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Secure random numbers are a fundamental element of many applications in science, statistics,
cryptography and more in general in security protocols. We present a method that enables the generation
of high-speed unpredictable random numbers from the quadratures of an electromagnetic field without any
assumption on the input state. The method allows us to eliminate the numbers that can be predicted due to
the presence of classical and quantum side information. In particular, we introduce a procedure to estimate a
bound on the conditional min-entropy based on the entropic uncertainty principle for position and
momentum observables of infinite dimensional quantum systems. By the above method, we experimentally
demonstrated the generation of secure true random bits at a rate greater than 1.7Gbit=s.
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Introduction.—Quantum random number generators
(QRNG) exploit intrinsic probabilistic quantum processes
to generate true random numbers. The first QRNG was
based on the decay of radioactive nuclei [1], while nowa-
days the versatility of light is mostly employed: as possible
examples, we recall QRNGs based on photon welcher weg
[2–4], photon time of arrival [5–7], or vacuum quadratures
[8–11]. In most of the QRNGs, the assessment of the
randomness of the generated numbers is obtained by
applying statistical tests on the output bits: passing the
tests is the only method used to certify the randomness. In
case of failure (attributed to hardware problem), numbers
are algorithmically postprocessed until the tests are passed.
However, a posteriori statistical tests cannot certify that

the numbers are not known to someone possessing side
information about the generator. For instance, it is not
possible to eliminate hardware noise, which is a source of
classical side information for an eavesdropper, Eve, who
may be able to control it. Hence, a statistical test a posteriori
cannot establish whether the numbers are originated by the
quantum process or by the noisy hardware. Moreover, even
assuming a QRNG with an ideal noiseless hardware, a
statistical test cannot reveal whether the output arises from
a quantum measurement and then it is intrinsically random.
For instance, a polarization welcher weg QRNG with an
optical source emitting photons in a completely mixed state
can be seen as the photonic version of a fair coin. The
random sequence can be predicted by Eve if she knows the
coin’s equations of motion (i.e., she has classical side
information) or if she holds a quantum system correlated
with the QRNG (i.e., she has quantum side information).
The quantity that evaluates the amount of side informa-

tion on a random sequence Z is the so-called conditional
quantum min-entropy HminðZjEÞ [12], whose value is
generally hard to estimate. For instance, in the device
independent (DI) framework, HminðZjEÞ can be related to

violation of a Bell’s inequality. However, these protocols
are very demanding from the experimental point of view
since they require loophole-free Bell tests [13–15]. This
difficulty can be measured in terms of the secure generation
rates: the two seminal proofs of principle of DI random
number generation [13] and [16] that closed the detection
loophole achieved rates of 1.5 × 10−5 and 0.4 bit=s,
respectively. Such rates are very low compared to the rates
achievable outside the DI framework. Therefore, although
recent experiments of Bell’s inequality violation have
closed also the no-signaling loophole [17–20], the com-
plexity of the setups make it difficult to hypothesize a
practical use of DI certified random numbers in a near
future.
On the other hand, assuming the absence of local

hidden variable theories, true random numbers can be
obtained by a priori characterization of the quantum
system: by a quantum state tomography [21] or by
checking the quantum system dimensions [22].
In this work we propose and experimentally realize an

efficient protocol for the secure and ultrafast generation of
random numbers exploiting the quadrature measurement of
the electromagnetic field in a source-device-independent
(SDI) scenario i.e., assuming a trusted measurement device
and a complete untrusted source.
The method is based on the evaluation of a lower bound

for HminðZjEÞ. We exploit the entropic uncertainty prin-
ciple for continuous variable (CV), i.e., infinite dimen-
sional quantum systems, following the QRNG certification
protocol introduced in Ref. [23] for the finite dimensional
case. In that protocol, no assumptions are made on the
dimensions of the Hilbert space of the source and the bound
to the quantum min-entropy is estimated by switching
between two measurement basis. The method was later
extended in Ref. [24] for Shannon entropies in a detection
“squashing” framework. Similarly to Ref. [23], the present
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scheme does not require any assumption on the dimension
of the Hilbert space of the source.
Review of CV-QRNG.—In a typical scenario, a CV-

