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Abstract: 9 

Purpose The study develops site-dependent Characterization Factors (CFs) for marine ecotoxicity of metals emitted to 10 

freshwater, taking their passage of the estuary into account. To serve LCA studies where emission location is often 11 

unknown, site-generic marine CFs were developed for metal emissions to freshwater and coastal seawater respectively. 12 

The new CFs were applied to calculate endpoint impact scores for the same amount of metal emission to each 13 

compartment, to compare the relative ecotoxicity damages in freshwater and marine ecosystems in LCA. 14 

Methods Site-dependent marine CFs for emission to freshwater were calculated for 64 comparatively independent seas 15 

(Large Marine Ecosystems, LMEs). The site-dependent CF was calculated as the product of Fate Factor (FF), 16 

Bioavailability Factor (BF) and Effect Factor (EF). USEtox modified with site-dependent parameters was extended with 17 

an estuary removal process to calculate FF. BF and EF were taken from Dong et al. (2016). Site-generic marine CFs were 18 

derived from site-dependent marine CFs. Different averaging principles were tested, and the approach representing 19 

estuary discharge rate was identified as the best one. Endpoint marine and freshwater metals CFs were developed to 20 

calculate endpoint ecotoxicity impact scores.  21 

Results and discussion Marine ecotoxicity CFs are 1.5 orders of magnitude lower for emission to freshwater than for 22 

emission to seawater for Cr, Cu and Pb, due to notable removal fractions both in freshwater and estuary. For the other 23 

metals, the difference is less than half an order of magnitude, mainly due to removal in freshwater. The site-dependent 24 
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CFs generally vary within two orders of magnitude around the site-generic CF. Compared to USES-LCA 2.0 CFs 25 

(Egalitarian perspective), the new site-generic marine CFs for emission to seawater are 1-4 orders of magnitude lower 26 

except for Pb. The new site-generic marine CFs for emission to freshwater lie within 2 orders of magnitude difference 27 

from USES-LCA 2.0 CFs. The comparative contribution share analysis shows a poor agreement of metal toxicity ranking 28 

between both methods. 29 

Conclusions Accounting for estuary removal particularly influences marine ecotoxicity CFs for emission to freshwater 30 

of metals that have a strong tendency to complex-bind to particles. It indicates the importance of including estuary in the 31 

characterization modelling when dealing with those metals. The resulting endpoint ecotoxicity impact scores are 1-3 32 

orders of magnitude lower in seawater than in freshwater for most metals except Pb, illustrating the higher sensitivity of 33 

freshwater ecosystems to metal emissions, largely due to the higher species density there. 34 

Keywords (6-8 words): Comparative Toxicity Potential, CTP, estuary, fate model, USEtox, marine ecotoxicity 35 
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1. Introduction 41 

Ecotoxicity impacts of metals often rank high in Life Cycle Assessment (LCA), due to their persistence in the 42 

environment and their toxicity to biota (Huijbregts et al. 2000). However, up to now Life Cycle Impact Assessment 43 

(LCIA) methods have largely relied on models developed for organics. Unlike organics, metals are non-degradable and 44 

can exist in multiple species in water. Within those species not all of the dissolved metals are available for biota uptake 45 

thus causing toxicity. Also the fate of the metals can be affected by their speciation. This may lead to an inappropriate 46 

estimation of Characterization Factors (CFs) (also known as comparative toxicity potentials, CTPs, for the ecotoxicity 47 

impact category) for metals emitted to water. Metal emissions can reach freshwater via different pathways, including 48 

airborne emission followed by deposition, waterborne emission, and emission to soil followed by leaching or runoff. 49 

Metal emissions can reach coastal seawater directly via releases to the sea, or indirectly, via freshwater inflow or 50 

deposition from air.  51 

Following the Apeldoorn Declaration (Aboussouan et al. 2004) and the Clearwater Consensus (Diamond et al. 2010) 52 

on good practice in characterization modelling for metals, ecotoxicity characterization methods have been further 53 

developed to reflect the specific behaviour of metals, and a new framework has been developed to calculate regionalized 54 

freshwater ecotoxicity CFs of metals emitted to freshwater (Gandhi et al. 2010, 2011; Dong et al. 2014). Marine 55 

ecotoxicity CFs for metals emitted to coastal seawater were developed based on a similar principle (Dong et al. 2016). 56 

These studies found that metal CFs are very sensitive to water chemistry and emission location, varying by 3-4 orders of 57 

magnitude among coastal ecosystems for most metals (e.g. Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn) and 2-6 orders of 58 

magnitude in freshwater for some metals (e.g. Al, Be, Cu, Cr, and Fe(III)). These results point to the importance of 59 

applying archetype-specific or site-dependent CFs of metals in LCA studies whenever these are relevant contributors to 60 

overall ecotoxicity. However, the inventory in LCA studies does not (yet) systematically specify the location of emissions, 61 

which means that assessment often has to rely on site-generic CFs that represent impact potentials without consideration 62 

of the location. Site-generic freshwater CFs for metals were determined as weighted averages of archetype-specific 63 

freshwater CFs using weighting factors based on annual metal emission quantities to the different archetypes (Dong et al. 64 

2014). Site-generic marine CFs, however, have not been developed.  65 

Another important missing element in the characterization of aquatic ecotoxicity for metals is the modelling of their 66 

behaviour in estuaries, the transition zone between freshwater and seawater. In two of the most widely used 67 

characterization models for ecotoxicity in LCA, USES-LCA (van Zelm et al. 2009) and USEtox (Rosenbaum et al. 2008), 68 
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the fate modelling for metals emitted to the freshwater includes removal from the water column by sedimentation to 69 

freshwater sediments (including burial and re-suspension). The rest of the metal is assumed to be transported directly to 70 

coastal seawater and potentially affect marine ecosystems there. However, several studies show that estuaries function as 71 

a filter for metals. They can trap a fraction arriving with the freshwater by adsorption to suspended particulate matter 72 

(SPM). The SPM can then sediment directly or be taken up into biota, followed by sedimentation to estuary sediments 73 

(USEPA 2006; Chester and Jickells 2012). As a result, only a fraction of the metal leaving the freshwater compartment 74 

will reach the coastal seawater, which should be reflected in the CF that represents impacts in coastal seawater for 75 

emissions to freshwater. None of the current LCIA models consider this aspect.  76 

