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Abstract

Turbulence modelling is a key issue in many industrial application, as the com-
putational power of direct numerical simulation (DNS) is insufficient to deal
with complex flow structures with high Reynolds number. Also in Industrial
applications often involve turbulent flow in complex geometries. Thus devel-
oping a computational method which can deal with complex fluid structure,
simulate complex geometers that change topology is particular challenging as
the connectivity of the computational domain may change dynamically, and still
efficient is important.

In this thesis we are presenting a remeshed particle-mesh method, the method
involves three-dimensional compressible turbulent flow modelling, and coupled
with an immersed boundary technique to deal with the complex solid obstacles.

This dissertation is composed of three parts.

In combustion engines the scavenging process in two-stroke marine diesel engines
removes combustion gases from the engine cylinder and fills up the cylinder with
the fresh air charge for the next cycle. Understanding the scavenging flow is
crucial for the development of such engines, since it affects fuel consumption,
engine cooling and production of pollutants.

We consider a state-of-the art eulerian methods to study the turbulent flow in
a model diesel engine. the goals of this study include validation of large eddy
simulations (LES) turbulence models.

We study the effect of piston position on the in-cylinder swirling flow in a sim-
plified model of a large two-stroke marine diesel engine. To be able to simulate
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the complex flow structures with high Reynolds number, large eddy simulations
(LES) with four different models for the turbulent flow are used: a one-equation
model, a dynamic one-equation model, a localised dynamic one-equation model
and a mixed-scale model. The added LES numerical model makes it possible to
the system to approximate the unresolved small flow structures.

Simulations are carried out for two different geometries corresponding to 100
% and 50 % open scavenge-ports. It is found that the mean tangential profile
inside the cylinder changes qualitatively with port closure from a Lamb-Oseen
vortex profile to a solid body rotation while the axial velocity changes from a
wake-like profile to a jet-like profile. The numerical results are compared with
particle image velocimetry measurements and in general we find a good agree-
ment. Considering the complexity of the real engine, we designed the engine
model using the simplest configuration possible. The setup contains no moving
parts, the combustion is neglected and the exhaust valve is discarded. Studying
the flow in a simplified engine model, the setup allows studies of fundamental
aspects of swirling flow in a uniform scavenged engine. Comparing the four
turbulence models, the local dynamic one-equation model is found to give the
best agreement with the experimental results.

The second part of the thesisWe present a remeshed particle-mesh method for
the simulation of three-dimensional compressible turbulent flow. The method is
related to the mesh free smoothed particle hydrodynamic (SPH) method, but
the present method introduces a mesh for efficient calculation of the pressure
gradient, and laminar and turbulent diffusion. In addition, the mesh is used to
remesh (reorganise uniformly) the particles to ensure a regular particle distri-
bution and convergence of the method. The accuracy of the presented method-
ology is tested for a number of benchmark problems involving two- and three-
dimensional Taylor-Green flow, thin double shear layer, and three-dimensional
isotropic turbulence. Two models were implemented, direct numerical simula-
tions, and Smagorinsky model. Taking advantage of the Lagrangian advection,
and the finite difference efficiency, the method is capable of providing quality
simulations while maintaining its robustness and versatility.

Finally we couple the remeshed particle-mesh method with Brinkman penali-
sation resulting an implicit boundary particle method with background mesh
adaptation. We use a Brinkman penalisation to represent the boundary of the
domain and a remeshed particle method to simulate viscous flow with high
Reynolds numbers. A penalty term is added to the Navier-Stokes equations to
impose the boundary conditions. The boundary conditions are enforced to a spe-
cific precision with no need to modify the numerical method or change the grid,
achieving an implicit approach for flow around complex boundaries/geometries
simulation. The main idea of the Brinkman penalisation method is to model the
solid obstacle as a porous medium. The governing equations for the compressible



v

fluid and penalised Navier-Stokes for the porous medium are solved simultane-
ously, without need for interface conditions. The accuracy of the method is
tested for a number of benchmark problems starting with simple cases like, a
periodic laminar flow inside a pipe (Poiseuille flow), to more complex problems
such as the lid-driven cavity with high Reynolds number, the reflection and
propagation of shock compressible wave. The remeshed particle-mesh method
with Brinkman penalisation provides a good quality simulation and the results
show good agreement with analytical or reference solutions.
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Chapter 1

Introduction

We are surrounded by fluids, we encounter fluid flows in everyday life, meteo-
rological phenomena (rain, wind, hurricanes), environmental hazards (air pol-
lution), interaction of various objects with the surrounding fluids (combustion,
heating, ventilation), processes in human body (blood flow, breathing), and
chemical reactors etc...

The fluid flow varies from laminar to highly turbulence flow. Engineers and
researchers invest time and money to understand the physical structure of the
flow; to create accurate observations and measurements that will later help to
improve their designs or modify their equations.

Before the leap in computational science, the manufacturing of big computers,
and parallel computing, the study of fluid dynamics was limited to theoretical
and experimental techniques.

Experiments describe the flow phenomena using measurements, however it suf-
fers from several limitations that limit the ability to understand the structure
of the flow. Experimental techniques are limited to laboratory scale models,
limited number of measurement points, and small number of problems.

Computational fluid dynamic (CFD) is playing an important role in understand-
ing the complex structure of the fluid, giving a qualitative and quantitative
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prediction of fluid flows where the experiments fail to.

CFD is highly efficient in term of accuracy and simulation time when it is used
to simulate simple flow, which makes it a competitive tool with experiments.
However in the case of complex flow which has a large amount of information and
small structures as in turbulent flow, CFD is limited in terms of accuracy, time,
and computationally impossible. It is essential to add numerical modelling to the
system to approximate the unresolved phenomena, like turbulence modelling,
complex meshes, two phase flow, and other models. The included model has one
main purpose, to predict quantities of interest, that will enhance the engineering
designs of the system.

To address these challenges the present thesis present results from simulations of
three dimensional turbulence flow using an open source code OpenFOAM, and
an in-house code using as a part of the The Parallel Particle Mesh (PPM) [98],
where the Navier-Stokes equations are discretised and different turbulence mod-
els are used.

OpenFOAM is used to study the effect of piston position on the in-cylinder
swirling flow in a simplified model of a large two-stroke marine diesel engine.
The effect of the piston position is being examined, and Large Eddy Simulations
with four different models for the turbulent flow were implemented using the
OpenFOAM platform.

In the second part of the thesis we present a remeshed particle-mesh method
for the simulation of three-dimensional compressible turbulent flow, the method
is related to the mesh free smoothed particle hydrodynamic (SPH), but for
efficient calculation of the turbulent diffusion, and the pressure gradient a mesh
is introduced, also the mesh is used to ensure the convergence of the method,
and to maintain a regular distribution of the particles by reinitialising them on
a uniform mesh, the method is called hybrid remeshed smooth particle method
(hrSPH).

In the third part we present Brinkman penalisation method for imposing com-
plex boundaries in the flow simulation, which is essential in several engineering
applications. The Brinkman method belong to the immersed boundary methods
family. We coupled our hrSPH for compressible flow with Brinkman method to
be able to simulate flow cases where complex geometries are needed.
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The thesis is structured as follows:

Part I: Large eddy simulations of the influence of piston position on
the swirling flow in a model two-stroke diesel engine

In this part we focus on an industrial approach of computational science and
turbulence modelling application.

We study the effect of piston position on the scavenging and swirling flow in a
simplified model of a large two-stroke marine diesel engine cylinder.

We consider two cases of static piston position corresponding to 50% and 100
% open ports, comparing the numerical results using four different large eddy
simulation models: the one-equation model, the dynamic one-equation model,
the localised dynamic one-equation model, and the mixed-scale model. The
numerical models are implemented within the OpenFOAM platform and the
results are compared with the experimental results.

We present the governing equations of the Navier-Stokes equation for incom-
pressible flow, along with the equations of the four large eddy simulation mod-
els. The computational setup is then represented, and the numerical results are
analysed and compared to the experimental results.

This part was published in the International Journal of Numerical Methods for
Heat and Fluid Flow [8].

Part II: Mesh free and remeshed smoothed particle method

The chapter presents a Lagrangian, particle method for compressible flow. Start-
ing by the key concepts of discretisation technique like finite element method,
finite difference, finite volume, we go throughout the problems that those meth-
ods face, to present the need of mesh free methods.

Then we briefly presenting the mesh free method, and particle method. We show
the limitation that the particle methods suffer from for specific application, to
come to the point where we present our hybrid remeshed smoothed particle
method (hrSPH).

Finally we present the governed equations and the algorithm for the hrSPH
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method, followed by test benchmarks, and conclusion.

Part III: Brinkman penalisation technique coupled with the hybrid
remeshed smooth particle method

In engineering application it is requir to simulate viscous flow around solid
obstacles, we start presenting the two major methods that have been developed
to deal with complex geometries problem. Body-fitted grid (BF) method], and
immersed boundary (IB) methods, we show the limitation of the BF method,
why the IB method was introduced as an alternative method for problems of
fluid interaction around complex geometries, and the advantages of using it.

The Brinkman penalisation technique is an approach of immersed boundary
method, where the boundary conditions are imposed by adding a penalisa-
tion terms to the momentum and continuity equations, and the obstacle is
represented as a porous media. We represent the Brinkman penalisation for
compressible flow, coupled with our hrSPH to simulate viscous flow with high
Reynolds number. This part is closed with test benchmarks followed with a
summery.



Chapter 2

Large eddy simulations of
the influence of piston

position on the swirling flow
in a model two-stroke diesel

engine

2.1 Background

The scavenging process in two-stroke marine diesel engines removes combustion
gases from the engine cylinder and fills up the cylinder with the fresh air charge
for the next cycle. Understanding the scavenging flow is crucial for the devel-
opment of such engines, since it affects fuel consumption, engine cooling and
production of pollutants [28]. In this work we consider the uniflow scavenging
process where the exhaust valve is located at the cylinder head and the scav-
enge ports are located in the cylinder liner near the bottom dead centre (BDC).
When the piston moves towards BDC, the exhaust valve opens while the piston
slides to uncover the scavenge ports, thus initiating the scavenge process. The
scavenge ports are angled such that the flow enters with an overall swirl in the
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cylinder. In the succeeding compression stroke this swirling flow produces a
pocket of swirling fresh air, which is important for the optimisation of the fuel
spray mixing in the subsequent combustion phase.

Due to the rich fluid dynamic phenomena and many applications, there is a large
body of work on flows with an overall swirl. Examples include the structure
of helical vortices in swirling flow in a confined ‘vortex chamber’ at moderate
Reynolds number [105], vortex breakdown [93, 73], vortex precession and the
derived influence on combustors and dust separators [71].

Recently, [92] considered the effect of piston position on the scavenging and
swirling flow in a simplified model of a large two-stroke marine diesel engine
cylinder. Recognising the complexity of a real engine, [92] studied the flow in
a “simplest possible” engine model: it contains no moving parts, and the set-up
itself as well as the boundary conditions are rotationally symmetric, the exhaust
valve is discarded, and the combustion is neglected. Of notable mention is the
great care that was taken to impose an axisymmetric swirl by placing 60 thin
guide vanes upstream of a contraction section in the inlet. By design, the set-up
allows studies of fundamental aspects of the swirling flow in a uniflow scavenged
engine. The effect of piston position was elucidated from time-averaged three-
dimensional velocity fields of the air flow, obtained with stereo particle image
velocimetry (SPIV) in the cylinder.

