
Original Citation:

Shanks function transformations in a vector space

Elsevier B.V.
Publisher:

Published version:
DOI:

Terms of use:
Open Access

(Article begins on next page)

This article is made available under terms and conditions applicable to Open Access Guidelines, as
described at http://www.unipd.it/download/file/fid/55401 (Italian only)

Availability:
This version is available at: 11577/3227731 since: 2021-02-27T23:46:24Z

10.1016/j.apnum.2016.06.013

Università degli Studi di Padova

Padua Research Archive - Institutional Repository



Shanks function transformations in a vector space

Claude Brezinski∗ Michela Redivo–Zaglia†

Friendly dedicated to Prof. Francesco Costabile on the occasion of his 70th birthday

Abstract

In this paper, we show how to construct various extensions of Shanks
transformation for functions in a vector space. They are aimed at transforming
a function tending slowly to its limit when the argument tends to infinity into
another function with better convergence properties. Their expressions as
ratio of determinants and recursive algorithms for their implementation are
given. A simplified form of one of them is derived. It allows us to obtain
a convergence result for an important class of functions. An application to
integrable systems is discussed.

Keywords: function tranformation, Shanks transformation, confluent ε–algorithm,
Lotka–Volterra equation.

1 Introduction

In numerical analysis and in applied mathematics, many methods make use of se-
quences. If a sequence is slowly converging, it can be useful to accelerate it. This
can be done, in some cases, by modifying the process which constructs the sequence.
However, if this process is a black box and if one has no access to it, another possibil-
ity is to transform the sequence, by a so-called sequence transformation, into another
sequence converging faster to the same limit under some assumptions. For sequences
of numbers, one of the most well–known such transformations is due to Shanks [12].
It can be recursively implemented by the scalar ε–algorithm of Wynn [13]. This
algorithm was extended by Wynn to sequences of vectors [15]. But, since the alge-
braic theory underlying this vector ε–algorithm could not be easily derived from its
rule, two other generalizations were proposed in [3]. The first one can be recursively
implemented by two different topological ε–algorithms (TEA1 and TEA2), while the
second one requires the use of the Sβ–algorithm [10] (see also [11]). Recently, the

∗Université de Lille, CNRS, UMR 8524 - Laboratoire Paul Painlevé, F-59000 Lille, France,
E–mail: Claude.Brezinski@univ-lille1.fr.
†Università degli Studi di Padova, Dipartimento di Matematica, Via Trieste 63, 35121–Padova,

Italy. E–mail: Michela.RedivoZaglia@unipd.it.

1



rules of the TEA1 and TEA2 were greatly simplified, thus leading to the simplified
topological ε–algorithms (STEA1 and STEA2) [7]. The corresponding software and
applications can be found in [8].

Similarly, when a real (or complex) function of a real (or complex) variable is
tending slowly to a limit with its argument, it can be transformed into a new function
by a function transformation. Function transformations are usually obtained by
replacing the divided differences appearing in a scalar sequence transformation by
derivatives after letting a parameter tend to zero. This is why the adjective confluent
was added to the name of the algorithms for implementing them. A Shanks (real
or complex) function transformation was presented by Wynn together with the
corresponding confluent ε–algorithm for its implementation [14]. Let us mention that
generalizations of this transformation and of this algorithm to the confluent vector
case were never proposed. Later, a topological Shanks function transformation for
functions in a vector space, together with its confluent topological ε–algorithm, were
proposed in [4].

The aim of this paper is to consider several topological Shanks function trans-
formations in a vector space and to discuss the implementation of some of them by
confluent recursive algorithms. A new and cheaper confluent topological ε–algorithm
is presented. This new algorithm allows us to obtain a convergence theorem for an
important class of functions. An application to integrable systems is discussed.

