
Original Citation:

On the complexity of inner product similarity join

Association for Computing Machinery
Publisher:

Published version:
DOI:

Terms of use:
Open Access

(Article begins on next page)

This article is made available under terms and conditions applicable to Open Access Guidelines, as described at
http://www.unipd.it/download/file/fid/55401 (Italian only)

Availability:
This version is available at: 11577/3228401 since: 2017-05-14T22:59:14Z

10.1145/2902251.2902285

Università degli Studi di Padova

Padua Research Archive - Institutional Repository

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Padova

https://core.ac.uk/display/84920809?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

On the Complexity of Inner Product Similarity Join∗

Thomas D. Ahle
IT University of Copenhagen

thdy@itu.dk

Rasmus Pagh
IT University of Copenhagen

pagh@itu.dk
Ilya Razenshteyn

MIT CSAIL
ilyaraz@mit.edu

Francesco Silvestri
IT University of Copenhagen

fras@itu.dk

ABSTRACT
A number of tasks in classification, information retrieval,
recommendation systems, and record linkage reduce to the
core problem of inner product similarity join (IPS join): iden-
tifying pairs of vectors in a collection that have a sufficiently
large inner product. IPS join is well understood when vectors
are normalized and some approximation of inner products is
allowed. However, the general case where vectors may have
any length appears much more challenging. Recently, new
upper bounds based on asymmetric locality-sensitive hashing
(ALSH) and asymmetric embeddings have emerged, but little
has been known on the lower bound side. In this paper we
initiate a systematic study of inner product similarity join,
showing new lower and upper bounds. Our main results are:

• Approximation hardness of IPS join in subquadratic
time, assuming the strong exponential time hypothesis.

• New upper and lower bounds for (A)LSH-based algo-
rithms. In particular, we show that asymmetry can be
avoided by relaxing the LSH definition to only consider
the collision probability of distinct elements.

• A new indexing method for IPS based on linear sketches,
implying that our hardness results are not far from
being tight.

Our technical contributions include new asymmetric embed-
dings that may be of independent interest. At the conceptual
level we strive to provide greater clarity, for example by dis-
tinguishing among signed and unsigned variants of IPS join
and shedding new light on the effect of asymmetry.

1. INTRODUCTION
This paper is concerned with inner product similarity

join (IPS join) where, given two sets P,Q ⊆ Rd, the
task is to find for each point q ∈ Q at least one pair1

(p, q) ∈ P ×Q where the inner product (or its absolute
value) is larger than a given threshold s. Our results
apply also to the problem where for each q ∈ Q we seek

∗The research leading to these results has received funding
from the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013) /
ERC grant agreement no. 614331.
1Since our focus is on lower bounds, we do not consider the
more general problem of finding all such pairs. Also note
that from an upper bound side, it is common to limit the
number of occurrences of each tuple in a join result to a
given number k.

the vector p ∈ P that maximizes the inner product, a
search problem known in literature as maximum inner
product search (MIPS) [43, 45].

Motivation
Similarity joins have been widely studied in the database
and information retrieval communities as a mechanism
for linking noisy or incomplete data. Considerable
progress, in theory and practice, has been made to ad-
dress metric spaces where the triangle inequality can
be used to prune the search space (see e.g. [6, 61]). In
particular, it is now known that in many cases it is
possible to improve upon the quadratic time complexity
of a naive algorithm that explicitly considers all pairs of
tuples. The most prominent technique used to achieve
provably subquadratic running time is locality-sensitive
hashing (LSH) [25, 24]. In the database community
the similarity join problem was originally motivated by
applications in data cleaning [17, 10]. However, since
then it has become clear that similarity join is relevant
for a range of other data processing applications such as
clustering, semi-supervised learning, query refinement,
and collaborative filtering (see e.g. [44] for references
and further examples). We refer to the recent book
by Augsten and Böhlen [11] for more background on
similarity join algorithms in database systems.

Inner product is an important measure of similarity be-
tween real vectors, particularly in information retrieval
and machine learning contexts [31, 48], but not captured
by techniques for metric similarity joins such as [26, 61].
Teflioudi et al. [50] studied the IPS join problem moti-
vated by applications in recommender systems based on
latent-factor models. In this setting, a user and the avail-
able items are represented as vectors and the preference
of a user for an item is given by the inner product of the
two associated vectors. Other examples of applications
for IPS join are object detection [23] and multi-class
prediction [22, 28]. IPS join also captures the so-called
maximum kernel search, a general machine learning ap-
proach with applications such as image matching and
finding similar protein/DNA sequences [20].

Challenges of IPS join
Large inner products do not correspond to close vectors
in any metric on the vector space, so metric space tech-
niques cannot directly be used. In fact, there are reasons

ar
X

iv
:1

51
0.

02
82

4v
3

 [
cs

.D
S]

 7
 A

pr
 2

01
6

to believe that inner product similarity may be inher-
ently more difficult than other kinds of similarity search:
Williams [56, 4] has shown that a truly subquadratic
exact algorithm for IPS join would contradict the Strong
Exponential Time Hypothesis, an important conjecture
in computational complexity. On the upper bound side
new reductions of (special cases of) approximate IPS
join to fast matrix multiplication have appeared [51, 29],
resulting in truly subquadratic algorithms even with ap-
proximation factors asymptotically close to 1. However,
the approach of reducing to fast matrix multiplication
does not seem to lead to practical algorithms, since
fast matrix multiplication algorithms are currently not
competitive on realistic input sizes. From a theoretical
viewpoint it is of interest to determine how far this kind
of technique might take us by extending lower bounds
for exact IPS join to the approximate case.

Another approach to IPS join would be to use LSH,
which has shown its utility in practice. The difficulty
is that inner products do not admit locality-sensitive
hashing as defined by Indyk and Motwani [45, Theorem
1]. Recently there has been progress on asymmetric LSH
methods for inner products, resulting in subquadratic
IPS join algorithms in many settings. The idea is to
consider collisions between two different hash functions,
using one hash function for query vectors and another
hash function for data vectors [45, 46, 39]. However,
existing ALSH methods give very weak guarantees in
situations where inner products are small relative to
the lengths of vectors. It is therefore highly relevant
to determine the possibilities and limitations of this
approach.

Problem definitions
We are interested in two variants of IPS join that slightly
differ in the formulation of the objective function. For
notational simplicity, we omit the term IPS and we
simply refer to IPS join as join. Let s > 0 be a given
value. The first variant is the signed join, where the
goal is to find at least one pair (p, q) ∈ P ×Q for each
point q ∈ Q with pT q ≥ s. The second variant is the
unsigned join which finds, for each point q ∈ Q, at least
one pair (p, q) ∈ P×Q where |pT q| ≥ s. We observe that
the unsigned version can be solved with the signed one
by computing the join between P and Q and between
P and −Q, and then returning only pairs where the
absolute inner products are larger than s. Signed join is
of interest when searching for similar or preferred items
with a positive correlation, like in recommender systems.
On the other hand, unsigned join can be used when
studying relations among phenomena where even a large
negative correlation is of interest. We note that previous
works do not make the distinction between the signed
and unsigned versions since they focus on settings where
there are no negative dot products.

Our focus is on approximate algorithms for signed
and unsigned joins. Indeed, approximate algorithms
allow us to overcome, at least in some cases, the curse of
dimensionality without significantly affecting the final
results. Approximate signed joins are defined as follows.

Definition 1 (Approximate signed join). Given
two point sets P , Q and values 0 < c < 1 and s > 0, the
signed (cs, s) join returns, for each q ∈ Q, at least one
pair (p, q) ∈ P ×Q with pT q ≥ cs if there exists p′ ∈ P
such that p′T q ≥ s. No guarantee is provided for q ∈ Q
where there is no p′ ∈ P with p′T q ≥ s.

The unsigned (cs, s) join is defined analogously by taking
the absolute value of dot products. Indexing versions of
signed/unsigned exact/approximate joins can be defined
in a similar way. For example, the signed (cs, s) search
is defined as follows: given a set P ⊂ Rd of n vectors,
construct a data structure that efficiently returns a vec-
tor p ∈ P such that pT q > cs for any given query vector
q ∈ Rd, under the promise that there is a point p′ ∈ P
such that pT q ≥ s (a similar definition holds for the
unsigned case).

As already mentioned, LSH is often used for solving
similarity joins. In this paper, we use the following
definition of asymmetric LSH based on the definition
in [45].

Definition 2 (Asymmetric LSH). Let Up denote
the data domain and Uq the query domain. Consider a
family H of pairs of hash functions h = (hp(·), hq(·)).
Then H is said (s, cs, P1, P2)-asymmetric LSH for a sim-
ilarity function sim if for any p ∈ Up and q ∈ Uq we
have:

1. if sim(p, q) ≥ s then PrH[hp(p) = hq(q)] ≥ P1;

2. if sim(p, q) < cs then PrH[hp(p) = hq(q)] ≤ P2.

When hp(·) = hq(·), we get the traditional (symmetric)
LSH definition. The ρ value of an (asymmetric) LSH is
defined as usual with ρ = logP1/ logP2 [6]. Two vectors
p ∈ Up and q ∈ Uq are said to collide under a hash
function from H if hp(p) = hq(q).

1.1 Overview of results

Hardness results
The first results of the paper are conditional lower
bounds for approximate signed and unsigned IPS join
that rely on a conjecture about the Orthogonal Vectors
Problem (OVP). This problem consists in determining if
two sets A,B ⊆ {0, 1}d, each one with n vectors, contain
x ∈ A and y ∈ B such that xT y = 0. It is conjectured
that there cannot exist an algorithm that solves OVP
in O

(
n2−ε) time as soon as d = ω (log n), for any given

constant ε > 0. Indeed, such an algorithm would imply
that the Strong Exponential Time Hypothesis (SETH)
is true [56].

