
materials

Article

Bioactive Glass-Ceramic Scaffolds from Novel
‘Inorganic Gel Casting’ and Sinter-Crystallization

Hamada Elsayed 1,2, Acacio Rincón Romero 1, Letizia Ferroni 3, Chiara Gardin 3, Barbara Zavan 3

and Enrico Bernardo 1,*
1 Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy;

hamadasaidabdelwahab.elsayed@unipd.it (H.E.); acacio.rinconromero@unipd.it (A.R.R.)
2 Ceramics Department, National Research Centre, El-Bohous Street, Cairo 12622, Egypt
3 Department of Biomedical Sciences, Universiy of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy;

letizia.ferroni@unipd.it (L.F.); chiara.gardin@unipd.it (C.G.); barbara.zavan@unipd.it (B.Z.)
* Correspondence: enrico.bernardo@unipd.it; Tel.: +39-049-827-5510; Fax: +39-049-827-5505

Academic Editors: Andrew J. Ruys and Jérôme Chevalier
Received: 27 December 2016; Accepted: 7 February 2017; Published: 13 February 2017

Abstract: Highly porous wollastonite-diopside glass-ceramics have been successfully obtained by
a new gel-casting technique. The gelation of an aqueous slurry of glass powders was not achieved
according to the polymerization of an organic monomer, but as the result of alkali activation. The
alkali activation of a Ca-Mg silicate glass (with a composition close to 50 mol % wollastonite—50 mol %
diopside, with minor amounts of Na2O and P2O5) allowed for the obtainment of well-dispersed
concentrated suspensions, undergoing progressive hardening by curing at low temperature (40 ◦C),
owing to the formation of a C–S–H (calcium silicate hydrate) gel. An extensive direct foaming
was achieved by vigorous mechanical stirring of partially gelified suspensions, comprising also a
surfactant. The open-celled structure resulting from mechanical foaming could be ‘frozen’ by the
subsequent sintering treatment, at 900–1000 ◦C, causing substantial crystallization. A total porosity
exceeding 80%, comprising both well-interconnected macro-pores and micro-pores on cell walls, was
accompanied by an excellent compressive strength, even above 5 MPa.
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1. Introduction

In the field of bioceramics, those based on Ca-silicates and Ca-Mg silicates have recently received
a growing interest for their bioactivity properties, according to their ability to stimulate body tissues
to repair themselves, in particular for bone ingrowth [1–7]. Many experiences actually concern
glass-ceramics from the controlled crystallization of glasses belonging to the CaO-MgO-SiO2 system
with B2O3, Na2O, CaF2, and P2O5 additives [6,8–10]. While additives may lead to the formation of
additional phases, such as fluorapatite [10], the main oxide leads to ternary silicates, such as akermanite,
Ca2MgSi2O7, as well as mixtures of binary and ternary silicates, e.g., wollastonite, CaSiO3, coupled
with diopside, CaMgSi2O6.

Bioactive glass-ceramics, instead of bioglasses, generally offer the possibility to maximize
the mechanical properties of highly porous, open-celled foams. The open-celled morphology is
fundamental, in bone-tissue applications, for cell ingrowth and vascularization [11], but it generally
limits the mechanical strength. For an ideally open-celled solid, the crushing strength σc, according to
the well-recognized Gibson-Ashby model [12], depends largely on the relative density (ratio between
geometric and true densities, ρrel), as follows:

σc ∝ σbend·(ρrel)
1.5
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where σbend is the bending strength of the solid phase. High porosities, and consequently low
relative densities, determine a severe ‘downscaling’ of strength, given the exponential correlation.
The enhancement of the strength of the solid phase, by crystallization, may provide a valid
compensation [13].

