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Abstract: Several attempts of measuring the exact location of the rails by the use of ordinary vehicles have 
been made. While the method works reasonably well in the vertical direction, the results of the lateral 
measurements made with different vehicles are so widely scattered that it is virtually impossible to draw 
any conclusions. We may therefore ask: does a wheel set follow the track disturbances exactly? In this 
article we investigate the lateral dynamics of a half-car vehicle model with two-axle bogies running on a 
rigid tangent track with sinusoidal lateral disturbances of the rails. The wavelength, the amplitude and the 
phase between the rail disturbances are varied. Two different vehicle speeds are investigated. One speed is 
under and the other above the vehicle critical speed. In the article we show examples of axle motions that 
do not follow the track disturbances in phase, amplitude or period or several of these together. The results 
are discussed, and we must conclude that it is in general impossible to determine the track geometry from 
the motion of a wheel set. 
Keywords: Train-Track Interaction; Railway Vehicle Dynamics; Vehicle-Track coupled Dynamics  
 
 
 

1  Introduction    
 
There is today a great interest in measurements 
of the quality of railway tracks by 
instrumentation of vehicles in normal use. 
Weston et al. [1] wrote a survey article on the 
subject with 59 references. Usually the motion 
or acceleration of a wheel set or an axle box is 
recorded and used either directly or indirectly for 
a determination of the track quality. If, however, 
the wheel sets do not follow the disturbances of 
the track accurately, then the recordings do not 
deliver a trustworthy basis for the evaluation of 
the quality of the track. We only know of two 
systematic investigations of the response of 
wheel sets to a disturbed track. Meijaard and De 
Pater [2] investigated theoretically the dynamics 
of the rolling motion of a simple model of a 
wheel set on a sinusoidal laterally deformed 
track. They found both periodic and chaotic 
motions. Lieh and Haque [3] calculated the 
stability and instability regions for a single 
wheel set subject to variations in the wheel-rail 
geometry, track gauge and axle load. They 
showed that harmonic variations in the 

wheel-rail geometry can influence the behavior 
of a wheel set significantly. In the conclusion 
Lieh and Haque [3] write that the behavior of 
their wheel set is similar to a 
single-degree-of-freedom system and that 
parametric resonance occurs when the frequency 
of excitation is twice or some multiple of the 
kinematic or Klingel frequency. The lateral 
motion of the wheel set is, however, coupled 
with the yaw motion, so in reality the behavior is 
similar to a double-degree-of-freedom system. 
Time varying systems with multiple 
degrees-of-freedom may in addition experience 
resonance for some combinations of their natural 
frequencies. We therefore investigate the 
response of a simplified model of a half-vehicle 
running on a track with a realistic and 
well-proven wheel-rail interaction model. We 
have chosen the Cooperrider bogie, because its 
dynamics is well-known from earlier papers 
[4,5,6,7], but we have extended the model to 
include vertical degrees of freedom. The speed 
of the vehicle, the wavelength and the amplitude 
of the sinusoidal laterally disturbed track all 
enter the problem as control parameters and we 
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have investigated lateral track centerline 
variations and gauge variations at a speed below 
and at a speed above the critical speed. Some 
results are presented and the effects on the track 
quality estimates are discussed. 
 
 

2  The Theoretical model 
 
We investigate a theoretical model of a half 
passenger car on a Cooperrider bogie [4] running 
on a tangent railway line. Both lateral and 
vertical degrees of freedom are included in the 
bogie model in order to allow for a coupling 
between the horizontal motion and roll, pitch 
and vertical motion. The car body can, however, 
only move horizontally and roll. The rails are 
standard UIC60 rails with an inclination of 1/40, 
and the gauge is standard 1435 mm. The wheel 
profile is the DSB97-1 profile, which is a 
modified S1002 profile with the flange a little 
closer to the track center line. The primary 
suspension consists of linear springs, which act 
longitudinally, laterally and vertically. The 
secondary suspension consists of linear springs 
and dampers in parallel, which act in the lateral 
and vertical directions and a linear torsion 
spring, which resists the yaw motion of the 
bogie. See figure 1. The track, the wheel sets, the 
bogie frame and the car body are all rigid, but 
we allow for elastic deformations in the 
wheel-rail contact surface. The model is set in a 
Cartesian inertial frame that moves with the 
constant speed V of the vehicle along the 
centerline of the undisturbed track. The x-axis 
(longitudinal) is in the direction of the motion, 
the y-axis (lateral) points to the left, and the 
z-axis is vertically upwards. Newton’s laws of 
motion are used for the mathematical 
formulation of the vehicle dynamical model. The 
dynamical model consists of 14 second order 
ordinary differential equations plus 2 first order 
ordinary differential equations for the calculation 
of the differences between the actual speed of 
rotation of the wheels and the theoretical value 
Ω = V/R0, where R0 is the nominal wheel radius. 