Therefore, this study aims at 1) modelling metal behaviour in estuaries and applying it for developing site-dependent 77 

marine ecotoxicity CFs for metals emitted to freshwater; 2) developing site-generic marine ecotoxicity CFs for metals; 78 

and 3) applying newly developed CFs to investigate and compare metal ecotoxicity in marine ecosystems to freshwater 79 

ecotoxicity. Following Dong et al. (2016), CFs were calculated for metals emitted to a generic freshwater and received in 80 

64 relatively independent coastal seas, Large Marine Ecosystems (LMEs). A LME covers the coastal zone from the coastal 81 

line extending to the seaward boundary of the continental shelf (Sherman 1991), and together the 64 LMEs cover all 82 

coastal water in the world. The filtering influence of an estuary is taken into account. Different averaging principles were 83 

tested to calculate site-generic marine CFs for each metal emitted to freshwater, aiming to identify the best approach. 84 

Similarly, we also developed site-generic marine CFs for metal emission directly to seawater based on the site-dependent 85 

CFs from Dong et al. (2016). A comparison of the ecotoxicity in freshwater and marine ecosystems was performed for 86 

the same amount of metal emitted to either compartment. The new set of site-generic marine metal CFs from this study 87 

and the previously developed freshwater CFs (Dong et al. 2014) were applied to calculate the ecotoxicity impact scores 88 

in marine and freshwater ecosystems respectively.  89 

2. Methods 90 

2.1 Site-dependent marine Characterization Factors for metal emission to freshwater  91 

2.1.1 General framework 92 

To be consistent with metal emission reported in the inventory, metals emitted to the environment are assumed to be 93 

in the form of total metal. It includes free metal ions as well as metal associated with SPM, or forming complexes with 94 

Dissolved Organic Carbon (DOC), or inorganic ions (figure 1). Among these metal forms, only inorganic complex metal 95 
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and free metal ions are considered bioavailable (Sunda 1989). Following Gandhi et al. (2010), CFi,j [(PAF)·day·m3/kg] is 96 

the Characterization Factor expressing the ecotoxic impact per kg total metal in compartment j after emission to 97 

compartment i. CFi,j is the product of three factors- a Fate Factor (FFij), a Bioavailability Factor (BFj), and an Effect 98 

Factor (EFj) as shown in equation 1.  99 

CFi,j = FFij· BFj·EFj     (Eq. 1) 100 

This equation can be applied for different compartments. In this study, compartment i and j represent freshwater and 101 

coastal seawater respectively. FFij is proportional to the residence time of total metal in the receiving coastal seawater 102 

compartment including the transfer efficiency of chemical from the freshwater compartment. EFj represents the 103 

ecotoxicity effects caused by the truly dissolved metal in coastal seawater. FFij (referring to total metal) and EFj (referring 104 

to truly dissolved metal) are linked through BFj, which represents the fraction of truly dissolved metal within the total 105 

metal. Using equation 1, we calculated marine ecotoxicity CFs for each metal for an emission to freshwater with 106 

subsequent transfer to coastal seawater.  107 

The calculation of FFij is further described in section 2.1.2. BFj and EFj are the same as in the calculation of marine 108 

CF for emission to seawater (Dong et al. 2016), since speciation and ecotoxic effects in coastal seawater are not affected 109 

by the emission compartment. There BFj were calculated using the chemical speciation model WHAM VII (Tipping et 110 

al. 2011) and the Free Ion Activity Model FIAM (Campbell 1995) were used for calculating EFj. 111 

BFj and EFj were available in Dong et al. (2016) for the nine metals Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn. However, 112 

in that study, the marine EF of Fe was set to zero, due to the essentiality of Fe at the low concentrations that occur in the 113 

seawater (Martin 1992; Sato et al. 2011; Barsanti and Gualtieri 2014), meaning that toxicity is unlikely to be caused by 114 

the increments emitted by product systems. Accordingly, the marine CF for Fe emitted to freshwater is zero and it is 115 

excluded from the following sections in this study, limiting the calculation of CF to the metals Cd, Co, Cr, Cu, Mn, Ni, 116 

Pb and Zn.  117 

2.1.2 Fate model 118 

We adapted the multi-media fate model embedded in the scientific consensus model USEtox 1.01 (Rosenbaum et al., 119 

2008) to calculate FFij. To be consistent with freshwater and marine CFs developed in Dong et al. (2014; 2016), we did 120 

not use the recently released USEtox 2.0 (USEtox Team 2016). However, the same adaptations can be applied in USEtox 121 

2.0 for future updates. In USEtox, the environment is represented by several interlinked compartments, including 122 

freshwater, seawater, soil, and air compartments, both on continental scale and global scale. FFij is calculated by 123 

modelling chemical mass balance at steady state in different environmental compartments, considering removal, 124 
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immobilisation, and transfer processes between compartments. We calculated the fate of metal emitted to the continental 125 

freshwater compartment, passing through estuary and received in the continental seawater compartment (i.e. costal 126 

seawater compartment). It is the product of two factors. One factor is the metal residence time in the coastal seawater 127 

compartment, which is the same as the FF calculated in Dong et al. (2016). It is determined by metal inflow to the coastal 128 

seawater compartment from other compartments (e.g. freshwater and air), metal removal in the coastal seawater 129 

compartment and metal outflow from the coastal seawater compartment to other compartments (e.g. ocean and air). The 130 

other factor is the fraction of metal that is transferred from freshwater to the coastal seawater compartment after emission 131 

to freshwater. This fraction is calculated from the metal loss rate constant in freshwater and the metal transfer rate constant 132 

from freshwater to the coastal seawater compartment. The transfer rate constant for chemicals from freshwater to coastal 133 

seawater (TRCfw-sw) is calculated in USEtox as presented in equation 2.  134 

𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓−𝑠𝑠𝑠𝑠 =
𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓−𝑠𝑠𝑠𝑠

𝑉𝑉𝑓𝑓𝑓𝑓
   (Eq. 2) 135 

Where:  WaterFfw-sw is the water flow rate [m3/day] from freshwater to seawater compartment. 136 