QRNG user (Alice) generates random numbers by meas-
uring the momentum quadrature P̂ of a quantum state ρA
(typically the vacuum) of an electromagnetic field mode.
With CV systems, the finite resolution of the experimental
devices leads to a “discretization” of the measurements (see
Supplemental Material [25] for more details). More specifi-
cally, a coarse grained version P̂δp of the quadrature operator,
can be obtained by introducing a partition fIkδpg of its
possible output values p ∈ R. In the above expression,
Ikδp are the half-open intervals Ikδp¼ðkδp;ðkþ1Þδp%,
with k ∈ N and δp the precision of the measurement.
Alice measures the POVMs fP̂k

δpg with elements P̂k
δp ¼

R
Ikδp

dpjpihpj and stores the outcomes pk appearing with

probability pðpkÞ ¼ Tr½ρAP̂k
δp% in a classical register Pδp.

For cryptographic applications Alice needs to evaluate
the probability pguessðPδpjEÞ ¼ 2−HminðPδpjEÞ, that an adver-
sary (Eve) has to guess correctly the outcome of a
measurement by adopting an optimal strategy. The
guessing probability depends on the quantum conditional
min-entropy HminðPδpjEÞ, which represents the maximal
content of true random bits achievable for each measure-
ment from the systemA, i.e., uniform and uncorrelated from
any classical or quantum side information held by an
eavesdropper [14,26].
Previous works on CV-QRNGs assumed that the state

ρA is pure [9]. In this case, the conditional quantum min-
entropy reduces to the classical min-entropy H∞ðPδpÞ ¼
−log2½maxkpðpkÞ%. Eve’s best strategy consists in betting
on the most probable value, namely, pguessðPδpÞ ¼
maxkTr½ρAP̂k

δp%. Other works assumed the eavesdropper
intrusion limited to the classical noise [9,11], which unavoid-
ably affects the experimental apparatus. However, to generate
true randomness it is necessary to consider also quantum side
information: indeed, the most general scenario includes the
possibility of an eavesdropper which has full control of the
quantum system E correlated with the system A. It is

worthwhile to stress that such a scenario is not “paranoid”
but indeed very realistic, since it results from relaxing the
strong assumption of the system A being in a pure state.
SDI-CV random number generator.—In the untrusted

source scenario, the state ρA is, in general, mixed: it can be
purified by a state ρAE, namely, ρA ¼ TrE½ρAE%, where E
can be identified with the already mentioned eavesdropper,
or with the system “environment.” We note that the
mixedness of ρA corresponds to common physical situa-
tions: any decoherence or imperfection in the state prepa-
ration leads to correlations with the environment E. In this
general case, Alice can estimate the exact value of
HminðPδpjEÞ only by performing a complete quantum state
tomography.
However, a simpler approach consists in estimating a

lower bound. This can be obtained by exploiting the
entropic uncertainty principle (EUP) for conditional
min- and max-entropies in the presence of infinite dimen-
sional quantummemories introduced in Ref. [27]. The EUP
can be summarized as follows: let us consider a tripartite
state ωABE with Alice, Bob, and Eve holding infinite
dimensional quantum systems A, B, and E, respectively.
Alice measures quadratures P̂δp and Q̂δq on ωA ¼
TrBE½ωABE% and she stores the outcomes in two classical
systems Pδp and Qδq. The EUP is written as

