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Polynomial approximation and quadrature

on geographic rectangles

M. Gentile, A. Sommariva a, M. Vianello a

aDept. of Mathematics, University of Padova
via Trieste 63, 35121 Padova (Italy)

Abstract

Using some recent results on subperiodic trigonometric interpolation and quadra-
ture, and the theory of admissible meshes for multivariate polynomial approxima-
tion, we study product Gaussian quadrature, hyperinterpolation and interpolation
on some regions of S

d, d ≥ 2. Such regions include caps, zones, slices and more
generally spherical rectangles defined by longitudes and (co)latitudes (geographic
rectangles). We provide the corresponding Matlab codes and discuss several numer-
ical examples on S

2.

Key words: Algebraic cubature, geographic (spherical) rectangles, spherical caps,
hyperinterpolation, interpolation, weakly admissible meshes, approximate Fekete
points, discrete Leja points.

1 Introduction

In this work we study new rules for numerical cubature and define new algo-
rithms to determine good point sets for interpolation on some regions of the
unit sphere Sd ⊂ Rd+1 with Sd = {x ∈ Rd+1 : ‖x‖2 = 1}, ‖ · ‖2 being the
euclidean norm in Rd+1.

Many cubature and interpolation point sets are known on the whole sphere.
Well-known cubature sets are the so-called spherical L-designs, introduced by
Delsarte and others [12], that provide cubature rules with a fixed algebraic
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degree of exactness and equal weights. Low-cardinality spherical designs (in
particular close to minimal ones) are the most interesting from the compu-
tational point of view, see e.g. [37] and the references therein. Reimer in [29]
and Sloan and Womersley in [31], [32], studied the so called extremal points,
determining good points for interpolation and cubature; for a survey on this
topic, see [21]. Later, Hesse and Womersley in [22] studied numerical inte-
gration over caps in Sd giving regularity results and a lower bound on the
cardinality of rules with positive nodes and a certain degree of exactness n.
Moreover, they provided rules that have O(nd) points and degree of exactness
n. In particular, exploiting symmetry they presented a rule for caps of S2 that
has n2/2 +O(n) points. Using a different approach, Mhaskar showed in [26],
under some mild requirements, existence of certain cubature rules having scat-
tered data as nodes, on domains such as spherical caps and spherical collars.
In [27], he generalized these results to more general compact sets of the sphere.

In [2] Beckmann and others studied integration over spherical triangles pro-
viding numerical cubature rules via certain reproducing kernels techniques.

In this paper, we study cubature rules of product Gaussian type on regions of
Sd defined by longitudes and (co)latitudes (“geographic rectangles”), with caps
and collars (also called zones) as special cases. In particular we will determine
cubature rules that are exact on all algebraic polynomials of total degree not
greater than n, by using “subperiodic” trigonometric Gaussian rules, that
are rules with n + 1 angular nodes, exact on trigonometric polynomials of
degree not greater than n on subintervals of the period, [α, β] ⊆ [0, 2π] (see
[8,9,10,11]). We show the quality of the cubature rules by numerical tests on
some examples with integrands on S2 and S4.

Then, we study function approximation on such regions of the sphere. The
availability of algebraic cubature formulas with positive weights, gives the
possibility of constructing total-degree hyperinterpolation polynomials, that
are ultimately truncated and discretized orthogonal polynomial expansions.
Such a technique was introduced by Sloan in the seminal paper [30], and then
developed in various contexts, as a valid alternative to polynomial interpo-
lation; see, e.g., [19,20,33] and references therein. Orthogonal polynomials on
the relevant regions, which are a key ingredient of hyperinterpolation, are here
computed by numerical linear algebra methods (consecutive QR factorizations
of weighted Vandermonde matrices).

Such a connection with hyperinterpolation on regions of the sphere is one of the
main motivations to construct cubature formulas that are exact on total-degree
polynomials. Indeed, concerning pure cubature some preliminary numerical
experiments seem to suggest that near-exactness (say, with an error not far
from machine precision) can be obtained also by product Gauss-Legendre
quadrature in the angular variables, and even that a subsampling phenomenon
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can arise (provided that the angular intervals are sufficiently small). Such
numerical observations, that go beyond the scope of the present paper, deserve
in any case further deepening, as well as a comprehensive future study from
both the computational and the theoretical sides.

On the other hand, the recently developed theory of subperiodic trigonometric
interpolation, cf. [5], allows us to construct Weakly Admissible Meshes (short-
ened as WAMs) on geographic rectangles. The theory of WAMs, which are
essentially special sequences of finite norming sets for polynomial spaces, has
been introduced by Calvi and Levenberg in the seminal paper [7], and has been
developed by various researchers in the last years; cf., e.g., [4,23,28]. In the
present context, product-type WAMs on geographic rectangles are straight-
forward to compute for any degree, and can be used directly for least-squares
approximation of continuous functions (near-optimal in the uniform norm).
Furthermore, by the algorithms described in [34], we extract from such WAMs
the so called Approximate Fekete Points and Discrete Leja Points. Both these
point sets are good for polynomial interpolation, since they are asymptotically
distributed as the Fekete points of the region and enjoy a slowly increasing
Lebesgue constant; cf., e.g., [3].

All the Matlab codes used for the numerical experiments are available at the
web site [6].

2 Some basic definitions and results

As preliminaries, it is important to give a quick glance to some well-known
facts that will be important in the next sections. We will denote by Pn(Ω)
the space of the algebraic polynomials of total degree n in Ω. A standard
parametrization of the sphere Sd is provided by generalized spherical coordi-

nates as

xk =



























cos (θd) ·
∏d−1

j=1 sin (θj), k = 1,

sin (θd) ·
∏d−1

j=1 sin (θj), k = 2,

cos (θd+2−k) ·
∏d+1−k

j=1 sin (θj), k = 3, . . . , d+ 1

(1)

with the notation
∏0

j=1 sin (θj) ≡ 1. Alternative choices in the range of the
angles are

• θd ∈ [0, 2π] and θk ∈ [0, π] for k = 1, . . . , d− 1,
• θd−1 ∈ [−π, π] and θk ∈ [0, π] for k = 1, . . . , d− 2, d.
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We point out that depending on the authors this parametrization may change.
Independently of the choice of the range of the angles, the volume measure is
expressed as

dµ(x) =
d−1
∏

k=1

sind−k (θk)dθk.

We will denote with ξ = ξ(θ1, . . . , θd) the transformation from generalized
spherical coordinates to cartesian coordinates.

In the case d = 2, setting θ := θ1, φ := θ2, we have in particular the usual
spherical coordinates transformation ξ = ξ(θ, φ) defined by

x1 = cos (φ) · sin (θ),
x2 = sin (φ) · sin (θ),
x3 = cos (θ)

(2)

with θ ∈ [0, π], φ ∈ [0, 2π], and volume measure sin (θ).

The spherical harmonics Hk(S
d) of (exact) degree k (cf. [1, p.133]) are widely

used to determine a basis on the sphere Sd. They are homogenous polynomials
of degree k

p(x1, . . . , xd+1) =
∑

b1+...+bd=k

ab1,...,bd+1
xb11 . . . x

bd+1

d+1

such that

∆p(x1, . . . , xd+1) = 0

for all (x1, . . . , xd+1) ∈ S
d. It is possible to prove that the vector space Hk(S

d)
has dimension

Z(d, k) =











1, k = 0

(2k+d−1)Γ(k+d−1)
Γ(d)Γ(k+1)

, k = 1, . . .

Let Pn(S
d) be the space of univariate polynomials whose degree is inferior or

equal to n.

If {Y(d)
k,1, . . . ,Y

(d)
k,Z(d,k)} denotes an (arbitrary) real-valued L2(S

d)-orthonormal

basis ofHk(S
d) then {Y(d)

k,1, . . . ,Y
(d)
k,Z(d,k)}k=0,...,n is a basis for Pn(S

d) = ⊕n
k=0Hk(S

d).
It is possible to prove that

n
∑

k=0

Z(d, k) =
(2n+ d)Γ(n+ d)

Γ(d+ 1)Γ(n+ 1)
∼ (n+ 1)d.
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Let

Pn,d(t) = n!Γ

(

d− 1

2

) ⌊n/2⌋
∑

k=0

(−1)k
(1− t2)ktn−2k

4kk!(n− 2k)!Γ(k + (d− 1)/2)

the Legendre polynomial of degree n, and

P
(m)
n,d (t) =

dm

dtm
Pn,d(t).

For d ≥ 3 the associated Legendre function is defined as [1, p.76]

Pn,d,m(t) =
(n+ d− 3)!

(n+m+ d− 3)!
(1− t2)m/2P

(m)
n,d (t), t ∈ [−1, 1],

where 0 ≤ m ≤ n.