Vfw is the volume of the freshwater compartment [m3]. 137 

This assumes that all metal contained in the water will be transferred from freshwater to coastal seawater compartment. 138 

It ignores that the estuary, acting as a metal filter between freshwater and coastal seawater, may retain a fraction of the 139 

metal in estuary sediments. We adapted USEtox to include the removal of metal in estuaries by introducing an estuary 140 

removal rate constant after the freshwater compartment, representing the retention of metal in the estuary. The estuary 141 

removal rate constant was calculated as described in equation 3. 142 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓−𝑠𝑠𝑠𝑠 ∗ 𝑅𝑅𝑒𝑒𝑒𝑒  

𝑉𝑉𝑓𝑓𝑓𝑓
  (Eq. 3) 143 

Where:  Ret is the metal removal fraction in the estuary, representing the ratio between the amount of metal that 144 

is retained in the estuary and the total metal input to the estuary.   145 

Introducing the removal in the estuary, the transfer rate constant for a metal from freshwater to seawater (TRCfw-sw) 146 

was correspondingly reduced with the estuary removal rate as expressed in equation 4. 147 

𝑁𝑁𝑁𝑁𝑁𝑁 𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓−𝑠𝑠𝑠𝑠 =
𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓−𝑠𝑠𝑠𝑠∗ (1−𝑅𝑅𝑒𝑒𝑒𝑒)  

𝑉𝑉𝑓𝑓𝑓𝑓
  (Eq. 4) 148 

Equation 4 was used in our study to replace equation 2 in the USEtox model. In addition, in the calculation of site-149 

dependent FFij (and thus CFij), following Dong et al.(2016), the following USEtox parameters were adapted to fit the 150 

conditions of each LME: residence time of continental coastal seawater, surface area of continental coastal seawater, 151 

surface area of continental land area, water flow rate from freshwater to seawater, DOC and SPM concentration in 152 
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continental coastal seawater. KpSS (L/kg) (the ratio of metal concentration between SPM bond metal and truly dissolved 153 

metal) and KDOC (L/kg) (the ratio of metal concentration between DOC complex bound metal and truly dissolved metal) 154 

were recalculated for each metal in each LME, taking its specific water chemistry into account. The LME and metal 155 

specific values for KpSS and KDOC were used instead of the original default values for that metal in USEtox. Other 156 

parameters in the USEtox fate module were kept unchanged.  157 

Removal Fraction (Ret) of metals in the estuary 158 

The fractions of metals that can be removed in estuaries are not universal. They depend on the removal mechanism and 159 

metal speciation that is determined by water chemistry. Metals exist in the estuary either in dissolved form or particle-160 

bound forms. Only the particle-bound metal is trapped in the estuary. The removal of metal from the water column in the 161 

estuary can occur through four processes, namely flocculation, adsorption to SPM, precipitation, and biological uptake 162 

(Chester and Jickells 2012). Flocculation only has significant effects on “clay mineral suspensions, colloidal species of 163 

iron and dissolved organics” and aluminium to a smaller extent (Chester and Jickells 2012). Though other metals can 164 

flocculate with these flocculation-agents, the limited presence of flocculation-agents in natural estuary systems means 165 

that it is not likely that flocculation will contribute significantly to the removal of other metals than iron and aluminium 166 

(Chester and Jickells 2012). Biological uptake does not contribute significantly to the removal of metals from the water 167 

column in estuary except in the case of silicon and nitrogen (Chester and Jickells 2012). Visual Minteq 3.1 (KTH 2010) 168 

was used to investigate the possibility of metal precipitation in the estuary for all eight metals in this study (Cd, Co, Cr, 169 

Cu, Mn, Ni, Pb and Zn) at their background concentration in standard seawater chemistry (salinity 35‰ and pH 8.1), and 170 

in several freshwater chemistry archetypes presented by Gandhi et al. (2011). The possible precipitate solids considered 171 

in Visual Minteq are presented in table S1 in SI. Modelling results showed that none of the investigated metals precipitate, 172 

neither in the investigated freshwater nor in the seawater. This is expected since the applied background concentrations 173 

are obtained from empirical data representing total dissolved metals. Therefore, it is assumed that the only important 174 

metal removal mechanism in the estuary is adsorption to SPM, followed by particle removal through sedimentation or 175 

other mechanisms (e.g. SPM flocculation). This is in accordance with previous studies finding that heterogeneous 176 

precipitation in the presence of particle clouds is especially important for the removal of metals from the solution. Chester 177 

and Jickells (2012) reviewed several studies describing the removal of particulate matter in different estuaries (including 178 

the Scheldt estuary, Mississippi delta, Amazon river mouth and St Laurence system). They concluded that in general 90% 179 

of SPM is retained in the estuary as the water passes through the estuary. This is a result of the high sedimentation rate of 180 

SPM in the estuary (Malmgren and Brydsten 1992), and we have confirmed this fraction with other studies (Lykousis and 181 
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Chronis 1989; Zhang et al. 1990; Karageorgis and Anagnostou 2001). Though some studies reported higher fractions 182 

(Malmgren and Brydsten 1992; Kim et al. 2006), or slightly lower fractions of down to 70% retention (Liu et al. 2007), a 183 

retention of 90% is judged to be a good assumption for the modelling of metal removal in a generic estuary in our study. 184 

Different estuaries may differ widely in terms of e.g. area, water volume, particle concentration, DOC and water 185 

residence time. Nevertheless, metal removal mechanisms- partitioning with SPM followed by sedimentation- are similar. 186 

Note that the partitioning depends on the water chemistry. Water chemistry is very different in freshwater and seawater. 187 

In the transient zone between the two compartments, freshwater enters the estuary gradually mixing with seawater, which 188 

results in a continuously changing water chemistry throughout the estuary with salinity changing from ~0 to 35‰, DOC 189 

from 5 to 1 mg/l and pH from ~7.0 to 8.1 (Stumm and Morgan 1996). In addition, trace metal background concentrations 190 

decrease by up to two orders of magnitude from freshwater to seawater (Salminen 2005; Mason 2013). As described in 191 