The strength of the solid phase, however, is not simply tuned by the degree of crystallization.
On the contrary, it may depend on the ‘quality’ of the manufacturing process. More precisely, many
glass and glass-ceramic foams are produced by the classical replica method, i.e., by the coating
of polyurethane sacrificial templates with glass slurries [13–15]. According to this method, glass
undergoes viscous flow sintering, with the thermal treatment, along with burn-out of the substrate.
The mechanical strength of the final cellular material can be negatively influenced by the formation of
hollow struts, by the sintering of glass around former polymeric struts, so that a careful control of the
sintering conditions is needed; the viscous flow of glass, under optimized conditions, may lead to the
removal of the internal porosity [16].

A strategy to obtain highly porous foamed scaffolds with generally denser struts is that of
gel-casting. The method actually yields combinations of macro- and micro-porosity; while macropores
(typically >500 µm), like in replica-derived scaffolds, favor cell ingrowth and vascularization,
micro-pores (and also nano-pores) in the cell walls favor cell attachment [11,15]. Starting from the
early 2000s, gel casting has been widely applied to sol-gel formulations [15,17]; air bubbles may be
incorporated by mechanical stirring of solutions (‘direct foaming’) at the early stages of gelification (sol
state), with the help of surfactants, and kept by the progressive hardening (transition to the gel state).
Intensive research, especially conducted by Jones and Hench [18–20], has demonstrated that the pore
architecture can be tuned, operating on the many variables of sol-gel processing, such as chemistry
of both glass and surfactants. In parallel, gel-casting has been applied even to suspensions of glass
powders, subjected to gelification according to the addition of specific organic agents (monomers,
cross-linkers, and catalysts) [21,22]. Highly porous gelified suspensions are converted into glass
scaffolds by a sintering treatment, causing also the burn-out of any organic fraction.

The present paper is essentially aimed at presenting a new approach to glass-ceramic foams
implying a revision of the gel casting process for direct foaming, starting from alkali activation of
glass powders, followed by sinter-crystallization, i.e., viscous flow sintering of glass with concurrent
crystallization. The alkali-activation is actually receiving growing interest in the fields of ceramics.
Usual alkali-activated materials, generally known as “geopolymers”, are produced through the reaction
of an alumino-silicate with an alkaline compound, which is typically a concentrated aqueous solution of
alkali hydroxide or silicate [23]. These raw materials yield a ‘zeolite-like’ gel, consisting of a continuous,
three-dimensional alumino-silicate network, amorphous or crystalline [23]. The network features the
bridging of [SiO4] and [AlO4] tetrahedra, the latter being formed by the presence of alkali ions in
the surrounding spaces, for the charge compensation. The alkali ions remain substantially ‘trapped’
in the alumino-silicate network, for an optimum Al2O3/SiO2 balance in the raw materials, with the
achievement of chemically stable products. A gel is formed, in any case, also from formulations with
different Al2O3/SiO2 balances; as an example, CaO-rich formulations do not yield a ‘zeolite-like’ gel,
but provide a condensation product that could be termed ‘tobermorite-like’ gel, given the analogy with
the products of cement hydration [23]. As a consequence, the term ‘inorganic polymer’ may sound
more appropriate to identify the products, being independent from the structure of the gel [23,24].

The concept of alkali activation and ‘inorganic polymerization’ may be applied also to glasses
as raw materials. Glasses with engineered chemical composition (alumino-silicate glasses) can be
used as precursors for geopolymer-like materials [25–27] to be used as new binders for the building
industry, according to the formation of sodium alumino-silicate hydrate (N–A–S–H) and calcium
alumino-silicate hydrate (C–A–S–H) gels. With proper molecular balances between different oxides,
both strength and chemical stability are optimized. Recycled glass can be used as a component
of mixtures yielding geopolymers [28–30]; if a zeolite-like gel is not the target, even only common
soda lime-glass cullet, activated with sodium or potassium hydroxide solutions, can be used. The
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so-obtained ‘glass-based mortars’, cured at 40–60 ◦C, achieve good mechanical strength (compressive
strength of 50 MPa), but limited durability [31].