2 Topological Shanks function transformations

Let t 7−→ f(t) ∈ E be a function depending on a parameter t ∈ D ⊆ K (R or
C), where E is a vector space of sufficiently differentiable functions on K. In many
practical situations, E is Rp or Rp×q. We want to construct, for a fixed value of k,
a function transformation f ∈ E 7−→ ek ∈ E such that, for all t, ek(t) = S ∈ E if
the function f satisfies the linear differential equation of order k, called the kernel
of the transformation,

a0(f(t)− S) + a1f
′(t) + · · ·+ akf

(k)(t) = 0, ∀t (1)

where S ∈ E is independent of t, and a0, . . . , ak ∈ K are independent of k and t.
Obviously, a0 has to be different from zero and it does not restrict the generality to
impose the normalization condition a0 = 1. In the case of a complex or real function,
such a transformation was proposed by Wynn [14] together with the corresponding
recursive algorithm, the confluent ε–algorithm, for its implementation. We will now
generalize this transformation and this algorithm to a vector space E.

In Section 2.1, we consider a kernel of the form (1) leading to two transformations,
while, in Section 2.3, we will discuss another form of the kernel giving rise to two
other transformations.

2



2.1 First topological Shanks function transformations

Obviously if the function f ∈ E satisfies a relation of the form (1) where the coeffi-
cients ai are known, such a function transformation is simply defined by

ek(f(t)) = f(t) + a1f
′(t) + · · ·+ akf

(k)(t), ∀t, (2)

since a0 = 1, and it holds, ∀t, ek(f(t)) = S.

Let us now see how to compute the coefficients ai when they are unknown.
Differentiating (1), we have, for all t

a0f
′(t) + · · ·+ akf

(k+1)(t) = 0.

As in the case of sequences, we have to transform this relation in E into a relation
in K. Taking the duality product with y ∈ E∗ (the algebraic dual space of E, that
is the space of linear functionals on E), we obtain

a0〈y, f ′(t)〉+ · · ·+ ak〈y, f (k+1)(t)〉 = 0.

Then, several possibilities occur. Considering this relation, differentiating k − 1
times the functions appearing in it, and taking the normalization condition into
account leads to a system of k + 1 equations in the unknowns a0, . . . , ak (case 1).
Instead of differentiating several times the preceding relation, another way is to
use k different linear functionals y1, . . . ,yk ∈ E∗ (case 2). Obviously, a mixture
of these two strategies could also be considered but it leads to a more complicated
transformation and it will not be considered further.

In both cases, adding the normalization condition, a system of k + 1 equations
in k + 1 unknowns is obtained, and, by construction, the transformation (2) gives
∀t, ek(f(t)) = S.

Let us now apply the same procedure to a function which does not belong to
the kernel of the transformation. Any of the preceding strategies for constructing
the algebraic system giving the coefficients ai can still be used. However, since its
solution now depends on k it will be designated by a

(k)
i for i = 0, . . . , k. Then, in

both cases, we define the first topological Shanks function transformation by

ek(f(t)) = a
(k)
0 f(t) + a

(k)
1 f ′(t) + · · ·+ a

(k)
k f (k)(t), (3)

with a
(k)
0 = 1, and, by construction, it holds

Theorem 1
If, for all t,

f(t) = S− a1f ′(t)− · · · − akfk(t),

then, for all t,
ek(f(t)) = S.

3



In the first case, the coefficients a
(k)
i are solution of the system

a
(k)
0 = 1

a
(k)
0 〈y, f ′(t)〉 + · · · + a

(k)
k 〈y, f (k+1)(t)〉 = 0

...
...

a
(k)
0 〈y, f (k)(t)〉 + · · · + a

(k)
k 〈y, f (2k)(t)〉 = 0,

 , (4)

and it holds from (3)

ek(f(t)) =

∣∣∣∣∣∣∣∣∣
f(t) · · · f (k)(t)

〈y, f ′(t)〉 · · · 〈y, f (k+1)(t)〉
...

...
〈y, f (k)(t)〉 · · · 〈y, f (2k)(t)〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
〈y, f ′′(t)〉 · · · 〈y, f (k+1)(t)〉

...
...

〈y, f (k+1)(t)〉 · · · 〈y, f (2k)(t)〉

∣∣∣∣∣∣∣
, k = 0, 1, . . . , (5)

where the determinant in the numerator denotes the element of E obtained by
developing it with respect to its first row by the classical rule for expanding a
determinant.

In case 2, we have the new system (notice that the a
(k)
i are different from the

previous ones but we kept the same notation)

a
(k)
0 = 1

a
(k)
0 〈y1, f

′(t)〉 + · · · + a
(k)
k 〈y1, f

(k+1)(t)〉 = 0
...