The system of equations was solved using a 
Runge Kutta 45 method with variable step size. 
The wheel-rail contact geometry was calculated 
numerically using the routine RSGEO [8] and 
tabulated. Hertz’s theory was used to calculate 
the depth of penetration and the normal force in 
the contact plane step by step. The tangential 
force in the contact plane, the creep force, was 

calculated step by step using the 
Shen-Hedrick-Elkins model [9]. 
 

 

 

Fig. 1 The Cooperrider bogie 

 
 

3  Some results 
 
The details of our investigation and the results 
were published in the article by Christiansen and 
True [10]. They found the correlation between 
the eight state variables of the two wheel sets 
and the correlation between the displacements of 
the two wheel sets and the sinusoidal 
irregularities at the contact points, all in 
dependence on the wavelength and amplitude of 
the sinusoidal track disturbances and for a 
subcritical speed of 30 m/s and for a 
supercritical speed of 60 m/s. Some particular 
cases of interest were illustrated by time series. 
In the present article we shall concentrate on the 
discussion of the influence the results in [10] 
may have on the value of the track quality 
estimates that are based on measurements of the 
wheel set dynamics, and whether the measured 
results can lead to misinterpretations. We 
therefore only show the most interesting time 
series from [10], figures 3-10, that will be the 
basis for the discussion. We distinguish between 
isolated and non-isolated defects in the track, 
see figure 2. An isolated defect is an error of the 
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track geometry that creates a dynamic transient 
motion of the wheel set, which disappears before 
the next error is encountered by the wheel set. 
Non-isolated or continuous defects are defined 
as errors that are so densely distributed that the 
wheel set will encounter more than one defect 
within its response time, which is the time it 
takes for the response to an isolated defect to 
disappear. The definitions are not uniquely 

related to the track properties, because the 
nonlinear wheel set response gives rise to mode 
interactions that depend on the specific vehicle 
design as well as the excitation that is caused by 
the defects. Since a lateral sinusoidal disturbance 
obviously is a non-isolated defect, we do not 
discuss the effect of isolated disturbances in this 
article. 

 

 

Fig. 2 An illustration of the response to isolated irregularities. Each irregularity is modelled as a 
missing chip that is 10 mm long and 2 mm deep (marked by vertical dotted lines). The full line 
shows the lateral motion of the front wheel set, and the dashed line shows the yaw angle of the 
front wheel set. 
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Fig. 3 The motion of the leading wheel set relative to the track centerline variations with the 
wavelength 30 m at V=30 m/s. The bold line indicates the position of the rail, the full line shows 
the lateral position and the dashed line the yaw angle of the leading wheel set. On (c) notice the 
asymmetric oscillation of the wheel set in the track. 
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Fig. 4 The motion of the leading wheel set relative to the track centerline variations  with the 
wavelength 10 m at V=30 m/s. The bold line indicates the position of the rail, the full line shows 
the lateral position and the dashed line the yaw angle of the leading wheel set. In case (e) a 
longer transient was needed to find the equilibrium solution with its apparently non-periodic 
oscillatory behavior. (f) is a phase portrait of the motion with indication of chaos 
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Fig. 5 The motion of the leading wheel set relative to the track centerline variations. In (a) and 
(b) the wavelength of the disturbance 2.5 m, and in (c) and (d) it is 5 m. V=30 m/s. The bold line 
indicates the position of the rail, the full line shows the lateral position and the dashed line the 
yaw angle of the leading wheel set 

 

Fig. 6 The motion of the wheel set relative to the gauge variations of the track. The bold line 
indicates the position of the left rail, the full line shows the lateral position and the dashed line 
the yaw angle of the leading wheel set. V=30 m/s and the wavelength is 5 m. Notice the period of 
the response of the wheel set, which is twice the period of the excitation, and the jump of the 
amplitudes of the motion of the wheel set between case (a) and case (b) 
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Fig. 7 The motion of the wheel set relative to the gauge variations of the track. The bold line 
indicates the position of the left rail, the full line shows the lateral position and the dashed line 
the yaw angle of the leading wheel set for different wavelengths of the forcing. V=30 m/s and the 
forcing amplitude is 5 mm 
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Fig. 8 The motion of the wheel set relative to the gauge variations of the track. The bold line 
indicates the position of the left rail, the full line shows the lateral position and the dashed line 
the yaw angle of the leading wheel set for different wavelengths of the forcing. V=30 m/s and the 
forcing amplitude is 5 mm. 
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Fig. 9 Three time series with centerline irregularities and with a speed of 60 m/s. A transient of 
100 s was allowed. The motion of the wheel set relative to the position of the track. The bold line 
indicates the position of the track, the full line shows the lateral position and the dashed line the 
yaw angle of the leading wheel set for different wavelengths and amplitudes of the forcing.   
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Fig. 10 Five time series with gauge irregularities and a speed of 60 m/s. The forcing amplitude is 
5.5 mm. On the figures (a) to (e) the bold line indicates the position of the left rail, the full line 
shows the lateral position and the dashed line the yaw angle of the leading wheel set. 
(f) shows a phase portrait of the motion on (e). 