The present investigation recovers the idea of glass-based mortar, as an intermediate product
for glass foams, to be stabilized by thermal treatment, as recently found for soda-lime glass [32].
Suspensions of fine glass powders, at the early stages of gelification, may trap air by intensive
mechanical stirring with the help of a surfactant, in analogy with the processing of highly porous
geopolymers [33]. The cellular structure is stabilized first by the progression of gelification, at low
temperature, and then by viscous flow sintering, with concurrent crystallization, upon firing. The
crystallization of glass, besides enhancing the mechanical properties, is intended to impede excessive
viscous flow, that could lead to the collapse of the cellular structure, in analogy with previous
experiences [34].

2. Experimental Procedure

2.1. Starting Glass

The reference material for the present investigation consisted of a glass belonging to the
CaO-MgO-SiO2 system. The overall composition (SiO2: 51.7 wt %; CaO: 32.1%; MgO: 11.5%; Na2O:
2.2%; P2O5: 2.5%) corresponds to a CaO:MgO:SiO2 molar ratio equal to 2:1:3, theoretically leading
to 50 mol % wollastonite (W, CaO·SiO2) and 50% diopside (D, CaO·MgO·2SiO2), so that it will be
later referred to as W-D glass. The glass was produced from pure minerals and chemicals (silica,
dolomite, calcium carbonate—all in powders <10 µm, Industrie Bitossi, Vinci, Italy—and sodium
phosphate—sodium pyrophosphate, Na4P2O7, Sigma-Aldrich, Gillingham, UK), by melting in a
platinum crucible at a temperature of 1400 ◦C (heating rate of 10 ◦C/min).

The mixture led to a homogeneous glass, despite the short holding time (15 min at 1400 ◦C), that
was suddenly cooled by direct pouring on a cold metal plate. The glass fragments were easily reduced
into fine powders by ball milling and later manually sieved; only the particles with a diameter below
75 µm were kept.

2.2. Preparation and Microstructural Characterization of Foams

W-D glass fine powders were introduced in an aqueous solution containing 1 M NaOH (reagent
grade, Sigma-Aldrich), for a solid loading of 60 and 65 wt %. The glass powders were subjected to
alkaline attack for 3 h, under low speed mechanical stirring (500 rpm). After alkaline activation, the
obtained suspensions of partially dissolved glass powders were cast in several polystyrene cylindrical
moulds (60 mm diameter) and then added with 4 wt % Triton X-100 (polyoxyethylene octyl phenyl
ether—C14H22O(C2H4O)n, n = 9–10, Sigma-Aldrich), a non-ionic surfactant that does not interfere
with ceramic dispersions [35]. The mixtures were foamed by vigorous mechanical mixing (2000 rpm),
for 5 min and later left at 40 ◦C for 24 h in order to complete the gelation before demolding. It should
be noted that the foamed samples were easily handled, after demolding, without any heat treatment
applied. Finally, hardened foams were fired at 900–1000 ◦C for 1 h with a heating rate of 2 and
5 ◦C/min. Figure 1 shows the flowchart of process used for fabricating wollasonite-diopside (W-D)
glass-ceramic foams.

W-D glass powders and foamed gels were subjected to thermogravimetric analysis (TGA, STA409,
Netzsch Gerätebau GmbH, Selb, Germany) and Fourier-transform infrared spectroscopy (FTIR, FTIR
model 2000, Perkin Elmer, Waltham, MA, USA). The crystalline phases were identified by means of
X-ray diffraction on powdered samples (XRD; Bruker D8 Advance, Bruker AXS GmbH, Karlsruhe,
Germany), supported by data from PDF-2 database (ICDD-International Centre for Diffraction Data,
Newtown Square, PA, USA) and Match! program package (Crystal Impact GbR, Bonn, Germany).

