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The development, production and technological applications 
of carbon nanotube are rapidly growing, due to the unique 
characteristics of these fibers. Consequently, an increase is 
also expected in human exposure to such materials. However, 
little is still known about the safety of the multiple sorts of 
carbon nanotubes.

Recent studies have suggested that some types of multi-
walled carbon nanotubes (MWCNTs) have similar effects as 
asbestos. This report shows that rigid, long and needle-like 
MWCNTs induce inflammation and DNA damage in the lungs 
and in cultured cells, while flexible, long and tangled MWCNTs 
do not. It appears that the rigidity of MWCNTs is a key feature 
in triggering a specific inflammatory reaction and in causing 
cellular alterations involved in cancer formation.

These results provide new information on the adverse effects 
of MWCNTs and are useful in assessing which forms of MWC-
NTs require regulatory attention and special safety measures 
in occupational settings.
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SUMMARY 
Carbon nanotubes are among the most important nanomaterials and their production and 

industrial use are rapidly growing. Long and rigid carbon nanotubes have been described 

to have similar adverse effects as asbestos. The purpose of the present project was to 

assess how carbon nanotubes induce pulmonary inflammation and fibrosis and if these 

phenomena involve genotoxic alterations which may be important in the formation of 

malignant tumors. In addition, complementary studies were performed in vitro to further 

understand the cellular effects of carbon nanotubes. Mice were exposed to two types 

(needle-like and tangled) of long, multi-walled carbon nanotubes (MWCNTs) by pharyn-

geal aspiration (10-200 µg/mouse) and inhalation (8 mg/m³) for 4 h or 4 days (4 h/day). 

Immunotoxic and genotoxic effects in the lungs were studied by using e.g. different 

molecular biological, histological, and cytogenetic methods and electron and light 

microscopy. Cultured human macrophages –cells of first line immune defense – were 

exposed to various types of carbon nanomaterials and crocidolite asbestos, and 

immunotoxic effects were examined by e.g. assessing the expression of selected 

inflammatory cytokines and chemokines and by inhibiting some of them. Human bronchial 

epithelial cells were exposed in vitro to MWCNTs, and cytotoxic and genotoxic effects were 

assessed by fluorescence microscopy. Long, needle-like MWCNTs caused inflammation in 

mice and in cultured macrophages. In the lungs, the effect was seen as a clear increase of 

inflammatory cells, certain cytokines and chemokines; the inflammatory reaction was 

stronger than seen with crocidolite asbestos. IL-1β and the inflammasome complex 

appeared to play a central role in the inflammatory process. The type and extent of the 

inflammatory effect depended on the route of exposure. Needle-like MWCNTs induced a 

much clearer inflammation when given by inhalation than by pharyngeal aspiration. The 

inflammation caused by inhaled MWCNTs greatly resembled allergic asthma, which is an 

unusual finding. Needle-like MWCTs also increased DNA damage in lung cells both after 

pharyngeal aspiration and inhalation exposure. In the inhalation experiments, a clear 

genotoxic effect was seen in broncho-alveolar lavage cells consisting mostly of 

macrophages. The genotoxic effect of MWCNTs was local – no alterations were seen in 

blood cells. Long, needle-like MWCNTs caused DNA damage also in cultures of bronchial 

epithelial cells. Long, tangled MWCNTs were not genotoxic in mice and induced only a 

marginal increase in DNA damage in vitro. Our studies agree with the idea that long, 

needle-like MWCNTs are hazardous, showing effects that have not previously been 

described such as asthma-like inflammation and DNA damage in the lungs. The rigidity of 

long, needle-like MWCNTs is probably a central characteristic determining their health 

effects. Rigid, needle-like MWCNTs with a diameter of >50 nm caused a strong 

inflammation and were genotoxic, while thinner (diameter ~ 8-15 nm), tangled MWCNTs 

did not have similar effects. It appears that long, needle-like MWCNTs should be handled 

with special caution.  



 Evaluation of the health effects of carbon nanotubes 
 

 

TIIVISTELMÄ 

Hiilinanoputket ovat tärkeimpiä nanomateriaaleja, ja niiden tuotanto ja teknologinen käyt-

tö on kasvanut nopeasti. Pitkillä ja jäykillä hiilinanoputkikuiduilla on havaittu samoja hait-

tavaikutuksia kuin asbestilla. Tämän hankkeen tavoitteena oli selvittää, miten hiilinano-

putkien aiheuttama keuhkokudoksen tulehdus ja soluvälifibroosi syntyvät ja liittyykö näi-

hin ilmiöihin genotoksisia muutoksia, joilla katsotaan olevan merkitystä pahanlaatuisten 

kasvainten synnyssä. Eläinkokeista saatuja tuloksia täydennettiin ja selvennettiin soluvil-

jelmissä tehdyillä tutkimuksilla. Hiiriä altistettiin kahden tyyppisille (neulamaisille ja 

taipuisille), pitkille, moniseinäisille hiilinanoputkille ja krokidoliitti-asbestille aspiraatio-tek-

niikalla (10-200 µg/hiiri) sekä hengitysteitse (8 mg/m³) 4 tunnin tai 4 päivän (4 h/päivä) 

ajan. Immunotoksisia ja genotoksisia vaikutuksia keuhkoissa tutkittiin mm. käyttäen eri-

laisia molekyylibiologisia, histologisia, ja sytogeneettisiä menetelmiä sekä elektroni- ja va-

lomikroskopiaa. Soluviljelmissä ihmisen makrofageja, etulinjan immuunipuolustussoluja, 

altistettiin erilaisille hiilinanomateriaaleille ja krokidoliitti-asbestille, ja immunotoksisia vai-

kutuksia tutkittiin mm. selvittämällä tulehdusta kuvaavien välittäjäaineiden ilmentymistä 

ja estämällä eräitä niistä. Ihmisen viljeltyjä keuhkoepiteelisoluja altistettiin hiilinanoput-

kille, ja solutoksisia sekä genotoksisia vaikutuksia tutkittiin fluoresenssimikroskoopilla. Pit-

kät, neulamaiset hiilinanoputket aiheuttivat tulehdusta sekä hiirissä että soluviljelmissä. 

Keuhkoissa vaikutus näkyi tulehdussolujen ja tulehdusta ilmentävien välittäjäaineiden sel-

keänä lisääntymisenä, ja tulehdusreaktio oli voimakkaampi kuin krokidoliitti-asbestilla. Vä-

littäjäaine IL-1β ja inflammasomi-kompleksi näyttivät olevan tulehdusmekanismissa kes-

keisessä asemassa. Tulehdusreaktion laatu ja voimakkuus riippuivat altistustavasta. Neu-

lamaiset hiilinanoputket aiheuttivat huomattavasti vakavamman tulehduksen hengitys-

ilman kautta kuin aspiraatio-menetelmällä annettuina. Hengitettyinä neulamaisten hiilina-

noputkien aikaansaama tulehdus muistutti suuresti allergista astmaa, mikä on poikkeuk-

sellista. Neulamaiset hiilinanoputket aiheuttivat myös DNA-vaurioita keuhkosoluissa sekä 

aspiraatio-tekniikalla annosteltuina että hengitettyinä. Selvä perimämyrkyllinen vaikutus 

nähtiin hengitysilman kautta tapahtuneessa altistuksessa keuhkon huuhtelunäytteen so-

luissa (pääosin makrofageja). Hiilinanoputkien genotoksinen vaikutus oli paikallinen – 

muutoksia ei nähty verisoluissa. Pitkät, neulamaiset hiilinanoputket aiheuttivat DNA-vau-

rioita myös epiteelisolujen viljelmissä. Pitkät, taipuisat hiilinanoputket eivät olleet genotok-

sisia hiirillä, ja viljellyissä keuhkoputkiepiteelisoluissakin niiden vaikutus oli lievä. Tutki-

muksemme vahvisti käsitystä pitkien ja neulamaisten hiilinanoputkien vaarallisuudesta ja 

toivat esiin aivan uusia vaikutuksia kuten astmaa muistuttavan tulehduksen syntyminen 

ja DNA-vauriot keuhkoissa. Pitkien hiilinanoputkien jäykkyys on ilmeisesti keskeinen tekijä 

niiden vaikutusten kannalta. Yli 50 nm paksut, jäykät, neulamaiset hiilinanoputket aiheut-

tivat voimakkaan tulehduksen ja olivat genotoksisia, mutta ohuemmilla (8-15 nm) ja 

taipuisilla hiilinanoputkilla ei juuri ollut vaikutuksia. Näyttää siltä, että pitkiä, neulamaisia 

hiilinanoputkia tulisi käsitellä erityistä varovaisuutta noudattaen. 
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1  INTRODUCTION 

1.1 Importance of engineered nanomaterials for 
economy and society 

Engineered nanomaterials (ENM) have been defined as having at least one dimen-

sion ≤100 nm. In general, ENMs can be categorised into carbon-based materials, 

such as fullerenes and carbon nanotubes, other organic materials (e.g. nanocellu-

lose, synthetic polymers), and inorganic nanoparticles, including nanosized metal 

oxides (zinc oxide, iron oxide, titanium dioxide, and cerium oxide, etc), metals 

(gold, silver and iron) and quantum dots (cadmium sulfide and cadmium selenide). 

ENMs have attracted a great deal of attention during recent years, due to their 

many technologically interesting properties. The unique properties of ENM and their 

applications have given birth to large technological and economic growth, and future 

expectations for industries using materials at nano-scale. Nanotechnologies utilizing 

ENM are envisaged to become the cornerstone for a number of industrial sectors, 

such as micro-electronics, materials, paper, textile, energy, and cosmetics, which 

are all capable of incorporating some nano-scale-enabled properties into their 

goods, with an estimated annual turnover of ENM-based products of 3 trillion US 

dollars (Roco et al., 2010) by 2020. 

ENM can be found in more than 800 consumer products (Woodrow Wilson Inter-

national Centre for Scholars, 2011), including electronic components, cosmetics, 

cigarette filters, antimicrobial and stain-resistant fabrics and sprays, sunscreens, 

cleaning products, ski waxes, different surfaces requiring antimicrobial properties, 

and self-cleaning windows. 

Nanotechnology applications are very likely to contribute positively to the quality of 

life through the production of durable and light materials, cleaner energy, and inex-

pensive clean water production, as well as by enabling several beneficial medical 

applications, especially smart drugs (Adlakha-Hutcheon et al., 2009). Additionally, 

great environmental benefits are predicted from nanotechnology related applications 

because of the savings in raw materials, the consumption of natural resources, and 

a reduced environmental pollution (Kuhlbusch et al., 2009).  
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It should be noted, however, that some of the properties that make ENM so unique 

and beneficial for technological applications may also endanger human health 

through the potential induction of cytotoxic effects, inflammation, and even cancer. 

These features include a large surface area to mass ratio, increased surface 

reactivity, altered physico-chemical properties such as changes in melting point or 

solubility, electrical conductivity, or changes e.g. in the crystalline structure of the 

materials (Maynard and Aitken, 2007; Elder, 2009). 

1.2 Carbon nanomaterials 

Carbon nanotubes, fullerenes, and mesoporous carbon structures constitute a new 

class of carbon nanomaterials with properties that differ significantly from other 

forms of carbon such as graphite and diamond. The ability to customize synthesized 

nanotubes by attached functional groups or to assemble fullerene clusters into 

three-dimensional arrays has opened up new avenues to design high surface area 

catalyst supports and materials with high photochemical and electrochemical activi-

ty. Carbon nanotubes are also the strongest and stiffest materials yet discovered in 

terms of tensile strength and elastic modulus, respectively. Some of the applications 

utilizing carbon nanotubes and fullerenes include semiconductors, controlled drug 

delivery/release, batteries, data storage, waste recycling, and thermal protection 

(De Volder et al., 2013). 

