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2 Transient self-assembly of molecular nanostructures
3 driven by chemical fuels
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5 Chen and Leonard J Prins

6 Over the past decades, chemists have mastered the art of

7 assembling small molecules into complex nanostructures

8 using non-covalent interactions. The driving force for self-

9 assembly is thermodynamics: the self-assembled structure is

10 more stable than the separate components. However,

11 biological self-assembly processes are often energetically

12 uphill and require the consumption of chemical energy. This

13 allows nature to control the activation and duration of chemical

14 functions associated to the assembled state. Synthetic

15 chemical systems that operate in the same way are essential

16 for creating the next generation of intelligent, adaptive

17 materials, nanomachines and delivery systems. This review

18 focuses on synthetic molecular nanostructures which

19 assemble under dissipative conditions. The chemical function

20 associated to the transient assemblies is operational as long as

21 chemical fuel is present.
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29 Introduction
30 Over the past decades self-assemblyQ3 has emerged as the

31 most powerful strategy for the formation of molecular

32 nanostructures. It has permitted the development of

33 innovative systems for diagnostics and catalysis and has

34 enabled enormous advances in the fields of materials

35 chemistry and nanotechnology [1]. Although inspired

36 by nature, there is a strong current awareness that nature

37 is only mimicked to a certain extent [2�]. While many

38 biological self-assembly processes are driven by thermo-

39 dynamics [3], just as in synthetic self-assembly, there are

40 also situations in which self-assembly is associated with

41 an energy consumption process, referred to as dissipative

42self-assembly [4,5]. Nature exploits dissipative self-

43assembly as a way to obtain temporal control over the

44chemical functions associated with the assembled state

45[6–10]. There is currently a strong drive to implement the

46same principle also in synthetic systems, with the ulti-

47mate aim of creating intelligent materials and devices

48able to perform different functions based on the stimuli

49provided in the form of energy [11,12,13�,14–20]. In the

50last years this has led to the development of various

51chemical systems that require energy to self-assemble

52into functional structures. Most frequently, energy is

53provided in the form of physical stimuli, mainly as light

54[16,21–27], but also as ultrasound [28], electrical current

55[29], osmotic pressure [30] or, alternatively, by (tran-

56siently) changing the pH [31,32]. This is highly attractive,

57because this energy can be delivered in a clean manner to

58the system and is consumed without the creation of waste.

59However, nature predominantly exploits chemical energy

60as a trigger for the selective activation of function. The

61design of synthetic systems that rely on chemical fuels for

62self-assembly is challenging and has mainly focused on

63the development of hybrid structures in which natural

64dissipative systems, such as microtubules, are conjugated

65with synthetic elements such as nanoparticles [33–38].

66Another successful approach relies on the coupling of a

67self-assembly process to a chemical oscillator, such as the

68Belousov–Zhabotinsky (BZ) reaction, which operates

69intrinsically out-of-equilibrium [39–43]. However,

70although functional, these systems do not provide much

71flexibility since the energy dissipation process is

72extremely well-defined and difficult to modulate [44�].
73The scope of this short review is to highlight recent

74advances made in the design of synthetic molecular

75assemblies that require chemical fuels to be functional.

76It will be shown that such systems maintain the assem-

77bled state only as long as chemical fuel is present. The

78result is that the chemical functions exerted by the

79assemblies have a transient character.

80Soft materials
81The first step towards artificial systems able to mimic the

82transient nature of microtubule-formation was reported

83by Van Esch et al. [45��] Their approach was based on

84dibenzoyl-L-cystine (DBC), which is a pH-responsive

85gelator (Figure 1a). Above the pKa-value of the carboxylic

86acids (around 4.5) gel formation does not occur, because

87of electrostatic repulsion between the carboxylate groups.