HminðPδpjEÞ þHmaxðQδqjBÞ ≥ − log2 cðδq; δpÞ; ð1Þ

where

FIG. 1. Scheme of the source-device-independent CV-QRNG
[phase modulator (PM), local oscillator (LO)]. The input state is
the vacuum (or a squeezed state).
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FIG. 2. Experimental homodyne measurement of the vacuum
state. Raw random numbers and check data are obtained by
measurements in the momentum P̂ (blue points) or position Q̂
(red points) quadrature, respectively. According to the protocol
described in the text, the check data are used to estimate a bound
on the quantum entropy HminðPδpjEÞ. Raw numbers are
“secured” by applying a strong randomness extractor calibrated
HminðPδpjEÞ. Part of the secure bits are “reinvested” in the
process to sustain the random quadrature switching. With a
solid black line we show the signal sent to the phase modulator
(PM, see Fig. 1).
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cðδq; δpÞ ¼ 1

2π
δqδpSð1Þ0

!
1;
δqδp
4

"
2

; ð2Þ

and Sð1Þ0 is the 0th radial prolate spheroidal wave function of
the first kind [28]. In Eq. (1), the conditional max-entropy
HmaxðQδqjBÞ expresses Bob’s lack of knowledge about qk.
The term cðδq; δpÞ is the “incompatibility” of the meas-
urement operators; i.e., it is maximal if the operators are
maximally complementary.
For a QRNG, the system B coincides with A and the

max-entropy HmaxðQδqjBÞ reduces to HmaxðQδqÞ, the
Rényi entropy of order 1=2 [12]. Then, it is straightforward
to derive the lower bound HminðPδpjEÞ ≥ Hlow with

HlowðPδpjEÞ≡ − log2 cðδq; δpÞ −HmaxðQδqÞ: ð3Þ

Our method to estimate the content of true random bits for
source-device-independent CV-QRNG is summarized in
Figs. 1 and 2 and works as follows: (i) Alice prepares the
state ρA (the vacuum or a squeezed state), measures it in the
P̂ quadrature (called data quadrature), and generates raw
random numbers; (ii) the measurement is randomly
swapped to the Q̂ quadrature (called check quadrature):
Alice estimates HmaxðQδqÞ by using the outcomes of the
check quadrature measurements by

HmaxðQδqÞ ¼ 2 log2
X

k

ffiffiffiffiffiffiffiffiffiffiffi
pðqkÞ

p
; ð4Þ

(iii) the bound of HminðPδpjEÞ is evaluated by using
Eq. (3); (iv) a quantum randomness extractor calibrated
on Hlow is applied to the raw random numbers. An initial
random seed for the measurement switching is required, but
the protocol is able to expand the initial randomness as in
the protocol introduced in Ref. [23].
The measurement of the Q̂ operator can be regarded

as a tool to estimate, with a partial tomography, whether the
state ρA is pure or not. In order to better illustrate our

approach, in Fig. 3 we compare the classical min-entropy
H∞ðPδpÞ and the bound in Eq. (3) as a function of the
precision δ≡ δq ¼ δp. The quantum min-entropy is
bounded by these two values, namely, HlowðPδjEÞ ≤
HminðPδjEÞ ≤ H∞ðPδÞ. Two different input states ρA are
considered: a thermal state with variance σ2th ¼ 1=2þ μ,
where μ ¼ 1 is the mean photon number, and the vacuum
state, with variance σ2vac ¼ 1=2. For low δ, the classical min-
entropy and the bound can be evaluated analytically, giving
H∞ðPδÞ ≃ −log2½δ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πð1 þ 2μÞ

p
% and HLOWðPδpjEÞ≃

H∞ðPδÞ−2log2½ðδ=
ffiffiffiffiffiffi
2π

p
Þϑ3ð0;e−δ

2=ð2þ4μÞÞ% with ϑ3ðz;qÞ≡P
nq

n2e2niz the Jacobi theta function.
For pure states, equality between HminðPδpÞ and