Fullerenes are spherical, caged molecules with carbon atoms located at the corner 

of a polyhedral structure consisting of pentagons and hexagons. The best known 

and most stable fullerene is C60. The discovery of fullerenes by laser vaporization 

technique resulted in awarding the 1996 Nobel Prize in Chemistry to Curl, Kroto, 

and Smalley. 

Conventional carbon nanotubes (CNTs) are made of seamless cylinders of hexa-

gonal carbon networks and are synthesized as single-wall (SWCNTs) or multiwall 

carbon nanotubes (MWCNTs). Electric field alignment is a powerful technique that 

has been shown to orient carbon nanotubes along a particular direction during the 

nanotube growth process. In addition, carbon nanotubes can be assembled as linear 

bundles in suspension, by applying a DC electric field. Individual nanotubes have 

extensively been studied for application in field emission devices. 
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Carbon nanobuds form a material which combines two previously discovered 

nanomaterials: CNTs and fullerenes (Nasibulin et al., 2007). In this new material, 

fullerenes are covalently bonded to the outer sidewalls of the underlying nanotube. 

Consequently, nanobuds exhibit properties of both CNTs and fullerenes. The 

characteristics of nanobuds suggest that they may possess advantageous properties 

compared with SWCNTs or fullerenes alone or in their non-bonded configurations. 

1.3 Inflammatory and carcinogenic effects of carbon 
nanomaterials 

Although the health effects of various carbon nanomaterials are poorly known at the 

moment, existing evidence suggests that exposure to certain MWCNTs has the capacity to 

induce severe adverse effects in rodent models. This underlines the need for further 

research and great caution before introducing such products into the market. The needle-

like shape of certain CNTs has been compared with asbestos, raising concern that the 

widespread use of such CNTs may lead to pleural fibrosis or mesothelioma (cancer of the 

lining of the lung) which are mostly caused by exposure to asbestos. 

It was recently reported that exposing the mesothelial lining of the body cavity of mice, as 

a surrogate for the mesothelial lining of the chest cavity, to long MWCNTs results in 

asbestos-like inflammatory behaviour. This included the formation of inflammatory lesions 

known as granulomas (Poland et al., 2008). Moreover, Takagi et al. (2008) exposed a 

tumor-prone p53+/- mouse strain via single intraperitoneal injection to crocidolite 

asbestos or MWCNTs and observed that the ability of MWCNTs to induce mesotheliomas in 

this mouse model markedly exceeded that of crocidolite asbestos. The induction of 

mesothelioma by MWCNTs was subsequently shown to be dose-dependent (Takagi et al., 

2012). Another study by Sakamoto et al. (2009) reported that single intra-scrotal dose of 

MWCNTs in Fisher rats had a much higher potential to induce mesotheliomas than a 

comparable dose of crocidolite asbestos. Ryman-Rasmussen (2009) showed that MWCNTs 

reach the subpleura in mice after inhalation exposure. Subpleural fibrosis unique to this 

form of nanotubes increased after 2 and 6 weeks following inhalation - none of these 

effects was seen in mice that inhaled non-fibrous carbon black. 

These observations merit immediate attention and need to be confirmed by other studies 

as they have a very remarkable impact on the risk assessment of these unique 
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nanomaterials. Moreover, the molecular mechanisms of observed pathologic phenomena 

need to be elucidated. 

1.4 Genotoxic effects of carbon nanomaterials 

Damage to DNA is one of the most significant human health hazards, since it results in 

mutations, chromosome alterations, and increased genetic instability which are associated 

with cancer development (Bonassi et al., 2010; Kisin et al., 2011). Most known human 

carcinogens are genotoxic (Waters et al., 2010). Carcinogenesis by carbon nanomaterials 

may also involve genotoxic processes. In principle, the possible genotoxicity of nano-

materials may result from primary or secondary mechanisms (Schins and Knaapen, 

2007). Primary genotoxicity refers to the elicitation of genetic damage in the absence of 

inflammation, either by a direct interaction with genomic DNA or associated components 

that determine its integrity, or indirectly through the enhanced production of reactive 

oxygen species (ROS) by cellular constituents in response to their interaction with 

particles or through the depletion of antioxidants within the cell (Donaldson et al., 2010). 

Secondary genotoxicity is probably also an oxidative stress-driven response, but in this 

case the oxidants are considered to be derived from inflammatory leucocytes recruited to 

the site of particle deposition (Donaldson et al., 2010). 

It has been suggested that the apparent clastogenic (chromosome-breaking) capacity of 

various fibrous materials, such as asbestos, CNTs, and carbon nanofibers, is linked to the 

presence of fiber-associated iron, which would initiate ROS generation via a Fenton 

reaction (Kisin et al., 2011; Catalán et al., 2011). Fibrous materials have also been 

reported to exhibit aneugenic effects (induction of numerical chromosome alterations). 

CNTs (Muller et al., 2008, Sargent et al., 2010, 2012), carbon nanofibers (Kisin et al., 

2011), and crocidolite asbestos (Yegles et al., 1995; Dopp et al., 1997) induced chro-

mosomal aneuploidy and disturbed the mitotic spindle. The similarities of SWCNTs with 

microtubules has been suggested to make it possible for thin nanotubes to be 

incorporated into cellular structures including the mitotic spindle, which could result in the 

disruption of the centrosome and microtubules (Sargent et al., 2010, 2012), whereas 

physical interference with the spindle might occur with larger fibers such as asbestos 

(Cortez and Machado-Santelli, 2008). In both cases, the inhibition of the separation of 

dividing cells induces multi-polar mitotic spindles, which results in errors of chromosome 

number (Sargent et al., 2010, 2012). The length of the fibers could differentially affect 
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their aneugenic capacity. In fact, long asbestos fibers were more genotoxic and 

carcinogenic than shorter fibers (Cortez and Machado-Santelli, 2008). Similarly, high-

aspect-ratio MWCNTs exhibited higher toxicity than low-aspect-ratio MWCNTs (Kim et al., 

2011). 
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2 AIMS OF THE STUDY 

The aims of this study were to evaluate whether CNTs cause inflammatory and genotoxic 

effects. 

The specific goals of the final project were to investigate: 

Inflammatory reactions in the lungs of mice following CNT exposure. This 

research was expected to produce new information on inflammatory changes caused 

by CNTs in comparison with asbestos exposure. In addition, correlation between in 

vivo and in vitro approaches was investigated to gain insight on inflammatory 

mechanisms elicited by CNTs. 

Genotoxicity of CNT exposure to mouse lungs. This research focused on 

assessing possible DNA damage and chromosomal changes caused by CNTs. In 

addition, correlation between in vivo and in vitro results was investigated to shed 

light on the genotoxic mechanisms of CNTs. 

The original project proposal additionally included plans to study (a) the importance of 

inflammation in CNT-induced cancer and (b) exposure to CNTs at workplaces. Due to cuts 

in the budget of the project, this research was not included in the final project. However, 

occupational exposure to nanomaterials (including carbon nanotubes) is studied in 

another, on-going project (No. 112132) supported by the Finnish Work Environment 

Fund. 
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3 MATERIALS AND METHODS 

3.1  Carbon nanotubes and their characterisation 

Four different carbon nanomaterials and asbestos were selected for the in vitro -

experiments (see also Table 1): 

1. Carbon black (Average size 14 nm; Printex 90®, Evonik Industries) 

2. Short MWCNTs (Outer diameter, OD, 5-20 nm, length 1- >10 μm; 

Baytubes C 150 HP, Bayer Material Science) 

3. Long tangled MWCNTs (OD 8-15 nm, length 10-50 µm; MWCNTs 8-15 

OD, CheapTubes Inc©) 

4. Long needle-like MWCNTs (OD >50 nm, length 13 µm; Mitsui-7, Mitsui 

& Co.) 

5. Crocidolite asbestos (Average diameter 180 nm, length 4.6 μm; 

Pneumoconiosis Research Centre) 

The size and morphology of the nanomaterials were characterised by scanning (SEM) and 

transmission (TEM) electron microscopy (Zeiss ULTRAplus FEG-SEM, Carl Zeiss NTS 

GmbH, Germany and FEI Quanta 200F SEM FEI Company, The Netherlands and Jeol JEM 

2010 TEM, Jeol Ltd., Japan) and their composition by energy dispersive spectroscopy 

(EDSThermoNoran Vantage, Thermo Scientific, the Netherlands attached to Jeol JEM 2010 

TEM) (Table 1 and Fig. 1). 

Two MWCNTs of different appearances were chosen to be tested in vivo. 

1. Long tangled MWCNTs (outside diameter 8-15 nm, length 10-50 µm; 

CheapTubes Inc©) 

2. Long needle-like MWCNTs (outside diameter >50 nm, length 13 µm; 

Mitsui-7; Mitsui & Co.) 
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Table 1. Characteristics of the nanomaterials and crodicolite asbestos used (see also Fig. 

1). 

Variable Short MWCNTs Long tangled 

MWCNTs 

Long needle-like 

MWCNTs 

Carbon black Asbestos 

Trade name Baytubes C150 HP 

 

MWCNT 8-15 nm Mitsui MWCNT-7 Printex 90® Crocidolite 

asbestos 

Manufacturer Bayer Material 

Science 

Cheaptubes, Inc. Mitsui & Co. Ltd Evonik    

Industries 

Pneumoco-

niosis 

Research 

Centre 

Characteristics   

of primary fibres 

or particles 

(provided by 

manufacturer) 

OD 2-20 nm   

Length 1->10 µm 

OD 8-15 nm   

Length 10-50 µm 

SSA 233 m2/g 

OD >50 nm    

Length ~13 µm 

Average size      

14 nm 

SSA 300 m2/g 

ø 180 nm 

Length       

4.6 µm 

Composition 

measured by  

TEM + EDS, 

average of 5 

measurements 

Carbon content   

>99 % (w/w) 

Residual catalyst 

metals: Co        

<0.2 % (w/w) 

Carbon content   

>99 % (w/w) 

Residual catalyst 

metals: Co, Fe, Ni 

<0.5 % (w/w) 

Carbon content   

>99 % (w/w) 

Residual catalyst 

metals: < 0.1 % 

(w/w; detection 

limit) 

Carbon content   

~ 100 % (w/w) 

Not applicable 

Compositional analysis shown is the average of five separate analyses by transmission 
electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). MWCNTs, 
multi-walled carbon nanotubes; OD, outer diameter; SSA, specific surface area. 

 

In addition, the nanomaterials were compared to crocidolite asbestos (PRC, South-Africa) 

as a positive control. These materials were chosen in light of existing knowledge on the 

induction of mesothelioma and inflammation by MWCNTs (Poland et al., 2009; Takagi et 

al., 2008; Sakamoto et al., 2009). An important point was also the fact that MWCNTs 

have presently far greater industrial importance than SWCNTs, which makes it more likely 

for employees to be exposed to MWCNTs than SWCNTs. 
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Figure 1. The morphology of the test materials, as studied by scanning electron 
microscopy (SEM; upper part of each micrograph pair) and transmission electron 
microscopy (TEM; lower part of each micrograph pair). A , short multiwalled carbon 
nanotubes (MWCNTs). B, long tangled MWCNTs. C, long needle-like MWCNTs. D, 
carbon black. E, crocidolite asbestos.  