 
 

4  Discussion 
 
We start with a vehicle speed of 30 m/s 
and consider first examples of center line 
disturbances. Let us look at figure 3. It 
shows a very fine correlation between the 

period and phase of the track center line 
disturbance and the front wheel set 
displacement. The amplitudes are 
different, however. The wheel set 
amplitude is larger, and it grows with the 
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amplitude of the disturbance, but the 
factor of amplification is decreasing 
(notice the different length scales on the 
figures). On figure 4 only the period is 
the same. Between a disturbance 
amplitude of 1 mm and 2.5 mm the wheel 
set amplitude jumps from being smaller 
to being larger than the disturbance 
amplitude and the phase  difference 
changes with the disturbance amplitude 
from a phase lag π over π /2 (correlation 0) 
to a small phase lag. The shape of the 
wheel set oscillation changes from 
sinusoidal over no longer sinusoidal but 
still periodic to presumably chaotic with a 
not- well defined amplitude. A correction 
of the track geometry based on the wheel 
set displacement would lead to a 
deterioration of the track quality, when 
the track errors are small. On figure 5 the 
periods are the same, but the wheel set 
amplitude is indistinguishable from 0 
when the wavelength is 2.5 m and much 
smaller than the track disturbance 
amplitude when the wavelength is 5 m. 
Furthermore there is a phase lag of π 
between the track and wheel set 
displacements, and the periodic motion of 
the wheel set becomes non-sinusoidal 
with larger amplitudes of the track 
disturbance. A correction of the track 
geometry based on the wheel set 
displacement would not be made (see 
figures 5(a) and 5(b)) or lead to a 
deterioration (see figure 5(c)) or would be 
insufficient (see figure 5d)).  

Next we look at examples of gauge 
disturbances. The magnitude of the 
disturbance is defined by the amplitude of 
the left rail. We only consider amplitudes 
less than 6 mm corresponding to gauge 
changes of ±12 mm, which is already 
larger than the allowed maximal gauge 
change. On figure 6 we find that the 
wavelength of the wheel set oscillations is 
twice the one of the gauge oscillations 
and for growing amplitude of the gauge 

oscillations the amplitude of the wheel set 
oscillations becomes larger than the 
gauge oscillations and change shape. On 
figure 7 we find that for small 
wavelengths the amplitude of the wheel 
set oscillations are larger than the gauge 
oscillations, and the wavelength is again 
twice the one of the gauge oscillations. 
For the 10 m wavelength of the gauge 
disturbance the wheel set oscillations 
vanish, and for 12.5 m wavelength of the 
gauge disturbance the wheelset 
oscillation has larger amplitude than the 
gauge disturbance and is off-set from the 
track center line. The wave lengths of the 
gauge and wheel set oscillations are now 
the same. On figure 8, notice that all 
oscillations of the wheel set, except (d) 
are off-set with amplitudes that are 
smaller than the amplitudes of the gauge 
disturbances. For the wavelength of 15 m 
we find a period doubling, which results 
in a period 2:2 motion. Two periods of 
the forcing as well as of the lateral 
oscillation of the wheel set are needed 
before the motion is repeated. For the 
disturbance wavelength 17.5 m the 
motion is 1:1 periodic with a phase 
difference of π with an amplitude, which 
is reduced when the wavelength is 
increased to 20 m and still more reduced 
when the disturbance wavelength grows 
to 22.5 m, where the oscillation of the 
leading wheel set vanishes (see figures 
8(b) to 8(d)). On figure 8(e) we find an 
interesting 2:3 synchronized motion. First 
the wheel set moves 2.5 mm to the left, 
then it makes a small and fast oscillation 
to the right, returns to the left with small 
amplitude ending with a 2.5 mm move to 
the right. This type of behavior is 
repeated for a wavelength of 27.5 m, but 
the amplitudes decrease, see figure 8(f).  
 