Dong et al. (2016) the main water chemistry parameters affecting metal partitioning and speciation are salinity and organic 192 

matter content. These are gradually changing in all estuaries in a similar way from the freshwater to the seawater. E.g. a 193 

linear relationship has been found between salinity and DOC in several estuaries (Cawley et al. 2014; Asmala et al. 2016). 194 

Salinity increases linearly with distance from the seashore (Wit et al. 2015). Therefore, a simplification was assumed 195 

valid for our purpose, modelling the removal in the estuary for a generic estuary, calculating only one estuary removal 196 

fraction for each metal to be used in the calculation of CFs for all LMEs. The generic estuary was divided into eight 197 

consecutive sub-cells according to salinity with a gradually changing water chemistry from close to freshwater chemistry 198 

in the first sub-cell to close to seawater chemistry in the last sub-cell (table S2 in SI). Metals pass through the sub-cells 199 

sequentially. Within each sub-cell, metals are assumed to equilibrate with the water chemistry before the dissolved metal 200 

and a fraction of the SPM-bound metal passes on to the next sub-cell. According to previous studies (Li et al. 1984), 201 

adsorption and desorption between metals and SPM reaches equilibrium for most metals after half a day. Therefore, with 202 

the chosen eight sub-cells, full equilibrium can be reached within each sub-cell for all metals, in an estuary that has a 203 

water residence time longer than four days. According to Chester and Jickells (2012), water residence times in different 204 

estuaries vary from a few days to a few months. Thus a water residence time longer than four days is a reasonable 205 

assumption for the majority of the estuaries and it seems reasonable to assume that equilibrium is reached within each 206 

sub-cell. For each sub-cell, the dissolved metal concentration and water chemistry was entered into the speciation model 207 

WHAM VII (Tipping et al. 2011) to calculate the concentration of metal bound to SPM. It is assumed that dissolved 208 

metals are at their background concentration in the estuary. Since dissolved metals from freshwater are gradually diluted 209 
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by seawater, which contains much lower concentrations of metals, as described above, we further assume that the metal 210 

background concentrations decrease linearly with the increase in salinity from freshwater to seawater (table S2 in SI).  211 

The concentration of SPM is assumed to decrease linearly with salinity from freshwater to seawater (Turner 1996; Cai 212 

et al. 2012; Takata et al. 2012). This gives us equation 5 to calculate SPM concentration at any given salinity between 0 213 

and 35‰.  214 

𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛 = 𝑎𝑎 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛 + 𝑏𝑏                 (𝑛𝑛 ∈ [0, 35‰])  (Eq. 5) 215 

Where:  216 

SPMn is the concentration of SPM at salinity value Saln, 217 

b is the initial SPM concentration at the freshwater end, 218 

a is a constant. 219 

The increase in salinity from freshwater to seawater is caused solely by the mixing of freshwater and seawater with a 220 

different fraction of seawater and freshwater at each salinity point. The SPM concentration, on the other hand, is also 221 

affected by removal processes as previously described.  222 

In the absence of SPM removal processes, the mixing of freshwater and seawater would give SPM a conservative 223 

behaviour (Chester and Jickells 2012), as expressed by equation 6. 224 

𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛,𝑜𝑜 = 𝑐𝑐 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛 + 𝑏𝑏                 (𝑛𝑛 ∈ [0, 35‰])  (Eq. 6) 225 

Here SPMn,o represents the hypothetic SPM concentration at salinity value Saln without any removal process involved, 226 

and c is a constant, which differs from constant a. Representing the initial SPM concentration, constant b remains the 227 

same as in equation 5 because at the freshwater end, salinity is close to zero, where the estuarine SPM removal has not 228 

started yet. Combining equations 5 and 6, provides equation 7: 229 

𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟,𝑛𝑛 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛,𝑜𝑜 = (𝑎𝑎 − 𝑐𝑐) ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛                  (𝑛𝑛 ∈ [0, 35‰])  (Eq. 7) 230 

Here SPMrem,n represents the reduction in the concentration of SPM solely caused by the removal process at salinity 231 

value Saln. Applying two different salinities, i and j in equation 7, yields: 232 

𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖
𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟,𝑗𝑗

= 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖
𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗

                   (𝑖𝑖, 𝑗𝑗 ∈ [0, 35‰])   (Eq. 8) 233 

Since the estuary was divided into eight sub-cells according to salinity, it is reasonable to use the generic water 234 

chemistry in each sub-cell as a proxy to represent its relevant salinity ranges (table S2 in SI). Therefore, equation 8 can 235 

be adapted into equation 9.  236 

𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑘𝑘1
𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑘𝑘2

= 𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1
𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2

                   (𝑘𝑘1, 𝑘𝑘2 ∈ [1, 2, 3, 4, 5, 6, 7, 8])  (Eq. 9) 237 
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Where SPMcellrem,k and Salcellk represent the removed SPM concentration and the salinity value in sub-cell k1 and k2 238 

respectively.  239 

If we allow the fraction of SPM that has not been removed in each sub-cell to be transferred to the next sub-cell, then 240 

after eight sub-cells, the remaining amount of SPM should in total account for 10% of initial SPM input to the estuary, in 241 

accordance with the assumed 90% SPM removal in the estuary. This results in equation 10. 242 

∏ �1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑘𝑘
𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

�8
𝑘𝑘=1 = 10%   (Eq. 10) 243 

Here SPMcellk is the SPM concentration in sub-cell k. Correspondingly, SPMcellrem,k/SPMcellk presents the removal 244 

fraction in sub-cell k. Fitting equation 9 and 10 with SPM and salinity values of each sub-cell, the removal fraction of 245 