A B C 

D E 
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3.2 In vitro studies 

3.2.1 Immunotoxicological studies 

In vitro immunotoxicological studies were performed using human monocyte-

derived primary macrophages. Primary macrophages were exposed to different 

carbon nanomaterials (carbon black, short MWCNTs, long tangled MWCNTs, long 

needle-like MWCNTs) and crocidolite asbestos at two different concentrations (10 

and 100 μg/ml). The characteristics of the materials used are represented in Table 1 

and Fig. 2. The secretion of important pro-inflammatory cytokines IL-1α and IL-1β 

after exposure to the carbon nanomaterials and asbestos was studied by the ELISA 

assay. To investigate whether an important molecular complex, NLRP3 inflamma-

some, previously associated with particulate exposure (e.g. asbestos, silica) is acti-

vated, macrophages were left untreated or pre-treated with bacterial lipopoly-

saccharide (LPS, 100 ng/ml) before the exposure. All studies were performed using 

a 6-h exposure, and the secretion of pro-inflammatory cytokines caused by long 

needle-like MWCNTs was also studied after 3-h and 9-h exposures to find out the 

dynamics of cytokine secretion. 

Cells: Peripheral blood mononuclear cells (PBMCs) from healthy blood donors 

(Finnish Red Cross Blood Transfusion Service, Helsinki, Finland) were isolated from 

buffy coats by low-speed density gradient centrifugation on Ficoll-Paque Plus 

(Amersham Biosciences, Uppsala, Sweden). The monocytes were resuspended in 

RPMI-1640 (Invitrogen, Paisley, UK) with supplemental 1 % penicillin-streptomycin 

(PEST; Invitrogen, Paisley, UK) and 1 % L-glutamine (Ultraglutamine®; Invitrogen, 

Paisley, UK). After 45 min of attachment on 6- or 12-well-plates, non-adherent cells 

were washed away with Dulbecco's phosphate buffered saline without Ca2+ and Mg2+ 

(DPBS; Lonza, Basel, Switzerland). The adherent monocytes were cultured in se-

rum-free macrophage medium (Macrophage-SFM; Invitrogen, Paisley, UK) supple-

mented with granulocyte-macrophage colony-stimulating factor (GM-CSF; Bio-

Source, Camarillo, CA, USA) and PEST. The cells were cultured for 7 days in the res-

pective medium to allow for differentiation of the macrophages before exposure to 

the nanomaterials. 

Dispersion preparation for in vitro experiments: Nanomaterial suspensions for 

the experiments were prepared by weighing the materials into glass tubes and 
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diluting them to a stock dispersion of 1 000 μg/ml with 2 % fetal bovine serum 

(FBS) in phosphate buffered saline (PBS) which was sonicated for 20 min at 30 °C. 

The stock dispersion was further serially diluted to 100 and 10 μg/ml final 

concentrations in serum-free macrophage medium and sonicated for 20 min at 30 

°C just before cell exposures. Old media was carefully removed and replaced with 

new media containing the final concentrations of nanomaterials. 

Electron microscopy: PBMCs were isolated and purified as described above. After 

7 days of differentiation, the cells were primed for 2 h with LPS and exposed to 

different carbon nanomaterials and asbestos. After the exposure, the cells were 

washed twice with DPBS, fixed with 2.5 % glutaraldehyde in 0.1 M phosphate buf-

fer, and removed from the plate by scraping. The cells were post-fixed in 1 % osmi-

um tetroxide, dehydrated and embedded in Epon LX-112 (Ladd Research, Williston, 

VT, USA). Thin sections were collected on uncoated copper grids, stained with ura-

nyl acetate and lead citrate and then examined with a transmission electron micro-

scope operated at an acceleration voltage of 80 KV (JEM-1220, Jeol Ltd., Japan). 

Reagents: Bacterial LPS (Escherichia coli 0111:B4, Sigma-Aldrich, Germany) was 

used at a concentration of 100 ng/ml. Pharmacological inhibitors used in the experi-

ments were cathepsin B inhibitor Ca-047-Me (10 μM; Calbiochem, Germany) and 

P2X7 receptor inhibitor AZ11645373 (1 μM; Sigma-Aldrich). When inhibitors were 

used, they were added to the wells 1 h prior to exposure to the materials. 

Small interfering RNA assays: After 6 days of cell culture in 12-well plates, 

macrophages were transfected with 200 nM non-targeting control small interfering 

RNA (siRNA, AllStars Negative Control siRNA, Qiagen, CA, US), 50 nM of four 

different NLRP3 siRNAs (Hs_CIAS1_6, Hs_CIAS1_9; Hs_CIAS1_10, Hs_CIAS1_11; 

Qiagen) or 100 nM of two different P2X7 siRNAs (Hs_P2RX7_1, Hs_P2RX7_2; 

Qiagen) using the HiPerFect Transfection Reagent (Qiagen) according to the manu-

facturer’s instruction. After 4 h of incubation with siRNAs, cell culture media was 

removed and 500 μl of fresh media was added to the wells. On day 7, appropriate 

wells were primed for 2 h with 100 ng/ml of LPS, and the cells were left untreated 

or treated with 100 μg/ml of long needle-like MWCNTs or asbestos. After the 

exposure period, cell culture supernatants were collected. 
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Western blotting and ELISA: Processing and secretion of IL-1β, cathepsin B and 

ASC were analysed by Western blot performed by using concentrated cell superna-

tants. Cell culture supernatants (6 ml) were concentrated by Amicon UItra-15 –cen-

trifugal filter devices (Millipore, MA, US) according to the manufacturer’s instruc-

tions. After the concentration, 30 µl from 240 µl of each supernatant was separated 

on 12 % SDS-PAGE at 200 V and transferred onto Immobilon-P Transfer Membranes 

(Millipore, MA, US) by the Isophor electrotransfer apparatus PowerPac Basic (Bio-

Rad Laboratories) at 4 ºC and 100 V for 1 h. The membranes were blocked in PBS 

containing 5 % non-fat milk for 30 min after which they were incubated at 4 ºC 

overnight with primary antibodies. After this, the membranes were incubated at 

room temperature for 1 h with the appropriate HRP-conjugated secondary antibo-

dies (Dako A/S, Denmark). Finally, proteins were visualised by the Image Quant 

LAS 4000 mini quantitative imager (GE Healthcare, CT, US). Anti-IL-1β antibody has 

previously been described (Palomäki et al., 2011), anti-Cathepsin B antibody was 

purchased from Calbiochem and anti-ASC antibody from Millipore. Both human IL-

1α MAXTM Deluxe and IL-1β Eli-pair were purchased from Diaclone (Besançor Cedex, 

France) and human IL-18 ELISA from Bender MedSystems (Bender MedSystems, 

Austria). All ELISAs were performed according to the manufacturer's instructions. 

Statistical analyses: Each macrophage sample represented a pool of separately 

stimulated cells from three different blood donors. ELISA results were combined 

from values obtained in three different stimulations, and Western blot results were 

representative of three independent, but similarly performed experiments unless 

otherwise mentioned. Data were analysed using GraphPad Prism 4 Software (Graph-

Pad Software Inc., San Diego, CA, USA). An unpaired t-test or Mann-Whitney U-test 

was used to compare the differences between the groups. A P-value of <0.05 was 

considered to be statistically significant. In ELISA figures, data were expressed as 

means ±SD. 

3.2.2 Genotoxicological studies 

Dispersion preparation for in vitro experiments: The materials were dispersed 

in BEGM cell culture medium (Clonetics, Walkerwille, MD, USA) supplemented with 

0.6 mg/ml of BSA (bovine serum albumin) and subjected to ultrasonication 

(Elmasonic, Singen, Germany) for 20 min at 37 kHz prior to addition to the cell 
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cultures. Both the stock dispersions and the serially diluted final dispersions were 

sonicated.  

Cell culture: Transformed human bronchial epithelial BEAS 2B cells, exhibiting an 

epithelial phenotype (Reddel et al., 1988) were obtained from the American Type Culture 

Collection through LGC Promochem AB (Borås, Sweden). The BEAS 2B cells were grown 

in serum-free BEGM medium at 37 ºC in a humidified atmosphere of 5 % CO2. For assays 

on cytotoxicity and DNA damage (the comet assay), 20 000 log-phase BEAS 2B cells were 

plated on each well of a 24-well plate (Nunc, Roskilde, Denmark; culture area 1.9 

cm2/well, 1 ml culture medium per well) two days prior to exposure. For the micronucleus 

(MN) assay, 250 000 cells were grown on T25 culture flasks (Nunc, Roskilde, Denmark; 

culture area 25 cm2/ flask, 5 ml culture medium per flask) for three days prior to 

exposure, i.e. until semiconfluency. 

Cytotoxicity: Semiconfluent cells on 24-well plates were exposed to 500 µl per well of 

ultrasonicated dispersions of carbon nanomaterials for 4, 24 and 48 h at doses 5, 10, 50, 

80, 100, 200, 250, 300 and 350 µg/cm2 (corresponding to 9.5, 19, 95, 152, 190, 380, 

475, 570 and 665 µg/ml). Untreated controls were included at each time point. All the 

treatments were done in duplicate and the experiments were repeated twice. 

Cytotoxicity was measured after collecting the cells by trypsination. In the Trypan blue 

dye exclusion technique, the number of living (unstained) cells was determined under a 

phase-contrast microscope. In the CellTiter-Glo® Luminescent Cell Viability Assay 

(Promega, Madison, USA), the number of viable cells was based on the quantification of 

ATP which signals the presence of metabolically active cells. Cell number was expressed 

as the percentage of viable cells in the treated cultures in comparison with the control 

cultures. These assays reflect all treatment-related effects (necrosis, cell cycle delay and 

apoptosis) that reduce the number of viable cells. 

Comet assay: The single cell gel electrophoresis (comet) assay was used to study DNA 

strand breaks and alkaline labile sites in BEAS 2B cells after nanomaterial exposures. 

Semiconfluent cultures on 24-well plates were exposed (500 µl per well) for 4 and 24 h to 

six doses of the carbon nanomaterials: 5, 10, 50, 100, 200 and 250 µg/cm2 (corre-

sponding to 19, 38, 190, 380, 760 and 950 µg/ml, respectively). The doses were chosen 

according to the Trypan blue cytotoxicity assay. Untreated controls and positive controls 

(20 mM hydrogen peroxide, Riedel-de Haen, Seelze, Germany) were included in all series. 
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The comet assay was performed at alkaline conditions (pH > 13) as described previously 

(Nygren et al., 2004). Briefly, after the exposure the cells were trypsinised and 

centrifuged at 1100 rpm for 5 min. Ten to thirty thousand cells were resuspended in 75 µl 

molten (37 °C) 0.5 % low-melting-point agarose (LMPA; Merck, Darmstadt, Germany). 

The resuspended cells in agarose were applied to dry microscope slides (Menzel Gmbh, 

Braunschweig Germany), pre-coated with 1 % normal-melting agarose (BDH Electran 

VWR international Ltd., Lutterworth, UK), and the agar was allowed to solidify for 10 min. 

The slides were thereafter immersed in cold lysing solution (2.5 M NaCl, 100 mM EDTA, 

10 mM Tris, 1 % Triton X-100) for at least 1 h at 4 °C, after which they were transferred 

to an electrophoresis tank containing freshly made electrophoresis buffer (1 mM EDTA, 

300 mM NaOH; pH> 13), where they were kept for 20 min at room temperature to allow 

DNA unwinding. Electrophoresis was performed in the same buffer at room temperature 

for 15 min at 24 V and 300 mA (0.8 V/cm). The slides were then neutralized three times 

with 0.4 M Tris buffer (pH 7.5), air-dried, and fixed in methanol. DNA was stained with 

ethidium bromide (2 µg/ml) in water for 5 min. 