The current work is devoted to numerical modeling of the in-cylinder confined
turbulent swirling flow of the experiment by [92]. We consider two cases of
static piston position corresponding to 50% and 100% open scavenge ports, re-
spectively. These cases yield qualitatively different regimes of the swirling flow,
and complements previous studies that typically consider the case of fully open
scavenge ports [21]. The experimental results will be compared with simulations
using four different Large Eddy Simulation (LES) models: the one-equation
model (OEM) cf. [104], the dynamic one-equation model (DOEM) cf. [59], the
localised dynamic one-equation model (LDOEM) cf. [91], and the mixed-scale
model (MSM) cf. [56]. The numerical models are implemented on the Open-
FOAM platform. It is noted that swirling flows are notoriously difficult to
simulate due to the inherent anisotropic turbulence. For example, Reynolds-
Averaged Navier-Stokes (RANS) models are known to overestimate the rate of
decay of swirl due to the eddy viscosity approach [100].

The remaining part of the chapter is organised as follows. Section 2.2 describes
the numerical method and turbulence models, Section 2.3 describes the compu-
tational domain and boundary conditions, and Section 2.4 presents the results
of the computations and compares them with measurements. Section 2.5 we
discuss our results and give our conclusions.
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2.2 Large eddy simulation

In order to model the confined turbulent swirling flow in [92] we make use of
Large Eddy Simulations, where the flow is governed by the spatially filtered
Navier-Stokes equations cf. [62].

∂ūj
∂xj

= 0, (2.1)

∂ūi
∂t

+
∂ūiūj
∂xj

= −1

ρ

∂p̄

∂xi
+ ν

∂2ūi
∂x2

j

+
∂τij
∂xj

, (2.2)

τij = ūiūj − uiuj , (2.3)

Here, t denotes time, ūi the velocity component in the cartesian (xi) coordinate
directions, p̄ the pressure, ρ the density, and ν is the kinematic viscosity. The
resolved large scales (ūi,p̄) are explicitly computed on the computational grid,
whereas small-scales fluctuations (ui − ūi, p− p̄) are modeled through subgrid-
scale stresses (τij) cf. [44]

τij −
1

3
δijτkk = −2νtS̄ij . (2.4)

Here νt is the subgrid eddy viscosity, δij is the Kronecker delta, and S̄ij is the
resolved strain stress tensor defined as

S̄ij =
1

2

(
∂ūi
∂xj

+
∂ūj
∂xi

)
. (2.5)

The trace of the subgrid scale stress (τkk) is usually included in the pressure
(p̄).

2.2.1 One-equation model

The One-Equation model (OEM) cf. [10] is based on a transport equation for
the subgrid-scale turbulent kinetic energy (k)

∂k

∂t
+

∂

∂xj
(kūj) =

∂

∂xj

[
(ν + νt)

∂k

∂xj

]
+ 2νtS̄ijS̄ij − Cε

k
3
2

∆
, (2.6)

where
k =

1

2
uiui −

1

2
ūiūi, (2.7)

see also [104, 54, 110, 89]. Here, ∆ = (∆x∆y∆z)
1
3 , where ∆x, ∆y, and ∆z

denote the grid spacing in the x, y, and z directions, respectively. The constant
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Cε = 0.93 is obtained from Kolmogorov’s 5/3 law cf. [104]. The eddy viscosity
is modeled as

νt = Ck
1
2 ∆, (2.8)

where the dimensionless parameter C = 0.094.

2.2.2 Dynamic one-equation models

The Dynamic One-Equation Eddy-viscosity Model (DOEM), allows the param-
eter C to vary in space and time during the simulation. The stress tensor is
modeled as

τij −
1

3
δijτkk = Cαij , (2.9)

where αij is obtained from [44]

αij = −2∆2(2S̄klS̄kl)
1
2 S̄ij . (2.10)

The basic idea of the DOEM is to employ a second explicit filter (˜) with
∆̃ = 2∆ to the filtered Navier-Stokes equations (Eqs. (2.1–2.3)), which yields
the subtest-scale (STS) stress tensor

Tij = ũiuj − ˜̄ui ˜̄uj . (2.11)

Tij can be modeled as

Tij −
1

3
δijTkk = Cβij , (2.12)

where βij is

βij = −2∆̃2(2 ˜̄Skl
˜̄Skl)

1
2 ˜̄Sij , (2.13)

The Germano identity [59] expresses the resolved turbulent stress Lij as

Lij = Tij − τij , (2.14)

and
Lij −

1

3
δijLkk = C(βij − αij), (2.15)

and an approximation for C is obtained by minimising in a least-squares sense
the error

Q = (Lij −
1

3
δijLkk + CMij)

2, (2.16)

where Mij = αij − βij . The minimum error is obtained at ∂Q
∂C = 0, with

C = − LijMij

MklMkl
. (2.17)
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The C obtained from Eq. (2.17) can attain both both positive and negative
values. A negative value implies a locally negative eddy viscosity which may
result in an unstable solution. To circumvent this, [59] proposed to average
C across homogeneous directions. The standard DOEM model in OpenFOAM
performs a simple global average, hence the C in the present DOEM model
is only allowed to vary in time. The OpenFOAM implementation of the Lo-
calised Dynamic One-Equation Eddy-viscosity Model (LDOEM) proposed by
[91] performs a local average using a simple top-hat filter.

2.2.3 Mixed scale model

The Mixed Scale Model (MSM) proposed by [56] and [84] is based on the
velocity-vorticity formulation of the Navier-Stokes equations. Two spatial fil-
ters are used in the simulation, a filter denoted by (̄ ) is used on the fine mesh,
and a test filter denoted by (˜) on the coarse mesh. In Eq. (2.3) we defined
τij as the turbulent stresses from the spatial filtering, the turbulent stresses are
modeled with an eddy viscosity as

τij = νt2S̄ij −
2

3
kδij . (2.18)

The eddy viscosity (νt) is determined by the mixed-scale turbulence model

νt = C |ω̄i|α k(1−α)/2∆(1+α). (2.19)

Here, ω̄i = ∂j ūk − ∂kūj is the vorticity, and 0 ≤ α ≤ 1 is a constant. The
turbulent kinetic energy (k) is estimated from the test filter (˜) as follows

k =
1

2

3∑
i=1

(ui − ūi)2 ≈ 1

2

3∑
i=1

(ūi − ˜̄ui)
2
, (2.20)

Finally, from Eq. (2.19) we obtain the pure vorticity model if α = 1

νt = C |ω̄|∆2. (2.21)

If α = 0 we obtain the Bardina model [34]

νt = Ck
1
2 ∆ (2.22)

From a previous study [113] it was found that the model performs best when
α = 1

2 such that

νt = C |ω̄|
1
2 k

1
4 ∆

3
2 . (2.23)
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2.3 Numerical set-up

The LES models are solved using the pisoFoam solver which is an OpenFOAM
(version 1.6) build-in transient solver for incompressible and turbulent flows,
where velocity and pressure are coupled using the PISO scheme [32]. We use
the following numerical schemes: backward second order scheme for the tempo-
ral derivative and a second order central difference scheme for terms involving
gradient, divergence and Laplacian operators. Finally, we make use of linear
interpolation onto the subgrid-scale.

2.3.1 Computational domain

The computational domain is sketched in Fig. 2.1 and it consists of an inlet
section, a cylinder, an exhaust pipe and an outlet. The cylinder radius is R and
all other dimensions are shown in Fig. 2.1. Flow enters uniformly along a direc-
tion perpendicular to the cylinder axis, with an azimuthal velocity component,
which ensures the overall in-cylinder swirling flow. The dimensions match the
experiment by [92].

We simulate the flow on a grid with 8 million cells. The time step is chosen to
ensure a stable and converged solution and to keep the Courant number in the
range of uδt/∆x < 1 This is satisfied with a time step δtVb/Lc = 3.4 · 10−4,
where Vb is the bulk average flow speed in the cylinder and Lc is the length of
the cylinder. Supplementary simulations on a 12-million node grid (not included
here) show that the simulated flows are independent of the spatial discretisation.

2.3.2 Boundary conditions

At the inlet of the computational domain a uniform radial and tangential ve-
locity is prescribed such that the flow enters with constant radial speed Vr,i =
0.23Vb and constant tangential speed Vθ,i = 0.11Vb, which is consistent with
the 26◦ flow angle measured by [92]. At the outlet we require a zero velocity
gradient. On the solid walls, full black lines in Fig. 2.1, a no-slip boundary
condition is prescribed.

We have performed simulations with 0%, 5% and 10% turbulence intensity
(in the form of white noise) specified at the inlet, and found no impact on the
results. For all simulations presented, a zero turbulence intensity is specified at
the inlet.
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Figure 2.1: Sketch of the cylindrical computational domain shown in grey
shades, in the case where the piston covers the intake by 50%.
Flow enters the domain through the horizontal inlet section and
exits the domain through the vertical outlet. Notice that the ex-
haust is shortened in the figure. Data are extracted at the cross-
sectional planes z{0–6}/R = {0.00, 1.72, 2.77, 3.82, 4.87, 5.93, 6.98}.

2.4 Results

We study the effect of piston position by simulating the flow in two different
geometries. One case corresponds to 100% open intake (Section 2.4.1) and
the other case corresponds to 50% open intake (Section 2.4.2). We discuss
in detail the mean axial and tangential velocity profiles obtained in the three
cross-sectional planes z1/R = 1.72, z3/R = 3.82, z5/R = 5.93 cf. Fig. 2.1, and
compare the simulations at these positions with measurements by [92].

We characterise the flow with two dimensionless numbers. The Reynolds number

Re =
2RVb

ν
, (2.24)

and the swirl number

S =
Fθz
RFzz

=

∫ R
0
ρVθVzr dr

R
∫ R

0
ρV 2

z dr
. (2.25)

S expresses the ratio of the axial component of the angular momentum flux (Fθz)
and axial component of the momentum flux (Fzz). A drawback of the definition
of S is that it requires knowledge of the entire Vθ, Vz-fields in a given cross
section, which is typically not known for experiments. In addition, S cannot be
determined a priori—it is a consequence of the flow physics.
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Instead, the swirl number is in this case approximated by the design swirl num-
ber

S ≈ Sd =
Vθ,i
Vr,i
· 2R

4h
, (2.26)

where Vθ,i and Vr,i are specified at the inlet and h is the width of the inlet [92].

With the present boundary conditions and flow setting we have Re = 1.0 · 105

and Sd = 0.22. In the experiment by [92] they had Sd = 0.23 and their results
were insensitive to a change from Re = 3.3 · 104 to Re = 6.5 · 104. Here we use
of the measurements at Re = 6.5 · 104 to compare with the simulations.

Each simulation is run such that a non-dimensional time T = tVb/Lc of at least
T2 = 30 is covered. To avoid initial transients, we start averaging from T1 = 25.
We calculate the error associated with the mean velocity magnitude prediction
from the expression [50]

ε〈ui〉 =

√
2τi

T2 − T1

σui

〈ui〉
, (2.27)

where τi is the integral time scale (minimum time between statistically inde-
pendent samples), 〈ui〉, σui

is the mean and standard deviation of the velocity
component ui. We estimate τi = 0.035 from the autocorrelation of a monitor
point in the z0-plane at (x, y, z) = (0.27R, 0, 0.55R), for the 100% open port
case. Using Eq. (2.27) we obtain the error εū of 10 % in the 100% open port
case and 4.6 % in the 50% open port case.

Notice that in the following figures showing velocity profiles (Fig. 2.2 and Fig. 2.6),
the SPIV measurements are translated in the x-direction such that the vortex
centre (on average) coincides with x = 0. The measured off-axis position of the
vortex centre is no larger than 0.05R and it is due to ever-present inaccuracies of
the experiment. The uncertainty ε′〈u〉 = σu/(〈u〉

√
N) associated with the mea-

sured average velocity component is of order 1.5% (2.0%) for the measurements
with 100% (50%) open intake. In the formula, N is the number of independent
samples.

2.4.1 100% open intake

In this section we consider the case of fully open intake. We compare the
simulated and measured mean velocity profiles, consider the spatial evolution of
the swirl number, and comment on the three-dimensional mean velocity field.