Many recent interesting hardness results rely on re-
ductions from OVP, however we believe ours is the first
example of using the conjecture to show the conditional
hardness for an approximate problem. In particular we
show the following result:

Theorem 1. Let α > 0 be given and consider sets
of vectors P,Q with |Q| = n, |P | = nα. Suppose there

exists a constant ε > 0 and an algorithm with running
time at most dO(1)n1+α−ε, when d and n are sufficiently
large and for all s > 0, for at least one of the following
IPS join problems:

1. Signed (cs, s) join of P,Q ⊆ {−1, 1}d with c > 0.

2. Unsigned (cs, s) join of P,Q ⊆ {−1, 1}d with c =

e−o(
√

logn/ log logn).

3. Unsigned (cs, s) join of P,Q ⊆ {0, 1}d with c =
1− o(1).

Then the OVP conjecture is false.

Discussion.
For the search problem, theorem 1 implies that, assum-

ing the OVP conjecture, there does not exist a data struc-
ture for signed/unsigned (cs, s) inner product search
with (nd)O(1) construction time and n1−εdO(1) query
time, for constant ε > 0. This follows by considering a
join instance with α constant small enough that we can
build the data structure on P in time o(nd). We can then
query over all the points of Q in time n1+α(1−ε)dO(1),
contradicting the OVP conjecture. Our result can be
seen as an explanation of why all LSH schemes for IPS
have failed to provide sub-linear query times for small s.
As the theorem however does not cover the case where
c is very small, e.g. n−δ for unsigned {−1, 1}d, we show
in section 4 that for such approximation requirements,
there are indeed useful data structures.

We stress that the hardness result holds for algorithms
solving signed/unsigned (cs, s) joins for any c in the
specified range and all s > 0. It is possible to show
complete relations between hard values of c, s and d, but
for the sake of clearnes, we have prefered to optimize the
largest range of hard c’s. For intuition we can say, that
the exact instances of (cs, s) joins that are hard, turn out
to be the ones where s/d and cs/d are very small, that
is when we have to distinguish nearly orthogonal vectors
from very nearly orthogonal vectors. If we inspect the
proofs of Theorem 1 and Lemma 3, we see that for
unsigned join in {−1, 1}d, the hard case has cs/d around
n1/ log logn. Similarly for {0, 1}d join, cs ends up at
just barely ω(1), while the d is as high as no(1). It is
interesting to note for {0, 1} that if cs had been slightly
lower, at O(1), we could have solved the OVP problem

exact in subquadratic time using an n
(
no(1)

O(1)

)
= n1+o(1)

algorithm.
It is interesting to compare our conditional lower

bound to the recent upper bounds by Karppa et al. [29],
who get sub-quadratic running time for unsigned join of
normalized vectors in {−1, 1}d, when log(s/d)/ log(cs/d)
is a constant smaller than 1.2 Our next Theorem 2 shows
that we cannot hope to do much better than this, though
it does not completely close the gap. A hardness result
for log(s/d)/ log(cs/d) = 1− o(1) is still an interesting
open problem. However, while the algorithm of Karppa
2More precisely they need log(s/d)/ log(cs/d) < 2/ω, where
ω is the matrix multiplication constant. Note that the d
term is due to normalization.

et al. works even for dimension n1/3, our bound only
requires the dimension to be slightly larger than poly-
log, so it may well be that their algorithm is optimal,
while another algorithm with a higher dependency on
the dimension matches our bound from above.

Theorem 2. Let α > 0 be given and consider sets
of vectors P,Q with |Q| = n, |P | = nα. Suppose there
exists a constant ε > 0 and an algorithm with running
time at most dO(1)n1+α−ε, when d and n are sufficiently
large and for all s > 0, for at least one of the following
IPS join problems:

1. Unsigned (cs, s) over {−1, 1}d where log(s/d)
log(cs/d) =

1− o(1/
√

log n)

2. Unsigned (cs, s) over {0, 1}d where log(s/d)
log(cs/d) = 1−

o(1/ log n)

Then the OVP conjecture is false.

The {−1, 1}d case seems to be harder than the {0, 1}d
case. In fact Valiant [51] reduces the general case
of P,Q ⊆ Rd to the case P,Q ⊆ {−1, 1}d using the
Charikar hyperplane LSH [15]. Another piece of evi-

dence is that we can achive runtime n1+
log(s/d)
log(cs/d) using

LSH for {0, 1}d, but it is not known to be possible for
{−1, 1}d. Furthermore there appears to be some hope
for even better data dependent LSH, as we show in sec-
tion 4.2. The {0, 1}d case is particularly interesting, as it
is occurs often in practice, for example when the vectors
represent sets. A better understanding of the upper and
lower bounds for this case is a nice open problem. For an
ellaborate comparison of the different upper and lower
bounds, see Table 1.
Techniques. From a technical point of view, the

proof uses a number of different algebraic techniques to
expand the gap between orthogonal and non-orthogonal
vectors from the OVP problem. For the {−1, 1} we use
an enhanced, deterministic version of the “Chebyshev
embedding” [51], while for the interesting {0, 1} part, we
initiate a study of embeddings for restricted alphabets.

Inner product LSH lower bounds
In the second part of the paper we focus on LSH func-
tions for signed and unsigned IPS. We investigate the
gap between the collision probability P1 of vectors with
inner product (or absolute inner product) larger than
s and the collision probability P2 of vectors with inner
product (or absolute inner product) smaller than cs. As
a special case, we get the impossibility result in [39,
45], that there cannot exist an asymmetric LSH for un-
bounded query vectors. Specifically we get the following
theorem:

Theorem 3. Consider an (s, cs, P1, P2)-asymmetric
LSH for signed IPS when data and query domains are
d-dimensional balls with unit radius and radius U re-
spectively. Then, the following upper bounds on P1 − P2

apply:

Problem Hard approx. Permissible approx. Hard approx. Permissible approx.

Signed (cs, s) over {−1, 1}d c > 0 - log(s/d)
log(cs/d)

> 0 -

Unsigned (cs, s) over {−1, 1}d c ≥ e−o(
√

log n
log log n

)
c < n−ε [29] log(s/d)

log(cs/d)
≥ 1− o(1

logn
) [29] log(s/d)

log(cs/d)
= 1− ε [29]

c < n−ε log(s/d)
log(cs/d)

≥ 1− o(1√
logn

) log s/d
log cs/d

= 1/2− ε

Unsigned (cs, s) over {0, 1}d c ≥ 1− o(1) c < n−ε log s/d
log cs/d

≥ 1− o(1
logn

) log s/d
log cs/d

= 1− ε

Table 1: The table describes the ranges of approximations that are hard, when parametrized in terms of c (second and third
column) or log(s/d)/ log(cs/d) ratio (fourth and fifth column). Any algorithm for subquadratic join, which overlap with these
ranges, would contradict the OVP. The permissible approximations are those ranges for which truly subquadratic algorithms
are known. The upper bounds cited to [29] use fast matrix multiplication, whereas the rest don’t and are usable as data
structures. The bounds not cited elsewhere are new in this paper, though we are aware that other people have noted the
hardness of signed {−1, 1} join and the data structure for {0, 1} join.

1. if d ≥ 1 and s ≤ min{cU,U/(4
√
d}, we have

P1−P2 = O
(

1/log(d log1/c(U/s))
)

for signed and

unsigned IPS;

2. if d ≥ 2 and s ≤ U/(2d), we have P1 − P2 =
O (1/log(dU/(s(1− c)))) for signed IPS;

3. if d > Θ
(
U5/(c2s5)

)
and s ≤ U/8, we have P1 −

P2 = O
(√

s/U
)

for signed and unsigned IPS.

It follows that, for any given dimension d, there cannot
exist an asymmetric LSH when the query domain is
unbounded.

Discussion. The upper bounds for P1 − P2 translate
into lower bounds for the ρ factor, as soon as P2 is fixed.
To the best of our knowledge, this is the first lower
bound on ρ that holds for asymmetric LSH. Indeed,
previous results [37, 40] have investigated lower bounds
for symmetric LSH and it is not clear if they can be
extended to the asymmetric case.
Techniques. The starting point of our proof is the

same as in [39]: Use a collision matrix given by two
sequences of data and query vectors that force the gap
to be small. The proof in [39] then applies an asymptotic
analysis of the margin complexity of this matrix [49],
and it shows that for any given value of P1 − P2 there
are sufficiently large data and query domains for which
the gap must be smaller. Unfortunately, due to their
analysis, an upper bound on the gap for a given radius
U of the query domain is not possible, and so the result
does not rule out very large gaps for small domains. Our
method also highlights a dependency of the gap on the
dimension, which is missing in [39]. In addition, our
proof holds for d = 1 and only uses purely combinatorial
arguments.

IPS upper bounds
In the third part we provide some insights on the upper
bound side. We first show that it is possible to improve
the asymmetric LSH in [39, 46] by just plugging the best
known data structure for Approximate Near Neighbor

for `2 on a sphere [9] into the reduction in [39, 12]. With
data/query points in the unit ball, this LSH reaches
ρ = (1− s)/(1 + (1− 2c)s). In the {0, 1} domain, this
LSH improves upon the state of the art [46] for some
ranges of c and s.

Then we show how to circumvent the impossibility
results in [39, 45] by showing that there exists a sym-
metric LSH when the data and query space coincide by
allowing the bounds on collision probability to not hold
when the data and query vectors are identical.

We conclude by describing a data structure based on
the linear sketches for `p in [5] for unsigned (cs, s) search:
for any given 0 < κ ≤ 1/2, the data structure yields a

c = 1/nκ approximation with Õ
(
dn2−2/κ

)
construction

time and Õ
(
dn1−2/κ

)
query time. Theorem 1 suggests

that we cannot substantially improve the approximation
with similar performance.