...

a
(k)
0 〈yk, f

′(t)〉 + · · · + a
(k)
k 〈yk, f

(k+1)(t)〉 = 0,

 (6)

where y1, . . . ,yk ∈ E∗, and (3) leads to

ek(f(t)) =

∣∣∣∣∣∣∣∣∣
f(t) · · · f (k)(t)

〈y1, f
′(t)〉 · · · 〈y1, f

(k+1)(t)〉
...

...
〈yk, f

′(t)〉 · · · 〈yk, f
(k+1)(t)〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
〈y1, f

′′(t)〉 · · · 〈y1, f
(k+1)(t)〉

...
...

〈yk, f
′′(t)〉 · · · 〈yk, f

(k+1)(t)〉

∣∣∣∣∣∣∣
, k = 0, 1, . . . (7)

These transformations can be implemented by solving the linear system (4) or
the system (6), and then using (3), but, in case 1, there also exist various recursive
algorithms for this purpose as we will see now.

4



2.2 Implementation by recursive algorithms

Let f be a real function depending on a parameter t. The scalar Shanks function
transformation is given by (3) and it can be recursively implemented by the confluent
ε–algorithm of Wynn [14] whose rule is

εk+1(t) = εk−1(t) + 1/ε′k(t), (8)

with ε−1(t) = 0 and ε0(t) = f(t). It holds ε2k(t) = ek(f(t)) and ε2k+1(t) =
1/ek(f ′(t)).

Remark 1
Let us mention that an extension of this algorithm to the vector case was never
proposed. However, in the case where E is an Hilbert space, one can imagine the
following extension

εk+1(t) = εk−1(t) + ε′k(t)/〈ε′k(t), ε′k(t)〉.

Such an algorithm remains to be studied. In particular, can εk(t) ∈ E be expressed
as a ratio of determinants? This is an interesting challenge.

The first topological Shanks function transformation (5), that is corresponding to
case 1, can be implemented by a recursive algorithm called the confluent topological
ε–algorithm [4]. After presenting its rules, we will explain how to modify them by
eliminating the intermediate linear functionals and replacing them by the scalar
functions given by the confluent ε–algorithm of Wynn.

2.2.1 The confluent topological ε–algorithm

The topological Shanks function transformation (5) can be implemented by the
confluent topological ε–algorithm [4] whose rules are, for k = 0, 1, . . .,

ε2k+1(t) = ε2k−1(t) +
y

〈y, ε′2k(t)〉
∈ E∗

ε2k+2(t) = ε2k(t) +
ε′2k(t)

〈ε′2k+1(t), ε
′
2k(t)〉

∈ E,

 (9)

with ε−1(t) = 0 ∈ E∗ and ε0(t) = f(t) ∈ E, and it holds

ε2k(t) = ek(f(t)) and ε2k+1(t) = y/〈y, ek(f ′(t))〉. (10)

As can be seen, only the functions ε2k are of interest.

Important remark: in order to understand how the confluent ε–algorithms (scalar,
topological and, below, simplified) presented in this paper, work, an important

5



remark has to be made about the differential operator. Remind that f depends on
a parameter t. Then the duality products 〈y, f (i)〉 also depend on this parameter t.
Thus, when differentiating the elements of K, E and E∗ appearing in the rules of the
confluent ε–algorithm of Wynn, or in those of the confluent topological ε–algorithm,
or in those of the simplified confluent topological ε–algorithm which will be defined
below, the expressions containing duality products have also to be differentiated
with respect to t. Obviously, the implementation of these algorithms requires the
use of a symbolic language.

The main difficulty with the recursive rules (9) is that they need to differentiate
the εk’s and, predominately, to use the ε2k+1’s which are elements of E∗. Thus,
we will now derive a simpler algorithm for the implementation of the topological
Shanks function transformation in case 1.

2.2.2 The simplified confluent topological ε–algorithm

Consider the scalar function f̂(t) = 〈y, f(t)〉 ∈ K, and apply Shanks function trans-

formation and Wynn’s confluent ε–algorithm (8) to it. We denote by êk(f̂(t)) and
ε̂k(t) their results. As seen above, it holds

ε̂2k(t) = êk(f̂(t)), ε̂2k+1(t) = 1/êk(f̂ ′(t)).