In Fig. 2.2 the mean axial and tangential velocity profiles are shown for three
streamwise positions z1, z3, z5, cf. Fig. 2.1. The measured mean axial profiles
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are symmetric with a velocity deficit in the central region, resulting in a wake-
like profile. Furthermore, it is observed that the axial velocity profiles decrease
radially in the range |x/R| ' 0.5.

The measurements show plateaus with high axial velocity (Vz/Vb ≈ 2.0), and
a central velocity deficit where the axial velocity is reduced to Vz/Vb = 0.16,
cf. Fig. 2.2a. It is seen that the DOEM and LDOEM are the only models
capable of capturing the qualitatively the velocity deficit, LDOEM has the best
quantitative agreement with the measurements. It should be noted that outside
the vortex core region (x/R ' 0.2) the four numerical models predict the same
profile of Vz.

It is interesting to note that despite the disagreements between simulated and
measured axial flow, except for the LDOEM model, there is a remarkable agree-
ment in the predicted tangential velocity profile, as seen in Fig. 2.2b. The
Vθ profile is well fitted by the Lamb-Oseen vortex profile Vθ = (Ωc2/x) · (1 −
exp(−x2/c2)) shown in green [24]. The Lamb-Oseen vortex is fitted to the
LDOEM data using Ω and c as fitting parameters that minimise the residual in
a root-mean-square sense.

In the downstream cross sectional plane shown in Fig. 2.2c, the axial velocity
profile retains its wake-like profile although it is widened by diffusion and at z5

(Fig. 2.2e) the axial profile is reduced to a plug flow. Note from Figs. 2.2c,e
that at these positions all numerical models resolve qualitatively the wake-like
axial profile, although they overpredict in the velocity magnitude at x/R / 0.4.
The measured and simulated tangential velocity profiles in these positions, agree
well and as previously they are fitted well by appropriate Lamb-Oseen vortex
profiles. It is worth noting that the significant viscous decay of the vortex
profile observed in Fig. 2.2 is not reflected in the downstream evolution of the
swirl number S (Eq. (2.25)). The streamwise evolution of S is plotted and it
is observed that it evolves in a nonmonotonic fashion cf. Fig. 2.3. Specifically,
S increases from S = 0.14 at z1 to S = 0.19 at z4. In attempting to elucidate
the mechanism that gives rise to this behaviour it is noted that S expresses the
ratio of fluxes of angular (Fθz) and axial (Fzz) momentum in the axial direction.
Thus, S increases when the decay of Fzz is faster than the decay of Fθz. This
is in fact the case as is shown in Fig. 2.4, where a relatively rapid decay of
Fzz is observed in the range 1.0 < z/R < 3.0. In the figure, the momentum
fluxes have been normalised with the axial momentum carried by a plug-flow
F ′zz = ρV 2

b πR
3. We note that while a change in Fθz presumably is governed by

viscosity, the change in Fzz is related to a change in the profile of the axial flow.
Such changes can be caused by variations of the set-up’s cross-section, or by the
flow itself as e.g. vortex breakdown. In Fig. 2.4 we see that the decay of the
axial flow profile, Figs. 2.2a,c,e, is accompanied by Fzz/F ′zz → 1, as expected.
In positions further downstream we expect Fzz to increase again due to the
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Figure 2.2: Time averaged velocity profiles for the 100% open port case.
The tangential (a,c,e) and axial (b,d,f) are obtained at the
axial position (a,b) z1; (c,d) z3; (e,f) z5. The abbrevia-
tions are ‘DOEM’ (Dynamic one-equation model), ‘OEM’ (One-
equation model), ‘LDOEM’ (Localised Dynamic one-equation
eddy-viscosity model), ‘OEM’ (One-equation model), ‘MSM’
(Mixed-scale model), ‘Exp’ (Measurements). The error associated
with the measurements is of order 1.5%.
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Figure 2.3: The swirl number decays along the computational mesh for the
case of 100% open intake (bullets) and case of 50% open intake
(open boxes). The exact coordinate of the abscissa labels are given
in the caption of Fig. 2.1.
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Figure 2.4: Momentum flux as function of the downstream position. Notice
that the overall decay of angular momentum flux in the axial di-
rection Fθz is slower than the decay of axial momentum flux Fzz,
which leads to the observed increase in swirl number, cf. Fig. 2.3.

upstream effect of the reduced exhaust diameter.

Figure 2.5 gives an impression of the three-dimensional mean flow for the 100%
open port case. Green and blue colours show streamlines that are released on
two lines parallel with the z-axis in a meridional plane at the inlet x = ±2.1R.
As observed in the inset, the streamlines move inwards along an almost straight
line, before winding around the axisymmetric vortex core. Notice also from both
figures the braid of red streamlines at the beginning of the main cylinder. The
streamlines are released inside the recirculation zone and they effectively show
the toroidal recirculation zone through which the other streamlines flow. Notice
from the side view how the streamlines rotate approximately one-half revolution
as they travel downstream in the main cylinder.
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Figure 2.5: Visualisation of the three-dimensional flow by streamlines of the
mean-field for the 100% open port case. Notice the braid of red
streamlines that shows the recirculation region at the upstream
end of the main cylinder and the large pitch of the flow in the
main cylinder. The lower right inset is a bottom-view that shows
the swirling streamlines.
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2.4.2 50% open intake

We now consider a situation analogous to the piston covering half the intake, i.e.
the computational domain is as shown in Fig. 2.1. The flow will be simulated
using the LDOEM only since it showed to agree best with measurements in the
100% open intake case. The displaced piston presents a forward facing step
to the flow, and flow separation now takes place at the sharp corner. Notice
that Re is kept the same as for the 100% open port case. From Fig. 2.6a it
is apparent that displacing the piston has a dramatic effect on the mean flow
profiles. In contrast to the case of fully open intake (Fig. 2.2) the mean axial flow
now assumes an overall jet-like and symmetric profile in the measurements. The
LDOEM predicts a profile in reasonable agreement with the measured profile.
Notice that the axial flow is reversed in the region |x|/R ' 0.8, which indicates
that the recirculation bubble extends further downstream compared to the 100%
open intake case. We will elaborate further on this observation in section 2.4.3.

The simulated and measured mean tangential velocity profiles shown in Fig. 2.6b,
display a poor agreement. The simulated flow has the overall tangential profile
of a Lamb-Oseen vortex as shown by the green curve. In contrast, the measured
profile is monotonically decreasing and it does not have a profile of a “standard”
vortex. Upon comparison of the Vθ profiles of Fig. 2.2b and Fig. 2.6b it is
interesting to note the difference in slope of the simulated tangential velocity
profile near x = 0. For the 100% open intake case, the slope of a linear fitting
curve is −10.0 and for the 50% open intake case the slope is −5.3, which shows
that the maximum axial vorticity ωz = (1/r)∂(rVθ)/∂r is reduced by 47% in
the case of 50% open intake.

In the downstream position z3, the axial flow persists having a jet-like profile
cf. Fig. 2.6c, with a good qualitative agreement between the measured and
simulated flows. The simulated profiles overestimate the measured profile by
10 % at x = 0. Notice from the tangential velocity profiles shown in Fig. 2.6d
that it has the signature of solid-body rotation where in fact the thin wall
boundary layer is not resolved by the shown data acquisition points. We estimate
the boundary layer thickness from that of the flow past a flat plate δ/R ≈
0.37/(Re)−1/5 [27]. We obtain δ/R = 0.03 which is closer to the wall than
captured by the velocity monitor points shown in Fig. 2.6.

In the downstream position z5/R = 5.93 the axial velocity profile has taken
the form of a plug-flow with solid-body rotation, cf. Fig. 2.6e,f. Only a very
narrow boundary layer exists near the cylinder wall. A similar profile was ob-
served in the case of 100% open intake, cf. Fig. 2.2e. The tangential profile
remains solid-body like although the overall swirl decreases downstream due to
viscosity. These observations are supported by the streamwise evolutions of the
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Figure 2.6: 50% open intake case. (a,c,e) show the time averaged tangential
velocity profiles and (b,d,f) show the time averaged axial velocity
profiles. The axial positions are (a,b) z1; (c,d) z3; (e,f) z5. The
error associated with the measurements is of order 2.0%.
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momentum fluxes, cf. Fig. 2.4. Here it is seen that the jet-like profile yields a
80% larger Fzz compared to the case of 100% open intake. Again we observe
a downstream decrease of Fzz. Notice that Fθz is only slightly reduced, 5% at
z1, compared with the 100% open intake case. The succeeding decay of Fθz
is more rapid. We explain this observation with the stronger shear that yields
an increased viscous decay of the angular momentum flux. In Fig. 2.3 we show
the evolution of S as function of the downstream position (open boxes) for the
present case and observe that, as expected, S assumes a smaller value than for
the case of 100% open intake.

The qualitative appearance of the streamlines (not shown) is similar to the 100%
open intake case (Fig. 2.5), i.e., a toroidal recirculation zone (of the average flow
field) is located at the cylinder

wall immediately downstream of the inlet section. It is therefore worth noting
that one cannot characterise the profile of the axial velocity profile from visual
inspection of the mean velocity-based streamlines alone.

2.4.3 Flow structures

In Fig. 2.7 we show velocity magnitude fields in the meridional plane. Figure 2.7
shows the time-averaged velocity magnitude in the domain except for a part of
the outlet for the case of 100% open intake (Fig. 2.7a) and for the case of
50% open intake (Fig. 2.7c). Notice here that the most significant difference
in flow is observed immediately downstream of the inlet section. In both cases,
the recirculation zone (on average) is located downstream of the corner where
the flow turns from a predominantly radial to a predominantly axial direction.
We estimate the streamwise extend of the separation zone from the sign of the
axial velocity close to the cylinder wall and find that the streamwise length of
the separation zone is 0.72R for the 100% open intake case and 1.2R for the
50% open intake case. The reason why the separation zone extends further
downstream in the 50% open intake case is the strong jet that is formed as
flow enters the cylinder through the reduced intake. The qualitatively different
nature of the axial flow profiles investigated in Fig. 2.2 and Fig. 2.6 is clearly
recognisable in the medridional mean fields. Notice again that the velocity
magnitude fields in the downstream third of the cylinder length are almost
identical, as shown by the axial velocity profiles of Fig. 2.2e and Fig. 2.6e. A
qualitative difference between the two mean velocity magnitude fields is the
presence of two recirculation zones at the protruding piston. These are shown
by selected streamlines in Fig. 2.7e. The panel shows a zoom of the region
marked by a dotted line in Fig. 2.7c. We note that the shown streamlines are
in fact three-dimensional streamlines projected onto the meridional plane. We
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Figure 2.7: Meridional planes showing the velocity magnitude fields. (a,c)
show the mean velocity magnitude for the cases of 100% and 50%
open intake, respectively, and (b,d) show instantaneous velocity
magnitudes for the same cases. In panel (e), selected stream lines
show recirculation zones, two of which are shown with arrows, in
the dotted region of panel (c).
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Figure 2.8: Meridional views showing the time averaged vorticity magnitude
for the case of 100% open intake (a) and the case of 50% open
intake (b).

observe a small recirculation zone before the step, marked by an arrow, and
a larger recirculation zone on the piston surface. No recirculation zones were
observed in the mean velocity magnitude field for the case of 100% open intake.

In Fig. 2.7b,d we show typical examples of the instantaneous velocity magnitude
field in the meridional plane, where the highly unsteady nature of the flow is
evident, particularly in the 50% open intake case. In the case of 100% open
intake we observe a symmetric velocity field, reminiscent of the mean field,
whereas in the 50% open intake case pronounced bursts of high-speed regions
are seen. Presumably, these bursts appear due to interactions of shear layers
created at the strong jets, which lead to large-scale disturbances of the flow.