The bulk density of the foams was determined from the weight-to-volume ratio, using a caliper
and a digital balance. The true density of the samples was measured by means of a gas pycnometer
(Micromeritics AccuPyc 1330, Norcross, GA, USA), operating with He gas on finely milled samples.
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The compressive strength of foams was measured at room temperature, by means of an Instron 1121
UTM (Instron, Danvers, MA, USA) operating with a cross-head speed of 1 mm/min. Each data point
represents the average value of 5 to 10 individual tests.

Microstructural characterizations were performed by optical stereomicroscopy (AxioCam ERc 5s
Microscope Camera, Carl Zeiss Microscopy, Thornwood, NY, USA) and scanning electron microscopy
(SEM) equipped with energy dispersive spectroscopy (EDS) (FEI Quanta 200 ESEM, FEI, Hillsboro,
OR, USA).
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Figure 1. Flow chart of the W-D glass foams processing using the alkaline activation and gel casting.

2.3. Assessment of the In Vitro Bioactivity and Cell Culture Test

For cell culture studies, samples were cut to 10 × 10 × 5 mm3 and sterilized by autoclaving
at 121 ◦C for 20 min. Samples were then fixed to 48-well plates. Normal human adult dermal
fibroblasts (ATCC®-PCS-201-012™; American Type Culture Collection, Manassas, VA, USA) were
seeded at a density of 4 × 105 cells/piece in cDMEM, which consisted of Dulbecco’s Modified Eagle
Medium (DMEM) (Lonza S.r.l., Milano, Italy), supplemented with 10 vol % Fetal Bovine Serum (FBS)
(Bidachem-Spa, Milano, Italy) and 1 vol % Penicillin/Streptomycin (P/S) (EuroClone, Milano, Italy).
The 3D cultures were incubated at 37 ◦C and 5% CO2 for seven days, with media changes every two
days. Control conditions were represented by cells cultured on tissue culture plates (TCP) in cDMEM
for the same culturing time.

Cell proliferation rate was evaluated after three and seven days from seeding with the MTT
(methylthiazolyl-tetrazolium) based proliferation assay, performed according to the method of Denizot
and Lang with minor modifications [22]. Briefly, samples were incubated for 3 h at 37 ◦C in 1 mL of
0.5 mg/mL MTT solution prepared in Phosphate Buffered Saline (PBS) (EuroClone). After removal of
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the MTT solution by pipette, 0.5 mL of 10% DMSO in isopropanol was added to extract the formazan
in the samples for 30 min at 37 ◦C. For each sample, absorbance values at 570 nm were recorded in
duplicate on 200 µL aliquots deposited in microwell plates using a multilabel plate reader (Victor 3,
PerkinElmer Inc., Waltham, MA, USA).

LDH activity was measured using the Lactate Dehydrogenase Activity Assay Kit (Sigma-Aldrich,
Saint Louis, MO, USA) according to the manufacturer's instructions. All conditions were tested in
duplicate. The culture medium was reserved to determine extracellular LDH. The intracellular LDH
was estimated after cells lysis with the assay buffer contained in the kit. All sampled were incubated
with a supplied reaction mixture, resulting in a product whose absorbance was measured at 450 nm
using a Victor 3 multilabel plate reader.

For SEM imaging, fibroblasts grown on samples for three and seven days were fixed in
2.5% glutaraldehyde in 0.1 M cacodylate buffer for 1 h, then progressively dehydrated in ethanol.
All micrographs were obtained using a JSM JEOL 6490 SEM microscope (JEOL, Tokyo, Japan). The SEM
analysis was performed at Centro di Analisi e Servizi Per la Certificazione (CEASC, University of
Padova, Padova, Italy).

