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Density estimation represents one of the most successful applications of Bayesian nonparametrics. In partic-
ular, Dirichlet process mixtures of normals are the gold standard for density estimation and their asymptotic
properties have been studied extensively, especially in the univariate case. However, a gap between practi-
tioners and the current theoretical literature is present. So far, posterior asymptotic results in the multivariate
case are available only for location mixtures of Gaussian kernels with independent prior on the common
covariance matrix, while in practice as well as from a conceptual point of view a location-scale mixture
is often preferable. In this paper, we address posterior consistency for such general mixture models by
adapting a convergence rate result which combines the usual low-entropy, high-mass sieve approach with
a suitable summability condition. Specifically, we establish consistency for Dirichlet process mixtures of
Gaussian kernels with various prior specifications on the covariance matrix. Posterior convergence rates are
also discussed.

Keywords: Bayesian nonparametrics; density estimation; Dirichlet mixture; factor model; posterior
asymptotics; sparse random eigenmatrices

1. Introduction

Multivariate density estimation is a fundamental problem in nonparametric inference being also
the starting point for nonparametric regression, clustering, and robust estimation. For modeling
continuous densities, standard nonparametric Bayes methods rely on Dirichlet process (DP) [10]
mixture models of the form

f (x) =
∫

K(x; θ)dP(θ), P ∼ DP
(
αP ∗), (1)

where K(x; θ) is a probability kernel depending on some finite-dimensional parameter θ and
DP(αP ∗) is a Dirichlet process with total mass α > 0 and P ∗ a probability measure over the
space of parameters θ . Model (1) has been introduced by Lo [21] and made popular by Escobar
and West [9], Müller, Erkanli and West [25]. For densities on R

d , a common choice for the kernel
K(x; θ) is the normal density φ�(x − μ), that is

φ�(x − μ) = (2π)−d/2 det(�)−1/2 exp
{− 1

2 (x − μ)T �−1(x − μ)
}
,
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for μ ∈ R
d a d-dimensional vector of locations and � a positive definite symmetric matrix of

variance-covariances. Depending on whether or not the mixture involves the scale parameter
�, we will speak of location and location-scale mixtures, respectively. In the former case, all
components in the mixture share the same � which is typically modeled with an independent
prior.

In the univariate case, the asymptotic properties of DP mixtures are well known for both loca-
tion [11,13,20,29] and location-scale mixtures [14,28]. In the multivariate case, the only results,
to our knowledge, are confined to the case of location mixtures. Posterior consistency is studied
in [32] assuming a truncated inverse-Wishart prior for �. Shen, Tokdar, and Ghosal [27] im-
prove considerably on these results by deriving adaptive posterior convergence rates and remove
the artificial truncation of the Wishart prior, which prevents an effective implementation. One
of the main tools for achieving their result is the use of the stick-breaking representation of the
DP to build a low-entropy, high-mass sieve on the space of mixed densities, a procedure whose
extension to the multivariate case is a challenging task.

The lack of asymptotic results for mutivariate location-scale mixtures is somehow in contrast
with their predominant use in applications [4,17,22,25]. In this paper, we fill this gap in the cur-
rent literature by establishing posterior consistency for DP location-scale mixtures of multivariate
normals with ready to verify conditions on the prior parameter P ∗. In particular, a distinctive con-
dition with respect to the location mixtures case involves the existence of moments to a certain
order of the ratio between the largest and smallest eigenvalues of �, a quantity known in random
matrix literature as condition number. This moment condition is satisfied by the inverse-Wishart
as well as by other prior specifications that enable scaling to higher dimension. The consistency
result exploits the sieve construction suggested by [27] by adapting a convergence rate theorem
of [13]. Such an adaptation allows to relax the growth condition on the entropy of the sieve
through a summability condition which suitably weighs entropy numbers with prior probabili-
ties, an idea first appeared in [20] and [29]. We also discuss some of the technical issues related
to the challenging task of deriving posterior convergence rates for heavy tailed densities together
with some preliminary results.

The layout of the paper is as follows. In Section 2, sufficient conditions, on the true f0 and on
the prior, to obtain posterior consistency of DP location-scale mixtures are given. In Section 3,
some particular prior specifications satisfying such conditions are discussed. Section 4 is about
convergence rates and the paper ends with a final discussion.

2. Posterior consistency

For any d × d matrix A with real eigenvalues, let λ1(A) ≥ · · · ≥ λd(A) denote its eigenvalues
in decreasing order and ‖A‖2 = maxx �=0 ‖Ax‖/‖x‖ be its spectral norm. We denote by S be the
space of d × d positive definite matrices and by P the space of probability measures on R

d ×S .
We consider DP location-scale mixtures of the type

fP (x) =
∫

φ�(x − μ)dP(μ,�), P ∼ DP
(
αP ∗), (2)
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where P ∗ ∈ P with μ and � independent under P ∗. In marginalizing out P , one can write
model (2) as

fP (x) =
∞∑

h=1

πhφ�h
(x − μh), (μh,�h)

i.i.d.∼ P ∗, πh = Vh

∏
k<h

(1 − Vk), (3)

where Vh
i.i.d.∼ beta(1, α). We denote by �∗ the DP prior on P and by � the prior induced by (2)

on the space F of density functions on R
d .

As customary in Bayesian asymptotics, we take the data X1, . . . ,Xn to be i.i.d. from some
“true” density f0 ∈ F and study the behavior of the posterior as n → ∞ with respect to the
n-products measure Fn

0 , F0 being the probability measure associated to f0. As metrics on F
we consider the Hellinger d(f,g) = {∫ (

√
f − √

g)2}1/2, and the L1 ‖f − g‖1 = ∫ |f − g|,
which induce equivalent topologies in view of d2(f, g) ≤ ‖f − g‖1 ≤ 2d(f,g). By posterior
consistency at f0 we mean that, for any ε > 0,

�
({

f : ρ(f0, f ) > ε
}|X1, . . . ,Xn

)→ 0

in Fn
0 -probability where ρ is either the Hellinger or the L1-metric.

It is known that, for the posterior distribution to accumulate around f0, one has to establish first
some support condition of the prior. We say that � satisfies the Kullback–Leibler (KL) property
at f0 if

�

{
f :

∫
log(f0/f )f0 ≤ η

}
≥ 0, for any η > 0. (4)

The KL property has been established in Theorem 5 of [31] for location-scale mixtures of Gaus-
sian kernels with scalar covariance matrices, i.e. � = σ 2I for σ 2 > 0 and I the d × d identity
matrix. Minor adaptations are needed to extend this result to the case of non scalar �. Sufficient
conditions for (4) involve a mild requirement on the weak support of the DP prior �∗ on P
together with some regularity assumptions on f0 like the existence of moments up to a certain
order. As for the weak support of �∗, we shall assume that the prior mean P ∗ of the DP is sup-
ported on all Rd × S , where we take as distance the sum of the Euclidean norm on R

d and the
spectral norm on S . All priors considered in Section 3 satisfy this requirement. As for f0, the
same regularity conditions of [31], Theorem 5, apply; they are repeated, for readers’ convenience,
in Lemma 1 whose proof is reported in the Appendix.

Lemma 1. Let f0 ∈ F and � denote the prior on F induced by (2). Assume that f0
satisfies the following conditions: 0 < f0(x) < M for some constant M and all x ∈ R

d ;
| ∫ f0(x) logf0(x)dx| < ∞; for some δ > 0,

∫
f0(x) log f0(x)

φδ(x)
dx < ∞, where φδ(x) =

inf‖t−x‖<δ f0(t); for some η > 0,
∫ ‖x‖2(1+η)f0(x)dx < ∞. Then � satisfies (4).

The KL property (4) plays a very important role in consistency since it provides a lower bound
for the denominator of the posterior probability. However, posterior consistency in non-compact
spaces, such as F , requires an additional condition on the prior which involves the metric en-
tropy of F (see below for a formal definition). A critical step is to introduce a compact subset Fn,



382 A. Canale and P. De Blasi

called sieve, which is indexed by the sample size n and eventually grows to fill the entire param-
eter space as n → ∞. According to Theorem 2 of [11], the metric entropy of Fn has to grow
slower than linearly in n, while the prior probability assigned to Fc

n , the complement of the
sieve, needs to decrease exponentially fast in n. See Theorem 2.1 of [12] for similar ideas ap-
plied to posterior convergence rates. The choice of the sieve is a delicate issue in multivariate
density estimation, since the metric entropy tends to blow up with the dimension d . A novel
sieve construction has been introduced in [27] and it has proven successful in deriving adaptive
posterior convergence rates in the case of location mixtures with independent inverse-Wishart
prior on �. In particular, the sieve relies on the stick-breaking representation of the DP as in (3).
In adapting this sieve construction to location-scale mixtures (see Lemma 2 in the Appendix),
the tail behavior of P ∗ with respect to the condition number, that is, the ratio of the maximum
and minimum eigenvalue of �, plays a crucial role. A straight application of Theorem 2 of [11]
would require a too restrictive condition on this tail behavior, ruling out common choices for the
part of P ∗ involving � like the inverse-Wishart distribution. See Remark 2 in the Appendix for a
detailed explanation. For this reason, we resort to a different posterior consistency theorem which
consists in a modification of Theorem 5 of [13]. The main idea is to relax the growth condition
on the entropy of Fn through a summability condition of entropy numbers weighted by square
roots of prior probabilities. This modification can be applied also to relax the usual exponential
tail behavior of the marginal of P ∗ on the location parameters μ, with a weaker power tail decay.
As pointed out by [13], there is a trade off between entropy and summability which is worth
exploring in Bayesian asymptotics. Our result is a step in this direction. Similar ideas had earlier
appeared in [20] and in [29].