Fig. 2.8 shows the time averaged vorticity magnitude in the meridional planes.
We observe in the case of 100% open intake (Fig. 2.8a), that a region of high
vorticity magnitude exist in the centre of the cylinder effectively showing the
compact vortex core. A moderate production of circulation is likewise observed
at the sharp corner marked by an arrow. For the case of 50% open intake,
(Fig. 2.8b) the vortex core is weaker is weaker, as discussed in Section 2.4.2,
whereas a pronounced production of vorticity now takes place as the flow enters
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the cylinder, as expected.

2.5 Summary

High Reynolds number swirling flows are generally hard to predict numerically—
in particular RANS models over-predict the decay of swirl. In this contribution,
we simulate the scavenging and swirling flow in the static geometry of a sim-
plified model of a large diesel engine using LES with four different turbulence
models. Upon comparison with experimental results, obtained with SPIV it
is found that the both the “localised dynamic one-equation model” and the
“dynamic one-equation model” [85, 91, 59, 62, 89] yield qualitatively and quan-
titatively good predictions of the mean axial and tangential velocity profiles.
In contrast, the two alternative models, the “one-equation model” [104] and the
“mixed-scale model” [56] both fail to predict qualitatively the correct profile of
the axial flow profiles.

We show that the position of the piston has a dramatic effect on the measured
and simulated flow fields: displacing the piston such that the intake is covered
by 50% (which corresponds to a 50% blockage of the engine’s scavenge ports)
changes the time-averaged axial velocity profiles from a wake-like shape to a
jet-like shape, and also diminishes the strength of the in-cylinder vortex. The
partial intake closure also has more local consequences for the average velocity
magnitude fields in the formation of two recirculation zones up- and down-
stream of the sharp corner. It is important to note that despite the difference
in Reynolds number between the experiments by [92], good agreement between
numerical and experimental results is observed.

We believe that our results carry two important messages. Firstly, the confined
swirling flow can be predicted with a reasonable accuracy with LES using the
dynamic one equation eddy model. Secondly, the piston position has a domi-
nating influence on the in-cylinder flow, creating a qualitatively change in the
flow topology.
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Chapter 3

Meshfree and Particle
methods

In general several steps should be applied to get a computational solution of
any engineering problem, starting with a mathematical model that governs the
physical problem, then the continuum is partitioned (discretised) into discrete
elements. The most common discretisation techniques are: finite difference
(FD), finite volume (FV), and finite element method (FEM). In computational
engineering these method are popular and widely used. In the discretisation
techniques the discretised element are connected via a topological map which is
called mesh or grid, and an interpolation function is later built upon the mesh.
However when using the discretisation techniques the physical continuum might
be not always computable with the numerical scheme, and the interpolation may
not produce a favourable results. Mesh distortion in Lagrangian computations,
affect the accuracy of the computation, also in the cases of high gradient a
much finer mesh is required therefor adaptively is required, to minimise the
computation cost.

To handle the problems where time dependent geometry or boundary conditions
are needed to model some problems, FEM uses adaptive remeshing technique
to handle this type of problems. The remeshing technique, and mapping the
variables state from the old mesh to the new one are not easy to handle. The
mapping can introduce numerical errors, and remeshing should not be frequent.
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In meshfree methods the continuum is discretise by a set of nodal point (parti-
cles) without any mesh [108].

Meshfree particle methods main advantage are:

• A direct link to physics and modeling as the particles represent extensive
quantities.

• Relaxed stability limits because convection terms vanish in the Lagrangian
description.

• Can handle large deformation easily, their connectivity can change in time
, there is no need to generate a mesh, which is difficult in complex geome-
tries.

• Universality: particle methods can simulate a wide range of models, in-
cluding discrete and continuous ones as well as deterministic and stochastic
ones.

• Can simulate cases where the partial differential equation (PDE) does not
exist or has not been derived, by identifying particles with control volume
and let them interact them according to the flow in between.

• Accuracy can be enhanced by and controlled easily, by adding more par-
ticles in time nn high gradient regions.

• Easy to represent complex geometries, as the discretised particles represent
it, no need for difficult costly miss generation.

Particle methods can be classified in different way, based on physical principles
they can be classified as deterministic and probabilistic. The majority of par-
ticle methods are based on probabilistic principles, like the Molecular Dynam-
ics [60, 74], the Monte Carlo methods [1, 47], the Lagrangian Probability Density
Functions (PDF) methods [13], and the Lattice Boltzman Method (LBM) [97].

Based on the computational formulation and the approximation of the partial
differential equations, particle methods is classified as strong and weak formu-
lation of the PDEs. The strong formulation includes Smooth Particle Hydro-
dynamics (SPH) [41, 40, 39, 11, 26], Vortex Method [36, 35, 5, 4, 25], and the
Generalised Finite Difference Method [101].

Another class of particles method is based on different Galerkin weak formu-
lations, those method are: Diffuse Element Method (DEM) [72], the Element
Free Galerkin Method (EFGM) [14], the Reproducing Kernel Particle Method
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(RKPM) [51], the h-p Cloud Method [57], the Partition of Unity Method [63, 31],
and the Meshless Local Petrov-Glarkin Method (MLPG) [69].

In Particle methods the representative control volume are represented compu-
tationally as particles of finite volume, these particles are directly correspond
to Lagrangian control volume. Particle methods connect closely to the physical
or biological process of the simulated model, which makes the particle intuitive
and easy to implement. As an example is the dynamic interaction of molecules
and the non-equilibrium movement of atoms in nano-scales.

Computational particles are the base of the particle method, they are discretisa-
tion element, they don’t necessarily correspond to real physical particles, rather
a Lagrangian control volume.

Particles carry the following properties :

• Lagrangian position xp(t).

• Quantity (strength) ωp(t).

• Volume Vp(t).

Hence a particle is represented by the tuple of its attributes:

(x, ω, V )p, (3.1)

where the comprehensive quantity ωp contained in particle p is related to the
underlying field u via the particle volume Vp as:

ωp = Vpu (3.2)

In this dissertation we will mainly consider about Smooth Particle Hydrody-
namics (SPH).

3.1 Smooth Particle Hydrodynamics (SPH)

Smoothed particle hydrodynamics method (SPH) was introduced by Gingold
and Monaghan [3] and by Lucy [11] independently, with the aim to simulate
astrophysical problem. The SPH particles movement is similar to the fluid flow,
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and modelled by the classical Newtonian hydrodynamic equations. Represent-
ing the fluid as particles, which follow the fluid motion preserves the Galilean
invariance, and due to the the nonlinear convection terms reduces the numerical
diffusion of the flow.

Over the years SPH has been applied to many fields in science and engineering.
Stam and Fiume [45] first used SPH to simulate fire and gas. Müller, Charypar,
and Gross [64] developed a SPH method which can be applied on real-time fluid
simulation, Hieber [23] used SPH for free surface flows and solid mechanics.

Turbulence modelling with SPH is rather a new field of research. Monghan [43]
introduced a Lagrangian-averaged Navier Stokes turbulence model modifying
the original SPH method showing a two-dimensional turbulence simulation.
The method was computationally inefficient [38], largely owing to the itera-
tive scheme required for velocity filtering. In 2007 three SPH turbulence models
were introduced by Violeau and Issa [20] two algebraic and one based on the
Reynolds stress model, Violeau and Issa simulated two-dimensional open chan-
nel turbulent flow and two-dimensional collapsing water column using their mod-
els, the results were satisfying comparing to the original SPH method, but poor
if compared with grid-based method. Dalrymple and Rogers [2] used large eddy
simulation (LES) turbulence model to simulate two-dimensional breaking waves
with SPH. Robinson and Monaghan [66] used direct numerical simulation (DNS)
with SPH and studied how will it performs for decaying in a no-slip square box,
but their work is still limited to two-dimensional cases. Ellero [58] and Shi [112]
studied cases with the high Mach number and isotropic homogeneous flows and
showed that SPH in its original form has an effective implicit viscosity. Finally
Adami [90] proposed a new algorithm combining the homogenisation of the par-
ticle configuration by a background pressure while at the same time reduces the
artificial numerical dissipation.

3.2 Function approximation by particles

The physical problems in science and engineering are often described by con-
tinuous function subject to governing equations. These are descritised to be
able to approximate the continuous fields function discreetly, and to give a good
approximation of the differential operators. We need a particle function that
approximate u(x) : Rd → R by particle.
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The following step explains how that can be developed:

• Integral representation Writing the filed u as an integral with the help
of the Dirac-delta identity

u(x) =

∫
u(y) δ(x− y) dy, (3.3)

where x is a location vector, assuming δ is a a function of particle location
at position y. The problem with the integral is only exact for an infinite
number of δ , The problem here is the integral means that the value u can
be only recovered at particle locations and is unknown in between. But in
practice we want to approximate the function with finite number of δ .

• Regularisation Next by replacing the delta function δ by smooth kernels
of finite width ε so we get a smooth approximation which values is defined
everywhere. δ is regularised as Wε = ε−dW (xε ) such that limε→0Wε =
δ, with the condition

∫
Wdx = 1. The pre-factor ε−d is to rescale the

function so the integral is always 1. We can think about the kernel W as
a cloud of whatever extensive quantities the particle s carrying. this leads
to

〈u(x)〉 =

∫
u(y)W (x− y, ε) dy, (3.4)

where x is a location vector, u(y) is the interpolated function,W is a kernel
function, that is used to localise the PDEs through the convoluted inte-
gral, ε is a scaling variable, and the symbol 〈 〉 denotes the approximated
interpolation value.

The more moments of delta function is conserved by the kernel, the more
accurate the approximation is, if W conserve the first moments r− 1 of δ
we get the following order

uε(x) = u(x) +O(εr) (3.5)

This means, ∫
xsW (x) dx 6=

∫
xs δ(x) dx ∀s ∈ 0...r − 1 (3.6)

So the moment of order s = 0 has to be 1, and the higher order moments
has to be 0. Non-negative kernels can never be of order higher than 2.

• Discretisation After building a smooth continuos function approxima-
tion on infinitely many particles, the next step is to discretise the ap-
proximation over a finite number of particles. Discretising the integral in
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Eq. 3.4 using N-point quadrature with the particle locations as quadrature
points:

u(xm) =

N∑
p=1

upW (xm − xp, h), (3.7)

where N is the number of particles, h is the distance between the parti-
cles. The function approximation error combined from: the discretisation
(quadrature) error and the regularisation error:

uhε (x) = uε(x) +O(εr) +O(
h

ε
)s. (3.8)

s is the number of continuous derivatives of W . So the particles must
overlap , the kernel widthε should be grater than the distance between the
particles h, otherwise we will lose the smooth continuity and be back to
step one.

In SPH the equations governing the flow are and expression of the particle-
particle forces and flux interaction. PDEs operators are evaluated on the parti-
cles by converting them to equivalent integral operators, this conversion is not
exact of course, so we end up approximating the operator for (mass, velocity,
and energy) so they are algebraically conserved. The approximated operators
are then discretised as a sum over all the particles.



Chapter 4

Three-dimensional
remeshed smoothed particle

hydrodynamics for the
simulation of isotropic

turbulence

4.1 Background

The Smoothed Particle Hydrodynamics (SPH) method was introduced indepen-
dently by Gingold and Monaghan [3], and by Lucy [11], with the aim to simulate
astrophysical problems. Over the years SPH has been extended and applied in
many areas. Stam and Fiume [45] first used SPH to simulate fire. Müller et
al. [64] developed an SPH method which can be applied on real-time fluid simu-
lation. The SPH method was also extended in free surface flows problems [42],
and low-Reynolds number viscous flows [29, 46, 83], Cummins et al. [37] ex-
tended SPH to simulate incompressible fluids, followed by Shao et al. [96] who
propose an SPH simulation for Newtonian and non-Newtonian flows with a free
surface. Cleary and Monaghan [107] extended SPH to heat transfer simula-
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tion, and finally the method was developed for multi-phase flows simulation by
Morris [82].