3. Results and Discussion

The formulation of W-D glass was conceived on the basis of a series of experiments
concerning another method for the obtainment of highly porous glass-ceramics by direct foaming
of precursor mixtures, based on preceramic polymers and reactive fillers [36,37]. More precisely,
wollastonite–diopside (W-D) glass-ceramics were developed from silicone polymers filled with CaCO3

and Mg(OH)2. The use of preceramic polymers enabled the fabrication of highly porous foams by
water release with the silicones still in the polymeric state at low temperature (300–350 ◦C), owing to the
introduction of small amounts of hydrated salts. Hydrated salts corresponded to sodium tetraborate
decahydrate (Na2O·2B2O3·10H2O) and to sodium phosphate dibasic heptahydrate (Na2HPO4·7H2O);
both salts formed a liquid phase at the final firing temperature (1100 ◦C), at which wollastonite
and diopside developed according to the reaction between CaO and MgO (from fillers) and silica
(from the oxidative decomposition of silicones). According to the MTT assay, polymer-derived
wollastonite-diopside foams showed promising results in terms of cell viability, LDH activity tests, as
well as compressive strength [36,37].

Previous experiments on the alkali activation of soda-lime glass cullet [32] have already
demonstrated the ‘tobermorite-like’ nature of the formed gels. In particular, the hardening of glass
suspensions was attributed to the formation of C–S–H compounds, owing to the appearance of a
distinctive band in the FTIR spectra, in the 3000–3700 cm−1 range [25]. W-D glass after activation,
direct foaming and drying (conditions of ‘green’ foam), as illustrated by Figure 2, exhibits the same
band, assigned to stretching vibration of O–H groups. A weaker band around 1650 cm−1, assigned
to deformation mode of O–H bond, also appears. In the as received state (lower plot in Figure 2),
the broad band from 1290 to 900 cm−1 and the bands at 800 and 450 cm−1 could be ascribed to the
stretching mode and with the rocking and bending of the Si–O–Si group, respectively [38–40]. In the
alkali-activated state the same bands appear wider and flattened, likely due to the formation of more
disordered bonding in the gel.

Compared to glass powders in the as received state, the alkali-activated material actually exhibited
a slight formation of carbonate compounds (bands at 1420 and 1550 cm−1, from C–O bond), as
well as bands (especially that centered at 2900 cm−1) attributable to C–H vibrations of the organic
surfactant. The attribution to compounds subjected to thermal degradation is confirmed by the plot for
a heat-treated sample (treatment at 900 ◦C—upper plot in Figure 2), very similar to that of the starting
glass, except for the appearance of new defined bands at low wavenumber (1070, 1020, 960, 900, and
860 cm−1), attributed to the formation of crystalline silicates.

The successful low temperature gelification and foaming is illustrated by Figure 3. The alkali
concentration, amount of surfactant and stirring speed were kept constant, while the solid content of
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the slurry was varied from 60 to 65 wt % to evaluate the change on the microstructure. An increase of
glass content increased the ‘gelification ability’ of the mixtures; the consequent increase of viscosity of
suspensions is consistent with a decreased pore size passing from 60 wt % solid content (Figure 3a) to
65 wt % solid content (Figure 3c). The different pore size was confirmed after firing (Figure 3b,d) and
it was accompanied by a different overall porosity: as reported by Table 1 (discussed later), the higher
solid content determined a decrease in the total porosity of about ~10 vol %.Materials 2017, 10, 171  6 of 15 
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Figure 3. Microstructural and morphology details of W-D foams with different solid content of
the starting suspensions, before and after firing at 1000 ◦C, respectively: (a,b) foams with 60 wt %;
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The thermal evolution of the alkali-activated material is further explained by the thermo-
gravimetric analysis reported in Figure 4. The plot for the gelified material is compared with that for
pure Triton X-100; the latter plot is provided normalized according to the content of surfactant in the
alkali-activated material, i.e., 4 wt %. It can be easily observed that the weight loss at 300–500 ◦C of the
alkali-activated material cannot depend only on the burn-out of surfactant, corresponding to −12%;
in addition, a slight weight loss is experienced above 600 ◦C, well above the temperature at which the
surfactant decomposed completely.
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In good agreement with what previously observed with soda-lime glass [32], the weight losses at
low temperature (below 500 ◦C) can be ascribed, besides burn-out of surfactant, to physically absorbed
water. The weight losses above 600 ◦C can be attributed to decomposition of hydrated compounds,
with release of water from removal of –OH groups. In fact, C–S–H compounds are actually known to
release water up to high temperatures [41].