The standard basis for Hn(S
2) [1, p.133] is provided by {Y(2)

l,m}l=0,...,n,m=1,...,l

with


























Y
(2)
l,1 (ξ) = clPl(cos (θ))

Y
(2)
l,2m(ξ) = cl,mP

(m)
l (cos (θ)) cos (mφ), m = 1, . . . , l

Y
(2)
l,2m+1(ξ) = cl,mP

(m)
l (cos (θ)) sin (mφ), m = 1, . . . , l

(3)

where ξ = (cos (φ)sin (θ), sin (φ)sin (θ), cos (θ)), Pn = Pn,3,

P
(m)
l (t) = (−1)m(1− t2)m/2 d

m

dtm
Pl(t) = (−1)m

(l +m)!

l!
Pl,3,m(t),

and cl =
√

2l+1
4π

, cl,m =
√

(2l+1)(l−m)!
2π(l+m)!

.

The normalized Legendre function is [1, p.81]

P̃n,d,m(t) =
(n+ d− 3)!

n!Γ((d− 1)/2)

[

(2n+ d− 2)(n−m)!

2d−2(n+ d+m− 3)!

]1/2

(1−t2)m/2P
(m)
n,d (t), t ∈ [−1, 1].

This function is useful for determining a basis for Hk(S
d), since starting from

(3), the following theorem holds (cf. [1]),

Theorem 1 Let {Y(d−1)
k,j }1≤j≤Z(d−1,k)} be an orthonormal basis for Hk(S

d−1),
with 0 ≤ k ≤ n, then an orthonormal basis of Hk(S

d) is

{P̃n,d+1,k(t)Y
(d−1)
k,j (ξd−1) : 1 ≤ j ≤ Z(d− 1), 0 ≤ k ≤ n}

with ξd−1 ∈ Sd−1, ξd = ted+1 +
√

(1− t2)(ξd−1, 0) ∈ Sd, and {ek}k=1,...,d+1 the

canonical basis of Rd+1.
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3 Trigonometric Gaussian quadrature on subintervals of the period

In [9] (and with a different proof in [11]), the authors introduced subperiodic

trigonometric gaussian formulas, i.e. quadrature rules with n+1 nodes (angles)
and positive weights, exact on the space of trigonometric polynomials of degree
n, namely

Tn([−ω, ω]) = span{1, cos (kθ), sin (kθ)}, 1 ≤ k ≤ n, θ ∈ [−ω, ω],

where 0 < ω ≤ π.

For the reader’s convenience, we report the main result of [9].

Theorem 2 Let {(ξj, λj)}1≤j≤n+1, be the nodes and positive weights of the
algebraic gaussian rule for the weight function

s(x) =
2 sin (ω/2)

√

1− sin2(ω/2) x2
, x ∈ (−1, 1).

Then
∫ ω

−ω
f(θ)dθ =

n+1
∑

j=1

λjf(θj), ∀f ∈ Tn([−ω, ω]), 0 < ω ≤ π,

where
θj = 2 arcsin (sin (ω/2)ξj) ∈ (−ω, ω), j = 1, . . . , n+ 1.

In this paper we generalize this result for symmetric weight functions w, i.e.
even weight functions on symmetric intervals.

Theorem 3 Let w : [−ω, ω] → R be a symmetric weight function and {ξj}j=1,...,n+1,
{λ}j=1,...,n+1 be respectively the nodes and the weights of an algebraic gaussian
rule relative to the symmetric weight function

s̃(x) = w(2 arcsin (sin (ω/2)x))
2 sin (ω/2)

√

1− sin2(ω/2) x2
, x ∈ (−1, 1).

Then
∫ ω

−ω
f(θ)w(θ) dθ =

n+1
∑

j=1

λjf(θj), f ∈ Tn([−ω, ω]) (4)

where
θj = 2 arcsin (sin (ω/2)ξj) ∈ (−ω, ω), j = 1, . . . , n+ 1.

Proof. Let us sort in increasing order the n+1 nodes of the gaussian quadra-
ture rule relative to the weight function s̃, i.e. −1 < ξ1 < . . . < ξn+1 < 1. It
is well-known that since the rule is symmetric so are the nodes, implying that
ξj = −ξn+2−j for j = 1, . . . , n+ 1, as well as the weights, i.e. λj = λn+2−j .
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We observe first that since sin (kθ) is an odd function of θ and w is even,
necessarily

∫ ω

−ω
sin (kθ)w(θ)dθ = 0.

On the other side, in view of the symmetry of the nodes and the weights

n+1
∑

j=−1

λj sin (kθj) = 0,

i.e. the quadrature rule integrates exactly the functions sin (kθ) for k = 1, . . . , n.

Thus we must only prove that the formula integrates exactly cos (kθ) for k =
0, . . . , n.

Setting α = sin (ω/2), θ = θ(x) = 2 arcsin (αx) with x ∈ [−1, 1] we have

∫ ω

−ω
cos (kθ)w(θ)dθ=

∫ 1

−1
cos (2k arcsin (αx))w(2 arcsin (αx))

2α√
1− α2 x2

dx

=
∫ 1

−1
cos (2k arcsin (αx)) s̃(x) dx. (5)

Denoting with Tk(x) = cos (k arccos (x)) the Chebyshev polynomial of degree
k,

cos (2k arcsin (αx)) = cos
(

2k
(

π

2
− arccos (αx)

))

=cos (kπ) cos (2k arccos (αx))− sin (kπ) sin (2k arccos (αx))

= (−1)kT2k(αx), (6)

hence
∫ ω

−ω
cos (kθ)w(θ)dθ = (−1)k

∫ 1

−1
T2k(αx) s̃(x) dx.

Consequently, in view of the exactness of the (n + 1) points gaussian rule
(w.r.t. the weight function s̃) and (6),

∫ ω

−ω
cos (kθ)w(θ)dθ=

∫ 1

−1
(−1)kT2k(αx) s̃(x) dx =

n+1
∑

j=1

λj(−1)kT2k(αξj)

=
n+1
∑

j=1

λj cos (2k arcsin (αξj)) =
n+1
∑

j=1

λj cos (kθj), k = 0, . . . , n.

Since the formula is exact on a basis of Tn([−ω, ω]), it is exact for every
f ∈ Tn([−ω, ω]). ✷
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This generalization of Theorem 2 will be of fundamental importance for the
construction of cubature rules on some regions of the sphere.

4 Numerical cubature on some regions of Sd

In this section we consider numerical integration on regions of the sphere
determined by longitudes and (co)latitudes. Let a = {ak}k=1,...,d ∈ [0, π]d−1 ×
[0, 2π], b = {bk}k=1,...,d ∈ [0, π]d−1 × [0, 2π] with ak ≤ bk for k = 1, . . . , d and
define Ω = Ω(a,b) as the set of points x = {xk}k=1,...,d+1 ∈ Sd ⊆ Rd+1 such
that

xk =



























cos (θd) ·
∏d−1

j=1 sin (θj), k = 1,

sin (θd) ·
∏d−1

j=1 sin (θj), k = 2,

cos (θd+2−k) ·
∏d+1−k

j=1 sin (θj), k = 3, . . . , d+ 1

(7)

with aj ≤ θj ≤ bj for j = 1, . . . , d. These domains will be denominate “geo-
graphic rectangles”. We observe that depending on a, b, several well-known
subdomains of the d-sphere can be defined in this way, as collars, slices and
more generally spherical rectangles defined by longitudes and latitudes.

Theorem 4 Let Ω = Ω(a,b) and {θ[aj ,bj ]k }k=1,...,n+d−j+1 and {λ[aj ,bj ]k }k=1,...,n+d−j+1

be respectively the nodes and the weights of a gaussian subperiodic trigonomet-
ric rule on [aj , bj ] w.r.t. the weight function w(x) = 1, having trigonometric
degree of exactness n+ d− j, for j = 1, . . . , d.Then the cubature rule

Sn(f) =
n+d
∑

j1=1

. . .
n+2
∑

jd−1=1

n+1
∑

jd=1

λj1,...,jdf(ξj1,...,jd)

where

ξj1,...,jd = ξ(θ
[a1,b1]
j1 , . . . , θ

[ad,bd]
jd

)

λj1,...,jd =
d
∏

k=1

λjk sin
d−k (θ

[ak ,bk]
jk

)

integrates exactly in Ω every algebraic polynomial of total degree n.

Proof. Remembering that θk ∈ [0, π] for k = 1, . . . , d − 1, the absolute value
of the jacobian determinant of the transformation from generalized spherical
coordinates to cartesian coordinates ξ = ξ(θ1, . . . , θd) is

∏d−1
k=1 |sind−k (θk)| =

∏d−1
k=1 sin

d−k (θk), hence
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∫

Ω
f(ξ)dµSd(ξ)=

∫ b1

a1
. . .
∫ bd

ad

f(ξ(θ1, . . . , θd))
d−1
∏

k=1

| sind−k (θk)|dθd . . . dθ1

=
∫ b1

a1
. . .
∫ bd

ad
f(ξ(θ1, . . . , θd))

d−1
∏

k=1

sind−k (θk)dθd . . . dθ1. (8)

If we intend to prove the exactness of the rule for all polynomials of degree
n, it is sufficient to show the assert for a basis of Pn(R

d+1), for instance the
monomial basis determined by all the multivariate algebraic polynomials

pk1,...,kd+1
(x1, . . . , xd+1) = xk11 · . . . · xkd+1

d+1

such that k1 + . . .+ kd+1 = n.