Turbulence modelling with SPH is a rather new field of research. Monaghan [43]
introduced a Lagrangian-averaged Navier-Stokes turbulence model modifying
the original SPH method for the simulation of two-dimensional turbulence. The
method is computationally inefficient due to the reduced time step compared to
the spectral method one [38], but the simulated energy spectrum and velocity
profiles were found to be in good agreement with the results obtained using
spectral methods.

Three SPH turbulence models were introduced by Violeau and Issa [20], two
algebraic models, and one based on the Reynolds stress model. Two-dimensional
open channel turbulent flow and two-dimensional collapsing water column cases
were simulated, the kinetic energy, dissipation rate and eddy viscosity results
were in good agreement with Monaghan [43] results, but the method may not
be competitive in comparison with grid-based method, due to the small time
step required resulting a large computational cost.

Dalrymple and Rogers [2] used a large eddy simulation (LES) turbulence model
to simulate two-dimensional breaking waves with SPH. Robinson and Mon-
aghan [66] studied how SPH performs in a direct numerical simulation (DNS) of
decaying turbulence in a two-dimensional no-slip wall-bounded domain. They
showed that the original SPH method can reproduce the energy cascade, which
filled to an end state of a large monopole vortex that filled the domain, but their
work was limited to two-dimensional cases.

Ellero et al. [58] and Shi [112] studied studied isotropic homogeneous turbulence
cases with high Mach number and showed that SPH in its original form has
an effective implicit viscosity. Finally Adami [90] proposed a new algorithm
combining the homogenisation of the particle configuration by a background
pressure which reduces the artificial numerical dissipation.

In this work we present a hybrid remeshed smoothed particle hydrodynamics
method (hrSPH) for the simulation of three-dimensional turbulent flows. Rather
than simplifying the framework and solve the system of equations solely on
the grid, we combine an Eulerian mesh with Lagrangian particles to use the
advantages of both schemes. We want to keep the free of the convection Courant
Friedrichs Lewy (CFL) condition that the classical SPH method enjoys, whilst
to take advantage of the computational efficiency to compute the derivatives on
the grid, which is computationally cheaper than the nearest neighbour search
of mesh free particle methods. The hrSPH also shares the adaptive character of
SPH. The hrSPH framework is the first step toward a wider vision, in which the
Lagrangian part (i.e. the particles) will play an important rule when a complex
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geometry is needed. After all, it combines the abilities to apply Particle-Particle
interactions to a part of the PDEs and Finite Differences to the other part.

The method is based on the remeshed smoothed particle method introduced by
Chaniotis et al. [48] and Chatelain et al. [77]. The presented method differs
from that the one of Chaniotis, as we take advantage of both the Lagrangian
properties of the SPH along with the efficiency of Finite Difference scheme in
which we interpolate the particles and compute the governing equations on the
right hand side, rather than performing Particle-Particle interactions. We fur-
thermore extend the framework of Chatelain et al. [77] in order to solve the full
set of the Navier-Stokes equations. Subsequently, we add a the subgrid model
to the system of equations. The particles are remeshed (uniformly reinitialised)
onto uniform grid using a third order interpolation scheme to overcome the
clustering or distortion of particles.

The mass and the impulse of the particles are interpolated onto the mesh, where
the moments(mass, momentum, angular momentum, etc.) rate of change is com-
puted. These are used to update the velocity and the position of the particles.

Direct numerical simulations (DNS), along with Smagorinsky [44] model are
applied in this study. Details of the governing equations are presented next,
followed with the hrSPH method, and finally the two- and three-dimensional
results are presented.

4.2 Governing equations

The compressible flow is governed by the Navier-Stokes equations describing
conservation of mass

Dρ

Dt
= −ρ∂ui

∂xi
(4.1)

and conservation of momentum,

ρ
Dui
Dt

=
∂p

∂xi
+
∂τij
∂xj

+
∂τ sgsij

∂xj
(4.2)

where
τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂uk
∂xk

)
, (4.3)

where D�
Dt = ∂�

∂t +(u · 5) (�) denotes the material derivative, ui is the velocity, p
is the pressure, ρ is the density, τij is the shear stress, µ is the dynamic viscosity,
δij is the Kronecker delta, and τsgs is the sub-grid stress tensor, which is zero
in case of direct numerical simulation.
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In the presented work the flow is uniquely described by the Reynolds number
Re = Uρ0L/µ, and the Mach number Ma = U/c. L is the characteristic length,
ρ0 is the reference density, U is the reference velocity, and c is the speed of
sound.

To close the system (Eqs. (5.7-5.8)), the following equation of state is used,

p = ρc2 (4.4)

4.2.1 Turbulence modelling

Direct numerical simulations are generally limited to low Reynolds number flow
due to the available computational resources. In the present work we model the
turbulent sub-grid stresses using the standard Smagorinsky model [44], defined
as

τ sgsij = ρ (Cs∆)
2√

2SijSijŜij (4.5)

with
∆ = h, (4.6)

where Cs is a non dimensional constant for which values ranging from 0.1 to
0.24 have been suggested in literature [95], ∆ is the model length scale which
is proportional to the the grid spacing Eq. (4.6), h are the mesh spacing, Ŝij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
− 2

3
∂uk

∂xk
δij is the the filtered strain tensor, and (Cs∆)

2√
2SijSij

is the norm of the filtered strain tensor, where Sij = 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)

4.3 Numerical modelling

4.3.1 The hybrid rSPH method

The basic idea of the hybrid remeshed smooth particle method (hrSPH) is to
discretise the governing equations using Lagrangian particles carrying mass and
impulse; the hybrid remeshed SPH method computes the right-hand side (RHS)
of the governing equations by interpolating the mass and impulse of the particle
onto a regular mesh, and from these, the flow density and velocity fields are
obtained on the mesh nodes. These in turn allow for efficient calculation of the
RHS using high order finite differences.

Several interpolating techniques have been developed, in the next section we are
describing the interpolation function.
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1. Ordinary Interpolation
It is a second-order ordinary interpolation, conserving the zero-order mo-
ment and its first and second moment (impulse, and angular impulse).
This interpolation Λ2, is used in vortex method [81] is described as:

Λ2(x, h) =

 1− s2 0 ≤ s < 1
2 , s = |x|

h
(1−s)(2−s)

2 0 ≤ s < 2
3 ,

0 s ≥ 3
2 .

(4.7)

where |x| is distance of the particle to the mesh, h is the mesh spacing.

So what to think about here is, the contribution of the old particle in the
jth row which carry properties Qj will contributes in the new ith particle
at the x̃i location with the interpolated quantities Q̃i as in Fig. 4.1 [48].
The interpolation is obtained by tensorial product in each coordinates,
and uses 3, 9, 27 point in one, two, and three dimensions,respectively. For
example in two dimension is described as:

∆ Q̃i(x̃i, ỹi) = Qj(xj , yj) Λ2(x̃i − xj , h) Λ2(ỹi − yj , h) (4.8)

Must noted that Qi must be extensive properties of the particle that is
conserved.

Qi =


mj

mjuj
mjvj
mjwj

 (4.9)

Where mj is the mass, mjuj , mjvj , and mjwj are the three impulse form
the momentum Eq. (5.8).

It is noted form Eq. 4.10 that the interpolation function Λ2 is discontin-
uous at the node locations, which results a larger error for the larger the
interpolated quantities fluctuate.

Figure 4.1: Detail of remeshing. The shaded cells are affected by the jth par-
ticle. (left) Unbounded domain, (right) Bounded domain [48].
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2. Interpolation near solid boundaries
biased on the ordinary interpolation, a second order interpolation func-
tion, that is conserving the same quantities is used for remeshing near
the solid boundaries Fig. 4.1(right) [25]. As using the ordinary of the
smoothing interpolation function near the solid boundaries extended the
interpolation stencil to the interior of the solid, and hence can not be used.
The interpolation stencil is described as:

Λ2(x, h) =


1− 3

2s+ 1
2s

2 1st cell away form the wall, s = |x|
h

s(2− s) 2nd cell away form the wall,
s(s−2)

2 3rd cell away form the wall,
0 otherwise

(4.10)

3. Smoothing Interpolation

The particle-to-mesh and mesh-to-particle interpolation is obtained using
moment conserving interpolation. The interpolation was introduced to
minimise the error that ordinary (not continuous everywhere) interpola-
tions produce, through a moments-conserving interpolation (conservation
of mass, momentum, angular momentum, etc.) [108, 79, 25]. However in
mesh-to-particle interpolation, conservation of moments is generally not
possible due to the non-uniform spacing of the target particles, though
the interpolation error decreases as a power of the mesh spacing h. This
power is called the order of convergence of the interpolation scheme.

The strengths (characteristics) of the particles (mass, and impulse) read:

wp =

(
mp

mpup

)
, (4.11)

where, up is the three velocity component u, v, w, and mp is the mass of
the particle.

Fig. 4.2 shows 2-dimensional particle-to-mesh interpolation, where the
strength of the particle is interpolated to the mesh using high order kernel
as following:

ω(xm) =

N∑
p=1

ωpW (xm − xp, h), (4.12)

where N is the number of particles, h is the mesh spacing, W is the high
order kernel, ωp is the strength of the particles, xm is the position of mesh
node m, and xp is the position of particle p.
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Figure 4.2: Schematic representation of particle-to-mesh interpolation in 2D
using an interpolation function with support region ±2h (shaded
in yellow). Blue particles and are within the support region of the
centre node (black) and hence assigned onto it. Green particles
which lie outside the support region are not considered.

The smoothing interpolation is continuous everywhere in the interpola-
tion stencil, and provide moment conserving interpolation. The M ′4 in-
troduced by [39] interpolate the strength of the particles to the mesh, the
strengths are redistributed onto the surrounding mesh nodes as follows

M ′4(x, h) =


1− 5s2

2 + 3s3

2 0 ≤ s < 1, s = |x|
h

(1−s)(2−s)2
2 1 ≤ s < 2,

0 s ≥ 2,

(4.13)

where |x| is distance of the particle to the mesh.

This M ′4 kernel has a four-point support with an error of O(h3), and the
stencil of the discrete interpolation operator based on M ′4 consists of 64
grid points.

The differential operator for the momentum equation are computed on the
mesh, taking advantage of finite difference efficiency rather than using the
particle-particle interaction. To maintain the Lagrangian advantages of
the hrSPH , advection is taking part on the particles, by interpolating the
rate-of-change in momentum to the particles (mesh-particle interpolation),
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which is used to integrate the velocity and position of the particles forward
in time.
We note the mesh controls the adaptivity and provides support for the
fast evaluation of the pressure and stress tensor terms, the hrSPH mainly
keeps the linear stability unconditional. The non-linear stability condition
requires that particles trajectories do not cross [80]

4t ≤ C ‖5u‖−1
∞ , (4.14)

where 4t is the time step, and C is the no linear Courant Friedrichs Lew
(CFL) condition.

