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Abstract 
 
 
A life cycle assessment was conducted to evaluate the global warming potential and human toxicity of injection moulding processes 
applying newly developed tool inserts produced with vat polymerisation. The inserts were subject to increasing content of carbon 
fibres to improve their mechanical properties and lifetime. The additively manufactured inserts are compared to the standard 
materials steel, aluminium and brass. The investigated part of the production and prototyping phase considers the insert itself, the 
moulded part, and resulting waste material of the injection moulding process. 
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1. Introduction 

Applications for Fibre-Reinforced Polymers (FRPs) in Additive 
Manufacturing (AM) have intensively been discussed in 
literature reviewed by [1]. An increased number of industrial 
applications includes Injection Moulding (IM) where a 
standardised mould manufactured from steel is equipped with a 
more flexible, faster, and cost-efficient IM insert manufactured 
from Vat Polymerisation (VP) [2-7]. Another main advance is 
given by the fact that tolerances are established by the VP 
manufacturing process. Compared to milling, the feature size 
especially for concave edges lies in the lower µm range and are 
influenced by the voxel size of the projector or laser in the 
printer. 
Negative influence of thermal stresses result in a shorter lifetime 
of the inserts. Research by [2, 3] improved the lifetime 
performance of the inserts significantly by adding short, 
unseized Carbon Fibres (CFs) with dimensions of 7.2 µm 
diameter and 100 µm length to the photopolymer producing an 
insert shown in Figure 1. 

 
Figure 1 Geometry of the IM insert produced by VP from fibre-reinforced 
photopolymer. Source: [8], used with permission. 

The thermoplastic polymer is injected from the back as shown in 
Figure 2. The polymer injection is followed by a packing phase 
which leads to a total time until then of 8.5 s followed by mould 
opening, part ejection and cooling time of 11.5 s. The cycle is 
continued from the beginning resulting in a total cycle time of 
20 s during which the insert is exposed to temperatures 
between 20 C and 220 C resulting in massive thermal stresses. 
Metals withstand these stresses better and due to quicker 
cooling, are equipped with a longer lifetime. 

 
Figure 2 IM inserts and product in the conventional IM mould. 

The aim of this paper is to evaluate the influence of the CFs in 
the IM process sketched in Figure 3 in terms of Life Cycle 
Assessment (LCA) previously conducted by [9, 10]. The inserts 
were compared to inserts made from conventional materials 
such as aluminium, brass, and steel though these materials have 
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to be manufactured differently and are therefore limited by the 
tool diameter in shapes especially in concave corner regions. 

 
Figure 3 Process diagram of the IM process with focus on the 
contributors to the LCA. Source: [9], used with permission. 

2. Methods 

For this purpose, Global Warming Potential (GWP) and Human 
Toxicity (HT) were calculated for the given process according to 
ISO 14040/44 on screening level. Moreover, the moulded parts, 
made from PolyEthylen – Low Density (PE-LD) and Acrylonitrile 
Butadiene Styrene (ABS), were taken into consideration. The 
weight ratio of the moulded parts were compared to the total 
weight of the injected polymer including runners etc. that is 
responsible for approximately 60% of the produced polymer. 
Inserts were produced from the proprietary photopolymer 
HTM-140v2 with 0% (VP 0%), 5% (VP 5%), and 10% (VP 10%) of 
CFs. The lifetime was considered from [2, 3] as 500 shots for 
VP 0%, 1300 shots for VP 5%, 2600 shots for VP 10%, and 
10,000 shots for aluminium, brass and steel with 4 inserts each. 
Fibres were simulated according to [11, 12]. 