To state the posterior convergence result, we recall the definition of entropy of G ⊂ F as
logN(ε,G, d) where N(ε,G, d) is the minimum integer N for which there exists f1, . . . , fN ∈F
such that G ⊂⋃N

j=1{f : d(f,fj ) < ε}.

Theorem 1. Suppose Fn ⊂F can be partitioned as
⋃

j Fn,j such that, for ε > 0,

�
(
Fc

n

)
� e−bn, for some b > 0, (5)∑

j

√
N(2ε,Fn,j , d)

√
�(Fn,j )e

−(4−c)nε2 → 0, for some c > 0. (6)

Then �(f : d(f0, f ) > 8ε|X1, . . . ,Xn) → 0 in Fn
0 -probability for any f0 satisfying (4).

The proof is similar to that of Theorem 5 of [13] and is presented in the Appendix. Here
we state and prove the main result on posterior consistency for DP location-scale mixtures of
Gaussian kernels.

Theorem 2. Let f0 satisfy the conditions of Lemma 1. Consider the prior � defined in (2) with
P ∗ that satisfies the following tail behaviors: for some positive constants c1, c2, c3, r > (d −1)/2
and κ > d(d − 1),

P ∗(‖μ‖ > x
)
� x−2(r+1), (7)

P ∗(λ1
(
�−1)> x

)
� exp

(−c1x
c2
)
, (8)
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P ∗(λd

(
�−1)< 1/x

)
� x−c3, (9)

P ∗(λ1
(
�−1)/λd

(
�−1)> x

)
� x−κ (10)

for all sufficiently large x > 0. Then the posterior is consistent at f0.

Condition (7) is weaker than the usual exponential tail condition in [28] (univariate case) and
in [27] (location mixture case). The distinctive condition for multivariate location-scale mixtures
turns out to be (10) as explained in Remark 2. It corresponds to the existence of the d(d − 1) + 1
moment of the quantity λ1(�

−1)/λd(�−1) which is known in random matrix theory as condition
number of �−1. See [8] for a recent contribution on the topic. In particular, the condition number
plays an important role in electronical engineering problems in the context of multiple-input
multiple-output communication systems. See [23] for related results.

Proof of Theorem 2. The proof is an application of Theorem 1 and is based on the entropy upper
bounds of Lemma 2 in the Appendix. Let Mn = σ

−2c2
n = n and Hn = Cnε2/ logn� for a positive

constant C to be determined later. Also, let j = (j1, . . . , jHn), jh ∈ N
∗, and l = (l1, . . . , lHn),

lh ∈N. Define

Fn =
{
fP with P =

∑
h≥1

πhδ(μh,�h) :
∑

h>Hn

πh ≤ ε;

σ 2
n ≤ λd(�h),λ1(�h) ≤ σ 2

n(1 + ε/
√

d)Mn, for h ≤ Hn

}
,

Fn,j,l =
{
fP ∈Fn : √n(jh − 1) < ‖μh‖ ≤ √

njh,n
2lh−11(lh≥1) <

λ1(�h)

λd(�h)
≤ n2lh

, for h ≤ Hn

}
so that Fn ↑ F as n → ∞ and Fn ⊂⋃

j,l Fn,j,l.
As for (5) of Theorem 1, note that

�
(
Fc

n

)≤ Pr

{∑
h>Hn

πh > ε

}
+ Hn

[
P ∗(λd(�) < σ 2

n

)+ P ∗(λ1(�) > σ 2
n(1 + ε/

√
d)Mn

)]
.

Use the stick-breaking representation of the DP for the first term (see the proof of Proposition 2
of [27]), (8) and (9) to get

�
(
Fc

n

)
�
{

eα

Hn

log
1

ε

}Hn

+ Hn

[
e−c1σ

−2c2
n + σ−2c3

n

(
1 + ε√

d

)−c3Mn
]
, (11)

so that

�
(
Fc

n

)
�
(
Cnε2/ logn

)−Cnε2/ logn + (
Cnε2/ logn

)[
e−c1n + nc3/c2(1 + ε/

√
d)−c3n

]
� exp

{−(Cnε2/ logn
)

log
(
Cnε2/ logn

)}+ e−c1n + exp
{−c3n log(1 + ε/

√
d)
}
.
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Note that (Cnε2/ logn) log(Cnε2/ logn) > Cnε2/2 for large enough n, therefore

�
(
Fc

n

)
� e−Cnε2/2 + e−c1n + e−c3 log(1+ε/

√
d)n � e−bn

for 0 < b < min{Cε2/2, c1, c3 log(1 + ε/
√

d)}. Hence (5) is satisfied.
We next show that Fn,j,l satisfies the summability condition (6) of Theorem 1. By an applica-

tion of Lemma (2) in the Appendix,

N
(
ε,Fn,j,l,‖ · ‖1

)
� exp

{
dHn logMn + Hn log

C1

ε

+
∑

h≤Hn

log

[( √
njh

σnε/2
+ 1

)d

−
(√

n(jh − 1)

σnε/2
− 1

)d]
+ d(d − 1)

2
log

2dn2lh

ε2

}
for some positive C1. Let c4 = 1/2 + 1/(2c2) and note that( √

njh

σnε/2
+ 1

)d

−
(√

n(jh − 1)

σnε/2
− 1

)d

=
(

2nc4jh

ε
+ 1

)d

−
(

2nc4jh

ε
+ 1 − 2nc4

ε
− 2

)d

� d

(
2nc4

ε
+ 2

)(
2nc4jh

ε
+ 1

)d−1

�
nc4djd−1

h

εd
,

where inequality sign “�” is for both large n and jh. Hence, we have

N
(
ε,Fn,j,l,‖ · ‖1

)
� exp

{
dHn logn + Hn log

C1

ε
(12)

+
∑

h≤Hn

log
nc4djd−1

h

εd
+ d(d − 1)

2
log

2dn2lh

ε2

}
.

Moreover, by using tail conditions (7) and (10),

�(Fn,j,l) ≤
∏

h≤Hn

P ∗(‖μ‖ >
√

n(jh − 1), λ1(�)/λd(�) > n2lh−11(lh≥1)
)

(13)
�
∏

h≤Hn

[√
n(jh − 1)

]−1(jh≥2)2(r+1)
n−1(lh≥1)2lh−1κ

with the convention 00 = 1. A combination of (12), (13) and d2(f, g) ≤ ‖f − g‖1 imply that√
N(2ε,Fn,j,l, d)

√
�(Fn,j,l) is bounded by a multiple of

exp

{
d + c4d

2
Cnε2

}
(14)

×
∏

h≤Hn

j
(d−1)/2
h

[√
n(jh − 1)

]−1(jh≥2)(r+1)
n(d(d−1)/4)2lh

n−1(lh≥1)2lh−1(κ/2).
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By hypothesis, r > (d − 1)/2 so that K :=∑
j≥2 j (d−1)/2(j − 1)−(r+1) < ∞. Hence by sum-

ming (14) with respect to j, we get

exp

{
d + c4d

2
Cnε2

}(
1 + n−(r+1)/2K

)Hn
∏

h≤Hn

n(d(d−1)/4)2lh
n−1(lh≥1)2lh−1(κ/2). (15)

Moreover, note that∑
l≥0

n(d(d−1)/4)2l

n−1(l≥1)2l−1(κ/2)

= nd(d−1)/4 +
∑
l≥1

exp

{
−d(d − 1)

2
logn

(
κ

d(d − 1)
− 1

)
2l−1

}
≤ 2nd(d−1)/4

for n large enough since, by hypothesis, κ/[d(d − 1)] − 1 > 0. Hence, by summing (15) with
respect to l we get the upper bound

exp

{
d + c4d

2
Cnε2

}(
1 + n−(r+1)/2K

)Hn
[
2nd(d−1)/4]Hn

≤ exp

{
d + c4d

2
Cnε2

}
4Hn exp

{
Cnε2 d(d − 1)

4

}
� exp

{
1

2

[
d + c4d + d(d − 1)

2

]
Cε2n

}
,

where in the first inequality we have used n−(r+1)/2K ≤ 1 for n large enough. By taking C

sufficiently small to satisfy C < 2(4 − c)/[d + c4d + d(d − 1)/2] for some c > 0, (6) is satisfied
and the proof is complete. �

3. Illustration

Theorem 2 holds for DP location-scale mixtures of multivariate Gaussian kernels with minimal
requirements on the prior parameter P ∗. The power tail decay (7) for μ is indeed important as it
covers the prior specification of [25]:

P ∗(μ,�) = N(μ;m,B)IW(�;�0, ν),

where an additional hyperprior on B is given by IW(B;B0, νB), with IW(B0, νB) denoting the
inverse-Wishart distribution with scale parameter B0 and νB degrees of freedom. In this case, μ

under P ∗ has multivariate student’s t -distribution with νB degree of freedom so that P ∗(‖μ‖2 >

x) ∼ x−(νB−d+1)/2 for x large enough. Hence, νB > 2d is sufficient for (7) to hold with r >

(d − 1)/2.
In what follows, we focus on the prior specification of the scale parameter � and show that

conditions (8)–(10) are verified for some important choices which make a substantial practical
difference in applications, particularly in high-dimensional settings. Henceforth, we refer to the
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prior specification for � as � ∼ L meaning that L is the marginal of � with respect to the prior
mean P ∗. All proofs are reported in the Appendix.