4.3.2 Remeshing

In the SPH method particles may cluster in one area of the computa-
tional domain and spread apart in another, as a result of the strain of the
flow. When this occurs, the system looses the ability to recover continuous
velocity and density fields.
When the distortion of the particle distribution occurres, the particle-mesh
interpolation function is unable to ensure the continuity of the system, re-
sulting in the inaccurate representation of the diffusion effect along with
the pressure gradient (rate-of-change of momentum). To abrogate this
problem, Chaniotis et al. [48] introduced the re-meshed smooth particle
hydrodynamics method in which the position of the particles is period-
ically reinitialised to a uniform grid and the old particles properties are
interpolated to the new ones. This interpolation has been implemented in
several methods including particle methods [78, 81, 79].
By remeshing the particles using the high order interpolation kernel the
following is accomplished:

• We retain the Lagrangian characteristic and the stability of the parti-
cle method. This gives us a large amount of control over the accuracy,
as it leads to a more accurate computation of the derivatives com-
pared to the classical particle-particle interaction (classical SPH).
• We decrease the computational costs thanks to:

(a) The exploitation of the regularity of the particles.
(b) Avoiding the costly nearest neighbour search. SPH method re-

quires nearest neighbour searches for each particle to evaluate
derivatives such as the pressure gradient. This adds to the com-
putational costs of the classical SPH.
We also remesh the particles and solve the right hand side of
the equations on the grid. This increases the computational ef-
ficiency as nearest neighbours do not have to be found and the
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speed of Finite Difference schemes is utilised. The cost of remesh-
ing each time step is around 10% of the total costs [48] which is
a small price compared to the total cost that the SPH required,
along to the advantage of ensuring that the particles are always
in-space, resulting an accurate approximation of the flow strain.

(c) The interpolation of the particle’s characteristics on a uniform
grid grants the method an increased computational efficiency to
compute the derivatives using Finite Differences.

• Remeshing ensures that particles do not get too close to each other.
This is an advantage as the pressure force in the momentum equation
proportional to the derivative of the kernel, which in the case of M ′4
is reduced to zero when the distance between the particles is small. In
this case the pressure force becomes attractive resulting in significant
errors in the classical SPH method [48].

The remeshing frequency in our framework can vary depending on the
strain of the flow and the size of the time step. If the particles maintain
their uniform distribution, as in the case of uniform flow fields without
circulations and low Reynolds number (Re), remeshing only needs to be
applied once per ten time steps, or even less frequent. In case of turbulent
flows in which the flows recirculate however, remeshing is performed for
every time step [48]. In the test cases in this framework we perform
remeshing every time step, unless stated otherwise.

The accuracy of the method comes with a minimal additional computa-
tional cost while maintaining the adaptive character of the method. The
implementation of high-order remeshing schemes improves the accuracy
of hrSPH and additionally increases the computational efficiency of the
algorithm.

The remeshing algorithm with finite support may result in numerical
errors, as it may introduce substantial numerical diffusion. However,
Koumoutsakos [79] and Chaniotis et al. [48] have shown that the intro-
duced dissipation by remeshing and the errors of the computed gradients,
induced by particle distortion, are proportional. These gradients remain
substantially small if remeshing is performed at each time step. As dis-
cussed by Koumoutsakos [79] finally, remeshing acts like a subgrid scale
and has a negligible effect on the accuracys

4.3.3 The hrSPH algorithm

Our method is divided into three parts:

(a) Computing the rate of change



40
Three-dimensional remeshed smoothed particle hydrodynamics for the

simulation of isotropic turbulence

i. Particle-mesh interpolation of the mass and impulse of the par-
ticle.

m(xm) =

N∑
p=1

mp W (xm − xp, h), (4.15)

m(xm)u(xm) =

N∑
p=1

mpup W (xm − xp, h) (4.16)

where N is the number of particles, h is the mesh spacing, W is
the high order kernel, up is the three velocity component u, v,
w, and mp is the mass of the particle, xm is the position of mesh
node m, and xp is the position of particle p.

ii. On the grid, obtain the velocity from the interpolated impulse

u(xm) =
m(xm)u(xm)

m(xm)
(4.17)

iii. On the grid, compute the fluid density from the interpolated
mass and the pressure from the equation of state Eq. (5.13).

ρ(xm) =
m(xm)

h3
(4.18)

iv. On the grid, compute the rate-of-change of the fluid momentum
on the mesh (∆um) using finite-differences.

v. The rate-of-change of momentum is interpolated from the grid
to the particles (∆up), Fig. 4.3.

∆u(xp) =

N∑
p=1

∆um,W (xm − xp, h) (4.19)

(b) Updating the particles
This part takes place on the set of particles, where the interpolated
rate of change in velocity is used to update the velocity and position
of the particles.

~ut+1
p = ~utp + ∆~up ∗∆t (4.20)

~xt+1
p = ~xtp + ~up ∗∆t (4.21)
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Figure 4.3: Schematic representation of mesh-to particle interpolation in 2D
using an interpolation function with support region ±2h (shaded
in yellow). the blue particle and mesh nodes (black) are within
the support region of the centre particle and hence assigned onto
it. Green mesh and nodes lying outside the support and are not
considered.

(c) Remeshing the particles:
In case of distortion and particle clustering (high CFL number, high
gradients), interpolate the strengths of the particles to the mesh via
M ′4 interpolation function, generate a new set of the particles, in-
terpolate the strengths back to the new set of particles.



42
Three-dimensional remeshed smoothed particle hydrodynamics for the

simulation of isotropic turbulence

For clarity an pseudo-code of the hrSPH algorithm follows,

Initialisation: Create particles carrying the initial mass mp, and impulse
mpup;
while t < endT ime do

On the particles:
for p=1 to N do

Interpolate the particle impulse and mass to the grid Eq. (4.15, 4.16).
end
On the grid:
for p=1 to N do

Obtain the velocity from the interpolated impulse Eq. (4.17);
Obtain the density from the interpolated mass Eq. (4.18);
Obtain the pressure from the equation of state Eq. (5.13);
Right hand side computation:
Using finite-difference, compute the rate-of-change of the fluid
momentum Eq. (5.8);

end
for p=1 to N do

Interpolate the the change of momentum to the particles Eq. (4.19).
end

On the particles:
for p=1 to N do

Update the velocity and position of the particles Eq. (4.20, 4.21).
end
if Remeshing = true then

Do remeshing;
end

end
Algorithm 1: The hrSPH algorithm

Solving the continuity equation Eq. (5.7) is not consistent with the system,
rather the mass of the particles is updated via the M ′4 function. This
sequence is repeated in a third-order Runge-Kutta scheme [6] The pressure
gradient is solved with a second order central difference scheme, while
diffusion is computed using a second order central difference scheme. We
want to note that the number of the particles is equivalent to the number
of the grid points in all benchmarks in section (4), unless the number
of the particles is stated explicitly. As mentioned before, remeshing is
furthermore performed at every time step, unless stated otherwise.
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4.4 Verification for the hrSPHmethod for vis-
cous flow

To verify the method, we perform a series of benchmarks, including: two-
and three-dimensional Taylor-Green flow [33], thin double shear layer [55],
and three-dimensional isotropic turbulence. In this study the flow is char-
acterised by the dimensionless Mach numberMa and the Reynolds number
Re, which allow the reader to reproduce any of the benchmarks. The char-
acteristic length scales L are the computational domain unless otherwise
is stated, and the velocity u is normalised by either the maximum velocity
or the reference velocity.

4.4.1 Two-Dimensional Taylor-Green flow

As a first test of the hrSPH method, we perform a simulation of the
2D incompressible Taylor-Green flow. Taylor-Green is a periodic flow of
decaying vortices in the x-y plane as follows,

u(x, y, t) = −Uebt cos

(
2πx

L

)
sin

(
2πy

L

)
(4.22)

v(x, y, t) = Uebt sin

(
2πx

L

)
cos

(
2πy

L

)
(4.23)

p(x, y, t) = p0 −
U2

4
ebt
[
cos

(
4πx

L

)
+ cos

(
4πy

L

)]
, (4.24)

where b = −8π2

Re , Re = ρ0UL/µ is the Reynolds number, L is the charac-
teristic length of the system, ρ0 is the reference density, µ is the viscosity.
To approximate the incompressible reference solution, we choose a Mach
number Ma is equal to 0.1, and the pressure reference is p0 = 1

M2 . The
computational domain is [L× L] with periodic boundary conditions. We
perform simulations for Reynolds numbers in the range (100 − 103) to
validate the accuracy of the method with the viscous effect (dominant,
intermediate and minimal). The third order Runge-Kutta scheme is used
throughout with a constant time step.

The flow maximum velocity decay behaviour with Re = 100 calculated
using hrSPH with resolution of [64×64] is presented in Fig. 4.4 which shows
a good agreement with the incompressible exact solution Uex = Uebt.
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Figure 4.4: The maximum normalised velocity decay profile with Re = 100.
Comparison of the hrSPH solution (-) with the exact incompress-
ible solution(•). The hrSPH solutions shows a good agreement
with the the incompressible exact solution Uex = Uebt.

To test the accuracy of the method at higher Reynolds numbers we perform
simulations at Re = 102. The predicted velocity decay shown in Fig. 4.5
is found in excellent agreement with the exact solution.
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Figure 4.5: The maximum normalised velocity decay profile with Re = 102.
Comparison of the hrSPH solution (-) with the exact incompress-
ible solution (•). The hrSPH solutions shows a good agreement
with the the incompressible exact solution Uex = Uebt.

For the error analysis of the hrSPH simulation, the relative error (L∞) is
used

L∞(t) =

∣∣∣∣u(t)− Uex (t)

Uex (t)

∣∣∣∣ , (4.25)

where, u(t) is the maximum velocity magnitude of the hrSPH simulation
at time t, and Uex(t) denotes the maximum velocity magnitude of the
exact solution at time t.

The relative error L∞ for the hrSPH method calculation is between 0.5%
and 1.4% for Re = 102 Fig. 4.6, which is twice as accurate then previously
reported for SPH simulations [90, 48].
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Figure 4.6: The relative error of the maximum velocity for the 2D Taylor-
Green flow at Re = 102 using the hrSPH method with resolution of
[64×64]. The relative error L∞ for the hrSPH method calculation
is between 0.5% and 1.4% for Re = 102

The hrSPH relative error increases as the Reynolds number increases for
a fixed grid resolution, with less numerical dissipation which is a plus
advantage for the hrSPH method.

The maximum of the relative error max(L∞) shown in Fig. 4.7, for a
64× 64 resolution is less than 2% for Re in the range considered 1− 103.
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Figure 4.7: max(L∞) error of the hrSPH simulations of the 2D Taylor-Green
flow for different Reynolds number with a fixed grid resolution
[64 × 64]. The maximum of the relative error max(L∞) is less
than 2% for Re in the range considered 1− 103.

Finally we tested the convergence rate of the relative error L∞ for a spatial
grid refinement. The profile of the maximum relative error max(L∞) of
the hrSPH simulation with different resolution [16 × 16, 32 × 32, 64 × 64,
128× 128, and 256× 256] is presented in Fig. 4.8

The hrSPH exhibits a third order convergence in space, with third order
diffusion and pressure gradient, which is consistent with the order of the
M ′4 interpolation function as represented in Fig. 4.8.
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Figure 4.8: max(L∞) error of the hrSPH simulations for the Taylor-Green
flow with different resolutions with Re = 100(·), along with the
third order convergence rate. The hrSPH exhibits a third order
convergence in space, which is consistent with the order of theM ′4
interpolation function.

4.4.2 Thin double shear layer

To illustrate the performance of the hrSPH method on under resolved flow,
we simulated the evolution of a thin double shear layer. The thin double
shear layer, which is often considered to be too difficult to simulate due
to the produced small scales. The main challenge of the this problem as
showed by Brown and Minion [55], occurs when the method is producing
the spurious structures, in the case when the flow is sufficiently under-
resolved. Brown and Minion [55] tested several numerical schemes, and
showed that given a sufficient resolution (256 × 256) all the numerical
schemes provided a reasonably accurate solutions. But given a coarser
mesh (128 × 128) the methods generate a non physical spurious vortex
in the shear layer between the two vortices, with an early oscillations at
t = 1.0.
Drikakis and Smolarkiewicz [17] studied the spurious structure, aiming to
understand the numerical mechanism behind it. They indicated that the
generation of the spurious structure depends on the choice of the advective
scheme.
The computational domain is a unit square with periodic boundary con-
ditions. The flow velocity u = (u, v) is initially consists of a horizontal
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shear layer of a finite thickness as

u(x, y) = tanh(80×min(y − 0.25, 0.75− y)) (4.26)
v(x, y) = δ sin(2π(x+ 0.25)), (4.27)

In the simulation we set δ = 0.05, Reynolds number Re = 104, and Mach
number Ma = 0.1, initially we start with a uniform pressure and density.
Fig. 4.10 shows the evolution of the vorticity for three different mesh
resolutions; a fine one with 400 × 400, a 200 × 200, and a coarser one
with 100× 100. We note that using the hrSPH method, with a relatively
low resolutions we are able to overcome the development of the spurious
vortex compared to previous studies [19] cf. Fig. 4.9.