The slides were coded, and one scorer performed the comet analysis using a fluorescence 

microscope (Axioplan 2, Zeiss, Jena, Germany) and an interactive automated comet 

counter (Komet 5.5, Kinetic Imaging Ltd., Liverpool, UK). The percentage of DNA in the 

comet tail from 100 cells per replicate was used as a measure of the amount of DNA 

damage. In each experiment, two replicates per dose were included, and the experiment 

was repeated twice. 

Micronucleus assay: Semiconfluent cells in T25 flasks were exposed for 48 h to five 

doses of long tangled MWCNTs (Cheaptubes): 5, 10, 50, 100 and 200 µg/cm2 (corre-

sponding to 25, 50, 250, 500 and 1000 µg/ml) and to five doses of long needle-like 

MWCNTs (Mitsui-7): 2.5, 5, 10, 20 and 40 µg/cm2 (corresponding to 12.5, 25, 50, 100 

and 200 µg/ml). The doses were chosen based on the Trypan blue cytotoxicity assay. 

Cytochalasin B (Cyt-B; 9 µg/ml; Sigma-Aldrich Chemie, Steinheim, Germany) was added 

to the cell cultures after 6 h of exposure to induce binucleation of dividing cells. Untreated 

controls and positive controls receiving 150 ng/ml mitomycin C (MMC; Sigma-Aldrich, 

Steinheim, Germany) were also included. 

After the exposure, the cells were trypsinised for 20 min, PBS containing 10 % FBS was 

added, and the cells were centrifuged at 1,100 rpm for 5 min. The supernatant was 
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removed, and PBS was added to the cell suspension. After centrifugation and removal of 

the supernatant, the cells were incubated in 5 ml of hypotonic solution (50 % RPMI) for 

<2 min. The cells were again centrifuged and first fixed in 3:1 methanol-acetic acid and 

then in 97 % methanol - 3 % acetic acid. The cells were spread on microscopy slides and 

left to dry overnight. The slides were stained with acridine orange (32 μg/ml in Sørensen 

buffer, pH 6.8) for 1 min and rinsed in Sørensen buffer for 3 x 3 min. Finally, the slides 

were stained with 4',6-diamidino-2-phenylindole (DAPI, 5 µg/ml) for 5 min, rinsed in tap 

water and allowed to dry. The stained and fixed slides were kept protected from light at 4 

ºC until analysis. 

The slides were coded, and the frequency of micronucleated cells in 2000 binucleate cells 

(1000 cells/repeat) were analysed by one scorer using an Axioplan 2E Universal 

microscope (Zeiss, Jena, Germany). Binucleate cells were identified with 40× magni-

fication using a green/red (FITC/TRITC) double filter. MN in the cells were verified with a 

DAPI filter to ensure DNA content. 

Cytokinesis block proliferation index (CBPI; Surrallés et al., 1995) was calculated from 

200 cells per culture as follows: CBPI = [(No. mononucleate cells) + 2(No. binucleate 

cells) + 3(No. multinucleate cells)]/(Total No. cells). 

Statistics: Two-way or one-way analyses of variance (ANOVA) were applied, respec-

tively, to examine whether the percentage of DNA in tail (Comet) or the frequency of 

micronucleated cells and the CBPI values were statistically significantly affected by the in 

vitro exposure to the CNTs in comparison with the untreated control cultures. Since 

differences among experiments have previously been reported for the Comet assay, 

"experiment" was included as a second factor (in addition to nanoparticle dose) in the 

ANOVAs, to reduce the residual variability of the model. Tukey's test was applied for an a 

posteriori comparison of the means. 

For all the assays, linear regression analysis was applied to examine whether a linear 

dose-response could be observed. The difference between the positive control and the 

untreated control was assessed by a two-sample t-test. Differences were interpreted to be 

significant if the p-value was <0.05. All statistical analyses were performed with the 

Statistix for Windows 2.0 program (Tallahassee, USA). 
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3.3 In vivo studies 

Animals: Female C57Bl/6 mice (7-8 weeks old) were purchased from Scanbur AB 

(Sollentuna, Sweden) and quarantined for one week. The mice were housed in groups of 

four in stainless steel cages bedded with aspen chip and were provided standard mouse 

chow diet (Altromin No. 1314 FORTI, Altromin Spezialfutter GmbH & Co., Germany) and 

tap water ad libitum. The environment of the animal room was carefully controlled, with a 

12-h dark/light cycle, temperature of 20-21 °C, and relative humidity of 40-45 %. 

The experiments were performed in agreement with the European Convention for the 

Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes 

(Strasbourg March 18, 1986, adopted in Finland May 31, 1990). The study was approved 

by the Animal Experiment Board and the State Provincial Office of Southern Finland. 

Inhalation: The fibrous materials were aerosolized with a fluid bed aerosol generator 

(TSI FBAG 3400A) which produced constant aerosol into the exposure chamber. The 

aerosol in the chamber was monitored using a variety of equipment: mass concentration 

with weighted filter capsules, number concentration with a condensation particle counter, 

and size distribution with an optical particle sizer. 

After performing the first inhalation study (Fig. 2) with fibrous materials, we came to the 

conclusion that our facilities need upgrading to ensure the safety of the researchers. This 

lead to extensive planning and renovations in our exposure facilities. The generator and 

the exposure chamber were encapsulated (Fig. 3). The spread of the study material was 

restrained as well as possible. We also developed strict working procedures and applied 

the best possible personal protection for our workers. The facilities were ready for use 

during the last few months of the project. Planning and executing the needed changes 

was a valuable learning experience which was used as an example of a model solution for 

possible ENM exposures. 

In the summer of 2011, we performed our first study in the new facilities. We exposed 8 

mice to long needle-like MWCNTs for 4 hours during one day and during 4 consecutive 

days. The exposure concentration was kept constant at ~8 mg/m³. Samples were 

collected from the mice 24 h after the end of the exposure for immunotoxicological studies 

in the 1-day experiment and for both immunotoxicological and genotoxicological analyses, 

using the same animals, in the 4-day experiment. 
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Figure 2. Old exposure facilities (left) and a schematic drawing of the fluidized bed 

aerosol generator (right).  

 

Pharyngeal aspiration: Pharyngeal aspiration is a safe and reliable method to use for 

exposure of dusting, dangerous or very expensive materials. The study material was 

suspended in PBS containing 0.6 mg/ml BSA and sonicated for 20 min. The mice were 

anesthetized with vaporized 4.5 % isoflurane and suspended by their incisors on a thin 

wire on a custom made mouse support at approximately 66 degrees angle. A cold-light 

source was placed against their throat to provide optimal illumination of the trachea. The 

tongue was pulled out using blunted forceps and pressed down using a small spatula to 

prevent the mouse from swallowing. 50 µl of the particulate suspension was delivered 

onto the vocal folds under visual control using an extended pipette tip (Finntip 200 Ext). 

Immediately after delivery the mouse nostrils were covered enforcing the mouse to 

inspire the instilled suspension. 
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Figure 3. New exposure facilities and personal protection. 

 

The pharyngeal aspiration method was adapted to our institute to expose mice with 

during the renovations in the inhalation exposure facilities. Female C57Bl/6J-mice (6-8 

mice per group) were exposed to the study material using a single pharyngeal aspiration 

exposure. 

3.3.1 Immunotoxicological studies 

Exposure protocol: In single exposures by pharyngeal aspiration, we used a MWCNT 

dose of 10 µg per mouse (50 µl of a 0.2 mg/ml dispersion) and for the 28-day exposure 

we used 10 µg and 40 µg (50 µl of a 0.8 mg/ml dispersion) MWCNTs per mouse. The 

mice were sacrificed 4 and 16 h or 28 days after the exposure, and samples were 

collected. The inhalation exposure protocol has been described above. 

Antagonists: For the antagonist experiment (Table 2), we first gave i.p injections and 

after 16 h performed pharyngeal aspiration. The animals were sacrificed 4 h after the 

aspiration exposure. PBS containing 0.6 mg/ml BSA and 10 µg of long needle-like 

MWCNTs (Mitsui-7) was given per mouse (0.2 mg/ml dispersion) and the antagonists 

anakinra (Kineret; Biovitrum AB, Stockholm, Sweden) and etanercept (Enbrel; Wyeth 

Pharmaceuticals, Hampshire, UK) 200 µg/mouse both times. 

Sample collection: The mice were sacrificed using an overdose of isoflurane. Blood was 

collected from the vena cava (hepatic vein), and the lungs were lavaged with PBS (800 µl 

for 10 s) via the tracheal tube. The bronchoalveolar lavage (BAL) sample was cyto-

centrifuged on a slide, and the cells were stained with May Grünwald-Giemsa (MGG) and 
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counted under light microscopy. The BAL supernatant was stored at -70 ºC for cytokine 

analysis, and the remaining cells were fixed in ethanol (1:2). The mouse chest was 

opened, and half of the left pulmonary lobe was removed, quick-frozen and kept at -70 ºC 

for later RNA isolation. A slice of the lungs and part of BAL cells were collected from the 

mice, fixed with glutaraldehyde and then prepared for electron microscopy. The rest of the 

lungs were formalin-fixed, embedded in paraffin, cut, affixed on slides, and stained with 

hematoxylin and eosin (H&E), periodic acid-Schiff (PAS), and Herovici's (HERO) solutions. 

Table 2. Treatment groups included in the antagonist experiment with long needle-like 
multiwalled carbon nanotubes (MWCNTs; 10 µg/mouse). Etanercept (200 µg/mouse) was 
used as an antagonist of tumor necrosis factor alpha (TNF-α) and anakinra (200 
µg/mouse) as an antagonist of interleukin 1 beta (IL-1β). 

Intraperitoneal injection  Pharyngeal aspiration  

PBS/BSA PBS/BSA 

PBS/BSA PBS/BSA + long needle-like MWCNTs 

PBS/BSA + etanercept PBS/BSA + long needle-like MWCNTs + etanercept 

PBS/BSA + anakinra PBS/BSA + long needle-like MWCNTs + anakinra 

PBS/BSA + etanercept  

+ anakinra 

PBS/BSA + long needle-like MWCNTs + etanercept  

+ anakinra 

BSA/PBS, bovine serum albumin (0.6 mg/ml) in phosphate-buffered saline. 

 

RNA isolation from the lung tissues: The lung samples were homogenized in a 

FastPrep FP120 (BIO 101, Thermo Savant, Waltham, Mass. USA) -machine and RNA was 

extracted using the FastRNA Pro Green Kit (Qbiogene/ MP Biomedicals, Illkirch, France) 

and its instructions. The quantity and purity of extracted RNA was determined by 

NanoDrop spectrophotometer (ND-1000, Wilmington, Delaware USA). Isolated total RNA 

was dissolved in DEPC water and stored at -70ºC. 

cDNA synthesis: cDNA was synthesized from 1 µg of total RNA in a 25 µl reaction using 

MultiScribe Reverse Transcriptase and random primers (The High-Capacity cDNA Archive 

Kit, Applied Biosystems, Foster City, CA) using the manufacturer's protocol. The synthesis 

was performed in a 2720 Thermal Cycler (Applied Biosystems, Carlsbad, California, USA ) 

starting with 25 °C for 10 minutes and continuing with 37 °C for 120 minutes. 
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Polymerase chain reaction (PCR) amplification: PCR primers and probes were 

ordered as pre-developed assay reagents from Applied Biosystems. The real-time 

quantitative PCR was performed in a 96-well optical reaction plate with Relative 

Quantification 7500 Fast System (7500 Fast Real-Time PCR system, Applied Biosystems) 

using the manufacturer's instructions. Amplifications were done in 11 µl reaction volume 

containing 20 ng cDNA and TaqMan universal PCR master mix and primers provided by 

Applied Biosystems. Endogenous 18S was used as the housekeeping gene. 