The first result is about L being the inverse-Wishart distribution IW(�0, ν). While conditions
(8) and (9) are always satisfied, see, for example, the proof of Lemma 1 of [27], ν needs to be
sufficiently large for tail condition (10) on the condition number to hold. Corollary 1 makes this
statement precise.

Corollary 1. Assume f0 satisfies the conditions of Lemma 1. Consider a prior � induced by (2)
with P ∗ satisfying (7) and L = IW(�0, ν) with ν > 2d(d − 1)+ d − 1. Then conditions (8)–(10)
are satisfied and the posterior is consistent at f0.

There is a rich literature providing alternatives to the inverse-Wishart prior when the dimension
of the data is large. For example, a commonly used and successful approach consists on analytic
factorizations [3,30] where

� = ��T + �, � ∼ L�, � ∼ L�, (16)

where � is a d × r matrix with r < d , independent from the d × d diagonal matrix �. Let
γjh be the (j, h)th element of � (factor loading) and σ 2

j be the j th diagonal element of �

(residual variance). The specification of L� and L� corresponds then to a distribution for γjh

and σ 2
j . The next corollary addresses the case of normal factor loadings with inverse gamma

distributed residual variances. It turns out that conditions (8)–(9) are automatically satisfied,
while a constraint on the shape parameter of the inverse gamma prior is needed for the verification
of condition (10).

Corollary 2. Assume f0 satisfies the conditions of Lemma 1. Consider a prior � induced by (2)

with P ∗ satisfying (7) and L induced by (16). Assume that γij
i.i.d.∼ N(0,1) and σ−2

j

i.i.d.∼ Ga(a, b)

with a > d(d − 1). Then conditions (8)–(10) are satisfied and the posterior is consistent at f0.

Remark 1. Motivated by the need of a method that scales for increasing dimension, [2] intro-
duce a sparse Bayesian factor model for the estimation of high-dimensional covariance matrices
according to (16). The model consists of a multiplicative gamma process shrinkage prior on the
factor loadings, that is,

γjh|φjhτh ∼ N
(
0, φ−1

jh τ−1
h

)
, φjh ∼ Ga(3/2,3/2), τh =

h∏
l=1

δl,

δ1 ∼ Ga(a1,1), δl ∼ Ga(a2,1), l > 1, σ−2
j ∼ Ga(a, b), j = 1, . . . , d.

Using similar arguments to Corollary 2 it can be proved that conditions (8)–(10) are satisfied for
a > d(d − 1).

One can easily build L which satisfy (8)–(10) by modeling directly the distribution of the
eigenvalues. The idea is to use the spectral decomposition of �:

� = O�OT , O ∼ LO,� ∼ L�, (17)
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where O is a d × d orthogonal matrix independent from � = diag(λ1, . . . , λd) with λi > 0. It
is clear that the verification of (8)–(10) involves only the distribution L�. Motivated by high
dimensional sparse random matrices modeling, Cron and West [5] propose a similar approach.
The authors set Oi,j to be the rotation matrix for the rotator angle ωi,j and O =∏

i<j Oi,j (ωi,j )

and define prior on O through a prior on the rotator angles ω which naturally accommodates
sparsity, namely

p(ω) = βπ/21(ω = π/2) + (1 − βπ/2)β01(ω = 0) + (1 − βπ/2)(1 − β0)pc(ω),

pc(ω) = c(κ) exp
{
κ cos2 ω

}
1
(|ω| < π/2

)
.

This class of models is particularly useful to induce sparsity without the assumption of a reduced
dimensional latent factor and hence can be appealing in many practical situations. The next corol-
lary discusses sufficient conditions on L� to obtain posterior consistency under formulation (17).

Corollary 3. Assume f0 satisfies the conditions of Lemma 1. Consider a prior � induced by (2)
with P ∗ satisfying (7) and L following (17) with λ−1

i ∼ Ga(a, b), a > d(d − 1). Then conditions
(8)–(10) are satisfied and the posterior is consistent at f0.

4. Posterior convergence rates

In this section, we discuss some relevant issues related to the derivation of posterior convergence
rates for location-scale mixtures. Under the prior conditions (7)–(10), the sieve construction laid
down in the proof of Theorem 2 would adapt to any rate εn = n−γ (for any γ ∈ (0,1/2) and up
to a logarithmic term) determined by the prior concentration rate. This statement is made precise
in the following proposition, whose proof is reported in the Appendix.

Proposition 1. Let ε̃n = n−γ (logn)t for some γ ∈ (0,1/2) and t ≥ 0 and suppose that

�

(
f :

∫
f0 log(f0/f ) ≤ ε̃2

n,

∫
f0 log2(f0/f ) ≤ ε̃2

n

)
≥ e−nε̃2

n . (18)

Then, under the hypothesis of Theorem 2, �n{f : d(f0, f ) > (logn)s ε̃n} → 0 in Fn
0 -probability

for any s > 0.

As for the prior contraction rate (18), in the case of location mixtures the derivation of adap-
tive ε̃n for β-Hölder f0 consists of three main steps: (i) construct a density hσ (depending on f0
and β) such that d(f0, φσ � hσ ) � σβ as σ → 0; (ii) modify hσ to a compactly supported density
h̃σ with the same approximation properties; (iii) approximate the continuous mixture φσ � h̃σ by
a discrete mixture φσ �Fσ with a convenient lower bound of the ratio φσ �Fσ /f0. Here φσ �h de-
notes the convolution of h and φσ 2I . See [27] and [18]. Steps (ii) and (iii) rely on the assumption
of exponential tail of f0, which makes these techniques not suitable for location-scale mixtures,
since the latter are more flexible than location mixtures in modeling densities with heavy tails.
We come back to this point later. Before, we present a result of the type of convergence rates
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which are attainable by adapting these techniques to our setting. To this aim, refer to the defini-
tion of the locally β-Hölder class with envelope L, denoted Cβ,L,τ0(Rd), from [27]. Moreover,
for a multi-index k = (k1, . . . , kd), ki ∈ N

∗, define k. = k1 +· · ·+kd and let Dk denote the mixed
partial derivative operator ∂k./∂k1 · · ·∂kd . Finally, we make the following two assumptions on the
prior mean P ∗. As for the scale parameter, we resort to an assumption analogous to (4) in [27]
about the mass in neighborhood of the eigenvalues of �: there exist κ∗, a4, a5, b4,C3 such that
for any s1 ≥ · · · ≥ sd ≥ 0 and t ∈ (0,1),

P ∗(si < λi

(
�−1)< si(1 + t), i = 1, . . . , d

)
� b4s

a4
d ta5 exp

{−C3s
κ∗/2
1

}
. (19)

As for the mean parameter, we assume that the marginal of P ∗ has density f ∗ and that f ∗ has
tails no lighter than the Gaussian, that is, for b∗, τ ∗ > 0 and ‖x‖ sufficiently large,

f ∗(x) � e−b∗‖x‖τ∗
. (20)

The proof of the following proposition is deferred to the Appendix.

Proposition 2. Let f0 ∈ Cβ,L,τ0(Rd) be a bounded probability density function satisfying
F0(|Dkf0|/f0)

(2β+ε)/k. < ∞, k. ≤ β�, F0(L/f0)
(2β+ε)/β < ∞ for some ε > 0 and

f0(x) ≤ c exp
{−b‖x‖τ

}
, (21)

for some b, c > 0, τ ≥ 0 and ‖x‖ sufficiently large. Assume that conditions (19) and (20) hold
for τ ∗ ≤ τ . Then (18) holds for

ε̃n = n−β/(2β+d+κ∗)(logn)t , t ≥ d(1 + (κ∗ + 1)/β + 1/τ)

2 + (d + κ∗)/β
. (22)

Proposition 2 yields, via Proposition 1, a posterior convergence rate which is suboptimal with
respect to the minimax rate n−β/(2β+d) by a term which depends on the constant κ∗ appearing
in (19). For illustration, κ∗ = 2 if, under P ∗, � has Inverse Wishart distribution IW(�, ν) with ν

degrees of freedom and a positive definite scalar matrix � , see Lemma 1 in [27]. Another useful
specification is to consider that, under P ∗, each λi(�

−1) have been independently assigned the
distribution of the square of an inverse gamma random variable. Then κ∗ = 1, which leads to a
better convergence rate, still suboptimal. The technical reason for which the minimax rate is not
achieved is to be found in the prior probability of L1-balls around the frequencies of the approx-
imating mixture of the true density. Specifically, the approximating mixture has all covariance
matrices equal to σ 2

n I for a scaling factor σn which goes to zero as a function of ε̃n. In location-
scale mixtures P ∗ put mass proportional to exp{−C3σ

−κ∗
n } in neighborhoods of σ 2

n I and this
accounts for an extra factor in the radius of the L1-ball with respect to the location mixture case.
This, in turns, determines worse probability estimates of Kullback–Leibler neighborhoods. See
the proof of Proposition 2 for details. It can be proved that the minimax rate n−β/(2β+d) is re-
covered upon setting the marginal of P ∗ on � depending on n by the scaling factor equal to
n−1/(2β+d)(logn)−1/β , however this has clearly a limited relevance since the rate would be non
adaptive and it would rule out the Inverse-Wishart distribution as well as any other commonly
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used prior specification for the covariance matrix. The suboptimal convergence rate might be
related to the fact that location-scale mixtures are more robust to tails than location mixtures.
This should emerge through posterior convergence rates which are slower still adaptive to the
minimax rate of a suitably defined class of densities with heavy tails. To this aim, an approxima-
tion scheme different than the one used for location mixture is in order since the latter relies on
the exponential tail condition (21). This remains an open problem and is left as an argument for
future research.