Figure 4.9: The development of a spurious vortex for the lower resolutions
256× 256

However with the coarse 100 × 100 mesh the hrSPH method produces
the spurious structure and the simulation failed, which agrees with the
previous studies in [55].

The vorticity evolution for both resolutions 400 × 400, and 200 × 200 is
presented in Fig. 4.10, both cases were able to avoid the spurious structure.

With Reynolds number Re = 3×103 a resolution of 100×100 the hrSPH is
able to simulate without producing the spurious structure. At time t ≈ 4
we notice that oscillations are produced, as mentioned by Minion [55],
however this problem occurred after a long simulation time, as shown in
Fig. 4.11.

As the hrSPH enjoys the benefits of a Lagrangian advection, the method
is able to provide accurate results for the thin double shear layer with a
lower mesh resolution meshes compared to previous studies [55, 17, 19].
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Finally the calculated maximum error of the relative effective viscosity [12]
µeff (t) = ε(t)

ε(t) to the physical viscosity µ, where ε is the dissipation rate
Eq. (4.28), and ε is the enstrophy Eq. (4.29).

ε =
dEk
dt

(4.28)

ε =

∫
Ω

ω · ω
2

dΩ, (4.29)

where Ek is the kinetic energy

Ek =

∫
Ω

ρ
u · u

2
dΩ, (4.30)

and ω is the vorticity, and Ω is the computational domain.

For the thin double shear layer flow with Re = 104 and resolution of
200× 200 at t = 1, the maximum error of the relative effective viscosity is
equal to 2%.
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(a) time = 0.6 (b) time = 0.6

(c) time = 1.0 (d) time = 1.0

Figure 4.10: Vorticity magnitude of the thin double shear layer simulation
with Re = 104. Left column using 200× 200 particles, and right
column using 400×400 particles. The hrSPH is able to avoid the
development of the spurious structure with a lower grid resolution
compared to [19].
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Figure 4.11: The produced oscillation for the thin double shear layer using the
hrSPH using a coarse 100×100 mesh. The hrSPH is able to avoid
the development of the spurious structure, however oscillations
are produced at time t ≈ 4.

4.4.3 Three-dimensional Taylor-Green flow

This benchmark considers direct numerical simulation (DNS) with hrSPH
method, three-dimensional Taylor-Green is a periodic flow of decaying
vortices in the x− y − z plane, with the following initial conditions,

u(x, y, z) = U sin

(
2πx

L

)
cos

(
2πy

L

)
cos

(
2πz

L

)
(4.31)

v(x, y, z) = −U cos

(
2πx

L

)
sin

(
2πy

L

)
cos

(
2πz

L

)
(4.32)

w(x, y, z) = 0 (4.33)

p(x, y, z) = p0 +
ρ0U

2

16

(
cos

(
2πx

L

)
+ cos

(
2πy

L

))(
cos

(
2πz

L

)
+ 2

)
,(4.34)

where, U0 is the reference velocity, the Mach number Ma = 0.1, L is the
respective length, and p0 is the reference pressure, which is determined
from the reference density ρ0 by the equation of state Eq. (5.13).

The aim of this test case is to test the accuracy of hrSPH for three-
dimensional viscous flow with Reynolds number Re = 1600, using direct
numerical simulation. The flow is confined in a cube with periodic bound-
ary conditions defined as 0 ≤ x, y, z ≤ 2π. The computational meshes are
regular cartesian grids of 643, 1283, 2563 resulting in ∆x = 0.01, 0.05, 0.025.
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The third order Runge-Kutta is used for time interpolation. Fig. 4.12, rep-
resents the isosurface of the vorticity magnitude at different times. The
evolution of the kinetic energy over time is presented in Fig. 4.13 (a), we
observe that the hrSPH method is capable to capture the basic dynamic
flows for different grid resolutions and is in a good agreement with the
reference solution [99]. The change in the kinetic energy over time for
the three grid resolutions is insignificant, however the close up is shown
in Fig. 4.13 (b), shows that the coarser grid contains less energy than the
finer one, and the energy decays faster as time evolve. At early time steps
as the vortices begin to evolve and maintain their shape, this phase lasts
approximately until t = 7 where the smooth structures begins to suffer
changes in their structure as the flow becomes turbulent, at t = 9 the
coherent structure breaks down. Fig. 4.14 depicts the evolution of the dis-
sipation rate (ε) Eq. (4.28), and the enstrophy (ε) Eq. (4.29). Fig. 4.14(a)
shows the time history of the enstrophy, it is clear that there is a large
change in the peak dissipation rate for the coarser grid (∆x = 0.01), this
peak is improved by increasing the grid resolution until we reach a good
agreement with the reference solution at grid resolution ∆x = 0.025. The
dissipation rate is represented in Fig. 4.14(b), we examine a large dif-
ference in the dissipation peak at t = 9 where the coarser grid fails to
estimate the correct dissipation peak. The finer grid, with ∆x = 0.025,
is consistent with the reference solution [106]. We calculated the error of
the relative effective viscosity µeff (t) = ε(t)/ε(t) to the physical viscosity.
The maximum error in the relative effective viscosity is about 2% for the
hrSPH method.

To finally test the effect of the remeshing frequency, we run the same test
case at Re = 1600 with ∆x = 0.05, whilst decreasing the time step by
a factor of two (∆t = ∆t/2) and keeping the remeshing frequency the
same, we used the solution of the kinetic energy evolution with ∆x = 0.05
presented in Fig. 4.13 (a) as a reference solution to calculate the relative
error L∞(%). The reason is to check if our computation is well converged
in time resolution. The results in Fig. 4.15(b) show that no effect on
the solution and the relative error L∞(%) is approximately 0%. This
leads us to conclude that any changes in the solution will be a result of
changing the remeshing frequency. We thus also performed two test cases
in which the remeshing frequency is increased by a factor of two and four
respectively, while decreasing the time step with a factor of two and four
as well. The results in Fig. 4.15(a), (b) show that the remeshing frequency
affects the results when the flow contains a substantial kinetic energy and
small scales. The relative error of the kinetic energy is approximately 2%
when remeshing is performed at every time step and approximately 4.5%
if remeshing is performed once per four time steps. This can be explained
based on the fact that remeshing allow the system to regain it’s regularity
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as it ensures the particles’ uniform distribution, even when flows with a
large Reynolds number are considered. As the kinetic energy decreases as
a function of time, the relative error reduces to well below 1%.
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(a) time = 0 (b) time = 2

(c) time = 4 (d) time = 8

(e) time = 12 (f) time = 16

Figure 4.12: Isosurface of the vorticity magnitude for the Taylor-Green simu-
lation at Re = 1600 with ∆x = 0.025.
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Figure 4.13: Evolution of the kinetic energy for the 3D Taylor-Green simula-
tion, Re = 1600, using the hrSPH method, with different resolu-
tion along with the reference solution. In (a), we observe that the
hrSPH method is capable to capture the basic dynamic flows for
different grid resolutions and is in a good agreement with the ref-
erence solution. The close up in (b), shows that the coarser grid
contains less energy than the finer one, and the energy decays
faster as time evolve.



4.4 Verification for the hrSPH method for viscous flow 57

Time

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

E
n

s
tr

o
p

h
y

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0.0

2.0

4.0

6.0

8.0

ref. solution
∆  x =0.01

∆  x =0.05
∆  x =0.025

(a)

Time

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

D
is

s
ip

a
ti

o
n

 r
a

te

0.0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

ref. solution
∆  x= 0.01

∆  x =0.05
∆  x =0.025

(b)

Figure 4.14: Evolution of enstrophy (a), and dissipation rate (b) for the sim-
ulation of the 3D Taylor-Green at Re = 1600 with different res-
olution using the hrSPH method. In (a) there is a large change
in the peak dissipation rate for the coarser grid, this peak is im-
proved by increasing the grid resolution until we reach a good
agreement with the reference solution. In (b) we examine a large
difference in the dissipation peak at t = 9where the coarser grid
fails to estimate the correct dissipation peak. The finer grid is
consistent with the reference solution.
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Figure 4.15: The effect of remeshing frequency on the the evolution of the
kinetic energy for the 3D Taylor-Green simulation (a), and the
relative error of remeshing every 2 and 4 time steps (b), for the
simulation of the 3D Taylor-Green at Re = 1600.

4.4.4 Three-dimensional isotropic turbulence

We use hrSPH method to simulate three-dimensional isotropic turbulence
in a periodic cube of size L = 2π with a resolution of 643. The initial
conditions are obtained from the JHU Turbulence Database Cluster [111] a
10244 space-time history of a direct numerical simulation of incompressible
isotropic forced turbulent flow at Re ≈ 1460.

The data from the database contains the three velocity components and
the pressure, the data is for incompressible flow. A uniform non-dimensionalised
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pressure p∗ = p
ρU2 + 1 is added to the database pressure, with Mach num-

berMa = 0.1. The 10243 resolution mesh is filtered with a Gaussian filter
with a specified cutoff to reduce the noise, and then down sampled to the
desired resolution (643).

Both the DNS and Smagorinsky models are used to predict the three-
dimensional isotropic turbulence problem, the Reynolds number ranging
from Re = 300 to 104. The aim here is to study the Reynolds number
threshold for both models by maintaining the same resolution.

The simulation results that the DNS fails to properly predict the turbulent
flow for Re > 2 × 103. This is caused by the insufficiently fine mesh
resolution required to solve the many small scales the DNS is taking into
account. The Smagorinsky model on the other hand fails with the same
resolution for Re > 6× 103, with the same resolution (643).

The energy spectrum is calculated as following, for each component of
the velocity fields on the grid the u = (ui, uj , uz) Fourier transformation
is computed and denoted as û = (uki, ukj , ukz). The velocity spectrum
tensor is computed as [112]:

E(k) =
1

2
|û(k) · û∗(k)| , (4.35)

where Û∗ is the complex conjugate of the transform velocity, and k =
(ki, kj , kz) is the wave number. Finally the energy spectrum E(k) is ob-
tained as

E(k) = 4πk2 〈E(k)〉 , (4.36)

where 〈...〉 is an average over the thin spheric shell of radius k = |k|.

The temporal evolution of the energy spectrum for both models (DNS
and Smagorinsky) with Re = 2× 103 is shown in Fig. 4.16, along with the
kinetic energy evolution for both models in Fig. 4.17. It can be observed
that the energy spectra in Fig. 4.16 are in good agreement. It can also
be seen that more energy is dissipated by the Smagorinsky model for high
wave numbers. Fig. 4.17 shows the subgrid model to dissipate energy
faster than the DNS model due to the modelled small scales.