ELISA: Mouse ELISAs (eBioscience, San Diego, CA, US) were performed according to 

manufacturer's instructions. An ELISA plate absorbance reader (Multiskan MS, 

Labsystems, Titertek Multiscan, Eflab, Turku, Finland) was used to read the results. 

Luminex: For analysis of proteins in BAL fluid supernatants we used a Milliplex Mouse 

Cytokine/Chemokine Immunoassay (Millipore Corporation, Billerica, MA) according to the 

manufacturers' protocol. 3 % bovine serum albumin (BSA; Sigma-Aldrich, St Louis, MO) 

in PBS was added at a concentration of 0.5 % to samples, controls and standards to 

ensure sufficient protein amounts for the assay. Assay was performed using Luminex 

xMAP Technology (Bio-Plex 200 System, BioRad, Hercules, CA). 

Electron microscopy: Samples were fixed in 2.5 % glutaraldehyde and postfixed in 1 % 

osmium tetroxide, dehydrated and embedded in LX-112 (Ladd Research, Williston, VT, 

USA). Thin sections were collected on uncoated copper grids, stained with uranyl acetate 

and lead citrate and then examined with a transmission electron microscope operated at 

100 KV (JEM-1220, Jeol Ltd., Tokyo, Japan). 

Fibrosis: Lung fibrosis was analysed using Sircol Collagen Assay kit following the manu-

facturer's instructions. The HERO stained slides were analysed for possible fibrotic cells 

using light microscopy. 

Statistical analyses: Data were analysed using GraphPad Prism 5 Software 

(GraphPad Software Inc., San Diego, CA, USA). An unpaired t-test or Mann-Whitney 

U-test was used to compare the differences between the groups. A P-value of <0.05 

was considered to be statistically significant. 
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3.3.2 Genotoxicological studies 

Exposure protocol: In each experiment performed by pharyngeal aspiration, six mice 

per group were exposed to a single dose of one of the following materials: a) first 

experiment: 1, 10 and 40 µg/mouse (respective dispersions: 0.02, 0.2 and 0.8 mg/ml) of 

long needle-like MWCNTs (Mitsui-7), b) second experiment: 50, 100 and 200 µg/mouse 

(respective dispersions: 1, 2 or 4 mg/ml) of long needle-like MWCNTs, and c) third 

experiment: 10, 40, 100 and 200 µg/mouse (respective dispersions: 0.2, 0.8, 2, and 4 

mg/ml) of long tangled MWCNTs (Cheaptubes). In addition, in each experiment the 

negative control mice (n= 6) were exposed to 50 µl of the solvent alone (PBS with 6 % 

bovine serum albumin), whereas the positive control group (n = 6) received a single dose 

of 1 mg/mouse (20 mg/ml dispersion) of tungsten carbide-cobalt mixture (WC-Co; kindly 

provided by Dr. Lison, Université catholique de Louvain, Belgium). 

The inhalation exposure protocol has been described above. As a positive control, we 

included a group of 8 mice simultaneously exposed to a single dose of WC-Co (1 

mg/mouse) by pharyngeal aspiration, as described in the previous paragraph and to 

Mitomycin C (MMC, 2 mg/kg) by intraperitoneal injection. 

Sample collection: The mice were sacrificed 24 h after the exposure using an overdose 

of isoflurane, and the samples were collected as previously described in the immuno-

toxicological section, with small modifications. Briefly, blood was collected from the vena 

cava in an insuline syringe containing 0.04 ml EDTA, to prevent coagulation, placed into a 

tube and stored on ice. To obtain the BAL cells, the lungs were lavaged with 800 µl of PBS 

(BAL sample for the determination of cell composition), and then infused six times with 

0.8 ml sterile 0.15 M NaCl through the trachea (BAL sample for the comet analyses). The 

first BAL sample was cytocentrifuged on a slide, and the cells were stained using MGG and 

counted under light microscopy. The second BAL fluid was stored on ice until centri-

fugation at 400 x g for 5 min. The mouse chest was opened and the lungs were removed 

and placed, on ice, into a petri dish containing 0.15 M NaCl. The left lung (or the right lung 

in the inhalation experiment) was minced in chilled mincing solution (Hank’s balanced salt 

solution with 20 mM EDTA) and mechanically dispersed into a single cell suspension by 

using a cell strain (40 µm Ø). Then, the cell suspension was collected, divided in two 

aliquots and stored on ice until centrifugation at 400 ×g for 5 min. In the pharyngeal 

aspiration experiments, the caudal lobule of the right lung was formalin-fixed, embedded 

in paraffin, cut, affixed on slides and stained with H&E, PAS and HERO solutions. The rest 
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of the right lung was quick-frozen and stored at -70 ºC for further possible analyses. From 

some few animals, the medium lobule of the right lung was fixed with glutaraldehyde and 

prepared for electron microscopy, as described in the immunological studies section. In 

addition, in the inhalation experiment, the femurs of the mice were collected to extract 

bone marrow cells. 

Comet assay on BAL and lung suspensions: The comet assay was performed in 

alkaline conditions (pH > 13) as described above. The percentage of DNA in the comet tail 

from 100 cells per animal (two replicates, 50 cells each) was used as a measure of the 

amount of DNA damage. 

γ-H2AX assay on peripheral blood mononuclear cells and lung cell suspensions: 

Peripheral blood was incubated in ice-cold lysis solution (0.154 M NH4Cl, 0.01 M KHCO3, 

0.09 mM EDTA, pH 7.3) on ice for 10 min to remove erythrocytes. After centrifugation at 

4000 rpm, 4 min at 4 °C, the cell pellet was twice resuspended in 10 ml of ice-cold lysis 

solution for 10 min and centrifuged as above. The cell pellet was suspended in 2 ml of cold 

PBS and stored on ice until processing onto slides. 

Lung cell suspension was incubated in ice-cold 96 % ethyl alcohol, mixed carefully and 

washed twice with PBS. After the last centrifugation, the cell pellet was suspended in 0.5 

ml of cold PBS and stored on ice until processing onto slides. 

Blood and lung suspensions were directly spun onto polylysine slides with a cytocentrifuge 

(Shandon Cytospin 2, Astmoor, UK). The slides were then fixed with freshly prepared 4 % 

paraformaldehyde at 4 °C for 25 min. The cells were rinsed three times in PBS and made 

permeable by incubation in 0.5 % Triton X-100 in PBS for 5 min at room temperature. 

Nonspecific antibody binding was blocked by incubation in 5 % foetal calf serum in PBS for 

1 h. The cells were then incubated with 1:50 dilution of Phospho-Histone H2A.X (Ser139) 

(20E3) Rabbit mAb (Alexa fluor 488 conjugated) (Cell Signaling) in 1 % BSA in PBS. After 

overnight incubation at 4 °C, the slides were washed three times with PBS and counter-

stained with 4,6-diamidino-2-phenylindole (DAPI, 1 µg/ml) for 5 min. Then, the slides 

were rinsed in tap water and allowed to dry. Immediately before analysis, the slides were 

mounted in Prolong Gold antifade reagent (Invitrogen) and mounted with a cover slip. The 

slides were coded, and the frequency of cells with more than four distinct foci in the 

nucleus (positive cells) in 1000 mononucleate cells per animal and per tissue was scored 

by one microscopist using an Axioplan 2E Universal microscope (Zeiss, Jena, Germany). 
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The presence of γ-H2AX-foci is a measure of DNA double-strand breaks.γ-H2AX is the 

phosphorylated form of histone 2AX. H2AX becomes phosphorylated on serine 139 as a 

reaction on DNA double-strand breaks. 

Automated micronucleus assay in bone marrow erythrocytes: Bone marrow 

extraction and preparation of the slides for automated MN analysis were done primarily as 

previously described by Romagna et al. (1989). Briefly, one femur was removed from 

each mouse, cut at the proximal end of the bone and flushed with a foetal bovine serum 

mix (FBS in 25 mM EDTA) to collect bone marrow cells in suspension. The suspension was 

loaded into Poly-prep chromatography columns (0.8 x 4 cm) that contained a 30-µm pore 

size filter bed (Bio-Rad Laboratories, Hemel Hempstead, UK) and had been pre-filled with 

a cellulose suspension (a 1:1 mix of type 50 cellulose and α-cellulose, both from Sigma) in 

Hanks’ balanced salts solution. After allowing the suspension to drain into a centrifuge 

tube, marrow was concentrated by centrifugation, and slides were prepared by cytocentri-

fuge (Shandon Cytospin 2; 1400 rpm, high acceleration for 7 min), air-dried and fixed in 

methanol for 10 min. The slides were stained with MGG in Sørensen buffer (pH 6.8-7.0) 

for 20 min at room temperature, washed twice in fresh buffer, air-dried and covered with 

Entellan (Merck, Germany ) and cover slips. Two thousand PCEs were scored per sample 

for the frequency of MNPCEs and 1000 erythrocytes per sample to determine the percent-

ages of PCEs and normochromatic erythrocytes (NCEs). Automated scoring was per-

formed by the MetaSystems Metafer Metacyte image system (MetaSystems, Altlussheim, 

Germany). 

Statistics: A hierarchic ANOVA, where the animal factor was hierarchical to dose factor, 

was used to analyse the percentage of DNA in the tail of the comets, both in BAL and lung 

cells. One-way ANOVA was applied to examine the frequency of positive γ-H2AX cells, 

both in PBMCs and lung cells. 'A posteriori' comparison among the means of doses was 

done by Tukey's test. The unpaired two-sample t-test was applied to determine whether 

the exposure to the positive control, WC-Co, induced a statistically significant difference as 

compared with the corresponding untreated control groups for the frequency of positive γ-

H2AX cells, both in PBMCs and lung cells. Finally, the dose-response relationship for all the 

end-points analysed was investigated by linear regression analysis. The differences were 

interpreted to be significant if P was below 0.05. The statistical analyses were performed 

by Harvey WR (1987) and Statistix for Windows 2.0 programmes. 



 Evaluation of the health effects of carbon nanotubes 
 

26 

4 RESULTS 

4.1 Immunotoxicology 

4.1.1 In vitro 

Transmission electron microscopy (TEM) was utilised to study, whether long needle-

like MWCNTs; long tangled MWCNTs and asbestos are taken up by the primary mac-

rophages. TEM images showed that all materials studied had intracellular localiza-

tion in macrophages after a 6-h exposure (100 μg/ml; Fig. 4). All materials were 

observed free inside the cells, but not in vacuoles or in the nucleus of the macro-

phages. These results demonstrated no differences among the materials in uptake 

by primary macrophages. 

 

 

Figure 4. Transmission electron microscopic images of lipopolysaccharide-primed 
human primary macrophages exposed for 6 h (100 μg/ml) to long needle-like 
MWCNTs (left panel), long tangled MWCNTs (middle panel) and asbestos (right 
panel). The squares show fibers inside the cell. Measure bar is 5 µm. 

 

Exposure of human macrophages to carbon nanomaterials or asbestos without LPS 

priming did not induce any IL-1α or IL-1β secretion from the macrophages (data not 

shown). However, IL-1α secretion was strongly induced, when LPS-primed primary 

macrophages were exposed to long needle-like MWCNTs (data not shown). In 

contrast, other types of carbon nanomaterials and asbestos were weak inducers of 

IL-1α secretion. The pro-IL-1β is not continuously expressed in the cytoplasm and 

its transcription is known to be activated after stimulation of the Toll-like receptor, 
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for example by bacterial LPS. However, a second signal is required for inflamma-

some complex formation and the cleavage of IL-1β into its active form (Martinon et 

al. 2002). In contrast to unprimed macrophages, LPS-primed human macrophages 

secreted IL-1β after exposure to carbon nanomaterials or asbestos. 