The last data structure allows us to reach truly sub-
quadratic time for c = 1/nκ for the unsigned version in
the {0, 1} and {−1, 1} domains for all value s. We note
that the result in [29] also reaches subquadtratic time
for the {−1, 1} case. However, it exploits fast matrix
multiplication, whereas our data structure does not.

1.2 Previous work

Similarity join
Similarity join problems have been extensively studied in
the database literature (e.g. [17, 18, 19, 26, 27, 34, 36, 47,
52, 53, 58]), as well as in information retrieval (e.g. [14,
21, 59]), and knowledge discovery (e.g. [3, 13, 54, 60, 62]).
Most of the literature considers algorithms for particular
metrics (where the task is to join tuples that are near
according to the metric), or particular application areas
(e.g. near-duplicate detection). A distinction is made
between methods that approximate distances in the
sense that we only care about distances up to some
factor c > 1, and methods that consider exact distances.
Known exact methods do not guarantee subquadratic
running time. It was recently shown how approximate
LSH-based similarity join can be made I/O-efficient [41].

IPS join
The inner product similarity for the case of normal-
ized vectors is known as “cosine similarity” and it is
well understood [16, 33, 43]. While the general case
where vectors may have any length appears theoretically
challenging, practically efficient indexes for unsigned
search were proposed in [43, 30], based on tree data
structures combined with a branch-and-bound space
partitioning technique similar to k-d trees, and in [12]
based on principal component axes trees. For document
term vectors Low and Zheng [35] showed that unsigned
search can be sped up using matrix compression ideas.
However, as many similarity search problems, the exact
version considered in these papers suffers from the curse
of dimensionality [55].

The efficiency of approximate IPS approaches based
on LSH is studied in [45, 39]. These papers show that
a traditional LSH does exist when the data domain is
the unit ball and the query domain is the unit sphere,
while it does not exist when both domains are the unit
ball (the claim automatically applies to any radius by
suitably normalizing vectors). On the other hand an
asymmetric LSH exists in this case, but it cannot be
extended to the unbounded domain Rd. An asymmetric
LSH for binary inner product is proposed in [46]. The
unsigned version is equivalent to the signed one when
the vectors are non-negative.

Algebraic techniques
Finally, recent breakthroughs have been made on the
(unsigned) join problem in the approximate case as well
as the exact. Valiant [51] showed how to reduce the
problem to matrix multiplication, when cs ≈ O(

√
n)

and s ≈ O(n), significantly improving on the asymptotic
time complexity of approaches based on LSH. Recently
this technique was improved by Karppa et al. [29], who
also generalized the sub-quadratic running time to the
case when log(s)/ log(cs) is small. In another surpris-
ing development Alman and Williams [4] showed that
for d = O (log n) dimensions, truly subquadratic algo-
rithms for the exact IPS join problem on binary vectors
is possible. Their algorithm is based on an algebraic
technique (probabilistic polynomials) and tools from
circuit complexity.

2. HARDNESS OF IPS JOIN
We first provide an overview of OVP and of the associ-

ated conjecture in next Section 2.1. Then, in Section 2.2,
we prove Theorem 1 by describing some reductions from
the OVP to signed/unsigned joins.

2.1 Preliminaries
The Orthogonal Vectors Problem (OVP) is defined as

follows:

Definition 3 (OVP). Given two sets P and Q,
each one containing n vectors in {0, 1}d, detect if there
exist vectors p ∈ P and q ∈ Q such that pT q = 0.

OVP derives its hardness from the Strong Exponential
Time Hypothesis (Williams [56]), but could potentially

be true even if SETH is not. We will therefore assume
the following plausible conjecture:3

Conjecture 1 (OVP, [56]). For every constant
ε > 0, there is no algorithm for OVP with |P | = |Q| = n
and dimension d = ω(log n) running in O(n2−ε) time.

The conjecture does not hold for d = O(log n): recently
Abboud et al. [1] have proposed an algorithm for OVP

running in time n2−1/O(γ log2 γ), when d = γ log n. Thus,
in order to disprove OVP, an algorithm must be strongly
subquadratic when d = γ log n for all constant γ > 0.

The OVP conjecture, as usually stated, concerns the
case where the two sets have equal size. However in
order to eventually show hardness for data structures,
we consider the following generalization of OVP, which
follows directly from the original:

Lemma 1 (Generalized OVP). Suppose that there
exist constants ε > 0 and α > 0, and an algorithm such
that for d = ω (log n) the algorithm solves OVP for
P,Q ⊆ {0, 1}d where |P | = nα and |Q| = n in time
O(n1+α−ε). Then OVP is false.

Proof. Without loss of generality assume α ≤ 1
(otherwise is enough to invert the role of P and Q). Sup-
pose we have an algorithm running in time O(n1+α−ε)
for some ε > 0. Take a normal OVP instance with
|P | = |Q| = n. Split P into chunks Pi of size nα and
run the OVP algorithm on all pairs (Pi, Q). By our
assumption this takes time n1−αO(n1+α−ε) = O(n2−ε),
contradicting OVP.

2.2 Reductions from OVP
In this section we prove Theorem 1, about hardness

of approximate joins. We will do this by showing the
existence of certain efficient ‘gap embeddings’ that make
orthogonality discoverable with joins. We need the fol-
lowing definition:

Definition 4 (Gap Embedding). An unsigned (d1,
d2, cs, s)-gap embedding into the domain A is a pair of

functions (f, g) : {0, 1}d1 → Ad′2 , where d′2 ≤ d2, A ⊆ R,
and for any x, y ∈ {0, 1}d1 :

|f(x)T g(y)| ≥ s when xT y = 0

|f(x)T g(y)| ≤ cs when xT y ≥ 1

A ‘signed embedding’ is analogous, but without the abso-
lute value symbols. We further require that the functions
f and g can be evaluated in time polynomial to d2.

Gap embeddings connect to the join problem, by the
following technical lemma:

Lemma 2. Suppose there exist a join algorithm for
(un)signed (cs, s)-join over A and a family of (un)signed
(d, 2o(d), cs, s)-gap embeddings into A, for all d large
enough.

3 We will use the name, OVP, for the problem as well as the
conjecture. Sorry about that.

• For given constants α ≥ 0, and ε > 0, the algorithm
has running time dO(1)n1+α−ε when |Q| = n and
|P | = nα for all n and d large enough.

• The embedding has can be evaluated in time d
O(1)
2 .

Then OVP can be solved in n1+α−ε time, and the con-
jecture is false.

Proof. First notice that for any function d2 = 2o(d)

we can take d = ω(logn) growing slowly enough that
d2 = no(1).

To see this, assume d2(d) = 2f(d) where f(d) = o(d).
Then we have f(d(n)) = o(d(n)) = o(1)d(n) that is
f(d(n)) = f ′(n)d(n) for some f ′(n) = o(1). Now

take d(n) = logn√
f ′(n)

= ω(logn) and we get d2(d(n)) =

2f
′(n)d(n) = 2

√
f ′(n) logn = no(1) as desired.

Hence, there is a family of (d(n), d2(n), cs, s)-gap em-
beddings for all n, where d(n) = ω(logn) and d2(n) =
no(1). By the generalized OVP lemma, for large enough
n, we can thus take a hard OVP instance with |Q| = n,
|P | = nα and dimension d(n). Apply the coresponding
gap embedding, (f, g), to the instance, such that the
maximum inner product between f(P), g(Q) is at least
s if the OVP instance has an orthogonal pair and ≤ cs
otherwise. Now run the algorithm for (un)signed (cs, s)
join on (f(P), g(Q)), which produces the orthogonal
pair, if it exists.

It remains to show that the running time of the above
procedure is O(n1+α−ε′) for some ε′ > 0. But this is
easy, since by assumption, performing the embedding
takes time n1+o(1), and nunning the algorithm on vectors
of dimension no(1) takes time n1+α−ε+o(1). So letting
ε′ = ε/2 suffices.

The last ingredient we need to show Theorem 1 is a
suitable family of embeddings to use with Lemma 2:

Lemma 3. We can construct the following gap em-
beddings:

1. A signed (d, 4d− 4, 0, 4)-embedding into {−1, 1}.

2. An unsigned (d, (9d)q, (2d)q, (2d)qeq/
√
d/2)-embedding

into {−1, 1}, for any q ∈ N+, d > 1.

3. An unsigned (d, k2d/k, k−1, k)-embedding into {0, 1},
for any integer 1 ≤ k ≤ d.

Proof. We will use the following notation in our con-
structions: Let x� y be the concatenation of vectors x
and y;4 Let xn mean x concatenated with itself n times;5

And let x� y mean the vectorial representation of the
outer product xyT . Tensoring is interesting because of
the following folklore property: (x1 � x2)T (y1 � y2) =
trace (x1x

T
2)T (y1y

T
2) = trace x2(xT1 y1)yT2 = (xT1 y1)(xT2 y2).

4 � for concatenation and � for tensoring stresses their dual
relationship with + and × on the inner products in the
embedded space. We note however that in general, it is only
safe to commute �’es and �’es in an embedding (f, g), when
both f and g are commuted equally.
5 If we wanted to further stress the duality between construc-
tion and embedding, we could define ~n to be the all 1 vector
of length n. Then ~n�x would stand for repeating x n times.

(Embedding 1) The signed embedding is a simple coor-
dinate wise construction:

f̂(0) := (1,−1,−1) ĝ(0) := (1, 1,−1)

f̂(1) := (1, 1, 1) ĝ(1) := (−1,−1,−1)

such that f̂(1)T ĝ(1) = −3 and f̂(0)T ĝ(1) = f̂(1)T ĝ(0) =

f̂(0)T ĝ(0) = 1. This, on its own, gives a (d, 3d, d− 4, d)
embedding, as non orthogonal vectors need to have at
least one (1,1) at some position.