We observe that for any homogeneous polynomial element of such a basis we
easily have

pk1,...,kd+1
(x1, . . . , xd+1) = xk11 · . . . · xkd+1

d+1

=



cos (θd) ·
d−1
∏

j=1

sin (θj)





k1

·


sin (θd) ·
d−1
∏

j=1

sin (θj)





k2

·
d+1
∏

s=3



cos (θd+2−s) ·
d+1−s
∏

j=1

sin (θj)





ks

=
(

cosk1 (θd) · sink2 (θd)
)

·
d−1
∏

j=1

(

sink1+...+kd−j+1(θj)cos
kd−j+2 (θj)

)

.

Since k1 + . . . + kd+1 = n, pk1,...,kd+1
(ξ(θ1, . . . , θd+1)) is a trigonometric poly-

nomial of degree at most k1 + . . . + kd−j+2 ≤ n in each variable θj for
j = 1, . . . , d − 1 and k1 + k2 in θd. Consequently pk1,...,kd+1

is a trigonometric
polynomial of at most degree n + d − k in the variables θk with k = 1, . . . , d.
Thus, from (8), in view of the separation of variables

∫

Ω
pk1,...,kd+1

(ξ)dµSd(ξ)=
d−1
∏

j=1

∫ bj

aj

(

sink1+...+kd−j+1(θj)cos
kd−j+2 (θj)

)

sind−j (θj)dθj

·
∫ bd

ad

(

cosk1 (θd) · sink2 (θd)
)

dθd. (9)

This particular structure suggests to use tensor product formulas based on the
subperiodic trigonometric gaussian rules described in Theorem 3. More pre-

cisely, denoting by {θ[aj ,bj ]k }k=1,...,n+d−j+1, {λ[aj ,bj ]k }k=1,...,n+d−j+1, j = 1, . . . , d−
1 the nodes of a gaussian subperiodic trigonometric rule with trigonomet-
ric degree of exactness n + d − j w.r.t. the weight function w(x) = 1 and
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{θ[ad,bd]k }k=1,...,n+1, {λ[ad,bd]k }k=1,...,n+1, the nodes of a gaussian subperiodic trigono-
metric rule with trigonometric degree of exactness n w.r.t. the weight function
w(x) = 1 we finally have

∫

Ω
pk1,...,kd+1

(ξ)dµSd(ξ)=
∫ b1

a1
. . .
∫ bd

ad

pk1,...,kd+1
(ξ(θ1, . . . , θd+1))

d−1
∏

k=1

sind−k (θk) dθd . . . dθ1

=
n+d
∑

j1=1

. . .
n+2
∑

jd−1=1

n+1
∑

jd=1

λj1,...,jdpk1,...,kd+1
(ξj1,...,jd) (10)

where

ξj1,...,jd = ξ(θ
[a1,b1]
j1 , . . . , θ

[ad,bd]
jd

)

λj1,...,jd =
d
∏

k=1

λjk sin
d−k (θ

[ak,bk]
jk

),

implying that the rule (10) has algebraic degree of exactness n. �

5 Improving the cardinality of the cubature rule

In this section we improve the results of the previous section to some ge-
ographic rectangles of the sphere, e.g. the caps of S2. For the case d = 2,
we obtain rules algebraic degree of exactness n, with O(n2/2), as in [22].
We use here the generalized spherical coordinates defined by (7) but with
[ad−1, bd−1] ⊆ [−π, π], [aj, bj ] ⊆ [0, π] for j = 1, 2, . . . , d− 2, d.

Theorem 5 Let Ω = Ω(a,b). Suppose ad = 0 and bd = π and −π ≤ ad−1 =
−bd−1 < 0, [aj , bj ] ⊆ [0, π] for j = 1, . . . , d− 2. Let

(1) {θ[aj ,bj ]k }k=1,...,n+d−j+1 and {λ[aj ,bj ]k }k=1,...,n+d−j+1, j = 1, . . . , d − 2, be re-
spectively the nodes and the weights of a gaussian subperiodic trigono-
metric rule on [aj, bj ], w.r.t. w(x) = 1, having trigonometric degree of
exactness n+ d− j;

(2) {θ[−bd−1,bd−1]
k }k=1,...,n+1 and {λ[−bd−1,bd−1]

k }k=1,...,n+1 are respectively the nodes
and the weights of a gaussian subperiodic trigonometric rule on [−bd−1, bd−1],
w.r.t. w(x) = |sin x|, having trigonometric degree of exactness n, with

θ
[−bd−1,bd−1]
k < θ

[−bd−1,bd−1]
k+1 for k = 1 . . . , n;

(3) {θ[0,2π]k }k=1,...,n+1 and {λ[0,2π]k }k=1,...,n+1 be respectively the nodes and the
weights of a gaussian trigonometric rule on [0, 2π], w.r.t. w(x) = 1, hav-

ing trigonometric degree of exactness n, with θ
[0,2π]
k < θ

[0,2π]
k+1 for k =

1 . . . , n.
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Then the cubature rule

Sn(f) =
n+d
∑

j1=1

. . .
n+3
∑

jd−2=1

n+1
∑

jd−1=1

⌈n+1
2

⌉
∑

jd=1

λj1,...,jdf(ξj1,...,jd)

where
ξj1,...,jd = ξ(θ

[a1,b1]
j1 , . . . , θ

[ad,bd]
jd

)

λj1,...,jd =
d
∏

k=1

λ
[ak,bk]
jk

·
d−2
∏

k=1

sind−k (θ
[ak,bk]
jk

)

integrates exactly in Ω every algebraic polynomial p ∈ Pn(Ω).

Proof. Using the transformation ξ from generalized spherical to cartesian
coordinates (see (7)), we have

∫

Ω
f(ξ)dµSd(ξ) =

∫ b1

a1
. . .
∫ bd−1

−bd−1

∫ π

0
f(ξ(θ1, . . . , θd))

d−1
∏

k=1

|sind−k (θk)|dθd . . . dθ1.

(11)
Modifying the generalized spherical coordinates so that θd ∈ [π, 2π], since the
absolute value of the jacobian determinant of the transformation does not
change, we get

∫

Ω
f(ξ)dµSd(ξ) =

∫ b1

a1
. . .
∫ bd−1

−bd−1

∫ 2π

π
f(ξ(θ1, . . . , θd))

d−1
∏

k=1

|sind−k (θk)|dθd . . . dθ1.

(12)
Summing (11) to (12) and dividing by 2,

∫

Ω
f(ξ)dµSd(ξ) =

1

2

∫ b1

a1
. . .

∫ bd−1

−bd−1

∫ 2π

0
f(ξ(θ1, . . . , θd))

d−1
∏

k=1

|sind−k (θk)|dθd . . . dθ1.

(13)
We prove the exactness of the rule, showing that the quadrature rule integrates
exactly the monomial basis of Rd+1, i.e. the set of homogenous polynomials
{pk1,...,kd+1

} with ks ≥ 0 for all s = 1, . . . , d+ 1 and
∑d+1

j=1 kj ≤ n, defined as

pk1,...,kd+1
(x1, . . . , xd+1) =

d+1
∏

s=1

xkss . (14)

As shown in (9), pk1,...,kd+1
(ξ(θ1, . . . , θd)) is a trigonometric polynomial of de-

gree at most k1 + . . .+ kd−j+1 ≤ n in each variable θj . More precisely

pk1,...,kd+1
(ξ(θ1, . . . , θd)) =

d−1
∏

j=1

(

sink1+...+kd−j+1(θj)cos
kd−j+2 (θj)

)

·
(

cosk1 (θd) · sink2 (θd)
)

.

(15)

By (13) and (15), the separation of variables and the transformation ξ =
ξ(θ1, . . . , θd)
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∫

Ω
pk1,...,kd+1

(ξ)dµSd(ξ)=
1

2

∫ b1

a1
. . .

∫ bd−1

−bd−1

∫ 2π

0
pk1,...,kd+1

(ξ(θ1, . . . , θd))dθd . . . dθ1

=
1

2

d−1
∏

j=1

∫ bk

ak
sink1+...+kd−j+1(θj)cos

kd−j+2 (θj)|sind−j (θj)|dθj

·
∫ 2π

0
cosk1 (θd) · sink2 (θd)dθd (16)

Since [aj , bj] ⊆ [0, π] for j = 1, . . . , d−2, we also have |sind−j (θj)| = sind−j (θj),
and consequently

∫

Ω
pk1,...,kd+1

(ξ)dµSd(ξ)=
1

2

d−2
∏

j=1

∫ bk

ak
sink1+...+kd−j+1(θj) cos

kd−j+2 (θj) sin
d−j(θj)dθj

·
∫ bd−1

−bd−1

sink1+k2(θd−1) cos
k3(θd−1)| sin(θd−1)|dθd−1

·
∫ 2π

0
cosk1 (θd) · sink2 (θd)dθd (17)

This particular structure suggests as in Theorem 4 to use tensor product
formulas based on the subperiodic trigonometric gaussian rules described in
Theorem 2 and 3.