We discuss next how minimax rates for density estimation depend on the tail. It is well known
that smoothness alone is not sufficient in order to guarantee consistency of density estimators
in the L1-norm. In fact, there is a vast literature on minimax and adaptive minimax density
estimation with Lp norm which indicates the existence of a tail zone, i.e. a range of values of
p, for which the minimax rate depends on p and deteriorates to 1 as p decreases to 1. Such
phenomenon does not appear in density estimation on a compact domain, see [16] for an up
to date literature review. Goldenshluger and Lepski [16] have also determined a tail dominance
condition which illustrates how the tail zone shrinks to an empty set according to the tails of the
density. The result which is relevant to our study is about the minmax rate under L1-norm for
β-Holder classes of densities which is, up to logn factors, given by

max
{
n−β/(2β+d), n−(1−θ)/(1+d/β)

}
, (23)

where θ is a positive parameter in (0,1] which determines the heaviness of the tails. See Re-
mark 4.3 in [16]. The fastest rate n−β/(2β+d) is recovered for θ < β/(2β + d) (light tail), while
for θ ≥ β/(2β + d) (heavy tail) a wide range of slower minimax rates is obtained. See Theo-
rem 13 of [6] for a closely related result in the light tail case. Clearly the exponential tail as-
sumption (21) corresponds to small value of θ and this explain why in [27] the usual n−β/(2β+d)

rate is achieved.

5. Discussion

In this paper, we have discussed asymptotic properties of DP location-scale mixtures of Gaussian
kernels for multivariate density estimation. To our knowledge, this is the first contribution to pos-
terior asymptotics in the context of multivariate location-scale mixtures, a modelling approach
which is a common practice in many applications. We have given sufficient conditions on the DP
prior measure on the space of means and covariance matrices in order to achieve posterior con-
sistency. While showing that these conditions are satisfied for widely used inverse-Wishart distri-
bution, with the same practical motivation of providing theoretical justification for models used
in practice, we showed that the conditions hold if one uses priors that parsimoniously model the
covariance in high dimensional settings, such as a factor model or spectral decomposition having
both computational tractability and better fit in finite samples. Future work will deal with mix-
tures of more general random probability measures, like the two-parameter Poisson–Dirichlet
process [26], the normalized inverse Gaussian process [19] and, in general, Gibbs-type priors
[15]. A characteristic feature of Gibbs-type priors is given by their heavy-tailedness, which has
certain advantages in terms of statistical inference. See [7]. From the perspective of frequentist
asymptotics, this implies that the sieve based on the truncated stick-breaking construction does
not carry over in a straightforward way and hence this problem deserves further investigations.
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Appendix

Proof of Lemma 1. It is well known that P ∈ P belongs to the weak support of �∗ (meaning
that any weak neighborhood of P has positive probability under �∗) if the support of P is
contained in the support of P ∗. We recall that the support of P is the smallest closed set of P -
measure 1. Hence, since the support of P ∗ is the whole space R

d × S , the weak support of �∗
is the whole space P and it contains, in particular, any compactly supported P .

The proofs of Theorem 5 and Theorem 2 of [31] imply that, under the conditions of Lemma 1,
for any ε > 0, there exists Pε ∈ P such that

∫
f0 log(f0/fPε ) ≤ ε. In particular, Pε can be taken as

compactly supported, that is Pε(D) = 1 where D = [−a, a]p × {� ∈ S : σ 2 ≤ λi(�) ≤ σ̄ 2, i =
1, . . . , d} for some constants a > 0, 0 < σ < σ̄ . Since∫

f0(x) log
f0(x)

f (x)
dx =

∫
f0(x) log

f0(x)

fPε (x)
dx +

∫
f0(x) log

fPε (x)

f (x)
dx

in order to prove (4), we next show that there exists W ⊂ P with �∗(W) > 0 such that, for
any P ∈ W ,

∫
f0 log(fPε/fP ) ≤ ε. To this aim, we verify the hypotheses of Lemma 3 in [31].

It is clear that Pε belongs to the weak support of �∗. Next, condition (A7) of Lemma 3 in
[31] requires logfPε and log inf(μ,�)∈D φ�(x − μ) to be f0-integrable. Note that, for ‖x‖ < a,
inf(μ,�)∈D φ�(x − μ) is bounded, while, for ‖x‖ ≥ a,

inf
(μ,�)∈D

φ�(x − μ) = σ̄−d exp

{
−4‖x‖2

2σ 2

}
.

Hence, under the hypotheses made, log inf(μ,�)∈D φ�(x − μ) is f0-integrable. Also

| logfPε | ≤
∣∣∣∣log

{
σ̄−d exp

{
−4‖x‖2

2σ 2

}
Pε(D)

}∣∣∣∣
for ‖x‖ ≥ a, so that logfPε is f0-integrable by a similar argument.

As for condition (A8) of Lemma 3 in [31], it is obviously satisfied since the multivariate
normal kernel φ�(x − μ) is bounded away from zero for x in a compact set of R

d and (μ,

�) ∈ D. Finally, condition (A9) of Lemma 3 in [31] requires that, for C ⊂ R
d a given compact

set, {φ�(x − μ),x ∈ C} is uniformly equicontinuous as a family of functions of (μ,�) on D.
This can be shown by adapting to the present context the arguments given in the last part of the
proof of Theorem 2 of [31]. �

Proof of Theorem 1. According to Corollary 1 of [13], for any set of probability measures Q
with inf{d(F0,Q) : Q ∈Q} ≥ 4ε, any α,β > 0 and all n ≥ 1, there exists a test φn such that

Fn
0 φn ≤

√
β

α
N(ε,Q, d)e−nε2

, sup
Q∈Q

Qn(1 − φn) ≤
√

α

β
e−nε2

. (24)

Let Aε = {f : d(f0, f ) ≤ 8ε}. Write

�
(
Ac

ε|X1, . . . ,Xn

)= �
(
Ac

ε ∩Fn|X1, . . . ,Xn

)+ �
(
Ac

ε ∩Fc
n |X1, . . . ,Xn

)
. (25)
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From Lemma 4 of [1], (4) implies that, for every η > 0

F∞
0

{∫ ∏
i≤n

(
f (xi)/f0(xi)

)
d�(f ) ≤ exp(−nη), i.o.

}
= 0, (26)

so that, under (5), the second expression on the r.h.s. of (25) goes to 0 in Fn
0 -probability (actually

in F∞
0 -almost surely). So it is sufficient to prove that the first expression in the r.h.s. of (25) goes

to 0 in Fn
0 -probability. Let Rn(f ) =∏

i≤n f (Xi)/f0(Xi) and In = ∫
Rn(f )d�(f ). The event

Bn that In ≥ e−cnε2
for c in (6) satisfies Fn

0 (Bn) → 1, see (26). Therefore

Fn
0

[
�
(
Ac

ε ∩Fn|X1, . . . ,Xn

)]= Fn
0

[
�
(
Ac

ε ∩Fn|X1, . . . ,Xn

)
1Bn

]+ op(1).

For arbitrary tests φn,j , we have

Fn
0

[
�
(
Ac

ε ∩Fn,j |X1, . . . ,Xn

)
1Bn

] ≤ Fn
0 φn,j + Fn

0

(
(1 − φn,j )

∫
Ac

ε∩Fn,j

Rn(f )d�(f )

)
ecnε2

≤ Fn
0 φn,j + sup

f ∈Fn,j :d(f0,f )≥8ε

F n(1 − φn,j )�(Fn,j )e
cnε2

which can be bounded by a multiple of√
βj

αj

N(2ε,Fn,j , d)e−4nε2 +
√

αj

βj

e−(4−c)nε2
�(Fn,j )

for the choice of φn,j from Corollary 1 with 2ε in place of ε, Q = {F ∈ Fn,j : d(f0, f ) ≥ 8ε}
and any αj ,βj > 0. Put αj = N(2ε,Fn,j , d),βj = �(Fn,j ) to obtain

Fn
0

[
�
(
Ac

ε ∩Fn|X1, . . . ,Xn

)
1Bn

] ≤
∑
j

√
N(2ε,Fn,j , d)

√
�(Fn,j )e

−4nε2

+
∑
j

√
N(2ε,Fn,j , d)

√
�(Fn,j )e

−(4−c)nε2

so that (6) yields the result. �

Lemma 2. Let H,M ∈ N, σ > 0 and, for h = 1, . . . ,H , 0 ≤ ah < āh, 1 ≤ uh. Define

G =
{

fP with P =
∑
h≥1

πhδ(μh,�h) :
∑
h>H

πh ≤ ε; for h ≤ H,ah < ‖μh‖ ≤ āh,

σ 2 ≤ λd(�h),λ1(�h) ≤ σ 2(1 + ε/
√

d)M,λ1(�h)/λd(�h) ≤ uh

}
.