We can then translate all the inner products by −(d−
4):

f(x) := f̂(x1) � · · ·� f̂(xn) � 1d−4

g(x) := ĝ(x1) � · · ·� ĝ(xn) � (−1)d−4

which gives the (d, 4d− 4, 0, 4) embedding we wanted.
Note that the magnitudes of non orthogonal vectors may
be large (−4d+ 4), but we do not care about those for
signed embeddings.

(Embedding 2) We recall the recursive definition of the q-
th order Chebyshev polynomial of first kind, with q ≥ 0
(see, e.g., [2] page 782):

T0(x) = 1

T1(x) = x

Tq(x) = 2xTq−1(x)− Tq−2(x)

The polynomials have the following properties [51]:

|Tq(x)| ≤ 1 when |x| ≤ 1

|Tq(1 + ε)| ≥ eq
√
ε when 0 < ε < 1/2

We use the same coordinate wise transformation as in
the signed embedding, but instead of translating by a
negative value, we translate by adding d+ 2 ones, giving
a (d, 4d+ 2, 2d− 2, 2d+ 2) unsigned embedding. Let the
vectors created this way be called x and y.

On top of that, we would like to construct an embed-
ding for the polynomial Tq(u/2d), where Tq is the qth
order Chebyshev polynomial of the first kind. However
since this will not in general be interger, there is no hope
for constructing it using {−1, 1}.

Luckily it turns out we can construct an embedding
for bqTq(u/b) for any integers b and q. Let (fq, gq) be
the qth embedding of this type, defined by:

f0(x), g0(y) := 1, 1

f1(x), g1(y) := x, y

fq(x) := (x� fq−1(x))2 � fq−2(x)(2d)2

gq(y) := (y � gq−1(y))2 � (−gq−2(y))(2d)2

We make the following observations:

• If x and y are {−1, 1} vectors, then so are fq(x)
and gq(y).

• The inner product of the embedded vectors, fq(x)T gq(x)

is a function of the original inner product:

f0(x)T g0(y) = 1

f1(x)T g1(y) = xT y

fq(x)T gq(y) = 2xT y fq−1(x)T gq−1(y)

− (2d)2fq−2(x)T gq−2(y)

Indeed it may be verified from the recursive defini-
tion of Tq that fq(x)T gq(y) = (2d)nTq(x

T y/2d) as
wanted.

• Let dq be the dimension of fq(x) and gq(y). Then
we have:

d0 = 1

d1 = 4d− 4

dq = 2(4d− 4)dq−1 + (2d)2dq−2

It can be verified that dq ≤ (9d)q for any q ≥ 0
and d ≥ 8. Interestingly the (2d)2 concatenations
don’t increase dq significantly, while d2+ε for any
ε > 0 would have killed the simple exponential
dependency.

• Finally, with dynamic programming, we can com-
pute the embeddings in linear time in the output
dimension. This follows from induction over q.

Putting the above observations together, we have for
any integer q ≥ 0 a (d, (9d)q, (2d)q, (2d)qTq(1 + 1/d))
embedding. By the aforementioned properties of the
Chebyshev polynomials, we have the desired embedding.
We note that the Chebyshev embedding proposed by
Valiant [51] can provide similar results; however, our
construction is deterministic, while Valiant’s is random-
ized.

(Embedding 3) The third embedding maps into {0, 1}.
The difficulty here is that without −1, we cannot express
subtraction as in the previous argument. It turns out
however, that we can construct the following polynomial:

(1− x1y1)(1− x2y2) · · · (1− xdyd)

since {0, 1} is closed under tensoring and

1− xiyi = (1− xi, 1)T (yi, 1− yi)

where 1 − xi, yi and 1 − yi are both in {0, 1}. The
polynomial has the property of being 1 exactly when
the two vectors are orthogonal and 0 otherwise.

However we cannot use it directly with Lemma 2, as
it blows up the dimension too much, d2 = 2d1 . Instead
we “chop up” the polynomial in k chunks and take their
sum:

k−1∑
i=0

d/k∏
j=1

(1− xik/d+jyik/d+j)

This uses just d2 = k2d/k dimensions, which is more
manageble. If k does not divide d, we can let the last
“chop” of the polynomial be shorter than d/k, which only

has the effect of making the output dimension slightly
smaller.

Finally we get the gap s = k and cs = k−1. The later
follows because for non orthogonal vectors, at least one
chunk has a (1 − xiyi) terms which evaluates to zero.
We thus have a (d, k2d/k, k− 1, k)-embedding into {0, 1}.
The explicit construction is thus:

f(x) :=

k−1

�
i=0

d/k

�
j=1

(1− xik/d+j , 1)

g(x) :=

k−1

�
i=0

d/k

�
j=1

(yik/d+j , 1− yik/d+j)

And the running time is linear in the output dimen-
sion.

Finally we parametize and prove Theorem 1.
Proof. (Theorem 1) We first prove the bounds parametrized

by c. To get the strongest possible results, we want to
get c as small as possible, while keeping the dimension
bounded by nδ for some δ > 0.

1. The first embedding is already on the form (d, 2o(d), 0, 4),
showing theorem 1 for signed (0, 4) join, and thus
any c > 0.

2. In the second embedding we can take q to be any

function in o
(

d
log d

)
, giving us a family of (d, 2o(d),

2o(d), 2o(d)e
o
(√

d
log d

)
). Thus by lemma 2, and for a

small enough d = ω(logn) in OVP, we get that

even c ≤ e−o
(√

log n
log log n

)
≤ 1/polylog(n) is hard.

3. Finally for the third embedding, we can pick any
k = ω(1) and less than d, to get a family of
(d, 2o(d), k − 1, k) embeddings. Again picking d =
ω(log n) small enough in OVP, we have by lemma 2
that c ≤ (k − 1)/k = 1 − 1/k = 1 − o(1) is hard.
Notice that this means any c not bounded away
from 1 is hard.

For the bounds parametrized by log(s)/ log(cs), we
need to tweak our families slightly differently. This in
turn allows for hardness for shorter vectors than used
in the previous results.

Proof. (Theorem 2)
For embedding 1 the result follows directly as log(s/d)/ log(cs/d)→

0 as c→ 0.
We have to remember that the results in theorem 1

are stated in terms of normalized s. For embedding 2
we calculate:

log(s/d2)

log(cs/d2)
=
q log(2/9) + q/

√
d− log 2

q log(2/9)

= 1− 1

log(9/2)
√
d

+
log 2

q log(9/2)

= 1− o
(

1/
√

log n
)

Where in the last step we have taken q =
√
d and

d = ω(log n) as by the OVP conjecture.
It is important to notice that we could have taken

q much larger, and still satisfied lemma 2. However
that wouldn’t have improved the result, except by more
quickly vanishing second order asymptitic terms. What

we instead gain from having d2 = (9d)
√
d is that, as one

can verify going through the lemma, we show hardness

for any join algorithm running in time d
o(log d

log log2 d
)
n1+α−ε.

That is, the hardness holds even for algorithms with a
much higher dependency on the dimension than polyno-
mial.

Similarly, we calculate for embedding 3:

log(s/d2)

log(cs/d2)
=

log k
k2d/k

log k−1
k2d/k

= 1− k log(1 + 1/(k − 1))

d+ k log(1 + 1/(k − 1))

= 1− 1/d+O(1/(kd))

= 1− o(1/ log n)

Where we have taken k = d and d = ω(log n) as by the
OVP conjecture.

Taking k = d means that d2 is only 2d.

3. LIMITATIONS OF LSH FOR IPS
We provide an upper bound on the gap between

P1 and P2 for an (s, cs, P1, P2)-asymmetric LSH for
signed/unsigned IPS. For the sake of simplicity we as-
sume the data and query domains to be the d-dimensional
balls of radius 1 and U ≥ 1, respectively. The bound
holds for a fixed set of data vectors, so it applies also to
data dependent LSH [9]. A consequence of our result
is that there cannot exist an asymmetric LSH for any
dimension d ≥ 1 when the set of query vectors is un-
bounded, getting a result similar to that of [39], which
however requires even the data space to be unbounded
and d ≥ 2.

We firsts show in Lemma 4 that the gap P1−P2 can be
expressed as a function of the length h of two sequences
of query and data vectors with suitable collision proper-
ties. Then we provide the proof of the aforementioned
Theorem 3, where we derive some of such sequences and
then apply the lemma.

Lemma 4. Suppose that there exists a sequence of
data vectors P = {p0, . . . , pn−1} and a sequence of query
vectors Q = {q0, . . . , qn−1} such that qTi pj ≥ s if j ≥ i
and qTi pj ≤ cs otherwise (resp., |qTi pj | ≥ s if j ≥ i
and |qTi pj | ≤ cs otherwise) . Then any (s, cs, P1, P2)-
asymmetric LSH for signed IPS (resp., unsigned IPS)
must satisfy P1 − P2 ≤ 1/(8 log n).

Proof. For the sake of simplicity we assume that
n = 2` − 1 for some ` ≥ 1; the assumption can be
removed by introducing floor and ceiling operations in
the proof. Let H denote an (s, cs, P1, P2)-asymmetric

LSH family of hash functions, and let h be a function
in H. The following argument works for signed and
unsigned IPS.

Consider the n × n grid representing the collisions
between Q× P , that is, a node (i, j) denotes the query-
data vectors qi and pj . We say that a node (i, j), with
0 ≤ i, j < n, collides under h if vectors qi and pj collide
under h. By definition of asymmetric LSH, all nodes
with j ≥ i must collide with probability at least P1,
while the remaining nodes collide with probability at
most P2. We use lower triangle to refer to the part of
the grid with j ≥ i and P1-nodes to refer to the nodes
within it; we refer to the remaining nodes as P2-nodes.