Denoting by {θ[aj ,bj ]k }k=1,...,n+d−j+1, {λ[aj ,bj ]k }k=1,...,n+d−j+1, j = 1, . . . , d− 2 the
nodes of a gaussian subperiodic trigonometric rule with trigonometric degree of

exactness n+d−j (w.r.t. w(x) ≡ 1), {θ[−bd−1,bd−1]
k }k=1,...,n+1, {λ[−bd−1,bd−1]

k }k=1,...,n+1,
the nodes of a gaussian subperiodic trigonometric rule with trigonometric de-
gree of exctness n (w.r.t. the weight function |sin θ|) and {θ[0,2π]k }k=1,...,n+1,

{λ[0,2π]k }k=1,...,n+1, the nodes of a gaussian trigonometric rule with trigonomet-
ric degree of exactness n (w.r.t. the symmetric weight function w(x) ≡ 1) we
finally have

∫

Ω
pk1,...,kd+1

(ξ)dµSd(ξ) =
1

2

n+d
∑

j1=1

. . .
n+3
∑

jd−2=1

n+1
∑

jd−1=1

n+1
∑

jd=1

λj1,...,jdpk1,...,kd+1
(ξj1,...,jd)

(18)
where

ξj1,...,jd = ξ(θ
[a1,b1]
j1 , . . . , θ

[ad−2,bd−2]
jd−2

, θ
[−bd−1,bd−1]
jd−1

, θ
[0,2π]
jd

)

λj1,...,jd =
d
∏

k=1

λ
[ak,bk]
jk

·
d−2
∏

k=1

sind−k (θ
[ak ,bk]
jk

).

Consequently the rule has algebraic degree of exactness n, since it is exact on
a basis of the space P(Rd+1), hence also on P(Ω).

Let us suppose that n is odd. By a direct check on generalized spherical coor-
dinates (7)
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ξ(θ
[a1,b1]
j1 , . . . , θ

([ad−2,bd−2])
jd−2

, θ
[−bd−1,bd−1]
jd−1

, θ
[0,2π]
jd

)

= ξ(θ
[a1,b1]
j1 , . . . , θ

[ad−2,bd−2]
jd−2

,−θ[−bd−1,bd−1]
jd−1

, θ
[0,2π]
j + π). (19)

Now observe that it is not restrictive to require that θ
[−bd−1,bd−1]
j < θ

[−bd−1,bd−1]
j+1 ,

θ
[0,2π]
j < θ

[0,2π]
j+1 for j = 1, . . . , n and notice that the gaussian nodes {θ[0,2π]j }j

are equispaced on the arc of the circle, i.e. θj = 2π(j − 1)/(n + 1). Thus, if

θ
[0,2π]
j is a node, so is θ

[0,2π]
j + π = θ

[0,2π]

j+n+1
2

.

Furthermore, since the weight function | sin θd−1| is symmetric, if θ
[−bd−1,bd−1]
n+2−j ,

j = 1, . . . , n+ 1 is a node so is −θ[−bd−1,bd−1]
n+2−j = θ

[−bd−1,bd−1]
j .

Hence, from (19), and these final observations

ξj1,...,jd−1,jd = ξ(θ
[a1,b1]
j1 , . . . , θ

([ad−2,bd−2])
jd−2

, θ
[−bd−1,bd−1]
jd−1

, θ
[0,2π]
jd

)

= ξ(θ
[a1,b1]
j1 , . . . , θ

[ad−2,bd−2]
jd−2

,−θ[−bd−1,bd−1]
jd−1

, θ
[0,2π]
j + π)

= ξ(θ
[a1,b1]
j1 , . . . , θ

[ad−2,bd−2]
jd−2

, θ
[−bd−1,bd−1]
n+2−jd−1

, θ
[0,2π]

jd+
n+1
2

)

= ξj1,...,n+2−jd−1,jd+
n+1
2
. (20)

About their weights, observe that

λj1,...,jd−1,jd =
d
∏

k=1

λ
[ak,bk]
jk

·
d−2
∏

k=1

sind−k (θ
[ak ,bk]
jk

)

=
d−2
∏

k=1

λ
[ak,bk]
jk

· λ[−bd−1,bd−1]
n+2−jd−1

· λ[0,2π]
j+n+1

2

·
d−2
∏

k=1

sind−k (θ
[ak,bk]
jk

)

= λj1,...,n+2−jd−1,jd+
n+1
2
, (21)

since λ
[−bd−1,bd−1]
n+2−j = λ

[−bd−1,bd−1]
j by the symmetry of the weight function w(x) =

| sin (x)| and λ
[0,2π]
j = λ

[0,2π]

j+n+1
2

since the gaussian rule for trigonometric poly-

nomials on the circle has equal weights. Consequently, (20) and (21) imply
that

n+d
∑

j1=1

. . .
n+2
∑

jd−2=1

n+1
∑

jd−1=1

n+1
∑

jd=1

λj1,...,jdpk1,...,kd+1
(ξj1,...,jd)

= 2
n+d
∑

j1=1

. . .
n+2
∑

jd−2=1

n+1
∑

jd−1=1

(n+1)/2
∑

jd=1

λj1,...,jdpk1,...,kd+1
(ξj1,...,jd) (22)
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and from (18) we finally have

∫

Ω
pk1,...,kd+1

(ξ)dµSd(ξ) =
n+d
∑

j1=1

. . .
n+3
∑

jd−2=1

n+1
∑

jd−1=1

(n+1)/2
∑

jd=1

λj1,...,jdpk1,...,kd+1
(ξj1,...,jd).

(23)

The case in which n is an even trigonometric degree of exactness follows by the
same proof of n odd, but uses a gaussian rule for trigonometric polynomials
on [0, 2π], w.r.t. w(x) ≡ 1, with trigonometric degree of exactness n+ 1 (and
consequently also exact on any trigonometric polynomial of degree at less or
equal to n), providing

∫

Ω
p(ξ)dµSd(ξ) =

n+d
∑

j1=1

. . .
n+3
∑

jd−2=1

n+1
∑

jd−1=1

(n+2)/2
∑

jd=1

λj1,...,jdp(ξj1,...,jd). (24)

�

Note 1 We observe that in Theorem 5 the intervals [ak, bk] ⊆ [0, π], k =
1, . . . , d − 2, ak < bk are in general not symmetric. If ak = −bk < 0, by

checking the proof of Theorem 5, we can substitute {θ[aj ,bj ]k }k=1,...,n+d−j+1 and

{λ[aj ,bj ]k }k=1,...,n+d−j+1 respectively with {θ[−bj ,bj ]
k }k=1,...,n+1 and {λ[−bj ,bj ]

k }k=1,...,n+1

that are the nodes and the weights of a gaussian subperiodic trigonometric rule
on [−bj , bj], w.r.t. w(x) = |sind−j (x)|, having trigonometric degree of exact-
ness n. As result we can determine a tensorial rule Sn with fewer cubature
nodes, still having algebraic degree of exactness n.

Note 2 In the case d = 2, Theorem 5 allows us to compute a quadrature rule
on the cap Ω = {x ∈ S2 : x · z > cos (b1)}, z = (0, 0, 1) being the North-

Pole, · the scalar product of R3, b1 the radius of the cap. As shown in Lemma
3.1. of [22], this result can be easily generalized for more general caps, having
center z 6= (0, 0, 1), by suitably rotating the nodes. For this region we provide a
tensorial cubature rule alternative to that suggested in [22], still having about
n2/2 points.

6 Implementation and numerical experiments

The tensorial formulas proposed in the previous sections need a clever compu-
tation of the sub-trigonometric quadrature rules, w.r.t. the weight functions
w1(x) = 1 and w2(x) = | sin (x)|. The case involving the Legendre weight
w1 was studied in [8], [9], where the authors also provided the Matlab routine
trigauss that determines the nodes and the weights of the relative rule. In the
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present paper, also in view of Theorem 3, we consider the same problem but in-
volving w2, again making available to users the Matlab code trigauss abssin.

As in trigauss, the nodes and the weights of the subperiodic trigonometric
gaussian rule w.r.t. w2 can be obtained by a technique that requires first the
computation of the moments

mk =
∫ 1

−1
Tk(x)s̃(x)dx, k = 0, . . . , 2n+ 1

where Tk(x) = cos (k arccos (x)) is the k-th Chebyshev polynomial and as
indicated by Thm. 3, for ω ∈ [0, π]

s̃(x) = | sin (2 arcsin (sin (ω/2)x))| 2 sin (ω/2)
√

1− sin2(ω/2) x2

=2|sin (arcsin (sin (ω/2)x))||cos (arcsin (sin (ω/2)x))| 2 sin (ω/2)
√

1− sin2(ω/2) x2

=2|(sin (ω/2))x|
√

1− sin2 (arcsin (sin (ω/2)x))
2 sin (ω/2)

√

1− sin2(ω/2) x2

=4 sin2 (ω/2)|x|. (25)

Using the Chebyshev algorithm, implemented by the Matlab routine chebyshev
(cf. [16], [17]) one determines the coefficients of the three terms recurrence and
finally obtain the quadrature nodes and weights by Golub-Welsch algorithm
(see for instance the Matlab codes gauss (cf. [16], [17]) or its fast variant for
symmetric weight functions SymmMw [25]).