HminðPδpjEÞ is expected and this is the case for the
vacuum. On the other hand, for a thermal state, the classical
min-entropy always overestimate the content of true
randomness. A thermal state with μ > 0 is indeed mixed
and it can be purified by a two mode squeezed vacuum state
ρAE, an optical version of the EPR entangled state [29].
This implies that ρA is correlated with the environment
system E: if Eve controls the system E, she can gain
information on the quadrature outputs measured by Alice.
The gap between HminðPδpÞ and HminðPδpjEÞ corre-

sponds to the possible leakage of information due to this
correlation. We also note that when δ is large, the bound in
Eq. (3) underestimates the number of true random bits
extractable per measurement because the lower precision
implies a looser estimation of the input state.
Classical side information.—In our SDI framework,

Alice controls and trusts the measurement device: the local
oscillator is monitored, the shot noise and the phase
modulator are calibrated [30]. We also assume that Alice
optimizes her hardware such that the independence and
uniformity of the numbers are not spoiled (e.g., by over-
sampling or by using unbalanced beam splitters). We now
show that our method takes into account effectively also
classical side information. Indeed, even if ρA were pure and
the generator is optimized, the hardware anyway features
an intrinsic classical noise which adds in quadrature to the
quantum signal. The result is an increase of the quadrature
variance with respect to the shot-noise limit 1=2; cf. the
data distribution in Fig. 2. For example, for the vacuum
input state one observes a variance of σ02vac ¼ 1=2þ hnnoisei
in all quadratures, as for a thermal state. Because Alice
cannot distinguish whether the input state is mixed or pure,
the protocol considers the security most conservative
option: any observed “mixedness” is treated as if it is
caused by some quantum eavesdropping strategy, i.e., the
system A entangled with Eve’s system E. Hence, any kind
of side information will be erased applying quantum
randomness extractors [31–33] properly calibrated with
the conditional min-entropy lower bound. It is clear that the
check quadrature has to be measured at random instants.
This prevents Eve from carrying out deception strategies

FIG. 3. Comparison between the classical min-entropyH∞ðPδÞ
and the bound HlowðPδjEÞ on the conditional min-entropy in
function of the measurement precision δ. We show the values of
H∞ðPδÞ and HlowðPδjEÞ for the vacuum state (left) and a thermal
state (right) with variance σ2th ¼ 3=2. For the vacuum state, both
estimators attain the same value when the precision of the
measurement increases (δ → 0). For the thermal state, i.e., a
mixed state, the classical min-entropy always overestimates the
true content of randomness.
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during the check measurements. Therefore, Alice is
now able to conservatively bound the amount of true
randomness both if an adversary holds a description
of the postmeasurement classical-quantum state or may
get access to the classical noise. It is worth noting that
the real-time estimation of HminðPδpjEÞ provides a
dynamic resiliency against drifts of the classical noise,
possibly due to varying experimental conditions (such
as temperature or interference with external electromag-
netic fields).
Experimental realization.—We implemented an all-in-

fiber setup with off-the-shelves devices (see Supplemental
Material [25] for more details) according to the scheme
reported in Fig. 1: the local oscillator was a narrow line
1550 nm laser connected to a phase modulator (PM) driven
by a signal generator (SG). The PM output was mixed with
the vacuum entering from the unused port of a fiber 50∶50
beam splitter and the exiting ports were connected to a
balanced receiver with a bandwidth of 1.6 GHz. The output
difference current signal was then sampled at an equivalent
rate of 1.25 GS=s by a 12 GHz bandwidth fast oscillo-
scope, which sent multiple acquisitions of m samples each
to a PC for offline postprocessing. We identified the
momentum and the position observables as the data and
the check quadratures, respectively. We set a ratio of 1=20
between m and the number of check measurements, nQ. To
be compliant with the protocol, a random seed was
preinstalled into the SG in order to select the starting
instant of five nQ ¼ 0.01m long check measurement
intervals. From these measurements we estimated the
variance for the vacuum state to be σ02vac ≈ 0.578, i.e.,
15.6% larger than the theoretical value of 1=2, as a
consequence of the electronic noise, which is then treated
as an impurity of the input state.
For the practical realization of the protocol, we take into

account also the finite-size effects by using the smooth min-
entropy,Hϵ

minðZjEÞ. By usingEq. (43) inRef. [34] andEq. (2)
in Ref. [35] the smooth min-entropy can be bounded as