We partition the lower triangle into squares of expo-
nentially increasing side as shown in Figure 1. Specif-
ically, we split the lower triangle into squares Gr,s for
every r and s with 0 ≤ r < log(n + 1) = ` and 0 ≤
s < (n + 1)/2r+1 = 2`−r−1, where Gr,s includes all
nodes in the square of side 2r and top-left node ((2s+
1)2r − 1, (2s + 1)2r − 1). For a given square Gr,s, we
define the left squares (resp., top squares) to be the
set of squares that are on the left (resp., top) of Gr,s.
We note that the left squares (resp., top squares) con-
tain 2r−i−1 squares of side 2i for any 0 ≤ i < r and
all P1-nodes with s2r+1 ≤ i, j < (2s + 1)2r − 1 (resp.,
(2s+ 1)2r − 1 < i, j ≤ (s+ 1)2r+1 − 2) .

We define the mass mi,j of a node (i, j) to be the
collision probability, under H, of qi and pj . We split
the mass of a P1-node into three contributions called
shared mass, partially shared mass, and proper mass,
all defined below. Consider each P1-node (i, j) and each
function h ∈ H where (i, j) collides. Let Gr,s be the
square containing (i, j) and let Kh,i,j denote the set of
P1-nodes (i′, j′) on the left side of the same row or on the
top of the same column of (i, j) (i.e., i′ = i and i ≤ j′ < j,
or j′ = j and i < i′ ≤ j) and with the same hash value
of (i, j) under h (i.e., h(i) = h(j) = h(i′) = h(j′)).
Clearly all nodes in Kh,i,j collide under h. For the given
node (i, j), we classify h as follows (see Figure 1 for an
example):

• (i, j)-shared function. Kh,i,j contains at least a
node (i, j′) in a left square, and at least a node
(i′, j) in a top square.

• (i, j)-partially shared function. Function h is not
in case 1 and Kh,i,j contains at least a node node
(i, j′) with j′ < j, and at least a node (i′, j) with
i′ > i. That is, Kh,i,j contains only nodes in Gr,s
and in the left blocks, or only nodes in Gr,s and in
the top blocks.

• (i, j)-proper function. Kh,i,j contains no points
(i, j′) for any i ≤ j′ < j or contains no points (i′, j)
for any i < i′ ≤ j. That is, Kh,i,j cannot contain
at the same time a point in a left square and a
point in a top square. Function h is said row (resp.,
column) proper if there are no nodes in the same
row (resp., column). We break ties arbitrary but
consistently if Kh,i,j is empty.

The shared mass ms
i,j is the sum of probabilities of all

Q
u
er
y
p
oi
n
ts

q i

Data points pj
j = h− 1j = 0

i
=

0
i=

h
-1

G2,1

G3,0

G2,0

G1,0

G1,1

G1,2

G1,3

G0,0

G0,1

G0,2

G0,3

G0,4

G0,5

G0,6

G0,7

(1, 5)

T
op

b
lo
ck
s
of

G
2
,0

G0,0

G0,1

G1,0

G0,2

G1,1

G0,3

(0, 6)

G2,0

(2, 4)

Left blocks of G2,0

Data points pj

Q
u
er
y
p
oi
n
ts

q i

Figure 1: On the left, a 15× 15 grid: black nodes are P1-nodes, gray nodes are P2-nodes; the colored blocks denote the
partitioning of the lower triangle into squares. On the right, a zoom of the G2,0 square and of its left and top squares: the red
nodes collide under a (2, 4)-shared function; the green nodes collide under a (1, 5)-partially shared function; the cyan node
collide under a (0, 6)-proper function (specifically, row proper).

(i, j)-shared functions. The partially shared mass mps
i,j

is the sum of probabilities of all (i, j)-partially shared
functions. The proper mass mp

i,j is the sum of probabili-

ties of all (i, j)-proper functions (the row/column proper
mass includes only row/column proper functions). We
have mi,j = mp

i,j + mps
i,j + ms

i,j . The mass Mr,s of a
square Gr,s is the sum of the masses of all its nodes,
while the proper mass Mp

r,s is the sum of proper masses
of all its nodes. The sum of row proper masses of all
nodes in a row is at most one since a function h is row
proper for at most one node in a row. Similarly, the sum
of column proper masses of all nodes in a column is at
most one. Therefore, we have that

∑
r,sM

p
r,s ≤ 2n.

We now show that
∑

(i,j)∈Gr,s
ms
i,j ≤ 22rP2 for every

Gr,s. Consider a node (i, j) in a given Gr,s. For each
(i, j)-shared function h there is a P2-node colliding under
h: indeed, Kh,i,j contains nodes (i, j′) in the left blocks
and (i′, j) in the top blocks with h(i) = h(j) = h(i′) =
h(j′) (i.e., s2r+1 ≤ j′ < (2s+1)2r−1 and (2s+1)2r−1 <
i′ ≤ (s+1)2r+1−2); then node (i′, j′) is a P2-node since
i′ > j′ and collides under h. By considering all nodes in
Gr,s, we get that all the P2-nodes that collide in a shared
function are in the square of side 2r−1 and bottom-right
node in ((2s+1)2r, (2s+1)2r−2). Since these P2-nodes
have total mass at most 22rP2, the claim follows.

We now prove that
∑

(i,j)∈Gr,s
mps
i,j ≤ 2r+1Mp

r,s. A

(i, j)-partially shared function is (i′, j) or (i, j′)-proper
for some i′ < i and j′ > j, otherwise there would be a
node in left blocks and a node in top blocks that collide
with (i, j) under h, implying that h cannot be partially
shared. Since an (i, j)-proper function is partially shared
for at most 2r+1 nodes in Gr,s, we get∑

(i,j)∈Gr,s

mps
i,j ≤ 2r+1

∑
(i,j)∈Gr,s

mp
i,j = 2r+1Mp

r,s.

By the above two bounds, we get

Mr,s ≤
∑

(i,j)∈Gr,s

mp
i,j+m

ps
i,j+m

s
i,j ≤ (2r+1+1)Mp

r,s+22rP2.

Since Mr,s ≥ 22rP1 we get Mp
r,s ≥ (2r−1 − 1)(P1 − P2).

By summing among all squares, we get

2n ≥
`−1∑
r=0

2`−r−1−1∑
s=0

Mp
r,s > (P1 − P2)

n log n

4

from which the claim follows.

We are now ready to prove Theorem 3.

Proof. (Theorem 3) The upper bounds to P1 − P2

in the different cases follow by applying Lemma 4 with
different sequences of query and data vectors. We antici-
pate that in all three cases the gap P1−P2 becomes 0 if
the query ball is unbounded (i.e., U = +∞), and hence
there cannot exist an asymmetric LSH with P1 > P2.

First case. We now show that there exist data and
query sequences of length n = Θ (md), with m =

Θ
(

log1/c(U/s)
)

, for signed and unsigned IPS in d ≥ 1

dimensions if s = O
(
U/
√
d
)

. Note that m ≥ 1 since we

assume s ≤ cU . As a warm-up, we start with d = 1. Let
Q = {qi,∀ 0 ≤ i < n} and P = {pj ,∀ 0 ≤ j < n} with

qi = Uci, pj = s/(Ucj). (1)

Let pj ∈ P and qi ∈ Q. We get pTj qi = ci−js: if j ≥ i

then pTj qi ≥ s and pTj qi ≤ cs otherwise. Data and query
vectors are respectively contained in the unit ball and in

the ball of radius U since i, j < Θ
(

log1/c(U/s)
)

. Being

the sequences P and Q of length m, the claim follows.
Let now d ≥ 2 and assume for the sake of simplicity

d = 2d′ (the general case just requires some more tedious
computations). Consider the following sequences Qk =
{qi,k,∀ 0 ≤ i < m} and Pk = {pj,k,∀ 0 ≤ j < m} for
each 0 ≤ k < d′, where qi,k and pj,k are d-dimensional
vectors defined as follows. Denote with qi,k[t] the t-th
coordinate of qi,k, for 0 ≤ t < d (similarly for pj,k). For
vector qi,k we have: qi,k[2k] = Uci; qi,k[2t + 1] = 2s
for each k ≤ t < d′; remaining positions are set to 0.
For vector pi,k we have: pi,k[2k] = s/(Uci); pi,k[2k −
1] = 1/2 (only when k > 0); remaining positions are
set to 0. Intuitively, these data and query sequences
follow by constructing the 1-dimensional sequences in

Equation 1 on d′ orthogonal dimensions and then by
suitably translating each sequence. As an example, for
d = 6 we get:

qi,0 = (Uci, 2s, 0, 2s, 0, 2s) pj,0 = (s/(Ucj), 0, 0, 0, 0, 0);

qi,1 = (0, 0, Uci, 2s, 0, 2s) pj,1 = (0, 1/2, s/(Ucj), 0, 0, 0);

qi,2 = (0, 0, 0, 0, Uci, 2s) pj,2 = (0, 0, 0, 1/2, s/(Ucj), 0).

The query and data sequences Q = {Q0, . . . Qd′−1} and
P = {P0, . . . Pd′−1} satisfy the hypothesis of Lemma 4.
Indeed, it can be verified that: pTj,`qi,` = sci−j and

thus pTj,`qi,` ≥ s if j ≥ i and pTj,`qi,` ≤ cs otherwise;

pTj,`′qi,` = 0 if `′ < `; pTj,`′qi,` ≥ s if `′ > `. Further, when

s ≤ U/(2
√
d) data and query vectors are contained in

balls with radius 1 and U respectively, with the exception
of vectors qi,k for 0 ≤ i < 1/(2 log(1/c)) and 0 ≤ k < d′

which are contained in a ball of radius 2U . However,
these query vectors and the respective data vectors can
be removed from the above sequences without affecting
the asymptotic length. We thus get two sequences of

length n = (m− 1/(2 log(1/c)))d′ = Θ
(
d log1/c(U/s)

)
,

the claim follows. Since all inner products are non
negative, the upper bound on P1 − P2 holds for signed
and unsigned IPS.