About the moment computation, we observe, that since the weight function
s̃(x) = (sin2 (ω/2))|x| is even (i.e. symmetric) and the Chebyshev polynomial
Tk(x) = cos (k · arccos (x)) is an odd function for odd k, thus

mk =
∫ 1

−1
Tk(x)s̃(x)dx = 0, k odd (26)

For k = 0, a direct computation gives

m0 =
∫ 1

−1
4 (sin2 (ω/2))|x|dx = 8 · sin2 (ω/2)

∫ 1

0
x dx = 4 sin2 (ω/2). (27)

Furthermore, for k = 2j, j = 1, . . . , n, since Tk is an even function for even k,
T1(x) = x and

Tk(x) · Tm(x) =
1

2

(

Tk+m(x) + T|k−m|(x)
)
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we get from (25) and Tk(x)|x| = Tk(−x)| − x|

mk =
∫ 1

−1
Tk(x)s̃(x)dx = 4 sin2 (ω/2)

∫ 1

−1
Tk(x)|x|dx

=8 sin2 (ω/2)
∫ 1

0
Tk(x) · T1(x)dx

=4 sin2 (ω/2)
∫ 1

0
(Tk+1(x) + Tk−1(x)) dx. (28)

Since
∫

Tk(x)dx =
kTk+1(x)

k2 − 1
− xTk(x)

k − 1

and Tk(1) = 1, T2j(0) = (−1)j , applying the fundamental theorem of calculus,
we have for k = 2j + 1, j = 1, . . . , n

∫ 1

0
T2j+1(x)dx=

(2j + 1)(T2j+2(1)− T2j+2(0))

(2j + 1)2 − 1
− T2j(1)

2j

=
(2j + 1)(1− (−1)j+1)

(2j + 1)2 − 1
− 1

2j
(29)

while, being T1(x) = x, we directly have
∫ 1
0 T1(x)dx = 1/2. Consequently,

setting α0 = 1/2 and

αj =
∫ 1

0
T2j+1(x)dx =

(2j + 1)(1− (−1)j+1)

(2j + 1)2 − 1
− 1

2j
, j = 1, . . . , n

by (27), (26), (28) we conclude that

mk =



























4 sin2 (ω/2), k = 0,

0, k odd,

(4 sin2 (ω/2)) · (αk/2 + αk/2−1), k even.

(30)

The case in which the weight function is w(x) = | sink (x)|, k > 1, is more
complicated, and we have computed the needed moments by the adaptive
routine quadvgk. Starting from these observations, we have easily implemented
in Matlab the tensorial rules on caps or more generally rectangles of longitude-
latitude type that we have introduced in Thm. 2 and Thm. 3, cf. [6].

As numerical tests, we consider the cubature of the functions
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f1(x)= exp (−x2 − 100 y2 − 0.5 z2),

f2(x)= sin (−x2 − 100 y2 − 0.5 z2),

f3(x)=max(1/4− ((x− 1/
√
5)2 + (y − 2/

√
5)2 + (z − 2/

√
5)2), 0))p, p = 3

While in [22], Hesse and Womersley studied cubature on the cap C centered
on the North-Pole and with radius π/3, in this paper the integration domain
is the spherical rectangle Ω = Ω([0, π/2; π/6, π/3]) ⊂ C.

The reference integrals were computed by formulas with high degree of exect-
ness, and are

I(f1) = 2.221882314846131135 · 10−2

I(f2) =−4.684511626608869883 · 10−2

I(f3) = 1.817581787039426657 · 10−4 (31)

The first two functions belong to C∞(Sd), but present some difficulties due
to different scaling w.r.t. each variable. Function f3 is a modification of an
example proposed by Hesse and Womersley, in which the parameter p ≥ 1
controls its smoothness. In particular, it is shown in [15, Subsection 5.8.2.]
that, for p ∈ N, f3 belongs to the Sobolev space Hs(S2) for any s < (2p+1)/2.
We remark that the other two examples suggested by Hesse and Womersley
were easily approximated in this domain even by the rule with algebraic degree
of exactness = 5, with an absolute error smaller than 10−14.

All the numerical experiments were performed on a 2.5 Ghz Intel Core i5
computer with 8 GB of RAM and the cpu time was less than 10−2 seconds in
all the tests.

We have also considered the computation of integrals of polynomials on the ge-
ographic rectangle Ω ⊂ S3 defined in generalized spherical coordinates by the
intervals [0, π/3; 0, 2π/3; 0, 2π]. Fixed a positive integer n, we approximated
all Ik1,k2,k3,k4 given by

Ik1,k2,k3,k4 :=
∫

Ω
xk1 yk2 uk3 vk4 dΩ,

4
∑

j=1

kj ≤ n (32)

using our cubature rule having degree of exactness n and (n+ 3)(n+ 1)⌈n+1
2
⌉

points. The reference integrals have been easily computed by products of

∫ bj

aj
cosα(θ) sinβ(θ)dθ

for appropriate α, β (see (9)).
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Results are summarized in Table 2. In the last column we have reported the
number of integrals Ik1,k2,k3,k4 computed at degree n.

All the Matlab codes used for these tests are available at [6].

7 Weakly Admissible Meshes on Rd or Cd

Global polynomial approximation is a challenging topic in the multivariate
setting, still with many open problems.

Few results are known about the so-called Fekete points of a multidimensional
compact domain, i.e. points that maximize the Vandermonde determinant,
ensuring (at most) an algebraic growth of the Lebesgue constant in the corre-
sponding interpolation process. Using classical tools, the numerical computa-
tion of Fekete points becomes rapidly a very large scale nonlinear optimization
problem.

A different approach for the computation of Fekete points is to consider a
discretization of the domain, moving from the continuum to nonlinear com-
binatorial optimization. Good discrete models of general compact sets are
provided by the so-called “Weakly Admissible Meshes”, a term introduced by
Calvi and Levenberg in [7].

Given a polynomial determining compact set K ⊂ Rd or K ⊂ Cd (i.e., polyno-
mials vanishing there are identically zero), a Weakly Admissible Mesh (WAM)
is defined in [7] is a sequence of discrete subsets An ⊂ K such that

‖p‖K ≤ C(An)‖p‖An
, ∀p ∈ P

d
n(K) (33)

where both card(An) ≥ N := dim(Pn(K)) and C(An) grow at most polynomi-
ally with n (we use the notation ‖f‖X = supx∈X |f(x)| for f bounded function
on the compact X). When C(An) is bounded we speak of an Admissible Mesh
(AM).

Among their properties which can be considered as a recipe to construct new
from known WAMs, we cite the following ones:

A: if α is an affine mapping and An a WAM for K, then α(An) is a WAM on
α(K) with the same constant C(An);

I: any sequence of unisolvent interpolation sets whose Lebesgue constant grows
at most polynomially with n is a WAM, C(An) being the Lebesgue constant
itself;

P: a finite product of WAMs is a WAM (even for tensor-product polynomials)
on the corresponding product of compacts, C(An) being the product of the
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corresponding constants;
U: a finite union of WAMs is a WAM on the corresponding union of compacts,

C(An) being the maximum of the corresponding constants.

Between the many applications of WAMs in polynomial approximation, we
cite

(1) least-squares polynomial approximation LAn
f on a WAM of a function

f ∈ C(K), is such that

‖f − LAn
f‖K / C(An)

√

card(An) min {‖f − p‖K , p ∈ P
d
n}.

(2) Extraction of Approximate Fekete Points from WAMs [34]; they have a
Lebesgue constant bounded by NC(An), and it can be proved that they
are asymptotically distributed as the continuum Fekete points [3], [4].

(3) Extraction of Discrete Leja Points fromWAMs, providing sets thatmimic

the actual Leja points but whose determination has a smaller computa-
tional cost [3].

A key feature, which is important for computational purposes, is the avail-
ability of low cardinality WAMs, so as to reduce the computational effort for
determining the least-squares polynomial approximation of a function or the
extraction of the Approximate Fekete Points (AFP) or Discrete Leja Points
(DLP), with the techniques introduced in [34] and [3].

In the next sections we will consider the problem of determining low cardinality
WAMs on geographic rectangles of the d-dimensional sphere, also showing the
behaviour of the extracted AFP, DLP on two such regions of S2.

8 Weakly Admissible Meshes on certain regions of Sd

We start our analysis with the following lemma (see [5], [24], [10])

Lemma 1 Let ω ∈ (0, π],

τj = cos

(

(2j − 1)π

2(2n+ 1)

)

∈ (−1, 1), j = 1, . . . , 2n+ 1

be the 2n + 1 zeros of the Chebyshev polynomial of the first kind T2n+1(x) =
cos ((2n+ 1) arccos (x)), and

θj := θj(n, ω) = 2 arcsin(ατj) ∈ [−ω, ω], j = 1, . . . , 2n+ 1, α = sin (ω/2).