Then, for some positive constant C1,

N
(
ε,G,‖ · ‖1

)
� exp

{
dH logM + H log

C1

ε (27)

+
∑
h≤H

log

[(
āh

σε/2
+ 1

)d

−
(

ah

σε/2
− 1

)d]
+ d(d − 1)

2
log

2duh

ε2

}
.



392 A. Canale and P. De Blasi

Proof. The proof of (27) is based on a modification of the arguments of Proposition 2 in [27] to
the location-scale mixture case. We recall here that a set Ĝ ⊂ G with the property that any element
of G is within ε-distance from an element of Ĝ is called an ε-net over G. Since N(ε,G, d) is the
minimal cardinality of an ε-net over G, N(ε,G, d) ≤ #(Ĝ).

Let P1 =∑
h≥1 π

(1)
h δ

(μ
(1)
h ,�

(1)
h )

and P2 =∑
h≥1 π

(2)
h δ

(μ
(2)
h ,�

(2)
h )

. Then

‖fP1 − fP2‖1

≤
∑
h≤H

π
(1)
h

∥∥φ
�

(1)
h

(· − μ
(1)
h

)− φ
�

(2)
h

(· − μ
(2)
h

)∥∥
1 +

∑
h≤H

∣∣π(1)
h − π

(2)
h

∣∣+ ∑
h>H

{
π

(1)
h + π

(2)
h

}
.

Note that ∥∥φ
�

(1)
h

(· − μ
(1)
h

)− φ
�

(2)
h

(· − μ
(2)
h

)∥∥
1

≤ ∥∥φ
�

(2)
h

(· − μ
(1)
h

)− φ
�

(2)
h

(· − μ
(2)
h

)∥∥
1 + ‖φ

�
(1)
h

− φ
�

(2)
h

‖1.

The first term in the r.h.s. is smaller than
√

2/π‖μ(1)
h − μ

(2)
h ‖/

√
λd(�

(2)
h ). As for the second

term, use spectral decompositions �
(j)
h = [O(j)

h �
(j)
h (O

(j)
h )T ]−1, j = 1,2, where O

(1)
h ,O

(2)
h are

orthogonal matrices and �
(1)
h ,�

(2)
h are diagonal matrices. Drop the index h so to ease the notation

and write �
(j)
h = �j , O

(j)
h = Oj and �

(j)
h = �j . Moreover, let λj,1 ≥ · · · ≥ λj,d be the diagonal

elements of �j . Finally, define �̃ = (O2�1O
T
2 )−1. By triangular inequality

‖φ�1 − φ�2‖1 ≤ ‖φ�̃ − φ�2‖1 + ‖φ�̃ − φ�1‖1. (28)

For each term in the r.h.s., use Csiszár’s inequality, ‖f − g‖2
1 ≤ 2

∫
log(f/g)f , and the exact

expression of the Kullback–Leibler divergence between zero mean multivariate Gaussians to get∫
log(φ�2/φ�1)φ�2 = 1

2

(
tr
(
�−1

1 �2
)− log det

(
�−1

1 �2
)− d

)
.

As for the first term in the r.h.s. of (28),

‖φ�̃ − φ�2‖1 ≤ {
tr
(
�−1

2 �̃
)− log det

(
�−1

2 �̃
)− d

}1/2

=
{

d∑
i=1

(λ2,i/λ1,i − logλ2,i/λ1,i − 1)

}1/2

,

where λ2,i/λ1,i corresponds to λd−i+1(�
(1)
h )/λd−i+1(�

(2)
h ) in the original notation. As for the

second term in the r.h.s. of (28),

‖φ�̃ − φ�1‖1 ≤ {
tr
(
�−1

1 �̃
)− log det

(
�−1

1 �̃
)− d

}1/2

= {
tr
(
Q�1Q

T �−1
1

)− d
}1/2 = {

tr
(
Q�1Q

T �−1
1 − I

)}1/2
,
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where Q = OT
2 O1. Let B = Q − I and ‖B‖max = max |bi,j |. Then

‖B‖max ≤ ‖B‖2 = ∥∥OT
2 O1 − I

∥∥
2 ≤ ∥∥OT

2

∥∥
2‖O1 − O2‖2 = ‖O1 − O2‖2.

Let bij be the element (i, j) of B . Note that

tr
(
Q�1Q

T �−1
1 − I

) = tr
(
B + �1B

T �−1
1 + B�1B

T �−1
1

)
= tr(B) + tr

(
�1B

T �−1
1

)+ tr
(
B�1B

T �−1
1

)
= tr(B) + tr

(
BT
)+ tr

(
B�1B

T �−1
1

)
≤ 2 tr(B) + λ11

λ1d

tr
(
BBT

)
= 2 tr(B) + 2

λ11

λ1d

tr(I − Q) = 2 tr(B)

[
1 − λ11

λ1d

]
≤ 2d‖B‖max

[
λ1,1

λ1,d

− 1

]
≤ 2d‖B‖max

λ1,1

λ1,d

,

where in the second last inequality we use tr(B) ≥ −d‖B‖max together with λ1,1/λ1,d ≥ 1.
Hence,

‖φ�̃ − φ�1‖1 ≤
{

2d‖O1 − O2‖2
λ1,1

λ1,d

}1/2

,

where λ1,1/λ1,d corresponds to λ1(�
(1)
h )/λd(�

(1)
h ) in the original notation. In summary, back to

the original notation,

‖fP1 − fP2‖1

≤
∑
h≤H

π
(1)
h

[√
2

π

‖μ(1)
h − μ

(2)
h ‖√

λd(�
(2)
h )

+
{

d∑
i=1

(
λi(�

(1)
h )

λi(�
(2)
h )

− log
λi(�

(1)
h )

λi(�
(2)
h )

− 1

)}1/2

+
{

2d
∥∥O(1)

h − O
(2)
h

∥∥
2

λ1(�
(1)
h )

λd(�
(1)
h )

}1/2
]

+
∑
h≤H

∣∣π(1)
h − π

(2)
h

∣∣+ ∑
h>H

{
π

(1)
h + π

(2)
h

}
.

Now pick fP ∈ G with P = ∑
h≥1 πhδ(μh,�h), �h = (Oh�hO

T
h )−1 and �h = diag(λh,1, . . . ,

λh,d). Then find:

• μ̂h ∈ R̂h, h = 1, . . . ,H , where R̂h is a σε-net of Rh = {μ ∈ R
d : ah < ‖μ‖ ≤ āh} such that

‖μh − μ̂h‖ < σε;
• π̂1, . . . , π̂H ∈ �̂, where �̂ is a ε-net of the H -dimensional probability simplex � such that∑

h≤H |π̃h − π̂h| ≤ ε, and π̃h = πh/
∑

l≤H πl , h ≤ H ;

• Ôh ∈ Ôh, h = 1, . . . ,H , where Ôh is a δh-net of the set O of d × d orthogonal matrices
with respect to the spectral norm ‖ · ‖2, with δh = ε2/(2duh) such that ‖Oh − Ôh‖2 ≤ δh;
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• (mh,1, . . . ,mh,d) ∈ {1, . . . ,M}d , h = 1, . . . ,H , such that λ̂h,i = {σ 2(1 + ε/
√

d)mh,i−1}−1

satisfies 1 ≤ λ̂h,i/λh,i < (1 + ε/
√

d).

Take P̂ =∑
h≤H π̂hδ(μ̂h,�̂h)

and �̂h = (Ôh�̂hÔ
T
h )−1, where �̂h = diag(λ̂h,1, . . . , λ̂h,d). Then

‖fP − f
P̂
‖1 ≤ max

h≤H

[√
2

π

‖μh − μ̂h‖√
λd(�̂h)

+
{

d∑
i=1

(
λi(�h)

λi(�̂h)
− log

λi(�h)

λi(�̂h)
− 1

)}1/2]

+
∑
h≤H

πh

{
2d‖Oh − Ôh‖2

λ1(�h)

λd(�̂h)

}1/2

+
∑
h≤H

|πh − π̂h| +
∑
h>H

πh

≤ max
h≤H

[√
2

π

‖μh − μ̂h‖
σ

+
{

d∑
i=1

(
λ̂h,d−i+1

λh,d−i+1
− 1

)2
}1/2]

+
∑
h≤H

πh

{
2d‖Oh − Ôh‖2

λh,1

λh,d

}1/2

+
∑
h≤H

|πh − π̂h| +
∑
h>H

πh,

where in the second inequality x − logx − 1 ≤ (x − 1)2 for x ≥ 1 together with λ̂h,d−i+1/

λh,d−i+1 ≥ 1 has been used to bound the second term. Moreover,

∑
h≤H

|πh − π̂h| ≤
∑
h≤H

∣∣∣∣∣πh −
(

1 −
∑
h>H

πh

)
π̂h

∣∣∣∣∣+ ∑
h≤H

∣∣∣∣∣
(

1 −
∑
h>H

πh

)
π̂h − π̂h

∣∣∣∣∣
=
(

1 −
∑
h>H

πh

)∑
h≤H

|π̃h − π̂h| +
(∑

h>H

πh

)∑
h≤H

π̂h

≤
∑
h≤H

|π̃h − π̂h| +
∑
h>H

πh ≤ 2ε.