The differential thermal analysis plot in Figure 5 provides only a partial confirmation of the
above-discussed phenomena. The plot for the alkali-activated material (lower plot) probably derives
from many overlapping contributions; in our opinion, at low temperatures (<600 ◦C), there is
overlapping between the exothermic effect of surfactant burn-out (centered at 300–320 ◦C, consistent
with the onset of weight loss, for pure Triton X-100, in Figure 4) and endothermic effects of dehydration.
At higher temperatures (>600 ◦C), corresponding to the final weight loss, the exothermic effects
of glass crystallization become dominant. It is interesting to note that W-D glass is sensitive to
surface crystallization, as demonstrated by the increased intensity of the crystallization peaks with
decreasing particle size, as an effect of surface nucleation (both silicates are known to crystallize
via this mechanism [42]), but it is also sensitive to the alkali activation. More precisely, the onset of
crystallization is almost constant, with particle size, at about 830 ◦C, for pure glass, whereas the starting
of exothermic effect is downshifted at about 770 ◦C for W-D glass after alkali activation. Alkali-rich
surface gels reasonably transformed in an alkali-rich low viscosity liquid surrounding undissolved
glass particles, promoted the ionic inter-diffusion and the crystallization (alkali rich glasses are known
to feature lower activation energy for crystal growth [43]).
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The enhanced crystallization for the alkali-activated material determined a substantial ‘freezing’
of the viscous flow sintering, so that samples sintered below 900 ◦C were particularly weak. Sintered
at 900 ◦C, the samples actually featured some light grey areas, in a white matrix, reasonably due to
some carbonaceous traces from the surfactant; on the contrary, samples sintered at 1000 ◦C were both
mechanically consistent and homogeneously white.Materials 2017, 10, 171  8 of 15 
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Figure 5. Differential thermal analysis of W-D glass (different particle sizes) and ‘green’ glass foam
from alkali activation and direct foaming.

The X-ray diffraction patterns, in Figure 6, further illustrate the evolution of samples, up to the
firing at 900 and 1000 ◦C. The XRD pattern of alkali-activated materials provides additional evidence
of the formation of gels (i.e., cured W-D glass foams after demoulding), owing to the slight shift of the
amorphous halo at higher 2θ angles, a recognized proof the incorporation of network modifiers [44].
The patterns of the materials after firing at 900–1000 ◦C, on the other side, clearly demonstrate the
obtainment of the desired phases, such as wollastonite (CaSiO3, PDF#27-0088) and diopside (actually a
Mg-rich variant, Ca0.89Mg1.11Si2O6, PDF#87-698). As previously discussed, this combination of silicate
phases is highly promising for the remarkable bioactivity of wollastonite and the mechanical strength
of diopside [6,45–48].

Table 1. Physical and mechanical properties of W-D glass-ceramic foams produced by different
solid contents.

Solid Load
Heating Rate
(◦C/min), Up

to 1000 ◦C

Bulk
Density
(g/cm3)

True
Density
(g/cm3)

Total
Porosity
(vol %)

Open
Porosity
(vol %)

Compressive
Strength

(MPa)

60 wt %
2 ◦C/min 0.29 ± 0.02 2.94 ± 0.01 90.6 90.1 3.50 ± 0.51
5 ◦C/min 0.42 ± 0.05 2.95 ± 0.02 85.6 83.8 2.17 ± 0.10

65 wt %
2 ◦C/min 0.44 ± 0.03 2.97 ± 0.01 86.3 85.3 2.90 ± 0.50
5 ◦C/min 0.53 ± 0.04 2.95 ± 0.01 81.9 81.1 5.30 ± 0.74
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Figure 6. XRD patterns of W-D glass, cured W-D glass after demolding and W-D glass-ceramic foam
after firing (heating rate: 5 ◦C/min).

