ t

0
f(s)ds ≤ C,

we finally obtained

lim sup
t→∞

1

t
ln(V (ρ(t))) ≤ −(α′0 + α1).

As a final remark in this section, the following estimates are byproducts of Theorem 6.
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Theorem 7. Provided HS is GAS, then α0 > 0, and for any ε > 0,∥∥∥∥ρ(t)−
(
ρS(t) 0

0 0

)∥∥∥∥ =o(e−
1
2

(α0−ε)t) a.s. and in L1–norm. (24)

If moreover assumption SP is fulfilled,∥∥∥∥ρ(t)−
(
ρS(t) 0

0 0

)∥∥∥∥ =o(e−
1
2

(α′0+α1−ε)t) a.s. (25)

Proof. One has to check that, for any state ρ ∈ S(HS),∥∥∥∥ρ− ( ρS 0
0 0

)∥∥∥∥ ≤ 2 max(2
√
V (ρ), V (ρ)).

This can be proved as follows. Using the triangle inequality, we have∥∥∥∥ρ− ( ρS 0
0 0

)∥∥∥∥ ≤ ‖ρP ‖+ ‖ρQ‖+ ‖ρR‖.

Since ρ ≥ 0, ρQ = ρ∗P , ‖ρP ‖ = ‖ρQ‖, and we have the inequality

‖ρP ‖2 ≤ ‖ρS‖‖ρR‖.

From the bound ‖ρS‖ ≤ 1, it follows∥∥∥∥ρ− ( ρS 0
0 0

)∥∥∥∥ ≤ 2‖ρR‖1/2 + ‖ρR‖.

Now, the almost sure results of the Theorem are a consequence of the inequality ‖ρR(t)‖ ≤
V (ρ(t)) and of the result of Theorem 6. The L1 norm follows from Proposition 6.

6 Improved stability consequences

As stated earlier, one can taylor examples where α0 < α′0 + α1. In fact, we next show that
it is possible to add a measurement channel that does not modify LS and LR, yet makes α1

arbitrarily large. Define
Cn+1 = `SPS + `RPR,

with PS and PR the self-adjoint projectors onto HS and HR respectively, and `S , `R ∈ C.
This new operator accounts for the addition of a diffusive “non demolition” measurement,

distinguishing wether the state is in HS or HR [15,23]. It is worth noticing that this does not
modifies the invariance and GAS property of HS .

Let us introduce the new operator-valued functions associated to the SME which includes
Cn+1. We denote them with a “˜” in order to distinguish them from the original ones. For
any ρ ∈ S(H), we have:

L̃(ρ) =L(ρ) + Cn+1ρC
∗
n+1 −

1

2
{C∗n+1Cn+1, ρ},

Gn+1(ρ) =Cn+1ρ+ ρC∗n+1 − tr(Cn+1 + C∗n+1)ρ)ρ.
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Direct computations yield L̃S = LS and L̃R = LR. Therefore α̃0 = α0 and α̃′0 = α′0. We only
expect α̃1 6= α1. The new quantum trajectory (ρ̃(t)) is the solution of the SDE

ρ̃(t) =ρ0 +

∫ t

0
L̃(ρ̃(s−))ds

+

p∑
j=0

∫ t

0
Gj(ρ̃(s−))dWj(s) +

∫ t

0
Gn+1(ρ̃(s−))dWn+1(s)

+

n∑
j=p+1

∫ t

0

∫
R

(
Jj(ρ̃(s−))

vj(ρ̃(s−))
− ρ̃(s−)

)
10<x<vj(ρ̃(s−))[Nj(dx, ds)− dxds]

(26)

with (Wn+1(t)) a Wiener process independent of all the other Wiener and Poisson processes2.
If we assume SP, then from the definition of α and the corresponding α̃, we have

α̃1 = α1 +
1

2
Re2(`S − `R).

It is then clear that we can play with the value Re2(`S − `R) to increase arbitrarily the value
of α1. Next proposition expresses this fact and follows directly from Theorem 6.

Proposition 8. Assume HS is GAS and SP is fulfilled. Then

lim sup
t→∞

1

t
ln
(
E(V (ρ̃(t)))

)
≤ −α0

and for any C > 0 there exists `S , `R ∈ C such that

lim
t→∞

1

t
ln
(
V (ρ̃(t))

)
≤ −C a.s.

Hence, whatever is the mean stability exponent α0, we may have an arbitrarily large
almost sure asymptotic stability exponent.