Second case. Longer query and data sequences, with

length n = Θ (md) for m = Θ
(√

U/(s(1− c))
)

, can

be constructed for signed IPS when d ≥ 2. . We start
considering the case d = 2. Let Q = {qi,∀ 0 ≤ i < m}
and P = {pj ,∀ 0 ≤ j < m} with

qi =
(√

sU(1− (1− c)i),
√
sU(1− c)

)
,

pj =

(√
s

U
, j

√
s(1− c)

U

)
.

(2)

We observe that these sequences are similar to the one
used in [39]. We have pTj qi = s(1− c)(j − i) + s: then,

pTj qi ≥ s if j ≥ i and pTj qi ≤ cs otherwise. If s ≤
U/2, data and query vectors are within balls of radius
respectively 1 and U .

Let now d ≥ 2 and assume for the sake of simplicity
d = 2d′ (the general case just requires some more te-
dious computations). Consider the following sequences
Qk = {qi,k,∀ 0 ≤ i < m} and Pk = {pj,k,∀ 0 ≤ j < m}
for each 0 ≤ k < d′, where qi,k and pj,k are d-dimensional
vectors defined as follows. For vector qi,k we have:

qi,k[2k] =
√
sU(1− (1− c)i); qi,k[2k + 1] =

√
sU(1− c);

qi,k[2t] =
√
Us for each k < t < d′; remaining positions

are set to 0. For vector pi,k we have: pi,k[2k] =
√
s/U ;

pi,k[2k] = j
√
s(1− c)/U ; remaining positions are set to

0. We observe that the two sequences follow by con-
structing the 2-dimensional sequences in Equation 2
on d′ orthogonal planes and then suitably translate.
Then, it follows that data and query sequences P =
{P0, . . . Pd′−1} and Q = {Q0, . . . Qd′−1} satisfy the hy-
pothesis of Lemma 4 and they are respectively contained
in balls or radius one and U respectively if s ≤ U/(2d).

Being m = nd′ = O
(
d
√
U/(s(1− c))

)
and the claim

follows. We observe that the above sequences may gener-
ate large negative inner products and then they cannot
be used for unsigned IPS.

Third case. Finally, we provide an upper bound on
P1 − P2 for signed and unsigned IPS that holds for d ≥
Θ
(
U5/(c2s5)

)
by providing data and query sequences of

length n = 2
√
U/(8s). Suppose there exists a family Z of

2n− 1 vectors such that |zTi zj | ≤ ε and (1− ε) ≤ zTi zi ≤
(1 + ε) for any zi 6= zj , for ε = c/(2 log2 n). It can be
shown with the Johnson-Lindenstrauss lemma that such
a family exists when d = Ω

(
ε−2 log n

)
(for an analysis

see e.g. [42]). For notational convenience, we denote the
vectors in Z as follows: zb0 , zb0,b1 , . . . , zb0,b1,...,blog n−1

for
each possible value b0, . . . , blogn−1 ∈ {0, 1}. Let bi,`
denote the `-th bit of the binary representation of i and
with b̄i,` its negation, where we assume ` = 0 to be the
most significant bit. Let Q = {qi,∀ 0 ≤ i < n} and
P = {pj ,∀ 0 ≤ j < n} with

qi =
√

2sU

logn−1∑
`=0

b̄i,`zbi,0,...bi,`−1,b̄i,`

pj =
√

2s/U

logn−1∑
`=0

bj,`zbj,0,...bj,`−1,bj,`

Since the inner product of two distinct vectors in Z is
in the range [−ε, ε], we have that pTj qi can be upper
bounded as

pTj qi ≤ε2s(log2 n− log n)+

+ 2s

logn−1∑
`=0

bj,`b̄i,`zbj,0,...bj,`−1,bj,`zbi,0,...bi,`−1,b̄i,`

Suppose i > j. Then there exists a bit position `′ such
that bi,`′ = 1, bj,`′ = 0 and bi,` = bj,` for all ` < `′.
We get bj,`b̄i,` = 0 for all ` ≤ `′ and zbj,0,...bj,`−1,bj,` 6=
zbi,0,...bi,`,b̄i,` for all ` > `′. It then follows that pTj qi <

ε2s log2 n when i > j. On the other hand we get that
pTj qi can be lower bounded as

pTj qi ≥− ε2s(log2 n− log n)+

+ 2s

logn−1∑
`=0

bj,`b̄i,`zbj,0,...bj,`−1,bj,`zbi,0,...bi,`−1,b̄i,`

Suppose i ≤ j. Then there exists an index `′ such that
bj,`′ = 1, bi,`′ = 0 and bj,` = bi,` for all ` < `′. We
get bj,`′ b̄i,`′ = 1 and zbj,0,...bj,`′−1,bj,`′ = zbi,0,...bi,`′−1,b̄i,`′

.

It then follows that pTj qi ≥ −ε2s log2 n + 2s. When

d = Ω
(
(log5 n)/c2

)
, we can set ε = c/(2 log2 n). From

the above lower and upper bounds, it then follows that
pTj qi ≤ cs if j < i and pTj qi ≥ s if j ≥ i and hence the
sequences Q and P satisfy the hypothesis of Lemmma 4.
Finally, we observe that the data and query vectors in
P and Q are respectively contained in balls of radius 1
and U : each qi (resp., pj) is given by the sum of at most

log n vectors whose norm is not larger than
√

2sU(1 + ε)

(resp.,
√

2s/U(1 + ε)); being n = 2
√
U/(8s) the claim

follows.

4. UPPER BOUNDS
This section contains three observations with impli-

cations for IPS join and its indexing version. We first
notice in Section 4.1 that by plugging the best known
LSH for `2 distance on a sphere [9] into a reduction
presented in [12, 39], we get a data structure based
on LSH for signed MIPS with search time exponent
ρ = (1− s)/(1 + (1− 2c)s).

Then, in Section 4.2, we show how to circumvent the
results in [39, 45] showing that symmetric LSH is not pos-
sible when the data and query domains coincide (while
an asymmetric LSH does exist). We use an slightly
modified definition of LSH that disregards the collision
probability of 1 for pairs of identical vectors, and as-
sume that vectors are represented with finite precision.
The LSH construction uses explicit incoherent matrices
built using Reed-Solomon codes [38] to implement a
symmetric version of the reduction in [12, 39].

Finally, in Section 4.3 we solve unsigned (cs, s) join
using linear sketches for `p norms from [5]. Given κ ≥ 2

we obtain a approximation factor c ≥ 1/n1/κ using

Õ
(
dn2−2/κ

)
time. Although this trade-off is not that

strong, it is not far from the conditional lower bound in
Theorem 1.

4.1 Asymmetric LSH for signed IPS
We assume the data and query domains to be d-

dimensional balls with respective radius 1 and U . Vec-
tors are embedded into a (d+2)-dimensional unit sphere
using the asymmetric map as in [39]: a data vector p is

mapped to (p,
√

1− ||p||2, 0), while a query q is mapped

to (q/U, 0,
√

1− ||q||2/U2). This transformation just
scales the inner product by a factor U , and hence signed
inner product search can be seen as an instance of ANN
in `2 with distance threshold r =

√
2(1− s/U) and ap-

proximation c′ =
√

(1− cs/U)/(1− s/U). The latter
can be solved in space O(n1+ρ + dn) and query time
O(nρ) using the LSH construction of [9]. We get the
following ρ value (for the LSH gap as well as for the
exponent of the running time):

ρ =
1

2c′2 − 1
=

1− s/U
1 + (1− 2c)s/U

. (3)

In Figure 2, we plot the ρ values of three LSH con-
structions: the one proposed here (with U = 1), the
one from [39], and the one from [46]. The latter works
only for binary vectors. We point out that our bound is
always stronger than the one from [39] and sometimes
stronger than the one from [46], despite that the latter
is tailored for binary vectors. The latter conclusion is
somewhat surprising, since the data structure we obtain
works for non-binary vectors as well.

We point out that in practice one may want to use a
recent LSH family from [7] that—both in theory and in

practice—is superior to the hyperplane LSH from [16]
used in [39].

4.2 Symmetric LSH for almost all vectors
Neyshabur and Srebro [39] show that an asymmetric

view on LSH for signed IPS is required. Indeed they
show that a symmetric LSH for signed IPS does not
exist when data and query domains are balls of the same
radius, while an asymmetric LSH does exist. (On the
other hand, when the data domain is a ball of given
radius U and the query domain is a sphere of same
radius, a symmetric LSH does exist.) In this section we
show that even when data and query spaces coincide a
nontrivial symmetric LSH does exist if we disregard the
trivial collision probability of 1 when data and query
vectors are identical.

We first show how to reduce signed IPS to the case
where data and query vectors lie on a unit sphere. The
reduction is deterministic and maintains inner products
up to an additive error ε for all vectors x, y with x 6= y.
We then plug in any Euclidean LSH for ANN on the
sphere, for example the one from [9]. This reduction
treats data and query vectors identically, unlike the one
from [39], and thus we are able to obtain a symmetric
LSH.