Then, if Lj is the j-th cardinal trigonometric polynomial w.r.t. the set An([−ω, ω]) =
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{θj}j=1,...,2n+1, the (trigonometric) Lebesgue constant

Λn(An([−ω, ω])) = max
θ∈[−ω,ω]

∑

j=1

|Lj(θ)|

is such that

Λn(An([−ω, ω])) ≤
2

π
log (n) + δn = O(log (n))

where 5/3 ≤ δn ≤ 2
π
(log (16

π
) + γ∗) ≈ 1.40379 with γ∗ the Euler-Mascheroni

constant.

From property I of WAMs, and observing that a bivariate algebraic polynomial
of total degree n on the arc γ([−ω, ω]) of the unit circle determined by the
angles −ω, ω is a trigonometric polynomial of the same degree in [−ω, ω], it
follows immediately from the previous Lemma (see also [35]) the following

Corollary 1 The set

M(1)
n ([−ω, ω]) = {x ∈ S

1 : (cos (θ), sin (θ)), θ ∈ An([−ω, ω])}

is a WAM on the arc of the unit circle γ([−ω, ω]) with constant

C(M(1)
n ([−ω, ω])) = Λn(M(1)

n ([−ω, ω])) ≤ 2

π
log (n) + δn = O(log (n)).

By a suitable change of the parametrization on the unit disk, since if p(·)
is a trigonometric polynomial of degree n so is p(ω + ·), we have that for
ω = (α+ β)/2 the set

M(1)
n ([α, β]) =

{

x ∈ S
1 : (cos (ω + θ), sin (ω + θ)) , θ ∈ An([−ω, ω])

}

(34)

is a WAM on the arc γ([α, β]) ∈ S
1 determined by the angles α, β, with

constant

C(M(1)
n ([α, β])) = Λn(An([α, β])) = Λn(An([−ω, ω])) ≤

2

π
log (n)+δn ≈ O(log (n)),

where ω = (α + β)/2.

We are now ready to prove the following

Theorem 6 Let Ω = Ω(a,b) ⊆ Sd be a geographic rectangle, with 0 ≤ ak <
bk ≤ π for k = 1, . . . , d− 1 and 0 ≤ ad < bd ≤ 2π. Let

⊗d
i=1An([ai, bi])) = {(x1, . . . , xd), xi ∈ An([ai, bi])), i = 1, . . . , d}.
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The mesh

Mn(Ω) = ξ(⊗d
i=1An([ai, bi])) = {x ∈ Ω : x = ξ(θ), θ ∈ ⊗d

i=1An([ai, bi])}

is a WAM on Ω with cardinality (2n+1)d and constant C(Mn) = O(logd (n)).

Proof. Let x = (x1, . . . , xd+1), θ = (θ1, . . . , θd) and ξ(θ) the usual transforma-
tion from generalized spherical to cartesian coordinates. As also shown in the
previous theorems, if p ∈ Pn(Ω), then p(ξ(θ)) is a trigonometric polynomial
of degree less than or equal to n in each variable θk, k = 1, . . . , d.

Denoting with

⊗k
i=1An([ai, bi])) = {(x1, . . . , xk), xi ∈ An([ai, bi])), i = 1, . . . , k}.

and with Mn(Ω) the discrete subset of Ω

Mn(Ω) = ξ(⊗d
i=1An([ai, bi])) = {x ∈ Ω : x = ξ(θ), θ ∈ ⊗d

i=1An([ai, bi])}

we have by applying Corollary 1 d times and the definition of WAM,

|p(x)|= |p(ξ(θ))| ≤ Λn(An([a1, b1])) max
θ∗
j1
∈An([a1,b1])

|p(ξ(θ∗j1, θ2, . . . , θd))|

≤
2
∏

i=1

Λn(An([ai, bi])) max
(θ∗

j1
,θ∗

j2
)∈⊗2

i=1An([ai,bi]))
|p(ξ(θ∗j1, θ

∗
j2
, . . . , θd))|

≤ . . .

≤
d
∏

i=1

Λn(An([ai, bi])) max
(θ∗

j1
,...,θ∗

jd
)∈⊗d

i=1An([ai,bi]))
|p(ξ(θ∗j1, θ

∗
j2
, . . . , θ∗jd))|

=
d
∏

i=1

Λn(An([ai, bi])) max
x∈Mn

|p(x))|. (35)

Since Λn(An([ai, bi])) ≤ cilog (n) for some ci, then Mn(Ω) is a WAM of degree
n over the domain Ω(a,b) with constant C(Mn) = O(logd (n)). ✷

For special regions, as caps, we can define WAMs with even lower cardinality,
as proven by the next theorem.

Theorem 7 Let Ω = Ω(a,b). Suppose ad = 0 and bd = π and −π ≤ ad−1 =
−bd−1 < 0, [aj , bj ] ∈ [0, π] for j = 1, . . . , d− 2. Suppose that

A+
n ([−γ, γ]) = {θk ∈ An([−γ, γ]), θk ≥ 0}.

Then

Mn(Ω) = ⊗d−2
k=1An([ak, bk]))×A+

n ([−γ, γ])×
{

2πk

2n+ 1

}

k=1,...,2n+1

⊂ Ω
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is a WAM of degree n in Ω with cardinality ≈ 2d−1nd.

Proof. Let us represent the domain Ω in generalized spherical coordinates,
with θ = (θ1, . . . , θd) ∈ [0, π]d−2 × [−π, π] × [0, π], being as usual ξ(θ) the
transformation into cartesian coordinates. Observe that if p ∈ Pn(Ω) then
p(ξ(θ)) is a trigonometric polynomial of degree n in each variable θk, k =
1, . . . , d. Notice also that

Ω = ξ(⊗d−2
k=1[ak, bk]× [−γ, γ]× [0, π]) = ξ(⊗d−2

k=1[ak, bk]× [−γ, γ]× [0, 2π])

implies, An([0, 2π]) = {2πk/(2n + 1)}k=1,...,2n+1 being a trigonometric WAM
of degree n on [0, 2π] and An([ak, bk]) a trigonometric WAM of degree n on
[ak, bk]

Mn(Ω) = ξ(⊗d−2
k=1An([ak, bk])×An([−γ, γ])×An([0, 2π])) ⊂ Ω.

Thus,

|p(x)|= |p(ξ(θ))| ≤ Λn(An([a1, b1])) max
θ∗
j1
∈An([a1,b1])

|p(ξ(θ∗j1, θ2, . . . , θd))|

≤
2
∏

i=1

Λn(An([ai, bi])) max
(θ∗

j1
,θ∗

j2
)∈⊗2

i=1An([ai,bi]))
|p(ξ(θ∗j1, θ

∗
j2
, . . . , θd))|

≤ . . .

≤
d
∏

i=1

Λn(An([ai, bi])) max
(θ∗

j1
,...,θ∗

jd
)∈⊗d

i=1An([ai,bi]))
|p(ξ(θ∗j1, θ

∗
j2 , . . . , θ

∗
jd
))|

=
d
∏

i=1

Λn(An([ai, bi])) max
x∈Mn(Ω)

|p(x))|. (36)

proving that Mn(Ω) is a WAM of degree n in Ω.

Now observe that in view of the symmetries of the points belonging toAn([−bd−1, bd−1])

and
{

2πk
2n+2

}

k=1,...,2n+1
we have

ξj1,...,jd−1,jd+ := ξ(θ
[a1,b1]
j1 , . . . , θ

([ad−2,bd−2])
jd−2

, θ
[−bd−1,bd−1]
jd−1

, θ
[0,2π]
jd

)

= ξ(θ
[a1,b1]
j1 , . . . , θ

[ad−2,bd−2]
jd−2

,−θ[−bd−1,bd−1]
jd−1

, θ
[0,2π]
j + π)

= ξ(θ
[a1,b1]
j1 , . . . , θ

[ad−2,bd−2]
jd−2

, θ
[−bd−1,bd−1]
n+2−jd−1

, θ
[0,2π]

jd+
n+1
2

)

= ξj1,...,n+2−jd−1,jd+
n+1
2
. (37)

In view of the multiple occurrence of some points, the set Mn(Ω) coincides
with

ξ(⊗d−2
k=1An([ak, bk]))×A+

n ([−γ, γ])×An([0, 2π])) ⊂ Ω,

that has cardinality approximatively 2d−1nd. ✷
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9 Hyperinterpolation

Let µ be a measure over a compact domain Ω and suppose

∫

Ω
f(x) dµ ≈

M
∑

i=1

wif(xi), (38)

is a cubature formula with nodes xi and weights wi, having algebraic degree
of exactness 2n.