Hence,

‖fP − f
P̂
‖1 ≤

√
2

π
ε +

{
d∑

i=1

(
1 + ε√

d
− 1

)2
}1/2

+
∑
h≤H

πh

{
2d

ε2

2duh

λh,1

λh,d

}1/2

+ 2ε + ε

≤ ε + {
ε2}1/2 + {

ε2}1/2 + 3ε = 6ε.

Thus a 6ε-net of G, in the L1 distance, can be constructed with f
P̂

as above. Recalling that

#(�̂) � ε−H , #(Ôh) � δ
−d(d−1)/2
h and #(R̂h) ≤ (āh/(σε/2) + 1)d − (ah/(σε/2) − 1)d , the total

number is

� (M)dH ε−H
∏
h≤H

[(
āh

σε/2
+ 1

)d

−
(

ah

σε/2
− 1

)d]
C1

(
2duh

ε2

)d(d−1)/2
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for some positive constant C1. Finally, the constant factor by 6 can be absorbed in the bound,
hence (27) follows. �

Remark 2. The usual low-entropy, high mass sieve approach of Theorem 2 by [11] is not suitable
for multivariate DP location-scale mixture. This theorem, indeed, requires a sieve Fn such that:
(i) �(Fc

n) decreases exponentially fast in n, and (ii) the L1 metric entropy of Fn grows linearly
with n. As for (i), let Fn to be defined as G of Lemma 2 with M = σ−2c2 = āh = uh = n,
Hn = Cnε2/ logn�, ah = 0 and lh = 1. Clearly Fn ↑ F as n → ∞. However, in order to have
Fn satisfying condition (i), stronger tail conditions on P ∗ are necessary than those in (7) and (10),
namely exponential tail behaviors. While one can be still satisfied with a Gaussian specification
for μ, exponential tail for the condition number turns out to be too restrictive ruling out all the
models discussed in Section 3 as well as any other reasonable prior specification for non diagonal
covariance matrices. However, as an inspection of the proof of Lemma 2 reveals, with diagonal
covariance matrices the metric entropy is considerably smaller and one can prove consistency by
applying Theorem 2 of [11] under essentially the same tail requirements of DP location mixture
of [27]. We omit the details here.

Proof of Corollary 1. That conditions (8) and (9) are satisfied when L = IW(�0, ν) has been
proved in Lemma 1 of [27]. Therefore we focus here on condition (10) on the condition number.
Let for the moment �0 = I . We directly work with the joint distribution of the ordered eigenval-
ues of a Wishart-distributed matrix:

fλ1,...,λd
(x1, . . . , xd) = K exp

{
−1

2

d∑
i=1

xi

}
d∏

j=1

(xj )
(ν−d−1)/2

∏
i<j

(xi − xj ),

over the set {(x1, . . . , xd) ∈ (0,∞)d : x1 ≥ · · · ≥ xd}, where K is a known normalizing constant.
See Corollary 3.2.19, page 107, of [24]. To show condition (10), let z = λ1/λd and apply the
Jacobi’s transformation formula for g(λ1, . . . , λd) = (z, λ2, . . . , λd). For Jg−1 denoting the Jaco-
bian of g−1, we have

fz,λ2,...,λd
(z, . . . , y) = |Jg−1 |fλ1,...,λd

(xdz, x2, . . . , xd),

and the marginal of z can be obtained integrating out x2, . . . , xd . Using |Jg−1 | = xd , xd ≥ 0 and
xd ≤ xi ≤ zxd for i = 2, . . . , d − 1, after some algebra one gets

fz(z) ≤ K ′′z−(ν−d+3)/2

for some constant K ′′, so that P ∗(z > x) � x−(ν−d+1)/2 as x → ∞. Cfr. Theorem 3.2 of [8].
If �0 �= I , the conclusion holds for a different set of constants, see Theorem 4 of [23] for the
complex Wishart case. Condition (10) is then satisfied under the hypothesis on ν. �

Proof of Corollary 2. To prove condition (8), consider

P ∗{λ1
(
�−1)≥ x

}≤ P ∗{tr(�−1)≥ x
}≤ P ∗{tr(�−1)≥ x

}
,
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where the last inequality is verified since tr(�−1) ≤ tr(�−1) by an application of the Woodbury’s
identity. Since the trace of �−1 is the sum of i.i.d. gamma random variable, and the gamma has
exponential tail, (8) is verified. As for (9), consider

P ∗{λd

(
�−1)< 1/x

}≤ x−1EP ∗
{
λ1(�)

}≤ x−1[EP ∗
{
λ1(�)

}+ EP ∗
{
λ1
(
��T

)}]
by Markov’s and Weyl’s inequalities. The expectation of λ1(�) is finite and since λ1(��T ) ≤
tr(��T ) ∼ χ2

rd , also the expectation of λ1(��T ) is finite. Finally, to prove condition (10), first
use Markov’s inequality. For k > d(d − 1), we have

P ∗{λ1
(
�−1)/λd

(
�−1)≥ x

} = P ∗{(λ1(�)/λd(�)
)k ≥ xk

}
≤ x−kE

{(
λ1(�)/λd(�)

)k}
.

Using again Weyl’s inequalities and noting that λd(��T ) = 0 when r < d , we have

λ1(�)

λd(�)
≤ λ1(�) + λ1(��T )

λd(�) + λd(��T )
= λ1(�) + λ1(��T )

λd(�)
≤ λ1(�

−1)

λd(�−1)
+ tr(��T )

λd(�)
.

By convexity of g(x) = xk , for any x, y ∈ R
+ we have (x + y)k ≤ 2k−1(xk + yk). Hence,

λ1(�)/λd(�) has finite kth moment if both summand have finite kth moment. First, consider
the distribution of λ1(�

−1)/λd(�−1). Since �−1 is a diagonal matrix with i.i.d. gamma dis-
tributed diagonal elements, the joint distribution of the ordered eigenvalues of �−1 is the joint
distribution of the ordered statistics of an i.i.d. sample from Ga(a, b), that is,

fλ1(�
−1)···λd(�−1)(x1, . . . , xd) = d!f

σ−2
1

(x1) × · · · × f
σ−2

d
(xd) = K

d∏
j=1

xa−1
j exp

{
−b

d∑
j=1

xj

}
,

over the set {(x1, . . . , xd) ∈ (0,∞)d : x1 ≥ · · · ≥ xd}, where K is a known normalizing constant.
Now we use the Jacobi’s transformation formula as in the proof of Corollary 1 to get, for z =
λ1(�

−1)/λd(�−1),

fz(z) = K

∫ ∞

x3

. . .

∫ ∞

xd−2

∫ ∞

xd

d−1∏
j=2

xa−1
j exp

{
−b

d∑
j=1

xj

}
dx2 · · · dxd−1

×
∫ ∞

0
xd

(
zx2

d

)a−1 exp
{−bxd(z + 1)

}
dxd ≤ · · · ≤ K ′ za−1

(z + 1)2a
.

Hence, λ1(�
−1)/λd(�−1) has finite kth moment as long as a > k. Now, since

tr(��T )

λd(�)
= tr

(
��T

)
λ1
(
�−1)

and the kth moment of the product of independent random variables is the product of the
kth moments, it remains to show that both tr(��T ) and λ1(�

−1) have finite kth moment. To
this aim, it is sufficient to note that tr(��T ) ∼ χ2

dr and λ1(�
−1) has the distribution of the
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first order statistics of a sample of d independent gamma random variables. The proof is then
complete. �

Proof of Corollary 3. Since each eigenvalues has independent inverse-gamma distribution, con-
ditions (8)–(10) are satisfied following part of the proof of Corollary 2. �

Proof of Proposition 1. Let Mn = σ
−2c2
n = n with εn = n−γ (logn)t for t0 = t + s and Hn =

Cnε2
n/ logn� for a positive constant to be determined later. Also define Fn and Fn,j,l as in the

proof of Theorem 2 with ε = εn. We prove next that

�
(
Fc

n

)
� e−4nε̃2

n , (29)∑
j,l

√
N(εn,Fn,j,l, d)

√
�(Fn,j,l)e

−nε2
n → 0. (30)

The thesis then follows by an application of Theorem 5 by [13], cfr. version in Theorem 3 of [18].
As for (29), refer to equation (11). Note that nε2

n = n1−2γ (logn)2t0 and Hn = C ×
n1−2γ (logn)2t0−1. We have{

eα

Hn

log
1

εn

}Hn

� exp{−Hn logHn}

= exp
{−Cn1−2γ (logn)2t0−1 log

(
Cn1−2γ (logn)2t0−1)}

� exp
{−Cn1−2γ (logn)2t0−1(1 − 2γ ) logn

}
= exp

{−(1 − 2γ )Cnε2
n

}
,

Hne−c1σ
−2c2
n = Cn1−2γ (logn)2t0−1e−nc1 = o

(
exp

{−nε2
n

})
,

Hnσ
−2c3
n (1 + εn/

√
d)−c3Mn ≤ Cnc3/c2+1−2γ (logn)2t0−1 exp

{−c3nεn/(2
√

d)
}

= o
(
exp

{−nε2
n

})
.