Assume that all the coordinates of all the data and
queries are encoded as k-bit numbers and that the data
and query vectors are in the unit ball. The idea is the
following. There are at most N = 2O(dk) possible data
vectors and queries. Imagine a collection of N unit
vectors v1, . . . , vN such that for every i 6= j one has
|vTi vj | ≤ ε. Then, it is easy to check that a map of a

vector p to f(p) = (p,
√

1− ‖p‖2 ·vp) maps a vector from
a unit ball to a unit sphere and, moreover, for p 6= q one
has |f(p)T f(q)− pT q| ≤ ε.

What remains is to construct such a collection of vec-
tors vi. Moreover, our collection of vectors must be
explicit in a strong sense: we should be able to com-
pute vu given a vector u (after interpreting it as an
dk-bit string). Such a constructions are well known,
e.g., in [38] it is shown how to build such vectors us-
ing Reed-Solomon codes. The resulting dimension is
O
(
ε−2 logN

)
= O

(
kd/ε2

)
[32, 38].

After performing such a reduction we can apply any
state-of-the-art LSH (or data structure for ANN) for `2
norm on a sphere, e.g. from [9, 7], with distance threshold
r2 = 2(1−s+ε), approximation factor c′2 = (1−cs−ε)/r2.
If ε is sufficiently small we get a ρ value close to the
one in (3). The final result is therefore a symmetric
LSH for symmetric domains that does not provide any
collision bound for all pairs (q, p) with q = p since the
guarantees on the inner product fail for these pairs.
This LSH can used for solving signed (cs, s) IPS as a
traditional LSH [6], although it is required an initial
step that verifies whether a query vector is in the input
set and, if this is the case, returns the vector q itself if
qT q ≥ s.

4.3 Unsigned IPS via linear sketches
In this section we propose a linear sketch for unsigned

Figure 2: Our ρ value (DATA-DEP) compared to that of [39] (SIMP) and the binary data only of [46] (MH-ALSH).

c-MIPS, that can be used for solving unsigned (cs, s)
join. The unsigned c-MIPS is defined as follows: given
a set P ⊂ Rd of n vectors, construct a data structure
that efficiently returns, for a given query vector q, a
vector p ∈ P where |pT q| ≥ c(p′T q), where p′ is the
vector in P with maximum absolute inner product with
q. The unsigned (cs, s) join between sets P and Q can be
computed by constructing a data structure for unsigned
c-MIPS for vectors in P and then performs a query for
each vector in Q.

Of independent interest, we notice that unsigned c-
MIPS can be solved by a data structure for unsigned
(cs, s) search. Let D be a data structure for unsigned
(cs, s) search on the data set P , and suppose we are
given a query q and the promise that there exists p′ ∈ P
such that p′T q > γ. Then, unsigned c-MIPS can be
solved by performing on D the queries q/ci for any
0 ≤ i ≤ dlog1/c(s/γ)e. Intuitively, we are scaling up
the query q until the largest inner product becomes
larger than the threshold s. We notice that γ can be
also considered as the smallest inner product that can
be stored according to the numerical precision of the
machine.

Our data structure requires Õ
(
dn2−2/κ

)
construction

time and Õ
(
dn1−2/κ

)
query time and provide a c ≥

1/n1/κ approximation with high probability, for any
κ ≥ 2. This gives an algorithm for unsigned (cs, s)

join on two sets of size n requiring time Õ
(
dn2−2/κ

)
.

As shown in Theorem 1, we are unlikely to significant
improve further the approximation factor if the OVP
conjecture is true.

First, suppose we are only interested in approximating
the value of maxp |qtp| and not to find the corresponding
vector. Then, the problem is equivalent to estimating
‖Aq‖∞, where A is an n × d matrix, whose rows are
data vectors. This problem can be tackled using linear
sketches (for an overview see [57, 8]). More specifically,
we use the following result from [5]: for every 2 ≤ κ ≤ ∞
there exists a distribution over Õ(n1−2/κ)× n matrices
Π such that for every x ∈ Rn one has:

Pr
Π

[(1− c)‖x‖κ ≤ ‖Πx‖∞ ≤ (1 + c)‖x‖κ] ≥ 0.99

for a suitable constant 0 < c < 1. Thus, to build a data
structure for computing ‖Aq‖∞, we sample a matrix Π
according to the aforementioned result in [5] and com-

pute the Õ
(
n1−2/κ

)
× d matrix As = ΠA. Then, for ev-

ery query q, we compute ‖Asq‖∞ in time Õ
(
d · n1−2/κ

)
,

which is a O
(
n1/κ

)
-approximation to ‖Aq‖∞ with prob-

ability at least 0.99. Note that we can reduce the proba-
bility of error from 0.01 to δ > 0 as usual, by building
O(log(1/δ)) independent copies of the above data struc-
ture and reporting the median estimate.

We now consider the recovery of the vector that almost
maximizes |ptq|. We recover the index of the desired
vector bit by bit. That is, for every bit index 0 ≤ i <
log n, we consider every binary sequence b of length i and
build a data structure for the dataset containing only
the vectors in P for which the binary representations
of their indexes have prefix b. Although the number
of data structures is n, the total required space is still
Õ
(
dn1−2/κ

)
since each vector appears in only log n data

structures. The claim stated at the beginning follows.

5. CONCLUSION
This paper has investigated different aspects of the

complexity of approximate similarity join with inner
product. In particular, we have related the hardness
of this problem to the OVP conjecture. Under some
assumptions on c and s, the proposed conditional lower
bounds rule out algorithms for signed/unsigned (cs, s)
IPS join running in n2−ε time, for a constant ε > 0, un-
less the OVP conjecture is false. Nevertheless, the data
structures in section 4 show that it still possible to reach
weak subquadratic time, and even truly subquadratic
time for small values of the approximation factor.

The hardness of signed/unsigned IPS holds even for
weak approximation factors when the vector domain is
{−1, 1}d. Indeed, the result holds if c ≥ 0 for signed

join, and if c ≥ e−o(
√

logn/ log logn) for unsigned join.
When c < 1/nΩ(1), the data structure for unsigned
IPS in section 4.3 reaches strongly subquadratic time
and this gives evidence that the constraint on c of the
hardness result cannot be significantly relaxed. On the
other hand, when vectors are in the {0, 1}d domain, a

stronger assumption is required on the approximation
factor. In this case, the conditional lower bound holds
for c = 1− o(1) and hence it does not rule out an algo-
rithm running in n2−ε time for a constant approximation
factor. We believe that a different approach is required
to show the hardness of IPS for constant approximation:
indeed, the proposed reduction from OVP to IPS in the
{0, 1}d domain strongly relies on the ability to distin-
guish inner products smaller than k − 1 and larger than
k for some k = ω(1), implying c ≥ 1 − o(1). From an
upper bound point of view, the LSH proposed in sec-
tion 4.1 improves upon the state of the art [46] based on
minwise hashing for different values (e.g., when s ≥ d/3
and c ≥ 0.83); however, it still gives weak subquadratic
algorithm for signed/unsigned IPS with constant c. An
interesting open question is therefore to assess if strongly
subquadratic time is possible when the approximation
is constant (or smaller) in the {0, 1}d domain.

6. REFERENCES
[1] A. Abboud, R. Williams, and H. Yu. More

applications of the polynomial method to
algorithm design. In Proc. 26th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages
218–230, 2015.

[2] M. Abramowitz and I. A. Stegun. Handbook of
mathematical functions: with formulas, graphs, and
mathematical tables. Courier Corporation, 1964.

[3] P. Achlioptas, B. Schölkopf, and K. Borgwardt.
Two-locus association mapping in subquadratic
time. In Proc. 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data
Mining (KDD), pages 726–734. ACM, 2011.

[4] J. Alman and R. Williams. Probabilistic
polynomials and hamming nearest neighbors. In
Proc. 56th IEEE Symposium on Foundations of
Computer Science (FOCS), 2015.

[5] A. Andoni. High frequency moments via
max-stability. Unpublished manuscript, 2012.

[6] A. Andoni and P. Indyk. Near-optimal hashing
algorithms for approximate nearest neighbor in
high dimensions. Commun. ACM, 51(1):117–122,
2008.

[7] A. Andoni, P. Indyk, M. Kapralov, T. Laarhoven,
I. Razenshteyn, and L. Schmidt. Practical and
optimal LSH for angular distance. In Proc. 28th
Conference on Neural Information Processing
Systems (NIPS), 2015.

[8] A. Andoni, R. Krauthgamer, and I. P.
Razenshteyn. Sketching and embedding are
equivalent for norms. In Proc. 47th ACM on
Symposium on Theory of Computing, (STOC),
pages 479–488, 2015.

[9] A. Andoni and I. Razenshteyn. Optimal
data-dependent hashing for approximate near
neighbors. In Proc. 47th Symposium on Theory of
Computing (STOC), pages 793–801, 2015.

[10] A. Arasu, V. Ganti, and R. Kaushik. Efficient
exact set-similarity joins. In Proc. International

Conference on Very Large Data Bases (VLDB),
pages 918–929, 2006.

[11] N. Augsten and M. H. Böhlen. Similarity joins in
relational database systems. Synthesis Lectures on
Data Management, 5(5):1–124, 2013.

[12] Y. Bachrach, Y. Finkelstein, R. Gilad-Bachrach,
L. Katzir, N. Koenigstein, N. Nice, and U. Paquet.
Speeding up the xbox recommender system using a
euclidean transformation for inner-product spaces.
In Proc. 8th ACM Conference on Recommender
Systems, pages 257–264, 2014.

[13] B. Bahmani, A. Goel, and R. Shinde. Efficient
distributed locality sensitive hashing. In Proc.
ACM International Conference on Information and
Knowledge Management (CIKM), pages 2174–2178,
2012.

[14] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up
all pairs similarity search. In Proc. International
Conference on World Wide Web (WWW), pages
131–140, 2007.

[15] M. S. Charikar. Similarity estimation techniques
from rounding algorithms. In Proc. 34 ACM
Symposium on Theory of computing (STOC),
pages 380–388. ACM, 2002.

