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Regenerative medicine in hearing recovery
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Abstract
Hearing loss, or deafness, affects 360 million people worldwide of which about 32 million are children. Deafness is irre-
versible when it involves sensory hair cell death because the regenerative ability of these cells is lost in mammals after embryo
development. The therapeutic strategies for deafness include hearing aids and/or implantable devices. However, not all pa-
tients are eligible or truly benefit from these medical devices. Regenerative medicine based on stem cell application could
play a role in both improvement of extant medical devices and in vivo recovery of auditory function by regeneration of inner
ear cells and neurons. A review of recent literature on the subject indicates that two promising approaches to renewal and
differentiation of cochlear tissues are transplantation of stem cells and in situ administration of growth factors. Rather than
directly regenerating dead cells, these procedures apparently induce, through various pathways, differentiation of resident
cochlear cells. More studies on the possible adverse effects of transplanted cells and the recovery of tonotopic sensorineu-
ral activity or required. To date, no reliable clinical results have been obtained in the field of cochlear regeneration.

Key Words: Cochlear stem cells, endogenous stem cells, growth factor supplements, hearing loss, hearing recovery, inner ear, stem
cell transplantation

Introduction

Worldwide, the majority of hearing disabilities (ap-
proximately 90%) result from the death of sensory
cells, either hair cells (HCs) or spiral ganglion neurons
(SGNs), thus leading to sensorial and/or neural hearing
loss (SNHL).The etiology of SNHL includes mainly
ototoxicity, deafening noise and presbyacusis [1,2].
Impairment due to SNHL has significant social and
economic impact because it affects the ability to in-
teract with people and the surrounding environment
and, when it occurs early in life, causes language de-
velopment delays and social integration problems [3,4].

The cochlear implant is the unique surgical option
for people with severe-to-profound SNHL.This elec-
tronic high-technology device transforms sound waves
into an electric stimulus, bypassing the damaged co-
chlear cells to directly stimulate the acoustic nerve.
However, even with recent advances in engineering,
surgery and pharmaceutical treatments that have im-
proved the efficacy of cochlear implants and reduced
electrode insertion trauma, normal auditory function

cannot be completely restored [5,6]. New therapeutic
strategies based on molecular, cellular and nanotech-
nological tools are aimed at regenerating and/or
preserving sensory cells in the cochlea, contributing
to improved cochlear implant outcomes [7–9]. Studies
on nanotechnological tools involve the development
of nanostructured electrodes and the improvement of
drug delivery systems based on nanoparticles [10–12].
Regenerative medicine, an intriguing therapeutic
strategy, has been successful in several research and
clinical fields, such as dermatology, cardiovascular
medicine and orthopedics [13]. Among regenerative
medicine strategies, the use of stem cells (SCs) to
restore damaged tissues is one of the most studied
cell-based applications [14]. In otology, for example,
SCs transplanted on synthetic scaffolds have re-
cently been applied in tissue engineering for
reconstruction of the human auricle [15,16].The aim
of SC-based therapy in SNHL is to replace lost HCs
or SGNs, and the major challenge is to achieve this
without affecting the complex cytoarchitecture of the
cochlea and any residual hearing function [17,18].
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This review highlights the state of the art in re-
generative medicine of inner-ear cells, discussing recent
applications in hearing disabilities. Two general ap-
proaches are commonly used for tissue regeneration
based on SCs: tissue-resident SCs or transplanted
allogeneic SCs.The review focuses first on cochlear-
resident putative SCs and then on in vitro production
of HCs and SGNs. Finally, it considers in vivo tissue
regeneration by transplantation of allogeneic SCs
and/or growth factor supplementation for neuronal
regrowth and protection.

Cochlear SCs

The identification of neural SCs (NSCs) in the adult
central nervous system [19] and the well-known ca-
pability of injured non-mammalian adult vertebrates
to restore damaged auditory sensory epithelium [20]
encouraged researchers to investigate whether SCs
could also be located in the mammalian inner ear
and whether their regenerative ability could also be
exploited in mammalian tissues.

In inner ear, a small number of SCs were isolated
from adult mouse utricles, amounting to 0.025% of
utricular cells [21]. Later, several studies identified and
isolated SCs from mammalian cochlear sensory epi-
thelium, spiral ganglion and stria vascularis of early
postnatal mice, rats, guinea pigs and human fetuses
[22–26].These cells form self-renewing spheres in non-
adherent cultures, but this ability weakens after several
ex vivo passages [27].When isolated from the cochlear
sensory epithelium, these SCs are also able to differ-
entiate into inner ear cell lineages, such as HC-like
cells and sensory neurons, and into mature neurons
and glia cells when isolated from the spiral ganglion
[28,29].