Therefore, �(Fc
n) � exp{−(1 − 2γ )Cnε2

n} � e−4nε̃2
n for all large n since t < t0. Note that the

rate at which the prior probability of the complement of the sieve vanishes is determined by the
truncation level of the stick-breaking weights.

As for (30), refer to equation (12). Based on the inequality d(f,g)2 ≤ ‖f − g‖1,

N(εn,Fn,j,l, d)� exp

{
dHn logn + Hn log

C1

ε2
n

+
∑

h≤Hn

log
nc4djd−1

h

ε2d
n

+ d(d − 1)

2
log

2dn2lh

ε4
n

}
.

Since Hn log(1/εn) = γCnε2
n + o(nε2

n), we also have

N(εn,Fn,j,l, d) � exp
{[

d + c4d + 2γ + 2γ d + 2γ d(d − 1)
]
Cnε2

n

} ∏
h≤Hn

jd−1
h n(d(d−1)/2)2lh

< exp
{
d∗Cnε2

n

} ∏
h≤Hn

jd−1
h n(d(d−1)/2)2lh

,
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where d∗ = d + c4d + 1 + d + d(d − 1) and γ < 1/2 has been used in the last inequality. By
using (13),

√
N(εn,Fn,j,l, d)

√
�(Fn,j,l) can be bounded by a multiple of

exp
{(

d∗/2
)
Cnε2

n

} ∏
h≤Hn

j
(d−1)/2
h

[√
n(jh − 1)

]−1(jh≥2)(r+1)
n(d(d−1)/4)2lh−1(lh≥1)(κ/2)2lh−1

.

Summing with respect to j and l, by arguments similar to those used in the proof of Theorem 2,
we obtain, for n large enough and when r > (d − 1)/2 and κ > d(d − 1), the upper bound∑

j,l

√
N(εn,Fn,j,l, d)

√
�(Fn,j,l)

≤ exp
{(

d∗/2
)
Cnε2

n

}(
1 + n−(r+1)/2K

)Hn
[
2nd(d−1)/4]Hn

� exp
{(

d∗/2 + d(d − 1)/4
)
Cnε2

n

}
,

where K :=∑
j≥2 j (d−1)/2(j − 1)−(r+1) < ∞. Hence, (30) is satisfied for C sufficiently small

to satisfy C ≤ 4/[2d∗ + d(d − 1)]. The proof is complete. �

Proof of Proposition 2. The proof follows the arguments presented in Theorem 4 of [27]
adapted to the location-scale case. Denote by F0g = ∫

g(x)f0(x)dx the expectation of g(X)

under X ∼ f0. Consider n large enough such that ε̃n < s
β

0 and fix σ
β
n = ε̃n{log(1/ε̃n)}−1. As in

Proposition 1 of [27], define Eσn = {‖x‖ ∈ R
d : f0(x) ≥ σ

(4β+2ε+8)/δ
n } for some δ ∈ (0,1) and

aσn = a0{log(1/σn)}1/τ . Then, F0(E
c
σn

) ≤ B0σ
4β+2ε+8
n for some constant B0, Eσn ⊂ {‖x‖ ∈R

d :
‖x‖ ≤ aσn} and, there exists a density h̃σn with support Eσn such that d(f0, φσn � h̃σn) � σ

β
n . Find

b1 > max{1,1/(2β)} such that ε̃
b1
n {log(1/εn)}5/4 ≤ ε̃n. Apply Theorem B1 of [27] for σ = σn,

a = aσn , F = h̃σn and ε = ε̃
2b1
n to get Fσn =∑N

j=1 pjδμj
with

N ≤ D
[(

aσnσ
−1
n ∨ 1

)
log
(
1/ε̃2b1

n

)]d � σ−d
n

{
log(1/ε̃n)

}d+d/τ

many support points inside {x ∈R : ‖x‖ ≤ aσn} such that

‖φσn � h̃σn − φσn � Fσn‖1 � ε̃2b1
n

{
log
(
1/ε̃2b1

n

)}1/2
.

Move each of the support point of Fσn to the nearest point on the grid {(n1, . . . , nd)σnε̃
2b1
n : ni ∈

Z, |ni | < �aσn/(σnε̃
2b1
n )�, i = 1, . . . , d}, so that minj �=l ‖μj − μl‖ > σnε̃

2b1
n . These moves cost

at most a constant times ε̃
2b1
n to the L1 distance. Modify further Fσn so that (μ1, . . . ,μN) form

a σna
τ/2
σn -net of {x ∈ R

d : ‖x‖ ≤ aσn}. This can be achieved by adding at most [aσn/(σna
τ/2
σn ) +

1]d � σ−d
n a

d−dτ/2
σn � σ−d

n {log(1/σn)}d/τ−d/2 support points so that we still have N �
σ−d

n {log(1/ε̃n)}d+d/τ . Finally, modify the probability masses p1, . . . , pN to a version for which
pj ≥ ε̃

4db1
n for j = 1, . . . ,N . By a suitable extension of Lemma 3 of [18] to d dimensions, the

L1 distance changes by the L1 distance between the original and the new probability weights,
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and the latter can be shown to be smaller than 2(N − 1)ε̃
4db1
n . In conclusion, we have

‖φσn � h̃σn − φσn � Fσn‖1 � ε̃2b1
n

{
log
(
1/ε̃2b1

n

)}1/2 + ε̃2b1
n + Nε̃4db1

n

� ε̃2b1
n

{
log(1/ε̃n)

}1/2 + σ−d
n

{
log(1/ε̃n)

}d+d/τ
ε̃4db1
n

(31)
= ε̃2b1

n

{
log(1/ε̃n)

}1/2 + ε̃
d(4b1−1/β)
n

{
log(1/ε̃n)

}1+1/τ+1/β

� ε̃2b1
n

{
log(1/ε̃n)

}1/2

since d(4b1 − 1/β) > 2b1 for b1 > 1/(4d − 2)β and the latter follows by the assumption made
on b1.

Place disjoint balls Uj with centers at μ1, . . . ,μN with diameter σnε̃
2b1
n each. Because of

assumption (20) on f ∗, for any ‖x‖ ≤ aσn ,

f ∗(x) ≥ c∗e−b∗aτ∗
σn ≥ c∗ exp

{−b∗aτ∗
0 log(1/σn)

τ∗/τ}≥ c∗σb∗aτ∗
0 log(1/σn)τ

∗/τ−1

n � σ
b∗aτ∗

0
n ,

where the second inequality follows from the assumption that τ ∗ ≤ τ . This implies that for n

sufficiently large and some constant a1, a1σ
b∗aτ∗

0
n (σnε̃

2b1
n )d ≤ P ∗(Uj ) ≤ 1. Further extend this to

a partition U1, . . . ,UK of Rd such that a1σ
b∗aτ∗

0
n (σnε̃

2b1
n )d ≤ P ∗(Uj ) ≤ 1 still holds. We can still

have K � σ−d
n {log(1/ε̃n)}d+d/τ = ε̃

−d/β
n {log(1/ε̃n)}sd for s = 1 + 1/β + 1/τ . The next step is

to construct a partition of Rd × S . To this aim, let

Sσn = {
� ∈ S : σ−2

n < λi

(
�−1)< σ−2

n

(
1 + σ 2β

n

)
, i = 1, . . . , d

}
which satisfies P ∗(Sσn) � e−C3σ

−κ∗
n by hypothesis (19). Define Vj = Uj ×Sσn for j = 1, . . . ,K ,

and extend {V1, . . . , VK } to a partition {V1, . . . , VM} of Rd × S such that

a2σ
b∗aτ∗

0 +d
n σnε̃

2db1
n e−C3σ

−κ∗
n ≤ αP ∗(Vj ) ≤ 1

for all j = 1, . . . ,M , for some positive constant a2 and n sufficiently large. We can still have
M � ε̃

−d/β
n {log(1/ε̃n)}sd .

Set pj = 0 for j > N and consider the set Pσn ⊂ P of probability measures P on R
d ×S with

M∑
j=1

∣∣P(Vj ) − pj

∣∣≤ 2ε̃2db1
n e−C3σ

−κ∗
n .