3. Results 

Results of the LCA are shown in Table 1 for AM insert materials, 
Table 2 for metal insert materials, and Table 3 for part and waste 
material. It can be concluded that CF have a positive impact on 
the HT contribution of the inserts while their impact is still 
massively higher than the impact of steel as metal material with 
the lowest GWP and HT. 
Table 1 LCA for AM insert materials. Values represent 1kg material. [9] 

 VP 0% VP 5% VP 10% CF 
GWP in kgCO2eq 3.118 3.769 4.419 16.127 
HT in kg1,4-DBeq 621.790 596.313 570.835 112.236 

Table 2 LCA for metal insert materials. Values represent 1kg material. [9] 
 aluminium brass steel 
GWP in kgCO2eq 18.971 5.045 1.744 
HT in kg1,4-DBeq 269.738 4772.948 85.757 

Table 3 LCA for part and waste materials. Values represent 1kg material. 
[9] 

 ABS PE-LD 
GWP in kgCO2eq 3.995 1.896 
HT in kg1,4-DBeq 7.057 2.486 

The cumulative GWP of 4 inserts is shown in Figure 4 and 
Figure 5. The GWP increased at increasing CF content whereas 
the contributions to HT decreased. The impact of brass and 
aluminium on HT is significant. At the same time, the polymer 
scrap makes up for 60% of the weight of the injected polymer 
and increases the environmental impact by 33% at the first shot. 
The GWP of VP 10% remains below the impact of the metal 
insert materials as shown in Figure 4. VP 5% competes with steel 
at higher shot numbers. 
At HT impact, the VP inserts remain between the aluminium and 
steel inserts for shot numbers over 5000. This makes the 
material suitable for prototyping and pilot production but 
increase the impact at larger production quantities. 
In order to increase the inspected range, the entity of the 
injected polymer was taken into account in the LCA. This 
includes the final part as well as hot runners and other materials, 
which leave the cycle as scrap. Exemplarily, Figure 6 shows the 
cumulative HT impact of the mould system containing 4 inserts 

as well as the injected ABS polymer. Again, brass is characterised 
by a significant HT impact. GWP with ABS or PE-LD as well as HT 
with PE-LD shows similar characteristics despite the fact that the 
impact of PE-LD is significantly higher on HT. 
Waste ratios were calculated for ABS and PE-LD scrap from hot 
runners and similar in relation to the entirely using the injected 
polymer. The ratio is shown in Figure 7 to Figure 10. Except for 
brass, VP 0% and VP 5%, the HT ratio converges to numbers 
slightly below 1 meaning that the HT impact of the inserts is 
negligible at higher production volumes. A similar situation 
occurs for ABS where the influence of the waste is even 
increased as compared to the impact of PE-LD waste for reasons 
described above. 
A higher ratio is achieved for higher content of FRPs in VP due to 
the increased lifetime as compared to lower content of CFs. 

4. Conclusion 

FRPs significantly influence the lifetime of AM inserts. While AM 
offers significant improvement especially in terms of micro 
features of the surface, lifetime remains below the lifetime of 
metal inserts. Hence, the environmental impact needs to be 
considered especially for higher production quantities of parts. 
The waste ratio of most materials covered by this investigation 
are above 0.6 after 2000 shots allowing the conclusion that the 
choice of materials still has potential for further improvement 
but only has a limited influence on the performance of the part 
in the LCA. 
AM IM inserts proved to perform suitable for flexible 
prototyping and pilot production but lack at larger production 
quantities due to their reduced lifetime. They reduce 
manufacturing costs and time of the insert. CFs improve the 
performance not only in terms of lifetime of the insert, but also 
in terms of GWP and HT as compared to the photopolymer. The 
environmental impact of ABS supersedes the impact of PE-LD. 
However, the material is still chosen for its good mechanical 
performance. 
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Figure 4 GWP for 4 inserts. Source: [9], used with permission. 

 
Figure 5 HT for 4 inserts. Source: [9], used with permission. 



  

 
Figure 6 HT of 4 inserts with the connected ABS parts as well as ABS scrap. 

 
Figure 7 HT ratio of PE-LD waste on the entire process. Source: [9], used with permission. 

 
Figure 8 GWP ratio of PE-LD waste on the entire process. Source: [9], used with permission. 



  

 
Figure 9 HT ratio of ABS waste on the entire process. Source: [9], used with permission. 

 
Figure 10 GWP ratio of ABS waste on the entire process. Source: [9], used with permission. 
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