If an orthonormal polynomial basis {φj} of Pn(Ω) is at hand, by the cubature
formula (38) we can also easily compute the discretized truncated orthogonal
expansion of a function f ∈ L2

dµ(Ω) (i.e. such that
∫

Ω |f |2 dµ < +∞) as

Lnf =
N
∑

j=1

cj φj (39)

where

cj =
M
∑

i=1

wi φj(xi)f(xi) ≈
∫

Ω
φj(x)f(x) dµ . (40)

Let W = diag(
√
w1, . . . ,

√
wM) and Vφ = (vi,j) = (φj(xi)) ∈ RM×N , where N

is the dimension of the space Pn(Ω). In view of (40), the coefficients {cj} can
be computed in vector form as

(c1, . . . , cN) = (f(x1), . . . , f(xM))W 2Vφ = (w1f(x1), . . . , wmf(xM))Vφ .
(41)

By the algebraic degree of exactness of the formula, the expansion Lnf is a
projection L2

dµ(Ω) → Pn(Ω) (i.e. Ln is linear and L2
n = Ln), called hyperin-

terpolation (see the seminal work by Sloan [30]). Indeed, it is the orthogonal
projection with respect to the discrete inner product defined by the cubature
formula. In [30] the author proved, for example, that for every f ∈ C(Ω)

‖Lnf − f‖L2
dµ

(Ω) ≤ 2µ(Ω)En(f ; Ω) → 0 , n→ ∞ , (42)

where En(f ; Ω) = inf{‖f − p‖∞ , p ∈ Pn(Ω)} is the best approximation error
in Pn(Ω) in the uniform norm and µ(Ω) =

∫

Ω dµ.

Multivariate hyperinterpolation has been applied in various instances, as a
valuable alternative to polynomial interpolation.

For details and applications, see e.g., [13,19,36], the survey [20] and the recent
paper [33] concerning the sphere.
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In this framework, upper bounds of the uniform norm of Ln : C(Ω) → Pn(Ω)
(that is the operator norm with respect to ‖f‖Ω = maxx∈Ω |f(x)|) are avail-
able.

Denoting with Kn(x,y) the reproducing kernel of Pn(Ω), with the underlying
inner product [14, Ch. 3], and with

ψi(x) = Kn(x,xi) = wi

N
∑

j=1

φj(x)φj(xi) ,

from

Lnf(x) =
N
∑

j=1

cj φj(x) =
N
∑

j=1

φj(x)
M
∑

i=1

wi φj(xi)f(xi) =
M
∑

i=1

f(xi)ψi(x) , (43)

one can prove that

‖Ln‖ = sup
‖Lnf‖Ω
‖f‖Ω

= max
x∈Ω

M
∑

i=1

|ψi(x)|. (44)

Being Ln a projection on Pn(Ω), we easily have

‖Lnf − f‖Ω ≤ (1 + ‖Ln‖)En(f ; Ω) , (45)

while (44) provides a measure of the hyperinterpolation stability.

In the next sections, we will show examples of hyperinterpolation on regions
of the sphere apparently not treated before in the numerical literature.

10 Numerical implementation

We started the computation of the hyperinterpolants by determining an or-
thonormal basis on the region of interest, i.e. the geographic rectangle Ω =
Ω(a,b) ⊆ S2. In theory one could apply the Gram-Schmidt process starting
from the spherical harmonics basis {φk}k=1,...,N , but in general severe instabil-
ities occur.

Using the positive weights formulas previously introduced on Ω, with algebraic
degree of exactness 2n, after a suitable ordering of the nodes we have

∫

Ω
f(ξ)dµ ≈

M
∑

i=1

λif(ξi). (46)

Let Vφ be the rectangular Vandermonde-like matrix

Vφ = (vi,j) = (φj(ξi)) ∈ R
M×N ,
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W the diagonal matrix

W = diag(
√
w1, . . . ,

√
wM).

and (·, ·)µ the L2
µ(Ω) scalar product

(f, g)µ =
∫

Ω
p(ξ)q(ξ) dµ.

It is easy to observe that for p, q ∈ Pn(Ω)

(p, q)µ =
M
∑

i=1

√
wip(ξ)

√
wiq(ξ) =

∫

Ω
p(ξ)q(ξ) dµ (47)

where in the last equality we used the fact that the cubature rule has algebraic
degree of exactness 2n.

Since {φk} is a basis of Pn(Ω), the Vandermonde matrix Vφ has full-rank, so
does WVφ and by the QR factorization we have

WVφ = Q1R1, Q1 ∈ R
M×N , R1 ∈ R

N×N

with Q1 orthogonal and R1 upper triangular and nonsingular matrix. This
entails that, at least in theory, the new polynomial basis {φ(1)

k }k=1,...,N defined
as

(φ
(1)
1 , . . . , φ

(1)
N ) = (φ1, . . . , φN)R

−1
1

is orthonormal since Vφ(1) = VφR
−1
1 and the Gram matrix satisfies

Gφ(1) = (WVφ(1))T (WVφ(1)) = (WVφR
−1
1 )T (WVφR

−1
1 ) = QT

1Q1 = I.

However, due to the finite precision arithmetic, when Vφ is severely ill condi-
tioned, the matrix Q1 is not numerically orthogonal. If the conditioning of Vφ
in the 2-norm is below (or about) the reciprocal of the machine precision, by
the twice is enough phenomenon [18], applying again the QR factorization to
the matrix Q1, i.e. Q1 = Q2R2, we produce a matrix Q2 orthogonal up to an
error close to machine precision and the new polynomial basis

(φ
(2)
1 , . . . , φ

(2)
N ) = (φ1, . . . , φN)R

−1
1 R−1

2

is numerically orthonormal with respect to the scalar product (·, ·)µ, i.e. setting

Vφ(2) = (v
(2)
i,j ) = (φ

(2)
j (ξi)), Gφ(2) = (WVφ(2))T (WVφ(2)),

we have that ‖Gφ(2) − I‖2 is close to machine precision.

In view of these observations, starting from the spherical harmonics basis,
we computed first a new polynomial basis of Pn(Ω) numerically orthonormal
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w.r.t. the scalar product (·, ·)µ and then applied numerical cubature (46) to
determine the hyperinterpolation coefficients

ck =
M
∑

i=1

λiφ
(2)
k (ξi)f(ξi)

so that

f(ξ) ≈
N
∑

k=1

ckφ
(2)
k (ξ).

11 Numerical examples

In this chapter we compare the approximants obtained by interpolation and
hyperinterpolation on some regions of the sphere. In the first case, as shown in
[34] and later in [3], we interpolate on point sets obtained after the extraction
of good interpolation points from WAMs already introduced.

Using the previous notations, we considered as domains the cap

Ω1 = Ω([0, π/3; 0, 2π]) ⊂ S
2

and the geographic rectangle

Ω2 = Ω([π/4, π/3; π/8, π/4]) ⊂ S
2.

In Table 3 and Table 4 we have considered the Lebesgue constant of AFP and
DLP. Remembering that if pn ∈ Pn(Ω) interpolates a function f ∈ C(Ω) on a
given unisolvent set M ⊂ Ω of points for degree n then

‖f − pn‖ ≤ (1 + Λn(M))En(f)

where En(f) is the best approximation error in Pn(Ω), the results in these
tables show that we can expect that the extracted points are of good quality,
though not optimal.

As polynomial basis for Pn(Ωi) we used the spherical harmonics on S
2. This

detail is fundamental, since it determines the Vandermonde matrix from which
we extracted the point sets.

As numerical tests we considered the following functions
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f1(x) := 3x40 + 0.01y40 + 100z40,

f2(x) :=
1

(x− 0.5)2 + (y − 0.5)2 + (z − 0.2)2
,

f3(x) := sin (0.1x+ y + 50z). (48)

The function f1 is a polynomial of total degree 40, with coefficients having
different scales, f2 is a function having a singularity in the point (0.5, 0.5, 0.2)
(not belonging to the unit sphere), while f3 is a trigonometric function with
an argument that is linear combination of monomials having different scales
in the coefficients.

We have interpolated these three test functions on the AFP, for degrees 5,
10, 15, 20, 25, 30. In Table 5 and Table 6, we provide the absolute errors of
interpolants and hyperinterpolants evaluated on a fine mesh of each domain
Ωi, i = 1, 2. The results are very similar and report again the good quality of
the interpolation sets.

In Table 7 and Table 8 we have listed the hyperinterpolation errors

(
∑M

i=1wi(Lnf(xi)− f(xi))
2)1/2

(
∑M

i=1wif(xi))1/2
≈ ‖Lnf − f‖L2(Ω)

‖f‖L2(Ω)

for the functions f = f1, f = f2 and f = f3 relatively to the degrees 5, 10, 15,
20, 25, 30.

References

[1] K. Atkinson and W. Han, Spherical Harmonics and Approximations on the Unit
Sphere: An Introduction, Springer, 2012.

[2] J. Beckmann, H.N. Mhaskar, and J. Prestin, Quadrature formulas for
integration of multivariate trigonometric polynomials on spherical triangle,
GEM-International Journal on Geomathematics (2012) 1–20.

[3] L. Bos, S. De Marchi, A. Sommariva, and M. Vianello. Computing multivariate
Fekete and Leja points by numerical linear algebra, SIAM J. Numer. Anal. 48
(2010) 1984–1999.