In the comparison of the different materials, the long needle-like MWCNTs induced 

more IL-1β secretion than the other carbon nanomaterials or even asbestos (Fig. 5). 

Western blotting analysis confirmed that macrophages release mature IL-1β after 

exposure to long needle-like MWCNTs and asbestos but not after exposure to long 

tangled MWCNTs or short MWCNTs (Fig. 5). These data suggest that long needle-

like MWCNTs are able to activate IL-1β secretion from human primary macrophages 

in an even more profound manner than asbestos fibers. 

 

 

Figure 5. Long needle-like carbon nanotubes induce IL-1β secretion from lipopoly-
saccharide (LPS) -primed human primary macrophages. LPS-primed macrophages 
were exposed to carbon black, short MWCNTs; long tangled MWCNTs; long needle-
like MWCNTs, and asbestos (100 µg/ml) for 6 h, cell culture supernatants were 
harvested and analysed for IL-1β ELISA. Secretion of cleaved IL-1β cytokine was 
confirmed by Western blotting analysis: The cell culture supernatants were concen-
trated, and IL-1β expression was analyzed by Western blotting with anti-IL-1β 
antibodies. All values are means ± SD from three independent analyses. **, P < 
0.01 and ***, P < 0.001. 
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To clarify whether the NLRP3 inflammasome had been activated in response to the 

long needle-like MWCNTs, we performed gene silencing with NLRP3 targeting small 

interfering RNA in human macrophages. The NLRP3 siRNA treatment clearly de-

creased IL-1β secretion from macrophages after long needle-like MWCNTs and 

asbestos exposures (Fig. 6A, B) 

 

 

Figure 6. Needle-like multi-walled carbon nanotubes (MWCNTs) and asbestos acti-
vate NLRP3 inflammasome. Macrophages were transfected with the non-targeting 
siRNA control (NT-i) or the NLRP3 siRNAs (NLRP3-i) as described in materials and 
methods. LPS-primed human macrophages were stimulated with (A.) long needle-
like MWCNTs and (B.) asbestos (100 µg/ml) for 6 h, cell culture supernatants were 
collected, and IL-1β ELISA was performed. The values are percentages of measured 
protein concentrations of two independent analyses where control siRNA = 100 %. 

 

It is known that the extracellular ATP gating cation channel P2X7 is an important 

upstream activator of the NLRP3 inflammasome (Kahlenberg et al., 2004, Pelegrin & 

Suprenant, 2006, Petrelli et al., 2007, Riteau et al., 2010). The P2X7 receptor allows 

cations to pass through the cell membrane, e.g. K+ efflux, and this is known to be 

associated to the activation of the NLRP3 inflammasome (Gross et al., 2009). In an 

attempt to understand the role of P2X7 receptor in the secretion of IL-1β evoked by 

long needle-like MWCNTs and asbestos, we used both pharmacological blockade and 
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siRNA induced inhibition of the P2X7 receptor. The P2X7 receptor inhibition clearly 

decreased IL-1β secretion from human primary macrophages (Fig. 7), suggesting 

that the P2X7 receptor is an important molecule upstream of the NLRP3 inflamma-

some after exposure of cells to long needle-like MWCNTs and asbestos (Fig. 7B, C). 

These results demonstrate that the stimulation of the P2X7 receptor is essential for 

the NLRP3 inflammasome activation triggered by rigid, needle-like materials. 

 

 

Figure 7. P2X7 receptor activation is an upstream signal for NLRP3 inflammasome 
activation. Lipopolysaccharide (LPS) -primed human monocyte-derived macro-
phages were treated with long needle-like MWCNTs or asbestos (100 μg/ml) in the 
absence or presence of P2X7 inhibitor (1 μM). Cell culture supernatants were 
harvested after 6 h of exposure, and IL-1β ELISA was performed.  

 

All findings from the in vitro immunotoxicology studies have been published (Palo-

mäki et al., 2011) and will be included in a PhD thesis.  
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4.1.2 In vivo 

Acute pharyngeal aspiration exposure: A single pharyngeal aspiration exposure to 

long needle-like MWCNTs, long tangled MWCNTs, and asbestos all resulted in a significant 

influx of neutrophils into the lungs of mice (Fig. 8). Pulmonary neutrophilia is a sign of  

 

 

Figure 8. Percent of neutrophils of total bronchoalveolar lavage cells counted under 
light microscopy after exposure to PBS/BSA, long tangled MWCNTs (cheaptube), 
long needle-like MWCNTs (mitsui), and asbestos. The bars represent mean ± SE; *P 
 0.05, **P  0.01 and ***P < 0.001 significantly different from control; Mann-
Whitney U test. 

 

inflammation. Out of these three materials, long needle-like MWCNTs elicited the 

fastest and highest reaction reaching close to 20 % of neutrophils among BAL cells 

in four hours and almost 40 % in 16 h. We also looked at various inflammatory 

markers from the lungs of mice in the form of mRNA and proteins. Based on the 

results we obtained from the in vitro experiments, IL-1β and TNF-α were of interest. 

Indeed, with long needle-like MWCNTs we saw a huge increase in IL-1β 4 h after the 

aspiration exposure (Fig. 9). TNF-α, on the other hand, was significantly elevated 

only with asbestos exposure (Fig. 9). 
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Figure 9. mRNA-expression in lung tissue by proinflammatory cytokines IL-1β and 
TNF-α. Results are shown as relative quantity (RQ) for mice exposed to PBS/BSA, 
long tangled MWCNTs (cheaptube), long needle-like MWCNTs (mitsui) and asbestos 
and sacrificed 4 and 16 h after the exposure. All values are presented as means ± 
SD. *** P < 0.001, significantly different from control; Mann-Whitney U test. 

 

Another interesting finding was the elevation of CXCL5, a neutrophil-attracting chemokine 

(Fig. 10). After four hours of exposure to long needle-like MWCNTs, we observed a huge 

increase in CXCL5 expression. Also with asbestos the levels were significantly increased. 

This correlated with pulmonary neutrophilia seen with both long needle-like MWCNTs and 

asbestos exposure (Fig. 10). 
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Figure 10. mRNA-expression in the lung tissue of neutrophil attracting chemokine 
CXCL5. Results are shown as relative quantity (RQ) for PBS/BSA, long tangled MWCNTs 
(cheaptube), long needle-like MWCNTs (mitsui), and asbestos exposed mice sacrificed 4 
and 16 h after the exposure. All values are presented as means ± SD where ***P < 
0.001 001 significantly different from control; Mann-Whitney U test. 

 

On protein level, we found interesting results with CXCL9, CXCL1 and CCL3. CXCL9 was 

increased significantly after exposure to long needle-like MWCNTs but not with long 

tangled MWCNTs or asbestos (Fig. 11). CXCL9 is a T-cell chemoattractant which is known  

Figure 11. Protein expression of T-cell chemoattractant CXCL9 in bronchoalveolar lavage. 
Results are shown as relative quantity (RQ) for PBS/BSA, long tangled MWCNTs 
(cheaptube), long needle-like MWCNTs (mitsui), and asbestos exposed mice sacrificed 4 
and 16 h after the exposure. All values are presented as means ± SD where **P  0.01 
and ***P < 0.001, significantly different from control; Mann-Whitney U test. 
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to be induced by IFN-γ. This correlated with increased amount of lymphocytes seen only 

in mice exposed to long needle-like MWCNTs (data not shown). 

CXCL1 is expressed by macrophages, neutrophils and epithelial cells and has neutrophil 

chemoattractant activity. Accordingly, it was seen at high levels after four hours after all 

exposures (Fig. 12). At 16 h, CXCL1 was still elevated for long needle-like MWCNTs. 

Neutrophilia seems to be a common reaction to particles which can be seen with all 

materials, its degree reflecting the harmfulness of the material. 

 

Figure 12. Protein expression of CXCL1, a neutrophil chemoattractant, in broncho-
alveolar lavage. Results are shown as pg/ml for PBS/BSA, long tangled MWCNTs 
(cheaptube), long needle-like MWCNTs (mitsui), and asbestos exposed mice 
sacrificed 4 and 16 h after the exposure. All values are presented as means ± SD. 
**P  0.01 and ***P < 0.001, significantly different from control; Mann-Whitney U 
test. 

 

Another protein that was expressed considerably more with long needle-like MWCNTs 

than the other materials was CCL3 (Fig. 13). CCL3 is known as macrophage inflammatory 

protein-1α (MIP-1α) and it is a cytokine that is involved in the acute inflammatory state in 

the recruitment and activation of polymorphonuclear leukocytes i.e. neutrophils and 

eosinophils. 

Chronic pharyngeal aspiration exposure: A single pharyngeal aspiration exposure to 

long needle-like MWCNTs with sampling after 28 days resulted in pulmonary granulomas 

filled with CNTs and mucus-producing goblet cells (Fig. 14). 

CXCL1 protein

PBS/BSA 4h 16h 4h 16h 4h 16h
0

500

1000

1500

2000 ***

**

***
***

cheaptube
mitsui
asbestos

p
g

/m
l



 Evaluation of the health effects of carbon nanotubes 
 

34 

 

Figure 13. Protein expression of CCL3, an acute inflammatory protein, in bronchoalveolar 
lavage. Results are shown in relative pg/ml for PBS/BSA, long tangled MWCNTs 
(cheaptube), long needle-like MWCNTs (mitsui), and asbestos exposed mice sacrificed 4 
and 16 h after the exposure. All values are presented as means ± SD. **P  0.01 and 
***P < 0.001, significantly different from control; Mann-Whitney U test. 

 

 

Figure 14. Periodic acid-Schiff (PAS) -stained mouse lung tissue, where mucus-producing 
goblet cells can be seen in red colour around the bronchioles. Black clumps of long needle-
like multiwall carbon nanotubes are inside and surrounded by granulomas. 
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Inhibition using antagonists: To find out whether TNF-alpha and IL-1β indeed had a 

significant part in the inflammation process, we used etanercept and anakinra to block 

TNF-alpha and IL-1β, respectively. 

Etanercept and Anakinra are drugs developed to treat autoimmune diseases and 

rheumatoid arthritis, respectively. Etanercept acts as a TNF inhibitor by binding to TNF-

alpha. Anakinra blocks the biological activity of IL-1 by competitively inhibiting the binding 

of IL-1 to the interleukin-1 type receptor. 

Both antagonists given separately and together resulted in a significant decrease in 

neutrophilia (Fig. 15) and mRNAs of IL-1β and TNF-α (Fig. 16) which were expressed after 

the single pharyngeal aspiration exposure to long needle-like MWCNTs. 

 

 

Figure 15. The effect of a single pharyngeal aspiration exposure on neutrophil infiltration 
to bronchoalveolar lavage fluid calculated from May–Grünwald–Giemsa (MGG)-stained 
cytospin slides with light microscopy (x40). Results are shown as cells per high power field 
(HPF) for PBS/BSA and long needle-like multi-walled carbon nanotubes (mitsui) exposed 
mice treated with antagonists of TNF-α (etanersepti), IL-1β (anakinra) or both (E+A). The 
bars represent mean ± SE; * P  0.05 and ** P  0.01, significantly different from control; 
Mann-Whitney U test. 
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Figure 16. mRNA-expression in the lung tissue of proinflammatory cytokines IL-1β 
and TNF-α. Results are shown in relative quantity (RQ) for mice exposed to 
PBS/BSA and long needle-like multiwall carbon (mitsui) and treated with antagonists 
of TNF-alpha (etanersepti), IL-1β (anakinra) or both (e+a). All values are presented 
as means ± SE. ***P < 0.001 significantly different from control; Mann-Whitney U 
test. 