Hϵ
minðPδpjEÞ ≥ HlowðPδpjEÞ −

1
ffiffiffiffiffiffi
nP

p Δ≡Hϵ
lowðPδpjEÞ;

ð5Þ

with Δ ¼ 4log2ð21þHmaxðQδqÞ=2 þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log2ð2=ϵ2Þ

p
and nP ¼

m − nQ the number of measurements for the position quad-
rature and ϵ the security parameter (cf. Ref. [34]).We note that
Hϵ

low reduces to Hlow when n → ∞.
In Fig. 4 we compare the entropies obtained on a typical

data set of multiple oscilloscope acquisitions as a function
of its internal analog-to-digital converter resolution and for
different values ofm. A resolution of j bits corresponds to a
precision δj ¼ ΔVmax=2j with ΔVmax the oscilloscope
full-scale setting. With solid lines we show the theoretical
value of H∞, Hlow, and Hϵ

low (for different block sizes) in
the case of a vacuum input state and a perfect detection
device. In particular, for the finite-size case we used a
parameter ϵ ¼ 10−6 and three values of nP (1.2 × 106,
1.2 × 105, and 1.9 × 104). The corresponding experimental
values measured in our physical QRNG are represented
by dots. The experimental values are very close to the
respective theoretical values, and are distributed slightly
below them as a consequence of the impurity of the input
state. It is evident that H∞ overestimates the content
of true quantum randomness and then the extractor must
be calibrated with Hϵ

low. When the resolution is too low
(below 4 bits), the conditional min-entropy becomes lower
than zero.
As expected for the finite-size corrections, the larger nP is

the higher the value of true random bits achievable, and for
nP ≳ 106 the quantum min-entropy Hϵ

low almost reaches its
infinite-size limit Hlow. In this respect, the highest min-
conditional entropy is Hϵ

lowðPδ8 jEÞ ¼ 4.53' 0.01 bit per
measurement obtained for nP ≈ 106. Although the ADC
nominal resolution is 8 bits, at high sampling rates the
effective number of bits (the so-called enob) decreases.
Hence, we used a conservative bit depth of 5 bits, satisfying
the SDI requirement of having a trusted and controlled
measurement apparatus. This additional precaution then
lowers the entropy to Hϵ

lowðPδ5 jEÞ ¼ 1.49' 0.01 bits per
sample. To evaluate the secure generation rate, i.e., the net
number of true randombits permeasurement, rsec, we need to
account for the random bits that, in a full implementation of
the protocol, would be “recycled” into the SG for the
continuous quadrature switching. Here, a given random
combination of the instants for five nonoverlapping check
intervals can be encoded in a seed t ¼ ⌈log2ð1005 Þ⌉ bits long.
Therefore, rsec is given by rsec ¼ ð1=mÞ½nPHϵ

lowðPδ5 jEÞ − t%.
By considering the oscilloscope sampling rate, these results
imply an equivalent secure bit generation rate of approx-
imately 1.77 Gbit=s.
Conclusions.—Ultimate randomness is reachable only

by using device independent protocols such as randomness
expansion [13] or amplification [14,15]: however, such

FIG. 4. Entropies as a function of the resolution of the
oscilloscope analog to digital converter (ADC). Solid lines are
theoretical prediction with the vacuum input state, while dots are
the experimental results.