SPM in each sub-cell can be calculated (result shown in table S2 in SI). These removal fractions also apply to the metals 246 

bound to SPM. Summing up over all sub-cells, the total removed SPM-bound metal is found and the resulting removal 247 

fractions in the estuary can be calculated for each metal as the ratio between total removed metal and total input of metal 248 

from freshwater.  249 

2.2 Averaging principles and site-generic characterization factors 250 

Although the estuary model does not distinguish between different locations in this study, CFs for each LME and each 251 

metal vary due to differences in environmental parameters of the LME (e.g. seawater residence time, temperature and 252 

water chemistry). For the purpose of LCA, where emission location is often unspecified for emissions reported in the life 253 

cycle inventory, a site-generic CF is needed for marine ecotoxicity, derived by averaging the metal CFs across the 254 

individual LMEs. Ideally, the averaging should apply weighting factors that, for a given LME, reflect the probability that 255 

this LME receives the metal emission, e.g. based on the geographic distribution of the annual emission quantities for the 256 

metal. As this information is currently not available for all LMEs, we instead tested four alternative weighting principles 257 

based on the surface area of the LME, the primary productivity of the LME, the estuary discharge rate to the LME, and 258 

the inshore fishing area of the LME (resulting in average values CFsurfa, CFpripro, CFdis, and CFfisha respectively). For each 259 

of the weighting principles and each metal, the site-generic CF is calculated as shown in equation 11 and 12. Weighting 260 

factors are available in table S3 in SI.  261 

weighted site-dependent CF = site-dependent CF * corresponding weighting factor  (Eq. 11) 262 

site-generic CF=∑ weighted site-dependent CF    (Eq. 12) 263 
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CFsurfa assumes that each unit surface area of coastal seawater has the same probability of receiving emissions, i.e. the 264 

larger the LME, the larger the share of anthropogenic metal emissions that it receives. CFdis presumes that the share of 265 

metal emissions reaching an LME is proportional to the freshwater discharge that it receives. CFpripro and CFfisha follow 266 

the hypothesis that the effect caused by metal emission can be judged by the relative size of affected primary production 267 

or inshore fishing area respectively. In addition, the arithmetic mean over the 64 site-dependent CFs (CFave) was 268 

calculated, inherently assuming an equal possibility of each LME to receive the metal emission. These weighting 269 

principles were applied to marine CFs for metals emitted to freshwater and for metals emitted to coastal seawater 270 

respectively. A recommendation of site-generic principle was developed and the sensitivity of site-generic CFs to the 271 

applied weighting principle were analysed.     272 

3. Results and discussion 273 

First the site-dependent marine ecotoxicity CF for metals emitted to freshwater are presented. Afterwards, site-generic 274 

marine CFs for metals emitted to freshwater and coastal seawater are shown. Then they are applied to an emission 275 

inventory with equal quantities of all metals to examine the effects on the freshwater ecotoxicity and marine ecotoxicity 276 

impact scores. 277 

3.1 Site-dependent marine Characterization Factors for metals emitted to freshwater 278 

As previously mentioned in section 2, the fraction of metal which is transferred from freshwater to the coastal seawater 279 

compartment is dependent on metal loss in both freshwater and the estuary. In USEtox our proposed methodology allows 280 

the marine ecotoxicity CF for emission to freshwater (CFfw-sw) to be calculated in a simple way from the marine 281 

ecotoxicity CF for emission to seawater (CFsw-sw), using the removal rate constant in freshwater (Rfw) and removal rate 282 

constant in the estuary (Ret) as shown in equation 13. 283 

CFfw-sw = CFsw-sw * (1-Ret)* (1-Rfw)         (Eq. 13) 284 

A metal-specific estuary removal fraction, Ret was calculated for each of the metals, to fit the fate model embedded in 285 

USEtox for the modelling of metal fate in coastal seawater compartments after emission to freshwater. Removal fractions 286 

in the estuary vary considerably among metals according to the applied model as shown in table 1, where larger fractions 287 

are retained for the metals Pb, Cu, and Cr due to their high affinity to SPM as expressed by their KpSS (Dong et al. 2016). 288 

The calculated removal fractions show good agreement with ranges and tendencies found in other studies (table 1). 289 

Applying the USEtox fate model, close to 90% of Cr, Cu, Pb, and 40%-60% of the other metals emitted to freshwater 290 
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were removed in the freshwater compartment before ever reaching the estuary (table 1), indicating that the residence time 291 

in freshwater is sufficient to allow a large fraction of metals to adsorb to SPM, which is then removed by sedimentation. 292 

In the estuary, 19% of Cr, 21% of Cu and 61% of Pb were removed before entering the coastal seawater, while less than 293 

2% of the other metals are removed in estuary. The resulting site-dependent marine FF and CF for emission to freshwater 294 

are presented in table S4 in SI.  295 

Regardless the uncertainties associated with site-dependent marine CFs as discussed in Dong et al. 2016, for the same 296 

metal in the same LME, the marine FF for emission to freshwater is always lower than for emission to seawater due to 297 

metal removal in freshwater and the estuary. For Cd, Co, Mn, Ni, and Zn, the difference between the two marine FFs is 298 

less than half an order of magnitude, mainly caused by the removal process in freshwater. However, for Cr, Cu, and Pb, 299 

both estuary and freshwater removal processes contribute noticeably, resulting in a 1.5 orders of magnitude lower marine 300 

FF for metal emitted to freshwater than for metal emitted to seawater . This indicates that for metals forming strong 301 

complexes with particulate matter such as Cr, Cu and Pb, it is necessary to include estuary removal in the fate modelling. 302 

For other metals such as Cd, Co, Mn, Ni, and Zn, the estuary removal can be simplified in the modelling. Since the BF 303 

and EF are the same in both cases, this difference in FFs translates directly into the marine ecotoxicity CFs for emissions 304 

to freshwater and seawater as illustrated in figure 2.  305 

3.2 Site-generic marine Characterization Factors 306 

 The purpose of LCA is to assess the impacts related to products, and an important source of metal emissions from the 307 

product’s life cycle will often be the manufacturing stage or mining operations, metallurgical operations extracting metal 308 

ores and refining the metal. With few exceptions, such facilities are located inland with initial discharge to freshwater or 309 

estuaries (EPRTR 2012). A large share of the metal emissions will thus be transported to seawater through estuary 310 

discharge. As a consequence, fluvial input is the major source (>50%) of most metals in seawater with Hg and Pb as 311 

exceptions for which atmospheric deposition is dominant (Mason 2013). Therefore, the annual estuary discharge seems 312 

to be the most relevant weighting principle for deriving a site-generic marine CF to be applied in LCA studies when 313 

emission location is unknown, both for emissions to freshwater and seawater. It is therefore recommended as the preferred 314 

averaging principle.  315 

Site-generic marine CFs may also be calculated by applying other averaging principles if preferred for particular reasons. 316 