In the particular case of qubits, i.e. two dimensional systems, we have a finer result: the
above inequality actually becomes an equality, showing that the above bound is, in some
sense, sharp. Note that in the qubit case we choose HS and HR both one dimensional. They
correspond to two orthogonal projective rays of H. The quantum trajectory can then be
expressed, in the orthonormal basis associated to HS and HR, as

ρ(t) =

(
p(t) c(t)
c(t) 1− p(t)

)
for any time t. The evolution of (ρ(t)) is then uniquely determined by that of (p(t)) and
(c(t)). In particular we have

V (ρ(t)) = 1− p(t),
for all t ≥ 0.

For the sake of simplicity we just focus on the case where only two diffusive measurements
are involved (n = p = 1), associated to operators:

C0 =

(
0 `P
0 0

)
, C1 =

(
`S 0
0 `R

)
and H = 0,

2We define the new filtered probability space (Ω̃, F̃ , (F̃t), P̃), similarly to the original one.
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with `S , `R, `P ∈ C. This restriction is intended mainly to improve the readability of our
proof, as the results extend easily to more general choices of C0 and C1. Also, adding more
diffusive measurements or counting measurements is straightforward.

We can translate the SDE (2) to a SDE involving (p(t), c(t)). If (ρ(t)) is the solution of
(2) with p = n = 1 and the above defined C0 and C1 then its corresponding process (p(t), c(t))
is the solution of

dp(t) =(1− p(t))|`P |2dt
+ 2(1− p(t))Re(`P c(t))dW0(t)

+ 2p(t)(1− p(t))Re(`S − `R)dW1(t)

(27)

dc(t) =− 1

2
|`P |2c(t)dt−

1

2
(|`S |2 + |`R|2 − 2`S`R)c(t)dt

+
(
(1− p(t))`P − 2c(t)Re(`P c(t))

)
dW0(t)

+
(
`Sc(t) + `Rc(t)− 2c(t)(p(t)Re(`S) + (1− p(t))Re(`R))

)
dW1(t)

(28)

with the initial condition (p(0), c(0)) = (p0, c0). From equation (27) and the definitions of α0,
α′0 and α1, we immediately have

α0 = α′0 = |`P |2 and α1 = 2Re2(`S − `R).

We then have the following refinement of Theorem 6.

Theorem 8. Consider the two-dimensional system described above. Assume `P 6= 0 and
p0 < 1. Then,

lim
t→∞

1

t
ln(1− p(t)) = −(α0 + α1) a.s.

Proof. From Îto lemma, we have

ln(1− p(t)) = ln(1− p0)− α0t− α1

∫ t

0
p(s)ds−

∫ t

0
Re(`P c(s))ds+Mt

with Mt a square integrable martingale such that limt→∞Mt/t = 0 almost surely. Note that
we have almost sure convergences of p(t) to 1 and of c(t) to 0. Now adapting easily the proof
of Theorem 6, since we have `P 6= 0 we get the result.

Hence, the stability exponent is exactly α0 + α1, and no better one can be found. This
result proves the sharpness of our stability rate bound. The almost sure convergence towards
HS was already known [9], hence the new result in this case is the stability rate derivation.

We conclude this section and this article with some numerical simulations (see Figure 1)
that illustrate the influence of an increased α1 on the typical trajectories. In the case corre-
sponding to a larger asymptotic stability rate leads to initially more erratic trajectories, yet
the convergence is faster in the sense of the Lyapunov exponents: the increased stability rate
makes the state almost “jump” to the target subspace, where it remains. This limit behaviour
was first remarked and discussed in [14,17–19]. Formulating and proving these observations,
i.e. studying the limit α1 →∞, more rigorously needs further deep investigations.

TB: Do we need this paragraph or a conclusion. The references and the remark on the
limit α1 →∞ may be sufficient.
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Figure 1: Numerical simulations of the evolution of 1−p(t). On the left α0 = 1 and α1 = 1/2.
On the right α0 = 1 and α1 = 8. In each graph one gray line corresponds to a realisation
and the solid black line corresponds to the average evolution. The initial condition is set to
p0 = 0. One can remark that when α1 increases, the asymptotic stability increases.

CP: I do agree with Tristan regarding the last paragraph. Since we do not have investigated
the problem in details; I am not sure it is relevant. In particular we do not give much more
interpretations than the one given in the references.

Let us interpret this behaviour from a physical viewpoint. What the additional measure-
ment operator is introducing is a continuous measurement of the state, extracting information
regarding which one of the basis vectors it occupies. When α1 gets large, it means that the
difference of `S,R is getting larger, and so does the norm of Cn+1. This is equivalent to a
rescaling of the variance of the noise process, and in the limit of infinitely large variance the
measurement of Cn+1 would effectively become a projective measurement, with convergence
in finite time. However, the state corresponding to HR is unstable for the other measurement
process so, even if initially the state may tend to “jump” towards HR, for large yet bounded
Cn+1 it will always retain some probability of rapidly going back towards HS , the only stable
state. Similar arguments hold for general finite dimensional systems.
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