PRL 118, 060503 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

10 FEBRUARY 2017

060503-4



protocols are highly demanding from an experimental point
of view requiring loophole-free violations of the Bell
inequalities. Our SDI protocol enables the ultrafast gen-
eration of true random numbers without assumptions on the
source of the quantum state, which could be even provided
by an eavesdropper. Our method is motivated by exper-
imental requirements: indeed, it is typically difficult to
prepare and keep a real quantum system in a pure state.
Future steps will consider the possibility of merging our
protocol with the metrologic approach introduced in
Ref. [36] and with the methods of Refs. [37,38] to take
into account imperfections of the measurement device.
Besides the security advantage achieved by bounding the
smooth min-conditional entropy, we demonstrated the
feasibility of the protocol with an ultrafast, cheap, and
compact CV-QRNG. It is worthwhile to remark that by
using commercial balanced receivers and a fast local
oscillator phase shifter, the secure generation rate can be
increased to tens of Gbit=s. Further improvements can be
envisaged when squeezed states are used as the input state.
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I. DISCRETIZATION IN CV-QRNG

For a given mode of the electromagnetic field, the
generic quadrature operator can be expressed by q̂(') =
2�

1

2

�

ei
'
2 â† + e�i'

2 â
�

being â† and â the creation and
annihilation operators such that [â, â†] = 1 holds. The
canonically conjugated operators usually identified as the
position Q and momentum P quadratures observables
are given by Q̂ ⌘ q̂(0) and P̂ ⌘ q̂(⇡). They satisfy
[Q̂, P̂ ] = i. The eigenvalues equations for position and
momentum operators are given by Q̂|qi = q|qi with q 2 R
and P̂ |pi = p|pi with p 2 R.

With CV systems, the unavoidable discretization of the
measurements due to the finite resolution of the exper-
imental devices has to be considered. More specifically,
a coarse grained version of operators can be obtained by
introducing a partition P�p = {Ik�p}

+1
k=�1 of the measure

space R [? ]. The elements Ik�p are given by half-open

intervals such that Ik�p = (k�p, (k + 1)�p] where �p is the
precision of the measurement and k 2 N. Alice applies

POVMs
n

P̂ k
�p

o

with elements P̂ k
�p =

R

(k+1)�p

k�p
dp|pihp|

on A and she stores the outcomes pk in the classical
system (register) P�p. The post-measurement state of
P�p corresponds to the probability distribution of pk,

and it is given by ⇢P =
P

k p(pk)P̂
k
�p where p(pk) =

Tr
h

!AP̂
k
�p

i

=
R

(k+1)�p

k
dphp|⇢A|pi. Similarly, the dis-

cretized Q̂ operator is given by the POVMs
n

Q̂k
�q

o

with

elements Q̂k
�q =

R

(k+1)�q

k�q
dq|qihq|.

The estimation of max-entropy H
max

(Q�q) is based on
the relative frequency of the outcomes of the discretized
Q̂ operator, as given by eq. (4) of the main text:

2Hmax

(Q�q) =
h

+1
X

k=�1

p

p(qk)
i

2

(1)

While the sum in the above equation extends from �1
to +1, experimental outcomes range from �M to +M
due to experimental finite measurement range. Outcomes
which exceed this range are registered asM+1 or �M�1
outcomes. We estimated the max-entropy by limiting the
sum in (1) from �M to M , thus not considering the term
P

k>|M |
p

p(pk). We can upper bound the latter term,
by considering a trial with a total of N measurements:
defining PM =

P�M
k=�1 p(pk) +

P1
k=M p(pk), we expect

that n ⇠ PMN events result in an outcome out of range.

The worst scenario, that maximize the neglected term,
is given when each of the n outcomes falls into a di↵er-
ent bin. In this situation, we have p(pk) ⇡ 1/N such that
P

k>|M |
p

p(pk)  np
N

⇡
p
NPM . Since PM corresponds

to the double sided tail probability of the Gaussian dis-
tribution, a narrow distribution (i.e. a small standard
deviation � compared to M�) corresponds to a low error
in the min-entropy estimation. For the experimental data
presented in the main text, we have thatM� ⇡ 12� which
implies a PM ⇡ 10�32: with the max entropy evaluated
on N ⇡ 62 · 103 measurements we then estimate that the
error introduced by the finite measurement range, is of
order of 10�30.