We will now show how to modify the confluent topological ε–algorithm (9) by
combining it with the confluent ε–algorithm of Wynn (8), thus leading to a new
algorithm, cheaper and easier to implement.

We have
〈y, ε2k(t)〉 = êk(〈y, f(t)〉), (11)

From what precedes, we also have

ε2k+1(t) = y/êk(〈y, f ′(t)〉) = y ε̂2k+1(t), (12)

and it follows
ε′2k+1(t) = y ε̂ ′2k+1(t), (13)

We finally obtain the simplified confluent topological ε–algorithm which, thanks to
(8), can be written under one of the following mathematically equivalent forms

ε2k+2(t) = ε2k(t) +
1

ε̂ ′2k(t)ε̂ ′2k+1(t)
ε′2k(t), (14)

= ε2k(t) +
ε̂2k+1(t)− ε̂2k−1(t)

ε̂ ′2k+1(t)
ε′2k(t), (15)

= ε2k(t) +
ε̂2k+2(t)− ε̂2k(t)

ε̂ ′2k(t)
ε′2k(t), (16)

= ε2k(t) + (ε̂2k+1(t)− ε̂2k−1(t))(ε̂2k+2(t)− ε̂2k(t))ε′2k(t), (17)

6



with ε̂0(t) = f̂(t) = 〈y, f(t)〉 as the initialization of Wynn’s confluent ε–algorithm.
As explained above, this algorithm requires to differentiate the ε̂k’s computed

from f̂ by the confluent ε–algorithm but it no longer involves elements of E∗.

2.2.3 Convergence results

Some convergence results for this topological Shanks function transformation were
already given in [4]. However, due to the nonlinearity and the complexity of the
rules of the confluent topological ε–algorithm, no other results were proved. Now,
the simplified confluent topological ε–algorithm allows us to obtain a convergence
result for a wide class of functions. Let us begin by the

Definition 1
A function f̂ is said to be totally monotonic if, ∀k and ∀t ∈ [0,+∞), (−1)kf̂ (k)(t) ≥
0.

Let us remind that, as proved by S.N. Bernstein [1], a function in [0,+∞) is
totally monotonic if and only if there exists a finite positive Borel measure µ on
[0,+∞) such that

f̂(t) =

∫ ∞
0

e−xt dµ(x), t ∈ [0,∞).

We have the following result [2]

Theorem 2
If the confluent ε–algorithm of Wynn is applied to a totally monotonic function f̂
converging to S when t goes to infinity then, ∀k, ε̂2k(t) also tends to S.

Let us now apply the simplified confluent topological ε–algorithm to a totally
monotonic function f ∈ E that is such that, ∀k and t ∈ [0,+∞), (−1)kf (k)(t) ≥
0 ∈ E. Assume that f̂(t) = 〈y, f(t)〉 is also totally monotonic. Since the elements
ε2k ∈ E and the scalar functions ε̂2k are computed by a linear combination with the
same coefficients, it implies that they share the same convergence and acceleration
properties. Thus we have the

Theorem 3
If the topological Shanks function transformation is applied to a totally monotonic
function f ∈ E converging to S ∈ E when t tends to infinity and such that, ∀k and
∀t ∈ [0,+∞), (−1)k〈y, f (k)(t)〉 ≥ 0 then, ∀k,

lim
t→∞

ε2k(t) = S.

7



2.3 Other topological Shanks function transformations

In this Section, keeping the same notations as above for the coefficients although
they are differently defined, we will derive two other topological Shanks function
transformations starting from the kernel

a0(f(t)− S) + a1(f
′(t)− S) + · · ·+ ak(f (k)(t)− S) = 0, ∀t. (18)

They differ from the topological Shanks function transformation given in [4].
They are again defined by (3) but, now, the coefficients are obtained as the solution
of the system (case 3)

a
(k)
0 + · · · + a

(k)
k = 1

a
(k)
0 〈y, f ′(t)〉 + · · · + a

(k)
k 〈y, f (k+1)(t)〉 = 0

...
...

a
(k)
0 〈y, f (k)(t)〉 + · · · + a

(k)
k 〈y, f (2k)(t)〉 = 0,

 , (19)

where y ∈ E∗.
It holds from (3) and (19)

ek(f(t)) =

∣∣∣∣∣∣∣∣∣
f(t) · · · f (k)(t)

〈y, f ′(t)〉 · · · 〈y, f (k+1)(t)〉
...