[4] L. Bos, S. De Marchi, A. Sommariva, and M. Vianello. Weakly Admissible
Meshes and Discrete Extremal Sets, Numer. Math. Theory Methods Appl. 4
(2011) 1-12.

[5] L. Bos and M. Vianello, Subperiodic trigonometric interpolation and
quadrature, Appl. Math. Comput. 218 (2012) 10630–10638.

27



[6] CAA Research Group, Numerical software for multivariate polynomial fitting,
interpolation and quadrature, available online at:
http://www.math.unipd.it/~marcov/CAAsoft.html.

[7] J.P. Calvi and N. Levenberg, Uniform approximation by discrete least squares
polynomials, Journal of Approximation Theory 152 (2008), pp.82–100.

[8] G. Da Fies, A. Sommariva and M. Vianello, Algebraic cubature by linear
blending of elliptical arcs, Appl. Num. Math. 74 (2013) 49–61.

[9] G. Da Fies and M. Vianello, Algebraic cubature on planar lenses and bubbles,
Dolomites Res. Notes Approx. 5 (2012) 7–12.

[10] G. Da Fies and M. Vianello, On the Lebesgue constant of subperiodic
trigonometric interpolation, J. Approx. Theory 167 (2013) 59–64.

[11] G. Da Fies and M. Vianello, Trigonometric Gaussian quadrature on subintervals
of the period, Electron. Trans. Numer. Anal. 39 (2012) 102–112.

[12] P. Delsarte, J.M. Goethals and J.J. Seidel, Spherical codes and designs, Geom.
Dedicata 6 (1977), pp.363-388.

[13] S. De Marchi, M. Vianello and Y. Xu, New cubature formulae and
hyperinterpolation in three variables, BIT Numerical Mathematics 49 (2009)
55–73.

[14] C.F. Dunkl and Y. Xu, Orthogonal polynomials of several variables,
Encyclopedia of Mathematics and its Applications, 81, Cambridge University
Press, Cambridge, 2001.

[15] W. Freeden, T. Gervens and M. Schreiner, Constructive Approximation on the
Sphere with Applications to Geomathematics, Oxford University Press, New
York, 2004.

[16] W. Gautschi, Orthogonal Polynomials: Computation and Approximation,
Oxford University Press, New York, 2004.

[17] W. Gautschi, Orthogonal polynomials (in Matlab), Journal of Comp. and Appl.
Math. 178 (2005) 215–234.

[18] L. Giraud, J. Langou, M. Rozloznik and J. van den Eshof, Rounding error
analysis of the classical Gram-Schmidt orthogonalization process, Numer. Math.
101 (2005) 87–100.

[19] O. Hansen, K. Atkinson and D. Chien, On the norm of the hyperinterpolation
operator on the unit disc and its use for the solution of the nonlinear Poisson
equation, IMA J. Numer. Anal. 29 (2009) 257–283.

[20] K. Hesse and I.H. Sloan, Hyperinterpolation on the sphere, Frontiers in
interpolation and approximation, 213–248, Pure Appl. Math. (Boca Raton),
282, Chapman & Hall/CRC, Boca Raton, FL, 2007.

28

http://www.math.unipd.it/~marcov/CAAsoft.html


[21] K. Hesse, I.H. Sloan and R.S. Womersley, Numerical Integration on the Sphere,
in Handbook of Geomathematics, W. Freeden, Z. M. Nashed and T. Sonar eds.,
Springer-Verlag, September 2010.

[22] K. Hesse and R.S. Womersley, Numerical integration with polynomial exactness
over a spherical cap, Adv. Comput. Math. 36, Issue 3, (2012), pp. 451–483.
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Fig. 1. Nodes of a rule on a geographic rectangle. On the left, nodes of a rule with
algebraic degree of exactness N = 15 (272 nodes). On the right, nodes of a rule with
algebraic degree of exactness N = 35 (1332 nodes).

Fig. 2. Points of a WAM of degree 7 (113 points) on a cap, and related Approximated
Fekete Points (64 points).

Deg. f1 f2 f3
5 3.34e − 04 7.38e − 02 4.53e − 06

10 4.89e − 06 2.69e − 02 5.44e − 07

15 9.12e − 09 5.14e − 03 4.07e − 08

20 1.76e − 10 1.13e − 02 2.43e − 08

25 7.73e − 14 1.13e − 02 9.53e − 09

30 3.33e − 16 1.23e − 03 2.23e − 09

35 3.47e − 17 2.58e − 05 2.33e − 09

40 1.14e − 16 1.96e − 07 2.82e − 10

45 3.47e − 17 6.94e − 10 8.84e − 10

50 2.08e − 17 1.33e − 12 5.48e − 11
Table 1
Absolute errors for degrees 5, 10, . . . , 50, w.r.t. the integrals on the domain of some
test functions.
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n Abs.Err. Points Integrals

5 4.44e − 16 144 34

10 1.11e − 16 858 161

15 1.67e − 16 2304 444

20 2.78e − 17 5313 946

25 4.16e − 17 9464 1729

30 2.78e − 17 16368 2856

35 8.33e − 17 24624 4389
Table 2
Maximum absolute error in the numerical approximation of integrals (32) with total
degree less than or equal to n using a rule with algebraic degree of exactness = n.

Deg. WAM Card AFP/DLP Card Λ
(AFP )
n Λ

(DLP )
n

5 66 36 9.9 12.6

10 231 121 27.5 62.2

15 496 256 51.1 130.5

20 861 441 103.7 199.6

25 1326 676 191.3 384.5

30 1891 961 314.1 465.4
Table 3
WAM, AFP, DLP cardinality, Lebesgue constants Λ

(AFP )
n , Λ

(DLP )
n of extracted

pointset for degrees 5, 10, . . . , 30, on the cap Ω1.

Deg. WAM Card AFP/DLP Card Λ
(AFP )
n Λ

(DLP )
n

5 121 36 9.3 9.2

10 441 121 49.8 55.1

15 961 256 107.5 162.0

20 1681 441 178.8 299.1

25 2601 676 262.4 423.3

30 3721 961 304.1 461.4
Table 4
WAM, AFP, DLP cardinality, Lebesgue constants Λ

(AFP )
n , Λ

(DLP )
n of extracted

pointset for degrees 5, 10, . . . , 30, on the geographic rectangle Ω2.

f1 f2 f3
Deg. Intp. Hyp. Intp. Hyp. Intp. Hyp.

5 9e+ 00 1e+ 01 1e+ 01 7e− 01 2e+ 00 2e+ 00

10 1e− 01 3e− 01 2e− 01 1e− 01 2e+ 00 3e+ 00

15 6e− 03 3e− 03 1e− 02 2e− 02 2e+ 00 7e− 01

20 6e− 05 2e− 05 2e− 03 2e− 03 5e− 02 2e− 02

25 9e− 07 6e− 07 2e− 04 1e− 04 2e− 02 8e− 03

30 2e− 08 5e− 09 3e− 04 3e− 05 5e− 04 2e− 04
Table 5
Absolute errors of interpolants (using AFP as point sets) and hyperinterpolants of
three test functions on the cap Ω1 = Ω([0, π/3; 0, 2π]), for degrees 5, 10, . . . , 30.
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f1 f2 f3
Deg. Intp. Hyp. Intp. Hyp. Intp. Hyp.

5 6e− 06 6e− 06 3e− 03 2e− 03 9e− 01 7e− 01

10 2e− 08 1e− 08 2e− 06 9e− 07 5e− 03 3e− 03

15 5e− 12 3e− 12 1e− 09 5e− 10 1e− 05 4e− 06

20 4e− 14 2e− 14 3e− 11 1e− 11 1e− 06 4e− 07

25 2e− 14 5e− 15 2e− 12 1e− 11 9e− 08 2e− 08

30 5e− 15 2e− 15 2e− 13 7e− 12 5e− 09 2e− 09
Table 6
Absolute errors of interpolants (using AFP as point sets) and hyperinterpolants of
three test functions on the geographic rectangle Ω2 = Ω([π/4, π/3;π/8, π/4]), for
degrees 5, 10, . . . , 30.

Deg f1 f2 f3
5 3e− 06 6e− 02 2e− 02

10 2e− 06 4e− 03 4e− 02

15 7e− 06 5e− 05 3e− 02

20 6e− 08 4e− 05 3e− 03

25 5e− 10 6e− 06 4e− 04

30 1e− 11 4e− 07 2e− 05
Table 7
Hyperinterpolants errors of three test functions on the cap Ω1 = Ω([0, π/3; 0, 2π]).

Deg f1 f2 f3

5 2e− 02 5e− 05 2e− 01

10 3e− 05 2e− 08 4e− 04

15 5e− 09 7e− 12 4e− 07

20 4e− 11 2e− 13 5e− 08

25 1e− 11 1e− 13 3e− 09

30 4e− 12 1e− 13 2e− 10
Table 8
Hyperinterpolants errors of three test functions on the geographic rectangle Ω2 =
Ω([π/4, π/3;π/8, π/4]).
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