The next figures show some results when 
the speed is doubled to 60 m/s, which is 
above the critical speed of the vehicle. 
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Then the excitation frequency from the 
track is twice the former excitation 
frequency. The speed lies in the range of 
the two co-existing attractors i.e. below 
the bifurcation point of the steady motion. 
First we investigate center line variations. 
On figure 9 we again find an 
amplification factor of the wheel set 
oscillations that depends on the 
wavelength of the forcing. On figure 9(a) 
we see what might be a period 8:3 
synchronization, but the transient has not 
yet vanished. On figure 9(b) a period 7:4 
synchronization is seen, and on figure 9(c) 
the transient has not vanished, or the 
period of the wheel set oscillations is 
longer than the 30 oscillations of the 
forcing that are shown on the figure. It is 
worth mentioning that the observed 
synchronizations result in a wheel set 
oscillation with a primary frequency that 
is close to what was observed for the 
same  wavelengths at 30 m/s and thus 
independent of the Klingel frequency. We 
also investigated the effect of gauge 
variations shown on figure 10. The 
forcing amplitude is now 5.5 mm. On 
figure 10(a) we observe a motion that is 
very similar to the period 2:1 motion on 
figure 7(a), but 10(a) is a period 2:5 
motion. For a wavelength of 20 m, see 
figure 10(b), the period 1:1 motion seems 
similar to a case between wavelengths of 
17.5 m and 20 m on figure 8. For a 
wavelength of 30 m, see figure 10(c), we 
observe a period 2:3 motion like the one 
on figure 8(e), where the forcing 
wavelength is 25 m. When the forcing 
wavelength grows to 32.5 m the wheel set 
oscillation vanishes, and when the 
forcing wavelength is 35 m, see figure 
10(e), a period 2:5 solution appears. The 
change of dynamics from the 2:3 case 
consists of an extra swing of the largest 
amplitude of the motion. The extra swing 
is clearly seen as the small loops on the 
phase portrait on figure 10(f).   

We have only shown examples of 
behaviors of the wheel set that differ 
strongly from the forcing sinusoidal 
variations of the track. There are of 
course also large parameter domains in 
which the wheel set oscillations follow 
the forcing better. For a more detailed 
description and many more results, the 
reader is referred to the article by 
Christiansen and True [10]. The examples 
shown in this article demonstrate that it is 
very difficult, indeed impossible, to draw 
any conclusions about the lateral track 
geometry from measurements of the axle 
displacements of an in-service railway 
vehicle alone.  

It has been suggested to add a 
numerical routine that can solve the 
inverse problem: Given the dynamics of 
the wheel set, then use the data to 
determine the track geometry. Linear 
relations have been set up as a solver to 
the inverse problem, but they are doomed 
to fail because they miss the nonlinear 
relations that are necessary for the 
formulation of the dynamic mode 
interactions. The dynamical problem: to 
find the dynamic response of a wheel set 
to external forcing involves the entire 
vehicle due to the nonlinear couplings. 
Therefore the inverse problem involves 
the data of the dynamics of the entire 
vehicle, and it is still an open question 
whether such an inverse problem can be 
solved with a unique solution. The 
problem is to find the inverse operator of 
a nonlinear and non-smooth operator. The 
figures 7(c), 8(d) and 10(d) demonstrate 
that a unique solution to the inverse 
problem does not exist in certain cases, 
because the ‘no- displacements’ of the 
wheel set in all three cases are the same 
as the ‘no-displacement’on an 
undisturbed track. Therefore in each case 
two entirely different track geometries 
lead to the same solution. The inverse 
problem therefore has two different 
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solutions: 1: the track is perfect and 2: the 
track is sinusoidally disturbed. How can 
the solver distinguish between them? This 
problem is mathematical. The question is: 
Does the inverse operator exist and if not 
in general, then under which conditions 
does it exist? Is the solution unique and if 
not, which extra conditions will make the 
correct solution unique? This question 
needs an answer in order to justify further 
investments in the measurements of the 
track geometry by in- service vehicles. 
 
 
5  Conclusions 
 
The easy answer to the question in the 
title is that the wheel set does not follow 
the lateral track geometry closely. It is 
more difficult to understand ‘why’. The 
vertical dynamics of the wheel set is very 
similar to a single-degree-of-freedom 
system with a mass under the influence of 
gravity that forces the wheel set to remain 
in contact with the track. A vertical track 
disturbance causes only very small 
additional vertical penetrations of the 
wheel set into the rails and acts only on 
one component of the contact force: the 
normal component. The lateral 
disturbance in contrast acts on the lateral 
force as well as on the spin torque in 
dependence on the creepage and the 
non-smoothness due to the contact 
geometry. Furthermore the lateral and 
yaw restoring forces consist of relatively 
small suspension forces and the 
gravitational stiffness, which all act on 
bodies with large inertia with a resulting 
time lag of their motion. Finally the 
wheel-rail contact design permits larger 
displacements of the wheel sets relative 
to the track in the lateral than in the 
vertical direction. The horizontal motion 
of the wheel set is similar to a system of 
two nonlinearly coupled oscillators, 
because the lateral displacement of the 

wheel set is intimately coupled with the 
yaw. The coupling is a result of the rail 
and wheel profile geometries, the creep 
force and the spin from each wheel that 
all act simultaneously on the wheel set. 
The forces and torques are nonlinearly 
dependent on the creepage and they are 
non-smooth due to the contact geometry. 
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