[16] M. S. Charikar. Similarity estimation techniques
from rounding algorithms. In Proc. 34th ACM
Symposium on Theory of Computing (STOC),
pages 380–388, 2002.

[17] S. Chaudhuri, V. Ganti, and R. Kaushik. A
primitive operator for similarity joins in data
cleaning. In Proc.22nd International Conference on
Data Engineering (ICDE), page 5, 2006.

[18] Y. Chen and J. M. Patel. Efficient evaluation of
all-nearest-neighbor queries. In Proc. International
Conference on Data Engineering (ICDE), pages
1056–1065, 2007.

[19] E. Cohen, M. Datar, S. Fujiwara, A. Gionis,
P. Indyk, R. Motwani, J. D. Ullman, and C. Yang.
Finding interesting associations without support
pruning. IEEE Trans. Knowl. Data Eng.,
13(1):64–78, 2001.

[20] R. R. Curtin, A. G. Gray, and P. Ram. Fast exact
max-kernel search. In Proc. 13th SIAM
International Conference on Data Mining (SDM),
pages 1–9, 2013.

[21] A. Das, M. Datar, A. Garg, and S. Rajaram.
Google news personalization: scalable online
collaborative filtering. In Proc. International
Conference on World Wide Web (WWW), pages
271–280, 2007.

[22] T. Dean, M. Ruzon, M. Segal, J. Shlens,
S. Vijayanarasimhan, and J. Yagnik. Fast, accurate
detection of 100,000 object classes on a single
machine. In Proc. IEEE Conference on Computer
Vision and Pattern Recognition, Washington, DC,
USA, 2013.

[23] P. Felzenszwalb, R. Girshick, D. McAllester, and
D. Ramanan. Object detection with
discriminatively trained part-based models. IEEE

Transactions on Pattern Analysis and Machine
Intelligence,, 32(9):1627–1645, 2010.

[24] A. Gionis, P. Indyk, and R. Motwani. Similarity
search in high dimensions via hashing. In Proc.
25th International Conference on Very Large Data
Bases (VLDB), pages 518–529, 1999.

[25] S. Har-Peled, P. Indyk, and R. Motwani.
Approximate nearest neighbor: Towards removing
the curse of dimensionality. Theory of computing,
8(1):321–350, 2012.

[26] E. H. Jacox and H. Samet. Metric space similarity
joins. ACM Transactions on Database Systems
(TODS), 33(2):7, 2008.

[27] Y. Jiang, D. Deng, J. Wang, G. Li, and J. Feng.
Efficient parallel partition-based algorithms for
similarity search and join with edit distance
constraints. In Proc. Joint EDBT/ICDT
Workshops, pages 341–348. ACM, 2013.

[28] T. Joachims, T. Finley, and C.-N. J. Yu.
Cutting-plane training of structural svms. Mach.
Learn., 77(1):27–59, 2009.

[29] M. Karppa, P. Kaski, and J. Kohonen. A faster
subquadratic algorithm for finding outlier
correlations. In Proc. 27th ACM-SIAM Symposium
on Discrete Algorithms (SODA16), 2016.

[30] N. Koenigstein, P. Ram, and Y. Shavitt. Efficient
retrieval of recommendations in a matrix
factorization framework. In Proc. 21st ACM
International Conference on Information and
Knowledge Management (CIKM), pages 535–544,
2012.

[31] Y. Koren, R. Bell, and C. Volinsky. Matrix
factorization techniques for recommender systems.
Computer, 42(8):30–37, Aug. 2009.

[32] K. G. Larsen and J. Nelson. The
johnson-lindenstrauss lemma is optimal for linear
dimensionality reduction. CoRR, abs/1411.2404,
2014.

[33] D. Lee, J. Park, J. Shim, and S.-g. Lee. An efficient
similarity join algorithm with cosine similarity
predicate. In Database and Expert Systems
Applications, pages 422–436. Springer, 2010.

[34] G. Li, D. Deng, J. Wang, and J. Feng. Pass-join: A
partition-based method for similarity joins. Proc.
VLDB Endowment, 5(3):253–264, 2011.

[35] Y. Low and A. X. Zheng. Fast top-k similarity
queries via matrix compression. In Proc. ACM
International Conference on Information and
Knowledge Management (CIKM)KM, pages
2070–2074. ACM, 2012.

[36] J. Lu, C. Lin, W. Wang, C. Li, and H. Wang.
String similarity measures and joins with
synonyms. In Proc. 2013 ACM SIGMOD
International Conference on Management of Data,
pages 373–384, 2013.

[37] R. Motwani, A. Naor, and R. Panigrahi. Lower
bounds on locality sensitive hashing. In Proc. 22nd
Symposium on Computational Geometry (SoCS),
pages 154–157, 2006.

[38] J. Nelson, H. L. Nguyen, and D. P. Woodruff. On
deterministic sketching and streaming for sparse
recovery and norm estimation. Linear Algebra and
its Applications, 441(0):152 – 167, 2014.

[39] B. Neyshabur and N. Srebro. On symmetric and
asymmetric lshs for inner product search. In Proc.
32nd International Conference on Machine
Learning (ICML), 2015.

[40] R. O’Donnell, Y. Wu, and Y. Zhou. Optimal lower
bounds for locality-sensitive hashing (except when
q is tiny). ACM Trans. Comput. Theory,
6(1):5:1–5:13, 2014.

[41] R. Pagh, N. Pham, F. Silvestri, and M. Stöckel.
I/O-efficient similarity join. In Proc. 23rd
European Symposium on Algorithms (ESA), pages
941–952, 2015.

[42] R. Pagh, F. Silvestri, J. Sivertsen, and M. Skala.
Approximate furthest neighbor in high dimensions.
In Proc. 8th International Conference on
Similarity Search and Applications (SISAP),
volume 9371 of LNCS, pages 3–14, 2015.

[43] P. Ram and A. G. Gray. Maximum inner-product
search using cone trees. In Proc. 18th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), pages 931–939,
2012.

[44] V. Satuluri and S. Parthasarathy. Bayesian locality
sensitive hashing for fast similarity search. Proc.
VLDB Endowment, 5(5):430–441, 2012.

[45] A. Shrivastava and P. Li. Asymmetric LSH
(ALSH) for sublinear time maximum inner product
search (MIPS). In Proc. 27th Conference on Neural
Information Processing Systems (NIPS), pages
2321–2329, 2014.

[46] A. Shrivastava and P. Li. Asymmetric minwise
hashing for indexing binary inner products and set
containment. In Proc. 24th International
Conference on World Wide Web (WWW), pages
981–991, 2015.

[47] Y. N. Silva, W. G. Aref, and M. H. Ali. The
similarity join database operator. In Proc.
International Conference on Data Engineering
(ICDE), pages 892–903. IEEE, 2010.

[48] N. Srebro, J. D. M. Rennie, and T. S. Jaakola.
Maximum-margin matrix factorization. In
Advances in Neural Information Processing
Systems 17, pages 1329–1336. MIT Press, 2005.

[49] N. Srebro and A. Shraibman. Rank, trace-norm
and max-norm. In Proc. 18th Conference on
Learning Theory COLT, volume 3559 of LNCS,
pages 545–560, 2005.

[50] C. Teflioudi, R. Gemulla, and O. Mykytiuk. Lemp:
Fast retrieval of large entries in a matrix product.
In Proc. ACM SIGMOD International Conference
on Management of Data, pages 107–122. ACM,
2015.

[51] G. Valiant. Finding correlations in subquadratic
time, with applications to learning parities and the
closest pair problem. J. ACM, 62(2):13:1–13:45,

2015.
[52] J. Wang, G. Li, and J. Fe. Fast-join: An efficient

method for fuzzy token matching based string
similarity join. In Proc. International Conference
on Data Engineering (ICDE), pages 458–469.
IEEE, 2011.

[53] J. Wang, G. Li, and J. Feng. Can we beat the
prefix filtering?: an adaptive framework for
similarity join and search. In Proc. ACM SIGMOD
International Conference on Management of Data,
pages 85–96. ACM, 2012.

[54] Y. Wang, A. Metwally, and S. Parthasarathy.
Scalable all-pairs similarity search in metric spaces.
In Proc. ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD),
pages 829–837, 2013.

[55] R. Weber, H.-J. Schek, and S. Blott. A
quantitative analysis and performance study for
similarity-search methods in high-dimensional
spaces. In Proc. 24rd International Conference on
Very Large Data Bases (VLDB), pages 194–205,
1998.

[56] R. Williams. A new algorithm for optimal
2-constraint satisfaction and its implications.
Theoretical Computer Science, 348(2):357–365,
2005.

[57] D. P. Woodruff. Sketching as a tool for numerical
linear algebra. Foundations and Trends in
Theoretical Computer Science, 10:1–157, 2014.

[58] C. Xia, H. Lu, B. C. Ooi, and J. Hu. Gorder: an
efficient method for knn join processing. In Proc.
VLDB, pages 756–767, 2004.

[59] C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient
similarity joins for near duplicate detection. In
Proc. International Conference on World Wide
Web (WWW), pages 131–140, 2008.

[60] R. B. Zadeh and A. Goel. Dimension independent
similarity computation. The Journal of Machine
Learning Research, 14(1):1605–1626, 2013.

[61] P. Zezula, G. Amato, V. Dohnal, and M. Batko.
Similarity search: the metric space approach,
volume 32. Springer Science & Business Media,
2006.

[62] X. Zhang, F. Zou, and W. Wang. Fastanova: an
efficient algorithm for genome-wide association
study. In Proc. ACM SIGKDD International
Conference on Knowledge Discovery and Data
Mining (KDD), pages 821–829. ACM, 2008.