...
〈y, f (k)(t)〉 · · · 〈y, f (2k)(t)〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 · · · 1

〈y, f ′(t)〉 · · · 〈y, f (k+1)(t)〉
...

...
〈y, f (k)(t)〉 · · · 〈y, f (2k)(t)〉

∣∣∣∣∣∣∣∣∣

, k = 0, 1, . . . (20)

The coefficients a
(k)
i can also be obtained from the system (case 4)

a
(k)
0 + · · · + a

(k)
k = 1

a
(n)
0 〈y1, f

′(t)〉 + · · · + a
(k)
k 〈y1, f

(k+1)(t)〉 = 0
...

...

a
(k)
0 〈yk, f

′(t)〉 + · · · + a
(k)
k 〈yk, f

(k+1)(t)〉 = 0,

 (21)

and, in this case, (3) leads to a different transformation defined by

8



ek(f(t)) =

∣∣∣∣∣∣∣∣∣
f(t) · · · f (k)(t)

〈y1, f
′(t)〉 · · · 〈y1, f

(k+1)(t)〉
...

...
〈yk, f

′(t)〉 · · · 〈yk, f
(k+1)(t)〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 · · · 1

〈y1, f
′(t)〉 · · · 〈y1, f

(k+1)(t)〉
...

...
〈yk, f

′(t)〉 · · · 〈yk, f
(k+1)(t)〉

∣∣∣∣∣∣∣∣∣

, k = 0, 1, . . . (22)

For these two topological Shanks function transformations, if there exist S ∈ E
independent of t, and a0, . . . , ak ∈ K, independent of k and t such that (18) holds
then ∀t, ek(f(t)) = S.

These new topological Shanks function transformations can be implemented by
solving the linear system (19) or the system (21), and then using (3), but the H–
algorithm [5,9] can also be used for this purpose. Indeed, if we set, for a fixed value
of t, Sn = f (n)(t) and gi(n) = 〈y, f (n+i)(t)〉 for n = 0, 1, . . ., and i = 1, 2, . . ., then

H
(0)
k = ek(f(t)) as given by (20). With gi(n) = 〈yi, f

(n)(t)〉, we obtain H
(0)
k = ek(f(t))

as given by (22).

Remark 2
Let us remind that, if f(t) = (f1(t), . . . , fp(t))

T is a vector function, then a confluent
vector ε–algorithm can be defined from the vector ε–algorithm following the same
lines as those followed by Wynn for obtaining his confluent ε–algorithm [14]. Obvi-
ously, εk+1(t) is a combination of the form (3) but involving f(t), f ′(t), . . . , f (2k)(t).
It is not known if εk(t) can be expressed as a ratio of determinants or designants.
Moreover, convergence results have to be proved for it. This is another interesting
challenge. See [6] for details.

3 An application

We will now give an application to integrable systems and complete the results given
in [6]. The variable t has been suppressed everywhere for simplicity.

We assume that E is a real inner product space. Thus, the duality product 〈·, ·〉
becomes the usual inner product, and the results of [6] hold without any modification
which does not seem to be possible for a general algebraic vector space.

Differentiating the first rule of the confluent topological ε–algorithm (9) gives

〈y, ε′2k〉2[ε′2k−1 − ε′2k+1] = 〈y, ε′′2k〉y.

9



Taking the inner product of this relation with ε′2k and setting Mk = 〈y, ε′k〉 and
Pk = 〈ε′k, ε′k+1〉 yields

M ′
2k = M2k[P2k−1 − P2k]. (23)

Similarly, differentiating the second rule of the algorithm and taking the duality
product with y gives

〈ε′2k+1, ε
′
2k〉2[ε′2k+2 − ε′2k] = ε′′2k〈ε′2k+1, ε

′
2k〉 − ε′2k〈ε′2k+1, ε

′
2k〉′,

that is
P 2
2k[M2k+2 −M2k] = M ′

2kP2k −M2kP
′
2k.