In mice, the ability of sensory epithelial SCs to form
spheres decreases about 100-fold during the second
and third postnatal week, together with the expres-
sion of developmental and progenitor cell markers in
the cochlea [21]. In contrast, utricle SCs maintain these
characteristics into adulthood [20,21]. There is only
one report concerning isolation of NSCs from adult
human and guinea pig spiral ganglion [30].

Over the past few years, there has been evidence
indicating that postnatal cochlear supporting cells
also maintain SC-like characteristics in mammals
[31] and are able to divide and trans-differentiate
in vitro into HCs [32]. These abilities decline with
age [33]: in cochlear SCs forming spheres, this decline
is partially caused by changes in the expression of
the cyclin-dependent kinase inhibitor (Cdkn1b),
which plays a central role in regulating cell prolifer-
ation. After HC formation, the expression of Cdkn1b
in the organ of Corti is restricted to non-sensory cells,
preventing further divisions of HCs [33,34]. Moreover,

p27-deficient mice exhibit hearing damage due to the
over-proliferation and irregular positioning of both hair
and supporting cells [35]. Another key gene involved
in HC differentiation is ATOH1 (atonal bHLH tran-
scription factor 1),also known as MATH1 (mouse atonal
homolog 1) [36,37]. It has been shown that transfec-
tion of ATOH1 in vivo after acoustic trauma induces
its over-expression in supporting cells, promoting their
differentiation in HCs and hearing recovery [36,37].
A known marker of adult SC, Lgr5, has been used to
verify that supporting cells are the progenitors of HC:
Lgr5+ supporting cells isolated from neonatal mice were
able to form self-renewing neurospheres and differ-
entiate into myo7a+ HCs both in vitro and in vivo [38].
These observations are supported by those obtained
on avian models, where adult supporting cells main-
tain their ability to differentiate into HCs, replacing
them after a cochlear damage [39,40]. Other authors
maintain that putative cochlear SCs may derive from
the mesenchymal SCs (MSCs) reservoir located in the
inner ear stroma underlying the epithelial tissue [41].
Although it remains unclear, some studies have shown
that MSCs are able to differentiate in vitro in both HC-
like cells and neurons [42,43].

In vitro regeneration by SCs

Transplantation of SCs to restore damaged inner ear
cells and restore hearing function is an emerging
field of research because mammalian HCs and SGNs
are unable to regenerate after cell death resulting
from trauma, disease or genetic mutation [7,44].

HCs and SGNs have been obtained in vitro
from several types of SCs, including bone marrow
MSCs (BM-MSCs), adipose-derived MSC (ASCs),
olfactory precursor cells, embryonic SCs and adult brain
germinal zone–derived cells (NSCs) from mice, rats
and humans [45–52]. Despite these data, the ability
of MSCs to differentiate into HCs and neurons is
still controversial. Induced pluripotent SCs (iPSs) from
mice were induced to become otic progenitors by ex-
posure to growth factors, producing functionally active
HCs [53]. Several authors investigated the possibility
of obtaining new HCs and SGNs from endogenous
sources and from putative cochlea-resident SCs. New
functional sensory epithelia were obtained from en-
dogenous avian inner ear cells by mesenchymal-to-
epithelial transition after several culture freezing and
expansion cycles, without co-culture with other tissues
[54]. Isolated SGNs have been shown to able to survive
in vitro, forming synapses with other neurons and HC
in co-culture [48]. In in vitro co-cultures, also the neural
progenitors derived from embryonic SCs were able to
regenerate the complex neural network of the inner
ear by producing neurites (positive to synaptic markers)
elongating toward HCs [43,47,55,56].These in vitro
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data were supported by in vivo studies of embryonic
SC transplantation after cochlea denervation
[42,47,55–59].