We have provided four other options as described previously in section 2.2, including three weighting principles and 317 
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arithmetic mean. The resulting site-generic CFs are presented in table S5 in SI. The four weighting principles (including 318 

the recommended one) lead to minor differences in the calculated site-generic CF, which lies within less than a factor of 319 

three for all metals. To understand if there is any significant difference between different weighting principles, we looked 320 

into the differences between two selected sets of weighted site-dependent CFs that are calculated in equation 11. For each 321 

metal, there are five sets of site-dependent CFs including equal weighting. This gives us 10 sets of differences (table S6 322 

in SI). Running t-tests on the 10 sets of differences for each of the metals, we observed that most of the p-values are above 323 

0.05, meaning there is no significant difference between the weighted site-dependent CFs (table S7 in SI). The only 324 

exceptions are Cu and Cr, where significant differences were observed for two and one sets of comparison respectively. 325 

This is largely due to their larger variation of CFs across LMEs. This indicates that the site-generic CFs are not very 326 

sensitivity to the chosen averaging principle. All investigated averaging principles including arithmetic mean give results 327 

located in the upper half of the CF ranges across the 64 LMEs. This indicates that for all averaging principles, LMEs with 328 

higher CFs, which tend to be the LMEs with longer seawater residence times, have a relatively strong influence on the 329 

generic CF. 330 

3.3 Parameter uncertainty 331 

Sensitivity and uncertainty analyses for the site-dependent marine CF were conducted by Dong et al. (2016), covering 332 

most input parameters applied in the model. For some parameters, the inherent uncertainty is judged to be low (i.e. pH 333 

values, salinity, freshwater inflow and land surface area), varying less than 3%. For the parameters that are more uncertain, 334 

i.e. Fe, Mn, and Al oxide concentrations, DOC, POC, SPM concentrations, seawater residence time (SRT) and 335 

temperature, further sensitivity analysis were conducted in Dong et al. (2016) . The results show that CFs are mostly 336 

sensitive to DOC, POC and SPM concentration, and seawater residence time (SRT), leading to further analysis of the 337 

potential uncertainty of those parameters in this study.  338 

Taking LME22 and LME24 as examples, SPM varied from 0.2 to 66 mg/L at different locations between year 1970 and 339 

1994 (Radach et al. 1996), with an average of 0.79 and 0.59 mg/L respectively. Assuming a positive correlation between 340 

DOC, POC and SPM as shown by Dong et al. (2016), this gives an uncertainty of CFs of about two orders of magnitude 341 

for Cu and Cr, but less than a factor of three for all other metals. Note that this is the uncertainty caused by the natural 342 

variation of water chemistry in different time and locations within one LME.     343 
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Marine CFs are strongly driven by SRT. In Dong et al. (2016), some of the LMEs do not have a reported SRT available 344 

for calculation. For those LMEs, the SRT are estimated from the coastal seas that have similar conditions. According to 345 

Cosme et al. (2017), the SRTs that are estimated to be 0.25 years may vary from 0.03 years to 0.5 years. For a SRT of 2 346 

years, variation from 0.2 to 3.8 years occurs. For LMEs with longer SRT such as 25 years and 90 years, literatures reported 347 

up to one order of magnitude lower SRT  (Cosme et al. 2017). We therefore varied SRT by a factor of 0.1 or 2 of the 348 

original value, which reasonably covers the potential range of estimated SRTs. The resulted CFs for different metals vary 349 

by a factor of 0.05-0.8 or 1.1-2.6 respectively. 350 

All of the above uncertainties are present in the marine CFs for emission to both freshwater and seawater, due to the 351 

inherent methodology for the calculation. From the uncertainty analysis, it is reasonable to judge that the parameter 352 

uncertainty associated with the site-dependent marine CFs is within two orders of magnitude. It is noteworthy that only 353 

the variability of parameters has been considered in this analysis, whereas other sources of uncertainty may also contribute 354 

to the overall uncertainty of CFs, but which may not always be quantifiable.   355 

We also assessed the uncertainty of site-generic CFs caused by the variation of site-dependent CFs. For most of the 356 

metals (i.e. Cd, Co, Cr, Cu, and Pb), the 64 site-dependent CFs follow a lognormal distribution (table S8 in SI). Their 357 

geometric standard deviation are presented in table 2, indicating that site-generic CFs are accompanied by a considerable 358 

additional parameter uncertainty due to neglected spatial variability.  359 

In addition to the parameter uncertainty associated with CFs, the differences between the deterministic site-dependent 360 

and site-generic CFs for a specific metal are within one order of magnitude for ~50% of the LMEs and within two orders 361 

of magnitude for more than 90% of the LMEs (figure 2). The strongest deviation was up to three orders of magnitude. 362 

This emphasizes the importance of providing emission locations in the inventory in order to enable the use of site-363 

dependent CFs.  364 

3.4 Comparison between recommended generic Characterization Factors and USES-LCA Characterization 365 

Factors 366 

The USES-LCA 2.0 characterization model, applied as part of the ReCiPe LCIA method, provides three sets of CFs for 367 

marine ecotoxicity representing different cultural perspectives, considering different modelling choices and time scales 368 

(Goedkoop et al. 2012). CF(I) and CF(H) represent the Individualist and Hierarchist perspectives. CF(E) represents an 369 

Egalitarian perspective, where a longer time scale is applied and steady state is established (in most cases). In this study, 370 
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we used USEtox to calculate the FF, which is based on a steady-state mass balance applying an infinite time horizon. 371 

Thus, among the three perspectives, the Egalitarian is the scenario which corresponds best to the assumptions in this study.  372 