 

Acute inhalation exposure to long needle-like multi-walled carbon nanotubes: 

Inhalation exposure to long needle-like MWCNTs resulted in a significant increase in 

inflammatory cells, i.e. neutrophils, eosinophils and lymphocytes, in the BAL of the mice 

(Fig. 17). Neutrophils are usually the first cells to respond to inflammation and they 

migrate to the site in the acute phase. They are the hallmark of acute inflammation and 

an essential part of the innate immune system. Eosinophils and lymphocytes, on the other 

hand, are usually associated with allergic or atopic diseases and the adaptive immune 

response. 
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Figure 17. Effect of inhalation exposure to long needle-like multi-walled carbon 
nanotubes (MWCNTs; mitsui) on infiltration of macrophages, neutrophils, eosino-
phils, and lymphocytes to bronchoalveolar lavage fluid calculated from May–Grün-
wald–Giemsa (MGG)-stained cytospin slides with light microscopy (x40). Results are 
shown as cells per high power field (HPF) for control mice and mice exposed to long 
needle-like MWCNTs for 4 h or 4 h on four consecutive days. The bars represent 
mean ± SE; * P  0.05, ** P  0.01 and ***P < 0.001, significantly different from 
unexposed control; Mann-Whitney U test. 

 

In addition to a flood of inflammatory cells in the BAL, we also encountered some foreign-

body giant cells (Fig. 18). They are collections of fused macrophages. These cells are 

generated in response to large foreign bodies and are particularly common with particles 

that cause chronic inflammation and the foreign body response. 
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Figure 18. May–Grünwald–Giemsa-stained cytospin slide under light microscopy showing 
a neutrophil and eosinophils together with long needle-like multiwall carbon nanotubes 
between a macrophage and a foreign-body giant cell. Bar 25 µm. 

 

IL-1β was significantly expressed on protein level after inhalation of long needle-like 

MWCNTs (Fig. 19). On mRNA level, IL-13 and CCL17 were significantly upregulated (Fig. 

19). IL-13 is involved with allergic lung diseases and is an important factor in inducing 

airway hyperresponsiveness, goblet cell metaplasia and mucus hypersecretion. In 

addition, it also induces secretion of chemokines that recruit allergic effector cells to the 

lungs. CCL17 specifically binds and induces chemotaxis in T cells.  
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Figure 19. Expression of proinflammatory protein IL-1β in bronchoalveolar lavage and 
lung tissue mRNA expression of IL-13 and CCL17. Results are shown in pg/ml and relative 
quantity (RQ) for control mice and mice exposed to long needle-like multi-walled carbon 
nanotubes for 4 h or for 4 h on four consecutive days. The bars represent mean ± SE; * P 
� 0.05, ** P � 0.01 and ***P < 0.001, significantly different from unexposed control; 
Mann-Whitney U test. 
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4.2 Genotoxicology 

4.2.1 In vitro 

Cytotoxicity: Long needle-like MWCNTs (Mitsui-7) induced a clear dose-dependent 

decrease in the number of BEAS 2B cells after all treatment times (4 h, 24 h and 48 h), as 

measured by the Trypan blue assay (Fig. 20A,). Cytotoxicity exceeding 50 % occurred 

approximately at 200 µg/cm2 for all time points. The luminescent cell viability assay 

(measuring ATP) showed similar results, although >50% cytotoxicity occurred already at 

about 80 µg/cm2 at each time point (Fig. 20B). 
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Figure 20. The number of viable cells (control = 100 %; Trypan blue exclusion) or ATP 
level (luminescent cell viability assay; RLU, relative luminescence units) after treatment 
with the multi-walled carbon nanotubes studied. The 50 % limit of viable cell number is 
marked with a dotted line. 
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Long tangled MWCNTs (Cheaptubes) induced a slight dose-dependent decrease in the 

number of living cells after the 4-h and 24-h treatments, but not after the 48-h treatment 

(Fig. 20C). Over 50 % cytotoxicity was seen at 350 µg/cm2 after the 4-h treatment and at 

200 µg/cm2 after the 24-h treatment. Similar results were seen in the ATP assay, except 

that also the 48-h treatment showed a dose-dependent cytotoxic effect (Fig. 20D). 

DNA damage: Long needle-like MWCNTs significantly (P < 0.01) increased the level of 

DNA damage, as measured by the comet assay, at most doses tested, already the lowest 

dose (5 µg/cm2) showing a 2.1-fold increase in comparison with the control (Fig. 21). 

Although the level of DNA damage did not further increase after 10 µg/cm2, there was a 

borderline dose-dependent effect (P = 0.06; Fig. 21). 

Long tangled MWCNTs induced a lower level of DNA damage, with only the highest dose 

(250 µg/cm2) significantly (P < 0.05; 1.6-fold increase) differing from the control (Fig. 

21); yet, the increase was dose-dependent (P < 0.001). Again, after an initial small 

increase in DNA damage (not significant) at low doses there was very little further 

elevation at higher doses. The positive dose of long tangled MWCNTs (250 µg/cm2) 

showed rather high cytotoxicity after the 24 h treatment, indicating near 50 % cytotoxicity 

(in comparison with the controls) by both the Trypan blue and the luminometric assays 

(Fig. 20C, D). 
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Figure 21. Induction of DNA damage (comet assay) in human bronchial epithelial BEAS 
2B cells by a 24-h treatment with long needle-like and long tangled multi-walled carbon 
nanotubes (MWCNTs). DNA damage is expressed as percentage of DNA in comet tail 
(%DNA in tail). Symbols represent means, error bars SEM between duplicate cultures. *, 
statistically significantly different from the controls.  
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Micronuclei and CBPI: Neither long needle-like MWCNTs nor long tangled MWCNTs 

were able to induce micronuclei in BEAS 2B cells (Fig. 22). However, there was a signifi-

cant negative dose-response for the long needle-like MWCNTs (P < 0.01) and a similar 

trend for the long tangled MWCNTs. The nanomaterials covered the slides at the highest 

concentrations and made the analysis impossible for 40 µg/cm2 and higher doses of long 

needle-like MWCNTs and for doses over 200 µg/cm2 of long tangled MWCNTs. CBPI 

decreased dose-dependently (P < 0.01) following exposure to both of the MWCNTs (Fig. 

22), indicating an induction of cell cycle delay. 

 

 
 

Figure 22. Cytokinesis-block micronucleus assay with long needle-like and long 
tangled multi-walled carbon nanotubes (MWCNTs) in BEAS 2B cells. 1000 binucleate 
cells scored per culture (2000 per experimental point) for the No. of micronucleated 
binucleate cells (MNC; columns) and 200 cells (400 per experimental point) for cyto-
kinesis-block proliferation index (CBPI; symbols). Columns and symbols represent 
means, error bars SEM between duplicate cultures. 

 

4.2.2 In vivo 

Pharyngeal aspiration. Fig. 23 shows the results of the Comet assay on BAL cells and 

lung cells 24 h after pharyngeal aspiration exposure to long needle-like and long tangled 

MWCNTs. A significant, 3.5-fold increase (P = 0.002) in the percentage of DNA in tail in 

the lung cells, compared with vehicle-treated animals, was found at the highest dose (200 

µg) of long needle-like MWCNTs, with a very clear positive dose-response (P < 0.0001). 

Long tangled MWCNTs caused no significant increase in DNA damage in BAL or lung cells - 

in fact there was a significant negative dose-response (P < 0.05) in both cell types. The 

positive control, WC-Co (1 mg/mouse), increased the percentage of DNA in tail (in com-

parison with the controls) by 1.5-1.8-fold in the lungs and 1.7-2.8-fold in BAL cells.  
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Figure 23. Induction of DNA damage (comet assay) in bronchoalveolar lavage (BAL) cells 
and lung cells 24 h after pharyngeal aspiration of long needle-like and long tangled multi-
walled carbon nanotubes (MWCNTs). Note that the 1st experiment (upper panel) included 
a lower dose range (10-40 µg/animal) than the other experiments (middle and lower 
panels; 50-200 µg/animal). Symbols represent means of 6 animals per group, error bars 
are SEM. The asterisk indicates a significant effect (as compared with the control group) of 
long needle-like MWCNTs on DNA damage in lung cells; there was also a significant 
positive dose-response (linear regression analysis; P < 0.0001). The positive control, 
tungsten carbide-cobalt mixture produced a 1.5-1.8-fold (lung cells) and a 1.7-2.8-fold 
(BAL) increase in % DNA in tail in comparison with the controls. 
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The frequencies of γ-H2AX positive cells, indicative of DNA double-strand break repair, 

among PBMCs and lung cells obtained from the pharyngeal aspiration experiment are 

shown in Table 3. Long needle-like MWCNTs did not significantly increase the frequency of 

γ-H2AX positive cells at any of the tested doses (1-200 µg/mouse) in peripheral blood or 

in lungs. No significant linear dose-response relationship could be found in the first 

experiment where lower doses (1-40 µg/mouse) were applied. However, a linear dose-

response of borderline significance (P = 0.059) was seen in lung cells but not in PBMNs in 

the second experiment where higher doses were tested (50-200 µg/mouse). Long tangled 

MWCNTs showed no significant increase in the level of DNA damage at any of the tested 

doses (1-200 µg/mouse) in either tissue. No significant linear dose response could either 

be found in PBMNs. In lung cells, a significant negative dose response (P = 0.021) was 

seen. WC-Co, used as a positive control for the comet assay in BAL and lung cells, did not 

significantly increase the frequency of γ-H2AX positive cells in lung cells or PBMCs. In 

general, the baseline level of γ-H2AX positive cells was 6-8 times higher in PBMCs than in 

lung cells (Table 3). 

Inhalation exposure. Results from the inhalation exposure to long needle-like MWCNTs 

(~8 mg/m3 for 4 days, 4 h/day) are shown in Figs 24-26. DNA damage, as measured by 

the percentage of DNA in comet tail (Fig. 24) was significantly increased (P < 0.05) by the 

MWCNT exposure, both in BAL and lung cells. DNA damage was induced particularly in 

BAL cells where a 6-fold higher was seen in comparison with the control group. The 

positive control treatment, WC-Co (1 mg/mouse), induced 1.2-fold and 2.1-fold increases 

in the percentage of DNA in tail in lung cells and BAL cells, respectively. 

Long needle-like MWCNTs did not induce systemic genotoxic effects in blood leukocytes, 

as measured by the presence of γ-H2AX foci (Fig. 25), or in bone marrow, as determined 

by the micronucleus assay (Fig. 26). The positive control Mitomycin C (2 mg/kg 

intraperitoneally) was clearly positive in both assays. 
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Table 3. Frequencies of γ-H2AX positive cells among peripheral blood mononuclear leukocytes and lung cells of mice 24 h after pharyngeal 
aspiration to long needle-like and long tangled multi-walled carbon nanotubes (MWCNTs). 