Replacing M ′
2k by its expression (23), produces

M2kP
′
2k = P2k[M2kP2k−1 −M2k+2P2k]. (24)

Thus, (23)–(24) form a couple of Lotka-Volterra type equations. They are, in
fact, incomplete since there is no relation for determining P2k−1. We will now ob-
tain it from the simplified confluent topological ε–algorithm. From (13), we have
〈y, ε′2k+1〉 = 〈y,y〉ε̂ ′2k+1 and it follows

ε′2k+1 = yM2k+1/〈y,y〉.

Taking the inner product with ε′2k and then with ε′2k+2, we obtain

〈ε′2k, ε′2k+1〉 = P2k = 〈y, ε′2k〉M2k+1/〈y,y〉 = M2kM2k+1/〈y,y〉
〈ε′2k+2, ε

′
2k+1〉 = P2k+1 = 〈y, ε′2k+2〉M2k+1/〈y,y〉 = M2k+2M2k+1/〈y,y〉.

Thus it follows
P2k+1 = P2kM2k+2/M2k

which is the missing relation in (23)–(24), and we finally obtain

M2k−2M
′
2k = M2k[M2kP2k−2 −M2k−2P2k]

M2k−2M2kP
′
2k = P2k[M2

2kP2k−2 −M2k−2M2k+2P2k].

See [6] for more results on this topic. Other applications have still to be found.

Acknowledgements: The work of C.B. was supported in part by the Labex
CEMPI (ANR-11-LABX-0007-01), and, in part, by the University of Padua. The
work of M.R.-Z. was partially supported by the University of Padua, Project 2014
No. CPDA143275.

10



References

[1] S. N. Bernstein, Sur les fonctions absolument monotones, Acta Math., 52 (1929)
1–66.

[2] C. Brezinski, Convergence d’une forme confluente de l’ε algorithme, C. R. Acad.
Sci. Paris, 273 A (1971) 582–585.

[3] C. Brezinski, Généralisation de la transformation de Shanks, de la table de
Padé et de l’ε–algorithme, Calcolo, 12 (1975) 317–360.

[4] C. Brezinski, Forme confluente de l’ε-algorithme topologique, Numer. Math.,
23 (1975) 363–370.

[5] C. Brezinski, About Henrici’s method for nonlinear equations, Symposium
on Numerical Analysis and Computational Complex Analysis, Zürich, unpub-
lished, August 1983.

[6] C. Brezinski, Cross rules and non-Abelian lattice equations for the discrete and
confluent non–scalar ε–algorithms, J. Phys. A: Math. Theor., 43 (2010) 205201.

[7] C. Brezinski, M. Redivo–Zaglia, The simplified topological ε–algorithms for
accelerating sequences in a vector space, SIAM J. Sci. Comput., 36 (2014)
A2227–A2247.

[8] C. Brezinski, M. Redivo–Zaglia, The simplified topological ε–algorithms: soft-
ware and applications, in preparation.

[9] C. Brezinski, H. Sadok, Vector sequence transformations and fixed point meth-
ods, in Numerical Methods in Laminar and Turbulent Flows, C. Taylor et al.
eds., Pineridge Press, Swansea, 1987, pp. 3–11.

[10] K. Jbilou, Méthodes d’Extrapolation et de Projection. Applications aux Suites
de Vecteurs, Thèse de 3e Cycle, Université de Lille I, 1988.

[11] K. Jbilou, H. Sadok, Some results about vector extrapolation methods and
related fixed point iteration, J. Comp. Appl. Math., 36 (1991) 385–398.

[12] D. Shanks, Non linear transformations of divergent and slowly convergent se-
quences, J. Math. Phys., 34 (1955) 1–42.

[13] P. Wynn, On a device for computing the em(Sn) transformation, MTAC, 10
(1956) 91–96.

[14] P. Wynn, Confluent forms of certain nonlinear algorithms, Arch. Math., 11
(1960) 223–234.

[15] P. Wynn, Acceleration techniques for iterated vector and matrix problems,
Math. Comput., 16 (1962) 301–322.

11