Note that ecotoxicity CFs in USES-LCA 2.0 are expressed in a relative metric as 1,4-DCB equivalents, which differs 373 

from the absolute metric applied in this study [(PAF).m3.day/kg]. To compare factors from both models, we converted 374 

our CFs to 1,4-DCB equivalents by dividing the metal CFs with marine CFs for 1,4-DCB emitted to freshwater or seawater 375 

in corresponds with the metal emission compartments. Here marine CFs for 1,4-DCB are site-generic ones calculated 376 

using default USEtox settings. However, marine CF of 1,4-DCB emitted to freshwater is 1.5 orders of magnitude lower 377 

than when it is emitted to seawater. This is because 1,4-DCB degrades in freshwater, which results in a much lower 378 

transfer fraction from freshwater to seawater (4%) than for most of the metals. This potentially introduces a bias in the 379 

conversion of the new metal CFs in this study to 1,4-DCB equivalents, which may result in higher marine CFs for metal 380 

emissions to freshwater than to seawater after the conversion. Though this does not affect the ecotoxicity ranking of 381 

metals, it highlights a problem in the use of an organic reference substance when expressing ecotoxicity of metals in 382 

different compartments (Dreyer et al., 2003). In general, site-generic marine CFs developed in this study are higher than 383 

USES-LCA 2.0 CFs with Individualist and Hierarchist perspectives, but lower than or similar to USES-LCA 2.0 CFs with 384 

Egalitarian perspective (table S9 in SI).   385 

To understand the differences of both methods in relative terms, we conducted a contribution analysis following Dreyer 386 

et al. (2003) and Pizzol et al. (2011). We created a hypothetical inventory with emissions of one kg of each metal (Cd, 387 

Co, Cr, Cu, Mn, Ni, Pb and Zn). In scenario 1, they are all assumed to be emitted to freshwater. In scenario 2, the emission 388 

compartment is coastal seawater. For each of the scenarios, we have calculated the marine ecotoxicity impact scores by 389 

using USES-LCA Egalitarian CFs and the recommended site-generic CFs in this study respectively. The contribution of 390 

each metal to the total impact score is presented in figure 3. The figure shows poor agreement between both methods in 391 

that the same metal contributes very different shares for the two different methods. For emission to freshwater, the marine 392 

ecotoxicity mainly comes from Ni, Cu and Co in USES-LCA, contributing to more than 90% in total. In contrast, applying 393 

CFs developed in this study, these three metals contribute less than 20% to the total marine ecotoxicity score, which is 394 

dominated by Zn, Cd and Pb. A similar observation was made for emission to coastal seawater. This means that the most 395 

toxic metals according to USES-LCA become less important in the new methodology.      396 
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3.5 Metal ecotoxicity in the aquatic system 397 

The newly developed site-generic marine and freshwater ecotoxicity CFs, allow us to compare the severity of the 398 

ecotoxic impacts that are caused by emitting metals to different aquatic compartments. The CFs that we developed in the 399 

previous sections are known as midpoint CFs, expressed as the potentially affected fraction of species integrated over 400 

volume and time [PAF in m3.day]. For a comparison of impacts in freshwater and marine ecosystems it is important to 401 

note that the species density (number of species per volume compartment) is different in freshwater and seawater. 402 

Therefore, the midpoint marine CFs cannot be compared directly with the midpoint freshwater CFs from Dong et al. 403 

(2014), since the fractions expressed by the potentially affected fraction of species (PAF) relate to different total species 404 

numbers. To make the ecotoxicity scores comparable, marine and freshwater endpoint CFs were developed. Endpoint 405 

CFs build on midpoint CFs but also consider the severity of the midpoint impacts by modelling the damages on the 406 

exposed ecosystem, represented by the resulting potentially disappeared number of species. Therefore, PAF in the 407 

midpoint score needs to be converted to the potentially disappeared fraction (PDF) to arrive at the endpoint score. Thus, 408 

in addition to species density, a PAF to PDF ratio is applied on the midpoint CF to derive the endpoint CF 409 

[(species).day/kg], as shown in equation 14.  410 

Endpoint CF = midpoint CF × species density × PAF to PDF ratio  (Eq. 14) 411 

Equation 12 can be used to calculate endpoint ecotoxicity CFs in any environmental compartment. In this study, we 412 

took the PAF to PDF ratio (dimensionless) from IMPACT 2002+ (Jolliet et al. 2003). Marine and freshwater species 413 

densities [species/m3] were taken from ReCiPe (Goedkoop et al. 2013). To calculate the site-generic marine ecotoxicity 414 

endpoint CF, we used the site-generic marine ecotoxicity midpoint CF [(PAF).m3.day/kg] from this study. Site-generic 415 

freshwater ecotoxicity CFs from Dong et al. (2014) were used to calculate freshwater ecotoxicity endpoint CFs. The 416 

results are presented in figure S1 in SI.  417 

The site-generic endpoint ecotoxicity impact score (EIS, [(species).day]) for emission to freshwater and seawater can 418 

be calculated by equation 15 and 16 respectively. 419 

EIS for emission to freshwater = 420 

(Freshwater endpoint CF + Marine endpoint CF for emission to freshwater) × emission quantity   (Eq. 15) 421 

EIS for emission to seawater = Marine endpoint CF for emission to seawater × emission quantity  (Eq.16) 422 
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For comparison of metal ecotoxicity impacts on freshwater ecosystems and marine ecosystems, we calculated endpoint 423 

impact scores for emissions of one kg metal to either freshwater or seawater. The resulting endpoint impact scores for 424 

such emissions are presented for eight metals in figure 4.  425 

The result shows that for all metals investigated except Pb, emissions to freshwater result in 1-3 orders of magnitude 426 

higher endpoint EIS than emissions to seawater (figure 4). When metals are emitted to freshwater, the major ecotoxicity 427 

impact is on freshwater species. Though some metals will pass through the estuary and reach seawater, consequently 428 

causing toxicity on marine species, the impacts on marine species (marine ecotoxicity for emission to freshwater) only 429 

contribute little (<3.5% for any of the metals except Pb) to the total EIS for emissions to freshwater. The freshwater 430 

ecotoxicity CF is either similar or slightly higher than the marine ecotoxicity CF (Dong et al. 2016), but the species density 431 

in freshwater is two orders of magnitude higher than in marine water (Goedkoop et al. 2013), which is the main driver 432 

behind the higher endpoint EIS for freshwater ecotoxicity. For Pb, the emission to seawater causes one order of magnitude 433 

higher marine ecotoxicity endpoint scores than emission to freshwater (figure 4). Here 30% of the EIS for emissions to 434 

freshwater is coming from the impacts on marine species. This is largely caused by the much higher CF of Pb in marine 435 

water than in freshwater as discussed in Dong et al. (2016).   436 

4. Conclusions and recommendations 437 

Following the methodological recommendations from the Apeldoorn declaration and the Clearwater Consensus, we 438 

developed site-dependent marine ecotoxicity CFs for 64 Large Marine Ecosystems for eight metals emitted to freshwater, 439 

taking estuary removal into account. By introducing an estuary into the multi-compartment fate model of USEtox, marine 440 