In vivo regeneration by SCs

Cochlea-resident endogenous SCs may represent
the main source for inner ear cell repair, but no ev-
idence of their ability to generate new HCs or neurons
as physiological responses to auditory injuries is
currently available.The use of exogenous sources for
SC transplantation in SNHL has been established,
however. Several studies have investigated transplan-
tation of SCs isolated from various tissues into the
damaged cochlea to increase HC and/or SGN number
and function, thus restoring auditory capability. In some
of these studies, NSCs or in vitro neural-differentiated
exogenous SCs (ExSCs) were transplanted via topic
administration into cochleae with pharmacological or
physical damage; results indicated survival of in-
jected cells, an increased number of target cells, partial
SC differentiation into neurons and/or glial cells, and,
in some cases, improved hearing function [60–65].
Sakamoto et al. [66] transplanted undifferentiated
mouse ExSCs into neomycin-treated mouse and em-
bryonic chicken inner ears. Some ExSCs developed
into ectoderm cells but not into HCs in mice, and in
chickens, these cells were driven into neural crest cells,
next to the otic vesicles. However, Zheng et al. [67]
isolated cochlear SCs from newborn rats and trans-
planted them into the scala tympani of gentamicin-
deafened rats, showing a migration of transplanted
HC-like cells from the injection site to the basal mem-
brane and organ of Corti with hearing recovery. Other
studies showed that transplanted SCs could survive
at the injection site, regardless of the presence of an
external acoustic damage [68–70]. Kasagi et al. [68]
investigated the ability of young and old mice to accept
mouse BM-MSC transplantation into the perilymph,
showing a positive engraftment only in young indi-
viduals, with no adverse effects on auditory brainstem
response (ABR) test in both groups.The recovery of
auditory function in mice with age-related hearing loss
by transplantation of human adult olfactory SCs into
the cochlea was investigated by Pandit et al. [69], who
found that transplanted cells could survive in co-
chlear tissue and improve hearing function, although
they did not integrate in the tissue [69]. Embryonic
rat NSCs transfected with ATOH1 gene were trans-
planted into normal guinea pig cochleae by Han et al.
[70]. All NSCs survived; approximately 10% differ-
entiated into HCs in the cochlear epithelium and more
than 10% into neurons in the endolymphatic space.

Another target for SC therapy in SNHL is the co-
chlear lateral wall because hearing loss is also known
to be caused by mutations of genes encoding for

gap-junction proteins [71–75]. These molecular al-
terations have been studied in the stria vascularis [71],
in otic fibrocytes [72] and in age-related or damage-
induced fibrocyte degeneration in the spiral ligament
[73,74]. Kasagi et al. [68] and Kamiya et al. [75] re-
ported transplanted rat BM-MSCs in the perilymph
of a SNHL rat model with a lateral wall fibrocyte dys-
function not associated with changes in the organ of
Corti. Transplanted cells found in the injured area
could express connexin 26 and connexin 30, indicat-
ing a reactivation of gap junction between neighboring
cells. Moreover, the transplanted rat group showed a
higher hearing recovery ratio than controls [75]. Other
studies have shown that intravenously transplanted BM-
MSCs and hematopoietic SCs (HSCs) in mice were
able to integrate in the cochlea and differentiate into
mesenchymal cells, including fibrocytes, suggesting a
continuous turnover from the HSC reservoir [76].

Despite these encouraging results in SC trans-
plantation for SNHL therapy, several issues are still
unresolved. First, only a few studies have evaluated
the functional recovery associated to the engraftment
of transplanted SCs and the repopulation of damaged
tissues, and in some of theses, there were no significant
differences compared with control groups [61,77].These
results could be partially ascribed to the insufficient
formation of functional synapses between the new HC
population and the surviving neurons [61,77]. On the
basis of SC transplantation studies, cell regeneration
appears unrelated to a direct ExSC differentiation into
the depleted cell population, but rather to damage
recover by activation of the reservoir of unaffected en-
dogenous SCs through release of cytokines and growth
factors by ExSCs [78–80]. Because the use of ExSCs
and NSCs entails relevant issues concerning ethics
and availability, some studies investigated the use of
MSCs or SCs from other sources for inner ear cell
therapy, as previously described. Mesenchymal and ep-
ithelial SCs have been shown to be recruited, survive
and engraft into the injured area, in some cases ex-
pressing specific differentiation markers [75,77,81].
Cho et al. [82] used human BM-MSCs in vitro neural-
differentiated to treat a guinea pig animal model with
ouabain-induced auditory neuropathy. By injecting
BM-MSCs in the scala tympani, they showed an in-
crease in SGN number, some of them human-derived,
associated with the improvement of hearing function
[82].Similar results were obtained by human embryonic
SCs induced to differentiate in vitro into hair cells and
auditory neurons: when transplanted into an audito-
ry neuropathy model, these cells significantly improved
hearing recovery [50]. Other authors used HSCs to
treat HC death after transient cochlear ischemia in
gerbils. These cells prevented HC degeneration and
improved hearing function but did not transdifferentiate
or fuse with endogenous cells, suggesting a paracrine
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effect as the mechanism of action in HC repair [82].
Revoltella et al. [17] transplanted human umbilical
cord blood (UCB) CD133+ hematopoietic SCs in-
travenously into oto-injured mice and observed the
recruitment of these ExSCs to the damaged ear tissue,
morphologic recovery of the organ of Corti and a small
number of heterokaryons, probably derived from
fusion events between donor and endogenous cells.
These heterokaryons could play an active role in the
repair process [17]. Based on this study, a phase 1/2
clinical trial was initiated in 2014 in the United States
on children with acquired hearing loss, who received
a single dose of autologous UCB SCs via intravenous
infusion (ClinicalTrials.gov identifier: NCT02038972).
The clinical trial is still in process, but the main ex-
pected outcome is an evaluation of safety and feasibility
of UCB transplantation, possibly with improvement
of inner ear function, audition and language devel-
opment as secondary effect [83].