Note that

Mε̃2db1
n e−C3σ

−κ∗
n � ε̃

−d/β
n

{
log(1/ε̃n)

}sd
ε̃2db1
n e−C3σ

−κ∗
n ≤ 1,

min
1≤j≤M

[
αP ∗(Vj )

]1/3 ≥ {
a2σ

b∗aτ∗
0 +d

n ε̃2db1
n e−C3σ

−κ∗
n
}1/3

= a
1/3
2 ε̃2db1

n e−C3σ
−κ∗
n
{
σ

b∗aτ∗
0 +d

n ε̃−4db1
n e2C3σ

−κ∗
n
}1/3 ≥ a

1/3
2 ε̃2db1

n e−C3σ
−κ∗
n
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for n sufficiently large. Hence, by Lemma 10 of [13],

Dα,P ∗(Pσn) ≥ C′ exp
{−cM log

[
1/ε̃2db1

n e−C3σ
−κ∗
n
]}≥ C′′ exp

{−c′Mσ−κ∗
n

}
≥ C′′ exp

{−c′′ε̃−d/β
n

{
log(1/ε̃n)

}sd
σ−κ∗

n

}
(32)

= C′′ exp
{−c′′′ε̃−(d+κ∗)/β

n

{
log(1/ε̃n)

}d(s+κ∗/β)}≥ exp
{−Cnε̃2

n

}
for some constants C,C′,C′′, c, c′, c′′, c′′′ and for t ≥ d(s + κ∗/β)/(2 + (d + κ∗)/β) since

ε̃
−(d+κ∗)/β
n

{
log(1/ε̃n)

}d(s+κ∗/β)

= n(d+κ∗)/(2β+d+κ∗)(logn)−(d+κ∗)t/β{log
[
nβ/(2β+d+κ∗)(logn)−t

]}d(s+κ∗/β)

� n(d+κ∗)/(2β+d+κ∗)(logn)d(s+κ∗/β)−(d+κ∗)t/β ≤ nε̃2
n

when d(s + κ∗/β) − (d + κ∗)t/β ≤ 2t , cfr. (22).
We show next that, for any P ∈ Pσn , d(f0, fP )� σ

β
n . By triangle inequality,

d(f0, fP ) ≤ d(f0, φσn � h̃σn) + d(φσn � h̃σn, φσn � Fσn) + d(fP ,φσn � Fσn)

and d(f0, φσn � h̃σn) � σ
β
n by Proposition 1 of [27], while, by (31),

d(φσn � h̃σn, φσn � Fσn)� ε̃b1
n

{
log(1/ε̃n)

}1/4 ≤ ε̃n

{
log(1/ε̃n)

}−1 = σβ
n

since, by assumption, ε̃
b1
n {log(1/εn)}5/4 ≤ ε̃n. In order to show that also d(fP ,φσn � Fσn) � σ

β
n ,

we use arguments presented in Lemma 5 of [13]. Let V0 =⋃
j>N Vj . After some algebra,

fP (x) − φσn � Fσn(x)

=
∫

V0

φ�(x − μ)dP(μ,�) +
N∑

j=1

∫
Vj

(
φ�(x − μ) − φ�(x − μj )

)
dP(μ,�)

+
N∑

j=1

∫
Vj

(
φ�(x − μj ) − φσn(x − μj )

)
dP(μ,�) +

N∑
j=1

φσn(x − μj )
[
P(Vj ) − pj

]
.

Note that P(V0) = 1 −∑N
j=1 P(Vj ) ≤∑N

j=1 |P(Vj ) − pj |. Hence, by triangle inequality,

‖fP − φσn � Fσn‖1 ≤
N∑

j=1

∫
Vj

∥∥φ�(· − μ) − φ�(· − μj )
∥∥

1 dP(μ,�)

+
N∑

j=1

∫
Vj

‖φ� − φσn‖1 dP(μ,�) + 2
N∑

j=1

∣∣P(Vj ) − pj

∣∣.
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Recall now that Vj = Uj × Sσn for j = 1, . . . ,N so that, by construction, ‖μ − μ′‖ ≤ σnε̃
2b1
n for

any μ,μ′ ∈ Uj . Also any � ∈ Sσn satisfies det(�−1) ≥ 2−dσ−2d
n , yT �−1y ≤ ‖y‖σ−2

n for any

y ∈ R
d and | tr(σ 2

n�−1) − d − log det(σ 2
n�−1)| ≤ dσ

2β
n . Hence, by using arguments similar to

the proof of Lemma 2,∥∥φ�(· − μ) − φ�(· − μj )
∥∥

1 ≤ ‖μ − μj‖λ1
(
�−1)1/2 ≤ σnε̃

2b1
n σ−1

n = ε̃2b1
n ,

‖φ� − φσn‖1 ≤ ∣∣tr(σ−2
n �−1)− d − log det

(
σn�

−1)∣∣≤ dσ 2β
n

for any (μ,�) ∈ Vj and any j = 1, . . . ,N . Hence, for P ∈ Pσn ,

‖fP − φσn � Fσn‖1 ≤ ε̃2b1
n + dσ 2β

n + 4ε̃2db1
n e−C3σ

−κ∗
n � σ 2β

n

since ε̃
2b1
n ≤ σ

2β
n by the assumption on b1. It follows that d(fP ,φσn � Fσn)� σ

β
n as desired.

The last step is to control the ratio fP /f0 for any P ∈ Pσn in view of an application of
Lemma B2 of [27]. Since (μ1, . . . ,μN) forms a σnaσn -net of {x ∈ R

d : ‖x‖ ≤ aσn}, the set
{μ ∈ R

d : ‖μ − x‖ ≤ σn(aσn + ε̃
2b1
n /2)} contains at least one Uj for j = 1, . . . ,N . Call J (x)

such index j and recall that, for P ∈Pσ ,

P(VJ(x)) ≥ pJ(x) − 2ε̃2db1
n e−C3σ

−κ∗
n ≥ ε̃4db1

n − 2ε̃2db1
n e−C3σ

−κ∗
n � ε̃4db1

n .

Recall that f0 is bounded. For ‖x‖ ≤ aσn we have

fP (x)

f0(x)
≥ K1

∫
Sσn

∫
‖μ−x‖≤σn(a

τ/2
σn +ε̃

2b1
n /2)

φ�(x − z)dP(z,�)

≥ K2σ
−d
n exp

{
− 1

2σ 2
n

[
σn

(
aτ/2
σn

+ ε̃2b1
n /2

)]2}
P(VJ(x))

≥ K2σ
−d
n e−2aτ

σn P (VJ(x)) ≥ K3σ
−d
n e−2aτ

σn ε̃4db1
n

for some constants K1,K2,K3. Also, for every ‖x‖ > aσn ,

fP (x)

f0(x)
≥ K1

∫
Sσn

∫
‖μ‖≤aσn

φ�(x − μ)dP(μ,�)

≥ K2σ
−d
n

∫
Sσn

∫
‖μ‖≤aσn

exp

{
− 1

2σ 2
‖x − μ‖2

}
dP(μ,σ)

≥ K2σ
−d
n exp

{−2‖x‖2/σ 2
n

}
P
({

μ ∈ R : ‖μ‖ ≤ aσn

}× Sσn

)
≥ K2σ

−d
n exp

{−2‖x‖2/σ 2
n

} N∑
j=1

P(Vj ) ≥ K4σ
−d
n exp

{−2‖x‖2/σ 2
n

}
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for some constant K4 because ‖x − μ‖2 ≤ 2‖x‖2 + 2‖μ‖2 ≤ 4‖x‖2 (since ‖μ‖ ≤ aσn < ‖x‖)
and

N∑
j=1

P(Vj ) = 1 −
M∑

j>N

P (Vj ) = 1 −
M∑

j>N

∣∣P(Vj ) − pj

∣∣
≥ 1 −

M∑
j=1

∣∣P(Vj ) − pj

∣∣≥ 1 − 2ε̃2db1
n e−C3σ

−κ∗
n

and the last inequality follows from the definition of Pσ . Set λ = K3σ
−d
n e−2aτ

σn ε̃
4db1
n and notice

that

log(1/λ) = log
(
1/ε̃4db1

n σ−d
n

)+ log
(
exp

{
2a2

0 log(1/σn)
})

= log
(
1/ε̃

d(4b1−1/β)
n

{
log(1/ε̃n)

}d/β)+ 2a2
0 log(1/σn)� log(1/ε̃n)

since 4b1 > 1/β . Moreover, for any P ∈ Pσ , {x ∈ R : fP (x)/f0(x) < λ} ⊂ {x ∈ R : ‖x‖ > aσn}
so that

F0

{(
log

f0

fP

)2

1

(
fP

f0
< λ

)}

≤
∫

‖x‖>aσn

(
log

fP (x)

f0(x)

)2

f0(x)dx

≤
∫

‖x‖>aσn

(
log

[
σd

n

K4
exp

{−2‖x‖2/σ 2
n

}])2

f0(x)dx

≤ K5

σ 4
n

∫
‖x‖>aσn

‖x‖4f0(x)dx = K5

σ 4
n

∫
‖x‖>aσn

‖x‖4f0(x)1/2f0(x)1/2 dx

≤ K5

σ 4
n

{∫
‖x‖>aσn

‖x‖8f0(x)dx

∫
‖x‖>aσn

f0(x)dx

}1/2

≤ K5

σ 4
n

(
F0‖X‖8)1/2(

F0
{
x : ‖x‖ > aσn

})1/2 ≤ K6

σ 4
n

(
F0
{
x : ‖x‖ > aσn

})1/2

≤ K6

σ 4
n

F0
(
Ec

σn

)1/2 ≤ K6

σ 4
n

B0σ
2β+ε+4
n ≤ K7σ

2β+ε
n

for some constants K5,K6,K7. The forth inequality follows from Cauchy–Schwarz, the sixth
inequality follows from F0‖X‖m < ∞ for all m > 0 because of the tail condition (21) on f0,
the seventh and eighth inequalities follows from Proposition 1 of [27]. Since logx ≤ (logx)2

for x > e1 and λ < e−1 for n sufficiently large, we also have that F0{log(f0/fP )1(fP /f0 <

λ)} ≤ K8σ
2β+ε
n . Now apply Lemma B2 of [27] to conclude that both F0{logf0/fP } and



Posterior asymptotics of nonparametric location-scale mixtures 403

F0{(logf0/fP )2} are bounded by

K9
{
log(1/λ)

}2
σ 2β

n ≤ Aσ 2β
n

{
log(1/ε̃n)

}2 = Aε̃2
n

for some positive constant A. Together with (32), this completes the proof. �
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