88Protonation of the carboxylic groups at pH-values below
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89 the pKa results in neutralization and consequent self-

90 assembly of the molecule in long fibers, stabilized by

91 intermolecular hydrogen-bonding. On the other hand, the

92 corresponding DBC-diester (DBC-(OMe)2) assembles at

93 all pH-values, even above the pKa. The properties of

94 these molecules were used to design a dissipative cycle in

95 which methyl-iodide (MeI) was used to methylate DBC

96 under ambient conditions (35�C). Under these conditions

97 a spontaneous hydrolysis of the formed esters also took

98 place leading to a return to the starting compound, which

99 crucially was at a rate that is lower than that of ester

100 formation. This implies that the addition of MeI leads to

101 the transient presence of the gelator DBC-(OMe)2 in the

102 system, with a lifetime that depends on the amount of

103 fuel added. Transient gel formation was confirmed by

104 light scattering studies and scanning electron microscopy

105 (SEM). Confirmation that the system returned to the

106 original state was demonstrated by the observation that

107 the addition of a new batch of MeI induced a second cycle

108 of transient gel formation. This first system suffered from

109 relatively long response times with life-cycles in the order

110 of days. In a follow-up study, the life times could be

111 reduced to hours by changing the chemical fuel and

112 optimizing the pH level [46]. However, the importance

113 of this study lays in the demonstration that the

114mechanical properties of the gel could be controlled by

115the initial level of the chemical fuel. The addition of low

116concentrations of MeI resulted in short-lived weak gels,

117whereas long-lived stiff gels were obtained at high con-

118centrations of fuel. Furthermore, it was also shown that

119these materials had a much higher capacity for self-

120regeneration after destruction when high fuel levels were

121present.

122Debnath et al. developed an alternative hybrid biosyn-

123thetic system for transient gel formation which relied on

124the gelating properties of naphthalene-dipeptides and the

125ability of enzymes to form and cleave peptide bonds

126(Figure 1b) [47�]. Starting point was the a-chymotrypsin

127catalyzed transacylation of a series of hydrophobic amino

128acids X-NH2 (with X = Y, F or L) using Nap-Y-OMe as an

129acyl-donor which rapidly yielded the dipeptide hydro-

130gelator Nap-YX-NH2. However, in time a-chymotrypsin

131caused the installment of an equilibrium between the

132hydrogelator Nap-YX-NH2 and the hydrolysis products

133Nap-Y-OH and the original amino acid X-NH2 leading to

134a constant equilibrium concentration of the gelator. When

135F-NH2 was used, the final concentration of Nap-YF-NH2

136was above the critical gelation concentration (CGC) lead-

137ing to the formation of a stable gel. On the other hand,
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Transient gel formation relying on (a) the rapid esterification of the pro-gelator DBC or (b) the rapid formation of a dipeptide hydrogelators under

hydrolytic conditions.
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138 transient gel formation was observed when amino acids

139 Y-NH2 and L-NH2 were used, as the concentration of the

140 dipeptide in these systems remained only for a limited

141 time above the CGC. The lifetime of these gels could be

142 tuned by changing the pH. It was shown that the system

143 could be refueled up to three times by adding additional

144 equivalents of Nap-Y-OMe. After three cycles the system

145 was no longer able to reach the dipeptide-concentrations

146 required to reach the CGC, presumably because of inter-

147 ference with the accumulating amounts of the waste

148 product Nap-Y-OH in the system.

149 This approach was then extended to a system of tripep-

150 tide-gelators in which structurally diverse amino acids

151 were ligated in an analogous manner to aspartame, a DF-

152 dipeptide methylester [48]. Only for F-NH2 and Y-NH2

153 transient gel formation was observed; in the presence of

154 amino acids W, L, V, S and T, no gelation was observed.