II. EXPERIMENTAL SETUP

A scheme of the experimental setup is reported in Fig.
1 of the Main Text. The local oscillator is provided by
a Thorlabs SFL-1550 fiber coupled laser centered at
1550 nm. The laser is driven by a current and tempera-
ture controller which keep the laser operating in a single
mode regime. The LO output is therefore sent to a free-
space optical polarization control unit realized by means
of half and quarter wave-plates. By this device the in-
put polarization can be tuned before entering the phase
modulator (PM). The PM is a Photline MPZ-LN-20

controlled by a signal generatorAgilent 33100 that ran-
domly switch between the two values of ' (0 or ⇡).
By means of 50:50 fiber beamsplitter (BS), the PM

output is mixed with the vacuum entering from a closed
port of the BS. The superposition of the LO and the vac-
uum state is detected and converted in current by a pair
of InGaAs PINs included in the single self-contained bal-
anced receiver Thorlabs PDB480C. This device has a
nominal bandwidth of 1.6 GHz and generates an ampli-
fied signal of the di↵erence of the PIN currents. Such
monolithic configuration helps consistently to reduce the
coupling with environmental electromagnetic noise. It
is worth to remark that the setup components are “com-
mercial of the shelves” (COTS). The use of COTS devices
was motivated by the possibility to demonstrate the fea-
sibility of the method and how security can be provided
to CV-QRNG for the common use.
The final stage of the setup consists of an oscilloscope

Tektronix TDS6124C featuring a bandwidth of 12
GHz that was used as ADC.
In Fig. 1, the typical Power Spectral Density (PSD) of

the output signal is reported. In particular the PSD with
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FIG. 1. The power spectral density function of the signals
with LO turned o↵ (black line) and with a LO power of 5.5
mW (blue line) is reported. The green shaded region identifies
the 1.250 GHz wide region of the spectrum which was con-
sidered for the extraction of the raw random numbers. The
signal has been downmixed with a sinusoidal carrier at fre-
quency f0 = 0.9 GHz and then filtered with a low-pass filter
with 625 MHz cut o↵ frequency.
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FIG. 2. Top: experimental autocorrelation of the filtered
data as function of the temporal separation in multiple of the
sampling interval TS . The correlation is modulated according
a sinc function. This is indeed the expected behavior once
that a signal is filtered by a low pass filter, top inset. By
means of the Wiener-Kitchine theorem one can analytically
calculate the zeros of the autocorrelation and then the cor-
responding down sampling frequency in order to achieve a
null self-correlation. Bottom: by downsampling the origi-
nal waveforms, the quadrature measurements become uncor-
related.

the LO turned o↵ (black trace) and with a 5.5 mW LO
(blue trace) is reported. The study of the spectrum of the
signal is of fundamental importance in order to charac-
terize and optimize the measurement device. In order to
filter out those regions of the spectrum a↵ected by tech-
nical noise and to enhance the signal-to-noise ratio, we
digitally downmixed and low-pass filtered the signal. As
working region we therefore considered a flat region 1.250
GHz wide, with optimal central frequency at f

0

= 0.9
GHz. The quadrature signal was obtained by sampling
the detector signal at a rate of 10 GSampes/s and then
by performing a downsampling to 1.25 GSamples/s, in
order to match the Nyquist frequency of the low-pass
filter and to eliminate the correlations due to oversam-
pling. On this regard in Fig. 2, we report the correlation
before (top) and after (down) the downsampling in func-
tion of the temporal separation of the samples. Before
downsampling, the correlation shows the sinc modulation
imposed by the low-pass filter (the blue curve is the theo-
retical expected correlation while the orange dots are the
average experimental points). After downsampling, the
residual correlation is, in average, two orders of magni-
tude lower. Residual correlations at low separation can
be attributed to an artificial component introduced by
the oscilloscope at harmonics of 2.5 GHz. Such low cor-
relations is removed by the randomness extractor.