Exposure 
dose 
(µg/ani-
mal) 

Long needle-like MWCNTs 
Long tangled MWCNTs 

Experiment 1 (low doses) Experiment 2 (high doses) 

No. 

animalsa 

Mean (SD) 
No. γ-H2AX 
positive cells 
among 1000 

lung cells 

Mean (SD) 
No. γ-H2AX 
positive cells 
among 1000 
blood leuko-

cytes 

No. 

animalsa 

Mean (SD) 
No. γ-H2AX 
positive cells 
among 1000 
lung cellsb 

Mean (SD) 
No. γ-H2AX 
positive cells 
among 1000 
blood leuko-

cytes 

No. 

animalsa 

Mean (SD) 
No. γ-H2AX 
positive cells 
among 1000 
lung cellsc 

Mean (SD) 
No.γ-H2AX 

positive cells 
among 1000 
blood leuko-

cytes 

0 5 2.5 (0.6) 15.4 (6.3) 6 4.5 (3.7) 28.0 (8.3) 6 3.0 (2.2) 24.2 (16.1) 

1 4 3.0 (3.2) 23.0 (16.3)       

10 5 4.6 (1.5) 22.6 (25.6)    6 6.5 (4.1) 27.8 (21.6) 

40 5 4.2 (4.6) 15.6 (7.2)    6 4.3 (2.4) 13.3 (3.3) 

50    6 3.3 (1.7) 21.3 (16.4)    

100    6 5.6 (3.3) 22.3 (10.4) 6 0.8 (0.7) 20.3 (9.4) 

200    6 6.8 (2.2) 16.5 (8.4) 5 1.6 (2.6) 17.0 (7.0) 

WC-Co 
(1 mg/ 
animal) 

3 7.3 (4.2) 16.0 (6.2) 6 2.3 (1.7) 18.2 (6.8) 4 1.5 (1.3) 19.0 (13.9) 

 

a 1000 cells were scored per animal and tissue. 
b Borderline significant positive dose response (P = 0.059), linear regression analysis. 
c Significant negative dose response (P = 0.021), linear regression analysis. 
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Figure 24. Mean (+SEM) percentage of DNA in tail (comet assay) in bronchoalveolar 
lavage (BAL) cells and lung cells of mice exposed to long needle-like multi-walled carbon 
nanotubes (MWCNTs) by inhalation (~8 mg/m3 for 4 days, 4 h/day) or to tungsten 
carbide-cobalt mixture (pharyngeal aspiration, 1 mg/mouse; positive control). Asterisks 
indicate a significant difference (P < 0.05) in comparison with the negative control group. 
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Figure 25. Frequency of γ-H2AX-positive cells in 1000 peripheral blood mononuclear 
leukocytes of mice (2000 cells scored per animal) exposed to long needle-like multi-walled 
carbon nanotubes (MWCNTs) by inhalation (~8 mg/m3 for 4 days, 4 h/day) or to 
mitomycin C (2 mg/kg i.p.; positive control; sampling 24 h after treatment). Columns 
represent means, error bars SEM. Asterisks indicate a significant difference (P < 0.05) in 
comparison with the negative control group. 
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Figure 26. Frequency of micronucleated polychromatic erythrocytes (PCEs) among 2000 
PCEs in bone marrow of mice exposed to long needle-like multi-walled carbon nanotubes 
(MWCNTs) by inhalation (~ 8 mg/m3 for 4 days, 4 h/day) or to mitomycin C (2 mg/kg 
i.p.; positive control; sampling 24 h after treatment). Columns represent means, error 
bars SEM. Asterisks indicate a significant difference (P < 0.05) in comparison with the 
negative control group. 
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5 CONCLUSIONS AND DISCUSSION 

Long needle-like MWCNTs induced inflammation in both cultured cells and mice. In the 

lungs, we saw a clear increase in inflammatory cells and proinflammatory cytokines and 

chemokines. The inflammatory response was stronger with long needle-like carbon 

nanotubes than with crocidolite asbestos. The cytokine IL-1β and the inflammasome 

complex appeared to be in a central position in the mechanism leading to inflammation. 

Neutrophils were the key effector cells in mice exposed by aspiration and eosinophils in 

mice exposed by inhalation. 

The inflammation produced by inhaled long needle-like MWCNTs greatly resembled 

allergic asthma, which is most exceptional. Such a reaction caused by particle exposure 

alone is unseen in mice without sensitisation. Especially the induction of IL-13 and 

eosinophils was surprising. 

In vivo, the features and severity of the inflammation depended on the type of exposure. 

Long needle-like MWCNTs invoked a much stronger inflammation when administered by 

inhalation as an aerosol than by pharyngeal aspiration as dispersion. This may have been 

due to proteins covering the dispersed particles, while inhaled particles reached the lungs 

bare and without a protein corona. Protein corona may dampen the particle-cell reactions 

by changing the appearance of MWCNTs as seen by the cells. Another factor possibly 

influencing the differential response is the dose rate. In pharyngeal aspiration, MWCNTs 

were delivered as a single bolus, whereas more gradual exposure, 4 h/day for 4 days, was 

applied in the inhalation experiment. 

Both long needle-like and long tangled MWCNTs induced a dose-dependent increase in 

DNA damage in cultured human bronchial epithelial BEAS 2B cells. While long-needle-like 

MWCNTs significantly increased the level of DNA damage already at the lowest dose 

tested, long tangled MWCNTs produced a significant increase in DNA damage only at a 

50-fold higher, cytotoxic dose. Therefore, the effect of long tangled MWCNTs could only be 

considered borderline positive. Neither of the MWCNTs was able to induce chromosome 

damage in vitro, as judged by the micronucleus assay. 

In vivo in mice, long needle-like MWCNTs were able to increase DNA damage in lung cells 

after exposure by inhalation and pharyngeal aspiration. It was remarkable that the DNA-

damaging effect of long needle-like MWCNTs was clearer in vivo than in vitro. The weak 
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DNA-damaging potential of long tangled MWCNTs seen at the highest dose in vitro could 

not be reproduced in vivo. These findings suggest limited predictivity for the in vitro DNA 

damage assay with respect to the production of in vivo DNA damage. It is, however, 

unclear if the mechanisms of DNA damage induction by long, needle-like MWCNTs were 

entirely the same in vitro and in vivo. Although oxidative stress may have played a role in 

DNA damage induction by MWCNTs in both conditions, secondary genotoxic effects 

associated with inflammation - which cannot fully be produced in vitro - may have been 

important in vivo. 

Exposure to long needle-like MWCNTs produced an increase in lung cell DNA damage 

concurrently with the pulmonary influx of inflammatory cells and activation of various 

proinflammatory cytokines and chemokines. At this stage, it is still too early to tell if these 

two phenomena just occurred at the same time or if the genotoxic effect actually was 

secondary to inflammation. If the DNA damage was associated with reactive oxygen 

species produced by inflammatory cells such as neutrophils, a rather strong increase in 

these cells was needed, because the slight pulmonary neutrophilia brought about by 

pharyngeal aspiration of long tangled MWCNTs did not result in DNA damage. 

In BAL cells, long needle-like MWCNTs induced a high increase in DNA damage after 

inhalation exposure but had no effect after pharyngeal aspiration. This may suggest that 

macrophages, which constitute the majority of BAL cells, are more sensitive to the 

genotoxicity of long needle-like MWCNTs after exposure by inhalation than pharyngeal 

aspiration. The pharyngeal aspiration used delivered a high dose at a single administration 

of MWCNT dispersion, while the total dose was lower and dose rate much slower in the 4-

day, 4 h/day inhalation exposure to MWCNT aerosol. It is presently unclear how these 

differences could explain the results. The high acute exposure by the pharyngeal 

aspiration may have resulted in a quick overload of macrophages with particles followed 

by their replacement with fresh cells less exposed to MWCNTs. Alternatively, the 

pulmonary eosinophilia induced by the inhalation but not by the pharyngeal exposure may 

have contributed by a secondary genotoxic effect. It is also possible that albumin, used in 

dispersing MWCNTs in the pharyngeal aspiration study, affected macrophage reaction 

towards MWCNTs. 

Long needle-like MWCNTs did not induce MN in bone marrow of mice after inhalation 

exposure. This finding agreed with the negative results obtained with the MN assay in 
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vitro. MWCNTs neither produced γ-H2AX foci, indicative of DNA double strand breaks, in 

mouse lung cells or PBMNs. These results suggest that long needle-like MWCNTs do not 

have local or systemic clastogenic (chromosome-breaking) or aneugenic effects under the 

exposure conditions studied.  

In conclusion, our study underlined the special toxicity of long and needle-like MWCNTs, 

revealing completely new effects such as asthma-like inflammation and DNA damage in 

the lungs. Our findings suggest that the rigidity of long carbon nanotubes is a central 

characteristic with respect to their harmful effects. Long needle-like MWCNTs, more than 

50 nm thick, produced a strong inflammation and were genotoxic, while thinner (8-15 

nm) and flexible tangled MWCNTs, which tend to form agglomerates, had hardly any 

effects. Further mechanistic understanding of the inflammatory and genotoxic effects of 

MWCNTs is urgently needed. Therefore, we have continued our investigations deeper into 

the mechanisms of the exceptional inflammatory response observed and into the possible 

connections between inflammation and genotoxic effects. We are interested in finding out 

(a) what cell types are involved in launching the extraordinary inflammatory reaction, (b) 

why especially long and needle-like carbon nanotubes are particularly toxic, and (c) if 

oxidative stress and inflammation could explain, and by which mechanism, the concurrent 

genotoxic effects. 

Our findings provide new information on the adverse effects of MWCNTs and are useful in 

assessing which forms of MWCNTs require regulatory attention and special safety 

measures in occupational settings. 
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6 DISSEMINATION OF KNOWLEDGE 

Besides the present report, our results will be published in international and domestic 

scientific literature. One such publication has already appeared (Palomäki et al., 2011) 

and others are in preparation. The findings will also be presented in international and 

domestic scientific conferences, symposia and workshops, in committees dealing with the 

safety of nanomaterials, and within the Nanosafety Cluster of the European Commission. 

The research carried out in this project will form a part of two doctoral theses which are in 

preparation. 

During this project, we improved our practices in work with nanomaterials, including a 

complete renewal of the exposure facilities and safety precautions. We determined the 

special requirements that handling of nanomaterials sets for the working space, venti-

lation, and personal protection. Comprehensive alterations were introduced to ascertain 

safety. Detailed instructions for safe work with nanomaterials were prepared and 

communicated to the staff. The outcome of this process was utilized in defining a model 

solution applicable to this type of MWCNT exposure. Action plans for dealing with 

occupational exposure to nanomaterials are further being developed in another project 

(Finnish Work Environment Fund, No. 112132). 

The mechanisms behind the immunotoxic effects of MWCNTs described in this report were 

further characterized in a subsequent project supported by the Finnish Work Environment 

Fund (No. 110168; see Sund et al., 2013). Another project, concentrating on the 

genotoxic mechanisms of nanomaterials (including MWCNTs), is presently in progress 

(Finnish Work Environment Fund, No. 112248). 
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The development, production and technological applications 
of carbon nanotube are rapidly growing, due to the unique 
characteristics of these fibers. Consequently, an increase is 
also expected in human exposure to such materials. However, 
little is still known about the safety of the multiple sorts of 
carbon nanotubes.

Recent studies have suggested that some types of multi-
walled carbon nanotubes (MWCNTs) have similar effects as 
asbestos. This report shows that rigid, long and needle-like 
MWCNTs induce inflammation and DNA damage in the lungs 
and in cultured cells, while flexible, long and tangled MWCNTs 
do not. It appears that the rigidity of MWCNTs is a key feature 
in triggering a specific inflammatory reaction and in causing 
cellular alterations involved in cancer formation.

These results provide new information on the adverse effects 
of MWCNTs and are useful in assessing which forms of MWC-
NTs require regulatory attention and special safety measures 
in occupational settings.
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