155 For the latter amino acids, rapid formation of the end

156 product DF-OH was seen. Hardly any formation of the

157 tripeptide was observed, despite the fact that some of

158 these amino acids (L, V, S) were used as effective

159 nucleophiles in previous studies. The observation of

160 gel formation for F and Y suggests that these transient

161 nanofibers are less prone to enzymatic hydrolysis and

162 thus permit conditions for transient structure formation

163 (rateformation > ratedestruction). Interestingly, while the

164 DFF-NH2 peptide turned out to be thermodynamically

165 more stable compared to DFY-NH2, direct competition

166 experiments revealed that the selection in this system

167 relied on kinetic control, yielding DFY-NH2 as the

168 major product.

169 An alternative biocatalytic approach towards transient

170 hydrogel formation relied on the sucrose-fueled produc-

171 tion of CO2 by yeast [49]. Acidification of an aqueous

172 solution upon the dissolution of CO2 resulted in the

173 protonation of a peptide-based surfactant causing the

174 formation of a gel. Gradual elimination of CO2 from

175 the system upon evaporation resulted in spontaneous

176 return to the original state.

177 A different approach towards transient polymer self-

178 assembly was developed by Kumar et al. and relies on

179 the exploitation of naphthalenediimide chromophores

180 appended with Zn(II)-complexes [50]. Whereas the

181 building block by itself showed no signs of aggregation,

182 the addition of adenosine phosphates (AXP with X = M,

183 D, or T) resulted in the formation of helical stacks with

184 the anionic AXPs lined up against the outward-pointing

185 cationic side-groups [51]. Interestingly, it was observed

186 that the handedness of the supramolecular polymer

187 depended on the nature of the adenosine phosphate.

188 This provided an important tool to follow the spontane-

189 ous transition of the structures across the supramolecular

190 energy landscape upon the enzyme-catalysed hydrolysis

191 of ATP ! ADP ! AMP ! Pi. The system is in

192principle amenable to repetitive cycles by displacing Pi

193with the high-affinity binder ATP under dissipative

194conditions.

195Nanostructures
196Surfactant-based systems

197The self-assembly of surfactants into large structures,

198such as micelles and vesicles, has always attracted great

199interest because of the similarity of these structures to

200cells and also for their numerous practical applications

201[52]. The functional properties of these systems mainly

202originate from the presence of an internal compartment

203that is separated from the bulk and from the presence of

204an apolar phase in aqueous media. Methodology to con-

205trol the formation of these systems through the addition of

206chemical fuel under dissipative conditions would give

207temporal control over their associated functions. As illus-

208tration, Wang et al. coupled the formation of supra-amphi-

209philes to the chemical oscillator IO3
�-NH3OH+-OH�

210which periodically generates iodine [53]. Reaction of

211iodine with the PEG segment of a hydrophilic block

212copolymer increased the hydrophobicity of that domain

213and induced its self-assembly into supra-amphiphiles.

214The oscillating concentration of iodine caused spontane-

215ous transitions between assembled and dissociated states

216as a function over time. Although not surfactant-based,

217the system nicely illustrates the possibility to regulate the

218self-assembly process in time using a chemical fuel. The

219following examples illustrate how this can be used to

220control the chemical functions associated with the assem-

221bled state.

222Our group developed a strategy for the transient stabili-

223zation of vesicular aggregates (Figure 2a) [54��] based on

224a previous study aimed at transient signal generation by a

225nanoparticle-based system [55]. A surfactant containing

226a cationic 1,4,7-triazacyclononane (TACN)�Zn(II) head

227group was found to form micellar aggregates with a

228critical micelle concentration (CMC) of around

229100 mM. However, the presence of ATP resulted in

230the formation of vesicular aggregates at much lower

231concentrations. This is attributed to the stabilizing inter-

232actions between ATP and the oppositely charged head

233groups, which also causes a repositioning of the surfac-

234tants. Importantly, previous studies using monolayer

235protected gold nanoparticles containing identical head

236groups had demonstrated a strong dependence between

237the number of negative charges present in a series of

238adenosine phosphates (AXP with X = M, D, or T) and

239the affinity for the multivalent surface [55]. The

240incapacity of AMP to stabilize aggregates below the

241cmc was then exploited for the transient self-assembly

242of vesicular aggregates. ATP was added to surfactants at

243concentrations below the cmc in the presence of potato

244apyrase, which is an enzyme that hydrolyses ATP into

245AMP + 2Pi. Since the rate of aggregate formation

246induced by ATP is more rapid than the decay rate of
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247 ATP, a transient period exists in which aggregates are