In vivo regeneration by growth factors

Another strategy for HC regeneration involves the ad-
ministration of growth factors, which may protect from
degeneration and/or restore HCs and SGNs. The
growth factors most suitable for this task are the neu-
rotrophic factors (NTFs), especially neurotrophin-3
(NT-3) and brain-derived neurotrophic factor (BDNF).

During embryonic development in rats and mice,
NT-3 was expressed in supporting cells at higher
levels than in HCs [84]; after birth, it was higher in
HCs but generally declined postnatally, although a
partial expression remained in adult mice, mainly in
inner HCs, but also in SGNs, glia and supporting cells
[85,86]. NT-3 follows two expression gradients, one
along the tonotopic axis (highest in the cochlear base,
lowest in the apex), the other from the inner to the
outer areas (higher in inner HCs, lowest in outer HCs)
[86]. BDNF was also expressed in the organ of Corti
during the embryonic development in rats and mice,
but, in contrast to NT-3, its expression was highest
in the cochlear apex, lowest at the base and equal in
inner and outer HCs [87].

The BDNF expression declined prenatally and was
at very low levels at postnatal day 1 (P1) but transi-
torily increased between P4 and P9. BDNF mRNA
was also found in HCs in adult mice [87], although
at low levels. Other neurotrophins were found to be
expressed in the cochlea; for example, in HCs of adult
mice, the mRNA levels of glial-derived neurotrophic
factor (GDNF) was higher than those of NT-3, and
ciliary neurotrophic factor (CNTF) was also ex-
pressed in the spiral ganglion [88]. Concerning their
receptors (tropomyosin receptor kinases,Trk), theTrkB
(a receptor of BDNF) and TrkC (receptor of NT-3)
were shown to still be expressed in the postnatal SGNs,

increasing neuronal metabolism and survival and
promoting neurite outgrowth [89]. On the basis of
these results, other groups investigated the ability of
NTF to repair damages in the organ of Corti by cell
preservation and neural network regeneration, thus
preventing further degeneration and restoring the
auditive function. The in vitro and in vivo treatment
with NTF, supplemented with CNTF, GDNF, insulin
growth factor-1 (IGF-1) or macrophage migration in-
hibitory factor, was able to promote SGN survival,
neurite outgrowth, synaptogenesis and re-innervation
of the sensory area [90–95].

The route of in vivo administration of growth factors
is a highly debated issue. Most studies administered
the growth factors locally, via mini-osmotic pumps,
but a long-term delivery would be more suitable because
neurotrophins have a short serum half-life.To ensure
a long-term and more cell-targeted release, some
studies used adenoviruses or viral vectors [96,97] or
cell-based delivery [98–101]. To obtain a sustained
topical release, another route of administration was
devised by placing biodegradable hydrogels soaked with
IGF-1 [33,102,103].This protocol was also adopted
for a clinical trial in which 25 patients affected by
sudden sensorineural hearing loss and glucocorticoid
resistance were treated with IGF-1-soaked gelatine
hydrogels, intra-tympanically applied in the middle
ear. The results showed that 48% and 56% of pa-
tients had hearing improvement 12 and 24 weeks after
treatment, respectively, without adverse effects [104].

Perspectives

In conclusion, evidence of tissue-resident endog-
enous SCs in the inner ear raises the possibility of using
these cells in SNHL by promoting their in vivo dif-
ferentiation to replace damaged cells and restore
cochlear morphology and function. At present, the
in vitro and in vivo induction of resident cochlear cell
differentiation is a promising procedure in regenera-
tive therapy. More studies are nevertheless required
to clarify the outcome of transplanted cells and avoid
tumor development and to understand how to restore
connections between the SGNs and HCs to recover
the tonotopic sensorineural activity.

With regard to cochlear regeneration, significant
progress has recently been made in understanding the
molecular bases of inner ear development, and in vitro
and in vivo models of inner ear regenerative medi-
cine have been established. However, reliable results
for cochlear regeneration have not yet been attained
in clinical practice.
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