Table 1 reports the physical and mechanical properties of glass-ceramic foams after firing
at 1000 ◦C. It can be understood that, besides the solid load, also the heating rate may be seen as a
‘tuning factor’. Given the remarkable crystallization tendency, enhanced by the alkali activation, a low
heating rate (2 ◦C/min) caused a limited viscous flow sintering, maximizing the content of both overall
porosity and open porosity. In all cases, the compressive strength is substantial, exceeding 5 MPa for a
sample still featuring abundant open porosity. The combination of good mechanical properties and
interconnected porosity undoubtedly make the developed materials as promising candidates for bone
regeneration (overall porosities of about 80 vol % are typically associated to compressive strength
values not exceeding 2.5 MPa, in both sol-gel and melt-derived bioglass foams [21,49]).

Figure 7 collects microstructural details of porous W-D glass-ceramics from slurries with 60 and
65 wt % solids (heating rate: 2 ◦C/min), after firing at 1000 ◦C. The pore size was evaluated by means
of image analysis using the Image J software [50], and expressed as the interquartile range. It is possible
to observe the presence of open and interconnected cells, again, with different morphology depending
on the total solid content, where slightly smaller pores at higher solid content can be noticed, going
through 170–360 µm for the 60 wt % samples to 130–175 µm for the 65 wt % foams. This size pore
reduction could be explained as an effect of increased viscosity with increasing solid content, in turn
limiting cell coalescence. The SEM images of foams produced from 60 wt % slurry (see Figure 7a,b)
show large openings between adjacent pores and thin struts. A higher solid load is accompanied
by reduced interconnects (Figure 7c), but still well above the threshold (100 µm) [51] for good cell
ingrowth and vascularization; the larger struts (Figure 7d) actually contain a multitude of micropores,
so that the samples could be actually termed as featuring a ‘hierarchical porosity’. The micropores
are more visible in the high magnification details (Figure 7e,f); some dense areas could be ascribed to
former glass granules, surrounded by foamed material, reasonably derived from the thermal evolution
of surface gels. The microporosity is undoubtedly favorable to cell attachment.

The alkali surplus due to the activation process could lead to excessive leaching, if we consider
that Na+ ions could be hosted only in the residual glass phase (both crystal phases do not contain
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alkali). The assessment of this issue is fundamental, since cells could be damaged by excessive pH
levels or by fast pH variations. Figure 8 demonstrates that the pH of distilled water did not increase
significantly over time, after immersion of glass-ceramic samples, as a consequence of limited release of
alkaline or alkaline earth ions. More precisely, foamed samples with a weight of 75 mg were immersed
in 50 mL distilled water and stored for seven days; the pH, measured in triplicate (at different time
points for 1, 2, and 7 days, without refreshing) did not exceed 8.2. A detailed study of the ionic releases
is beyond the aims of the present work; however, the limited alkalinity of solutions after immersion of
samples was considered as a good starting point for cell viability studies.
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In order to assess the influence of the chemical composition of the material on fibroblast survival, 
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of the fibroblasts seeded onto W-D glass-ceramic foams for three and seven days. LDH activity was 
measured also on cells cultured in monolayer, which represented the control condition. The results 
suggest that cells seeded onto W-D glass-ceramic foams were able to produce metabolites, with 
significantly improved activity after seven days from seeding, as observed for fibroblasts grown onto 
TCP. The quantification of intracellular LDH displays the same tendency observed with the MTT 
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show low levels of LDH activity in the extracellular culture medium both on cells cultured in monolayer 
and on the scaffold, thus indicating the absence of cytotoxicity of the W-D glass-ceramic foams. 

Figure 8. pH variation induced by the wollastonite-diopside glass-ceramic scaffolds over time.