248 formed. Upon depletion of ATP, the system spontane-

249 ously reverted to the non-aggregated state, which was

250 confirmed by a series of techniques which included

251 DLS, UV–vis, fluorescence and confocal microscopy.

252 The process of transient aggregate formation could be

253 repeated multiple times upon the addition of new

254 batches of ATP. Next, this process was coupled to a

255 chemical reaction that was strongly favored by the apolar

256 bilayer of the aggregates. It was shown that the lifetime

257 of the vesicles determined the amount of reaction prod-

258 uct formed by the system. Thus this system provides a

259 new means to indirectly control the outcome of a chem-

260 ical reaction through the exploitation of a transient

261 phenomenon driven by a chemical fuel.

262 The group of Fyles described the transient formation

263 of channels in a membrane system driven by a chemi-

264 cal fuel (Figure 2b) [56�]. The project was based on

265 the knowledge that compounds analogous to C are able

266 to span a bilayer membrane and create a hydrophilic

267 pore able to translocate ions across the membrane. The

268 key novel feature of molecule C is the presence of a

269 labile thioester-bond. In the absence of the acyl part

270 (such as in A), channel activity was not observed and

271 this represents the inactive resting state. Upon the

272 addition of thioester B as a chemical fuel, thiol-

273 thioester exchange occurs spontaneously leading to

274the in situ formation of the channel-forming compound

275C. Channel activity was measured using the voltage-

276clamp technique which measures changes in conduc-

277tivity upon the transport of ions across the membrane

278[57]. Importantly, compound C is terminated with a

279nucleophilic amine, which is able to intramolecularly

280attack the thioester bond leading to the spontaneous

281re-formation of the resting compound A and the cyclic

282waste product D. The rate of the intramolecular reac-

283tion can be tuned by changing the spacer length

284separating the amine and the carbonyl-group of the

285thioester-bond. Transient accumulation of the pore-

286forming compound C occurs if the intramolecular

287cyclization-rate is slower than the transthioesterifica-

288tion reaction. Time-dependent conductance measure-

289ments confirmed the spontaneous decrease in pore-

290activity, which could be regenerated upon the addition

291of a fresh batch of fuel. It is noted that this system is

292intrinsically dissipative in the sense that formation of

293the active compound automatically installs a mecha-

294nism of self-destruction because of the presence of the

295nucleophile. This makes it different from most other

296systems discussed here, that rely on the creation of

297dissipative conditions by external elements (such as

298enzymes or bases). The ability to tune the efficacy of

299the intramolecular reaction and thus control the dissi-

300pative process illustrates the advantages and potential

301of synthetic systems.
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(a) The transient formation of vesicles driven by ATP and (b) the transient formation of membrane channels driven by the activation of precursor A.
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302 Molecular cages