CFs for metals with a strong tendency to associate with particles (e.g. Pb, Cu, and Cr) were notably reduced for emission 441 

to freshwater. 61% of Pb, 21% of Cu and 19% of Cr that enters the estuary were retained there. In combination with the 442 

metals that are retained in freshwater, this results in 1.5 orders of magnitude lower marine ecotoxicity CFs for emission 443 

to freshwater compared to emission to seawater for those three metals, clearly indicating the importance of including an 444 

estuary in the fate model for those metals. In LCA studies where emission location is unknown, we recommend to use 445 

estuary discharge rate weighted CFs. Compared with USES-LCA 2.0’s marine ecotoxicity CFs, the new site-generic 446 

marine ecotoxicity CF for emission to seawater is ca. 1-4 orders of magnitude lower. The new site-generic marine 447 

ecotoxicity CF for emission to freshwater is within two orders of magnitude difference compared with USES-LCA 2.0 448 

values. However, the comparative contribution share analysis shows little similarity for the rankings of most toxic metals 449 

between USES-LCA and the new method. While Ni, Cu and Co are the major ecotoxicity contributors in USES-LCA, 450 
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they become less important in the new method. We further developed marine and freshwater ecotoxicity endpoint CFs, 451 

to compare damages from metal emissions on freshwater and marine ecosystems respectively. For the same amount of 452 

metal, emissions to freshwater result in 1-3 orders of magnitude higher endpoint impact scores than emissions to seawater 453 

for all investigated metals except Pb. For metal emissions to freshwater, the ecotoxicity impact on marine species has a 454 

minor contribution to the total ecotoxicity damage score, except for Pb. However, this study only covers eight metals for 455 

which a marine ecotoxicity CF has been developed. It is recommended to consider more metals when their marine CFs 456 

become available, especially those that may behave similarly to Pb (e.g. Sn and Ag). Largely due to higher species density, 457 

the damage scores are higher for freshwater ecosystems than for marine ecosystems.      458 

This is the first attempt in LCA to include an estuary in the multi-compartment fate model. We took a simplified 459 

approach with a generic fate model and developed only one set of removal fractions to simulate metal fate in estuaries. It 460 

is recommended to further look into different types of estuaries and investigate the relevance of deriving different sets of 461 

removal fractions to better represent the removal process in each type of estuary, which was essentially treated as a filter 462 

in this study. We did not develop any CF representing ecotoxicity of the metals to organisms in the estuary, considering 463 

the relatively short water residence time there and the lack of ecotoxicity effect data representing the species and the 464 

fluctuating conditions in the estuary. However, considering the importance of estuaries for biodiversity and economy in 465 

many regions, it is recommended to further look into the relevance of including the impacts of chemicals in the estuary 466 

in the characterization modelling of aquatic ecotoxicity. 467 
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Figures and tables 571 

Table 1 The calculated fraction of metal removed in the estuary and freshwater, and ranges for estuarine removal fraction 572 

in other studies 573 

Metals Removal in 
estuary  

Removal in 
freshwater  

Removal in estuary in other studies 

Cd 0.3% 55.6% <10% (Audry et al. 2007) 
Co 0.2% 42.3%  
Cr 18.8% 92.5%  
Cu 

20.6% 91.8% 
10%-28% (Audry et al. 2007) 
~40% (Paulson et al. 1988) 

Mn 0.7% 61.4% <0% (Audry et al. 2007)* 
Ni 1.3% 53.4%  
Pb 

60.8% 91.6% 
72% (Paulson et al. 1988) 
80.5% (Monbet 2006) 

Zn 
2.0% 61.2% 

15%-26% (Jouanneau and Latouche 1982) 
~40% (Paulson et al. 1988) 

*When the value is below 0, it means the exported metal is more than input metal. The enrichment is most likely due to 574 

sediment input in addition to the low fraction of metal removed. 575 

Table 2 Recommended site-generic CFs for marine ecotoxicity of metals emissions to freshwater and seawater, 576 

accompanied by the geometric standard deviation representing the spatially determined variation. 577 

Metal Marine CFs for metal 
emission to freshwater 

Geometric 
Standard 
deviation 

Marine CFs for metal 
emission to seawater 

Geometric 
Standard 
deviation 

Cd 6.28E+05 4.96 1.42E+06 4.97 
Co 2.66E+05 4.33 4.61E+05 4.33 
Cr 1.54E+01 8.90 2.51E+02 8.90 
Cu 1.08E+04 8.29 1.65E+05 8.29 
Mn 7.20E+04 5.50 1.88E+05 5.51 
Ni 1.66E+05 5.79 3.62E+05 5.79 
Pb 2.96E+04 6.17 8.96E+05 6.17 
Zn 6.02E+05 5.92 1.58E+06 5.92 

 578 

 579 
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 580 

Figure 1. Metal speciation illustration in water. “Me” represents metal. SPM is suspended particle and DOC is 581 
Dissolved Organic Carbon.  582 

 583 

 584 

Figure 2. Recommended site-generic marine ecotoxicity Characterization Factors (CFs) and site-dependent marine 585 

ecotoxicity Characterization Factors (CFs) in 64 LMEs for eight metals emitted to freshwater. Marine 586 

ecotoxicity CFs for the same metals emitted to seawater (Dong et al. 2016) also shown for comparison.  587 
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 588 

  589 

 590 

Figure 3. Contribution analysis based on emission inventory with one kg of each metal (Cd, Co, Cr, Cu, Mn, Ni, Pb and 591 

Zn) emitted to water. In scenario 1, all metals are emitted to freshwater. In scenario 2, all metals are emitted 592 

to coastal seawater. The share (%) of each metal in the total marine ecotoxicity impact is shown.     593 
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 595 

Figure 4. Site-generic ecotoxicity endpoint impact scores for emission of one kg metal into freshwater and marine 596 

water respectively 597 
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