The MTT assay was performed in order to evaluate the viability of fibroblasts seeded onto W-D
glass-ceramic foams for three and seven days. As shown in Figure 9, a significant increase in cell
viability can be observed with culturing time, indicating the biocompatibility of the produced material.
A similar trend in cell growth is evident in the control condition (TCP). This suggests that the viability
of the fibroblasts was not affected by the formulation of the studied material.
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Figure 9. MTT assay of fibroblasts cultured on TCP (control condition) or on W-D glass-ceramic foam
for three and seven days. Significant difference * (p < 0.05); ** (p < 0.01); *** (p < 0.001).

In order to assess the influence of the chemical composition of the material on fibroblast survival,
the LDH activity assay was additionally performed. Figure 10a shows the intracellular LDH activity
of the fibroblasts seeded onto W-D glass-ceramic foams for three and seven days. LDH activity
was measured also on cells cultured in monolayer, which represented the control condition. The
results suggest that cells seeded onto W-D glass-ceramic foams were able to produce metabolites, with
significantly improved activity after seven days from seeding, as observed for fibroblasts grown onto
TCP. The quantification of intracellular LDH displays the same tendency observed with the MTT assay.
Culture medium was used to measure extracellular LDH activity. The graphs in Figure 10b show low
levels of LDH activity in the extracellular culture medium both on cells cultured in monolayer and on
the scaffold, thus indicating the absence of cytotoxicity of the W-D glass-ceramic foams.
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(Figure 11c,d), cells had colonized the surface of the W-D glass-ceramic foams, displaying a better 
adhesion and proliferation but still showing elongated shapes. In addition, it is possible to note that 
at seven days from seeding, cells had not only completely populated the scaffold, but they had also 
infiltrated into its pores (yellow arrows in Figure 11c). All these observations further strengthen the 
evidence of the biocompatibility of the material. 

 
Figure 11. SEM images (100× and 500× magnification) of fibroblasts cultured on W-D glass-ceramic 
foam for three (a,b) and seven (c,d) days. Note that cells are able to migrate into the pores (c, yellow 
arrows) of the scaffold after seven days from seeding. The white boxes in (a,c) represent the areas 
shown at higher magnification in (b,d). 
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SEM images of the W-D glass-ceramic foams cultured with human fibroblasts are reported in
Figure 11. After three days (Figure 11a,b) from seeding, fibroblasts were found to be spread and
attached on the surface of the samples, showing their typical elongated morphology. After seven days
(Figure 11c,d), cells had colonized the surface of the W-D glass-ceramic foams, displaying a better
adhesion and proliferation but still showing elongated shapes. In addition, it is possible to note that
at seven days from seeding, cells had not only completely populated the scaffold, but they had also
infiltrated into its pores (yellow arrows in Figure 11c). All these observations further strengthen the
evidence of the biocompatibility of the material.
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arrows) of the scaffold after seven days from seeding. The white boxes in (a,c) represent the areas
shown at higher magnification in (b,d).
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4. Conclusions

We may conclude that:

• Highly porous wollastonite-diopside glass-ceramics can be easily obtained by low temperature
‘inorganic gel-casting’, followed by sintering with concurrent crystallization (sinter-crystallization);
the crystallization limits the viscous flow, so that the microstructure in the green state is
substantially maintained upon firing up to 1000 ◦C;

• The foaming relies on the progressive hardening of aqueous glass suspensions, after alkali
activation; the gelification, owing to FTIR analysis, is consistent with the development of calcium
silicate hydrates (C–S–H), later decomposed (with the firing treatment);

• The overall process (mechanical stirring of alkali activated suspensions—with the help of a
surfactant, drying, firing with sinter-crystallization) has a great potential for the production of
‘hierarchically porous’ foams; the microstructure can be tuned operating on simple processing
parameters such solid load, in suspensions, and firing conditions (e.g., heating rate);

• The developed glass-ceramics, according to MTT and LDH activity assays, with human fibroblasts,
can be considered as biocompatible; forthcoming studies will focus on detailed studies of ionic
releases and bioactivity.
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