303 The first examples are appearing in which the self-assem-

304 bly of molecularly well-defined structures is governed by

305 the transient action of chemical fuels. Wood et al. reported

306 a self-assembled cage composed of porphyrin building

307 blocks and Cu(I)-metal ions that dissociate upon the

308 addition of triphenylphosphine (PPh3) [58�]. This is

309 because of the preferential formation of heteroleptic N,

310 P-complexes with Cu(I) (Figure 3a). However, when

311 PPh3 is added under oxidative conditions (because of

312 the presence of pyridine N-oxide as an oxidant and the

oxo-transfer catalyst ReCat as an accelerator), it is slowly

313 converted to triphenylphospine oxide which no longer

314 coordinates Cu(I). Consequently, the system reverts back

315 to the assembled state. A new cycle can be initiated by

316 adding a new batch of PPh3. Transient dissociation of the

317 cage occurs because the oxidation rate is much lower

318 compared to rate of the ligand exchange. A hint of a

319 possible application as delivery agent was provided by

320 demonstrating the transient release of an encapsulated

321 C60-guest upon the addition of fuel.

322 Finally, a very intriguing example was reported by Fanlo-

323 Virgos et al. which described the transient adaptation of a

324 dynamic molecular network to the addition of a guest

325 (Figure 3b) [59��]. A library of very diverse molecular

326 structures including catenanes and tetramers was spon-

327 taneously formed upon the partial oxidation of a building

328block containing two thiol moieties. The reversibility of

329the disulfide bond permitted interconversion between

330the library members and imparted adaptability to the

331network. A remarkable spontaneous shift in the library

332composition towards the tetrameric species was observed

333upon the addition of compound E ascribed to the install-

334ment of favorable interactions between the tetramers and

335compound E. In the absence of other events this would

336just have been an example of guest-induced templated

337synthesis, but in this particular case it was observed that in

338time the system spontaneously returned to the original

339composition. It turned out that the tetramers catalyze the

340conversion of compound E into product F and dimethy-

341lamine through an aza-Cope rearrangement. The fact that

342a second addition of guest induces a new transient shift in

343library composition confirms the reversibility of the pro-

344cess and demonstrates the capacity of the system to

345spontaneously dissipate the energy provided by the guest.

346Like the transmembrane pore-formation discussed

347above, also this system is intrinsically dissipative. The

348exciting prospect offered by these results is the develop-

349ment of dynamic networks that are able to transiently

350evolve into different directions depending on the input of

351chemical information.

352Outlook
353Compared to traditional self-assembly processes which

354rely on the installment of a functional thermodynamically

Dissipative self-assembly della Sala et al. 5

COBIOT 1796 1–7

Please cite this article in press as: della Sala F, et al.: Transient self-assembly of molecular nanostructures driven by chemical fuels, Curr Opin Biotechnol (2017), http://dx.doi.org/10.1016/j.

copbio.2016.10.014

Figure 3

(a) (b)NNNNNNNNNNNN

N

N N

NN

N

N

Ni

Ni
Ni

Ni

P

P

P

P

NN

N
N

N

N

N

N
N

N

N

N N

N N

N NN
N N

N

NNNNNNNN

N

N

ReCat

ReCat

N

N
N

O

O

O O

O

O

Re
Cl

P

O

O

O O
O

O OOO

S

S
S S

S

S
S

S

tetramers

sss
s s

s
s s

s

s

ssss
s

s

s s

s

s

catenanes
(and other species)

N
H

F

N

E

P

N

O

CuI

CuICuI

Cu

CuI

Current Opinion in Biotechnology

(a) Transient displacement of fullerene from a molecular cage driven by triphenylphosphine and (b) transient adaptation of a molecular network to a
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355 stable state, the key novelty introduced by performing

356 self-assembly under dissipative conditions is that control

357 can be gained over the lifetime of the chemical function

358 associated with the assembled state. Energy can also be

359 delivered using a variety of physical means, but the use of

360 chemical fuels brings us one step closer to mimicking

361 biological networks that mostly rely on fluxes of energy

362 stored in molecules. The examples presented here are

363 still rather primitive and in most cases dissipative condi-

364 tions are artificially created by the addition of an external

365 component (catalyst, enzyme, reagent) to the system that

366 dissipates the energy stored in the fuel. Yet, some of the

367 systems discussed are intrinsically dissipative, implying

368 that it is the self-assembled structure itself that causes

369 energy dissipation. One further step up the ladder is the

370 design of structures that assemble as a result of energy

371 dissipation. The ability to use time as a regulatory ele-

372 ment in designing chemical systems offers new and

373 exciting possibilities for the design of reaction networks,

374 functional materials and delivery systems.
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