The Courant number (CFL) defined in Eq. (4.14) is an important indicator
of the stability of the method, Fig. 4.18 shows the time evolution of the
Courant number for both models at Re = 2 × 103. It can be observed
that the DNS produces high error and gradients, with big instability in
the Courant number as it tries to resolve the many small scales in the
turbulent flow, however the Courant number stabilised after time t = 20,
on the the other hand Smagorinsky model did not suffer of such instability
and the Courant number is decreasing in relatively stable manner.
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Figure 4.16: The energy spectra, for both the DNS and the Smagorinsky
model, with Re = 2 × 103 using the hrSPH method. it can be
observed that the energy spectra are in good agreement. It can
also be seen that more energy is dissipated by the Smagorinsky
model for high wave numbers.
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Figure 4.17: The kinetic energy evolution in time, evaluated for both the DNS
and the Smagorinsky model, with Re = 2× 103 using the hrSPH
method. Here the subgrid model dissipate energy faster than the
DNS model due to the modelled small scales.
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Figure 4.18: The Courant number evolution for the Smagorinsky and DNS
model with Re = 2 × 103. It can be observed that the DNS
produces high error and gradients, with big instability in the
Courant number as it tries to resolve the many small scales in
the turbulent flow

Fig. 4.19 (a) shows the initialised velocity at time t = 0 and the simulated
velocity magnitude decay Fig. 4.19 (b),(c), and (d) for Reynolds number
Re = 6× 103. The hrSPH method with Smagorinsky model is used with
remeshing every time step, as we find that for flow with strong vorticity the
particle distribution becomes distorted and the particles tend to clustered
so that remeshing in each time step is necessary.
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(a) time = 0 (b) time = 10

(c) time = 30 (d) time = 60

(e)

Figure 4.19: Velocity magnitude decay of the isotropic turbulence case

The energy spectrum calculated as in Eq. (4.35), and the dissipation of
the energy agrees with the Kolmogorov −5/3 profile [70]. The temporal
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evolution of the energy spectrum from the initial state to the stationary
state at time= 60 is shown in Fig. 4.20.
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Figure 4.20: Time evolution of the energy spectra, evaluated at different time
during the simulation, Re = 6×103 using the hrSPH method with
Smagorinsky mode, along with the Kolmogorov −5/3 profile.

4.5 Summary

We presented a hybrid remeshed smoothed particle hydrodynamics method
(hrSPH), taking advantage of the Lagrangian advection, and the finite dif-
ference efficiency by computing the differential operators on the mesh.
Two models were used a DNS model, and a Smagorinsky model. We
verified our method through several benchmarks, the hrSPH is able to
resolve the flow with varying Reynolds number from 1 up to 104. The
method showed a third order converging for the Taylor Green flow case.
As a result of the Lagrangian advection that the method enjoys, we were
able to resolve the double thin shear layer without producing the spuri-
ous vortical structure with a coarser mesh than what other studies sug-
gested. And finally, the hrSPH method resolved the three-dimensional
isotropic turbulence flow with high Reynolds number on a coarse mesh
using Smagorinsky model.
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Chapter 5

A Brinkman penalisation
method for hybrid remeshed

smoothed particle
hydrodynamics method of

compressible flow

5.1 Background

Insight in the response of many engineering applications can be obtained
using numerical simulations of viscous flows around solid obstacle.can be
distinguished to treat complex geometries: (i) the body-fitted grid (BF)
method [102], and (ii) the immersed boundary (IB) method [94, 88].

The BF method proposes to generate grids associated with complex bound-
aries. Consequently, boundary conditions are easily specified. In order to
achieve sufficiently accurate results for flows with high Reynolds numbers,
a fine or grid is required for the boundary layer. However generating a
good quality fine mesh can be cumbersome. . Fine meshes furthermore
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entail substantial computational efforts. In moving boundaries cases the
simulation setup becomes more complex and expensive as a result of the
grid generation process, and the interpolation process of the solution to the
new mesh at each computational time step, the BF method can therefore
be complex to implement while its computational costs are significant.
Peskin [16] introduced the IB method as a new approach to study the flow
around heart’s valves. Ever since, it has developed in an alternative ap-
proach to the BF method to describe the interaction of fluids with complex
geometries. This method is called immersed boundary (IB) method.
The IB method consists of a mathematical formulation and a numerical
scheme [16]. The mathematical formulation is a mixture between Eulerian
and Lagrangian variables, related by an interaction equation in which the
Dirac delta function plays a notable role. In the numerical scheme, the
Eulerian variables are defined on a fixed grid, whereas the Lagrangian ones
are defined on a curvilinear grid that moves freely through the fixed grid.
Refinement of the curvilinear grid is not required.
Complex boundaries are modelled as immersed elastic boundaries in IB
methods. They interact with the surrounding fluids by solving the Navier-
Stokes equations, whilst modifying the momentum equation. Peskin [16]
showed that the boundaries do not need to be massless and that the fluid’s
density does not need to be uniform.
For rigid obstacle problems Lai [68] extended the method by having a
stiff spring with restoring force represent the elastic media. This method
was later extended by using a feedback force to represent the immersed
boundary for solid obstacle problems [18, 67].
The BF and the IB methods have some disadvantages. Both use an ex-
plicit time-stepping scheme for instance. This entails that small time steps
are required, compromising the efficiency. They are also restricted to non-
adaptive grids, making them inefficient for flows with high Reynolds num-
bers. Lia [68] showed that, in order to mimic the real situation of flow
around a solid obstacle, the computational domain must be relatively large
compared to the solid obstacle. Moreover, no convergence proof exists for
both methods.
Peskin’s immersed boundary method uses external forces to simulate the
boundaries of the computational domain. Cartesian grid methods [109,
49, 114] and ghost cell immersed boundary methods [30] are IB methods
which in contrast to Peskin’s method, enforce the boundary conditions
directly upon on the immersed boundaries.
The Cartesian grid method was extended for compressible flow simulations
by Ghias [87], simulating a compressible flow around a circular cylinder
and airfoil at high Reynolds number, by modifying the discretised equa-
tion near the immersed boundaries. A drawback of this approach is not
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taking in account the acoustic wave reflection and transmission between
the solid and fluid at the interface area, which is important for shock wave
simulations.
In this work we are propose another variant of the immersed boundary
methods, in which the boundary conditions are imposed by penalising the
governing equations by adding a penalised term. This is often referred to
as the Brinkman penalisation.
The Brinkman penalisation was originally proposed by Arquis and Cal-
tagirone [22], Its main idea is to model the complex obstacle as porous
media with porosity φ and viscous permeabilityα approach to zero.
The Brinkman method has an important advantage: its error bound can
be estimated in term of the penalisation parameter [76]. The boundary
conditions are enforced to a specific precision with no need to modify
the numerical method or adapt the grid. Angot [75] showed that for
incompressible Navier-Stokes equations, the method converges to the exact
solution as the penalisation parameter approaches zero.
We employ Liu’s [86] extension of the Brinkman penalisation for compress-
ible flows. We introduce an implicit boundary approach for the viscous
flow with high a Reynolds number using the hybrid remeshed smoothed
particle hydrodynamics method (hrSPH).
In the following sections we will present the porous media equations, fol-
lowed by the Navier-Stokes equation for the hrSPH method coupled with
the Brinkman penalisation. We will then verify the presented method for a
several benchmark problems, presenting the high accuracy of the method.
Then we close with conclusions and recommendations for future work.

5.2 Porous media equations

In this section we will introduce the porous medium equations for com-
pressible flow in order to obtain the corresponding Navier-Stokes equation
for the hrSPH method with Brinkman penalty parameters. The main idea
of the Brinkman penalisation method [22] is to model the solid obstacle
as a porous medium. The governing equations for compressible fluids and
penalised Navier-Stokes for the porous medium are solved simultaneously,
since no interface conditions are required. For more details about porous
media, the reader referred to [7, 65, 61].

5.2.1 Porous media properties

A porous medium is a material containing pores. The skeletal portion of
the material is often called the "matrix", and is interconnected by pores.
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The pores are typically filled with a fluid (liquid or gas). A porous medium
is characterised typically by its porosity φ, and permeability α. The flow
through permeable media is characterised by two length scales: the size of
the pores d, and the macroscopic length L. The porosity φ is the fraction of
the volume of connected pores over the total volume, allowing the fluid to
pass through. The permeability α is a measure of the ability of a material
to transmit fluid and is proportional to φd2.

5.2.2 Continuity equation

The continuity equation for porous media reads:

∂ρ

∂t
= − 1

φ
∇ · (ρv), (5.1)

where ρ is the interstitial fluid density, ∂
∂t is the derivative to the time,

and v is the Darcy velocity v = (v1, v2, v3) , v = uφ. As φ � 1, where
‖v‖ < ‖u‖ , u = (u1, u2, u3) is the interstitial velocity of the fluid.

5.2.3 Darcy’s law, Brinkman equation and extensions

The first Darcy’s law reads:

v = −α
µ
∇p, (5.2)

where µ is the dynamic viscosity, and p is the intrinsic pressure. In order
to meet the no-slip boundary condition an additional viscous therm can
be added as follows [15]

∇p =
µ

α
v + µ∇2v, (5.3)

where the first viscous term is the Darcy’s term, and the second is the
Laplacian term of the Navier-Stokes equation. Wooding [9] extended this
expression in order to make it similar to the Navier-Stokes equation, as
follows:

ρ

[
φ−1 ∂v

∂t
+ (φ−1v∇)(φ−1v)

]
= −∇p− µ

α
v, (5.4)

which was in turn extended to Brinkman equation by Vafai and Tien [52]:

ρ

[
φ−1 ∂v

∂t
+ (φ−1v∇)(φ−1v)

]
= −∇p− µ

α
v + µ∇2v. (5.5)
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Finally, Eq. (5.5) can be rewritten as a volume-averaging method as [52]:

1

φ

∂ρvi
∂t

= − 1

φ

∂

xj
(ρφ−1vivj)−

∂p

xi
+ µ

∂2vi
∂x2

j

− µ

α
vi, (5.6)

Beck [53] showed that in Eq. (5.5) the convection term (φ−1v∇)(φ−1v) is
inconsistent with the no-slip boundary conditions, and it was subsequently
dropped by Nield [7] later.

Since Eq. (5.5 entails that the momentum decays with the order of exp[−(φ/α)t],
neglecting the coefficient φ−1 on the lefthand side hardly affects the solu-
tion. Consequently, the momentum remains to decay sufficiently fast [86].

Liu and Vasilyev [86] presented a simplified momentum equation with
a Brinkman penalisation for compressible flows. Their simplification is
possible since the penalisation term results in a significant damping of the
momentum inside the porous media whilst the no-slip boundary conditions
are satisfied.

5.2.4 Brinkman penalisation for compressible flow

Starting with the Navier-Stokes equations for compressible flow Eq. (5.7,
5.8),

Dρ

Dt
= −ρ ∂ui

∂xj
(5.7)

and the conservation of momentum,

ρ
Dui
Dt

= − ∂p

∂xi
+
∂τij
∂xj

+
∂τ sgsij

∂xj
(5.8)

in which

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂uk
∂xk

)
(5.9)

where D�
Dt = ∂�

∂t + (u · 5) (�) denotes the material derivative, ui is the
velocity, x is the position, p is the pressure, ρ is the density, τij is the shear
stress, µ is the dynamic viscosity, δij is the Kronecker delta, and τsgs is
the sub-grid stress tensor, which is zero for direct numerical simulation.

In the following, the viscous compressible flow around a set of obstacles Oi
is numerically simulated, whilst the velocity on the surface of the obstacle
must meet the no-slip boundary condition:

u = Uoi on Oi,∀i, (5.10)

where Uoi is the velocity in the obstacle Oi.
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To specify no-slip boundary conditions without directly imposing Eq. (5.10),
we can follow Angot [76] by adding penalty terms to the momentum equa-
tion. This extension results in a loss in mass and energy of the waves
reflectedfrom the obstacle, producing wrong simulation results. Liu and
Vasilyev [86] combined both the Navier-Stokes and porous media equa-
tions, resulting in a Brinkman penalisation method for compressible flows:

Dρ

Dt
= −

[
1 +

(
1

φ
− 1

)
χ

]
ρ
∂ui
∂xj

(5.11)

ρ
Dui
Dt

= − ∂p

∂xi
+
∂τij
∂xj

+
∂τ sgsij

∂xj
− χ

η
(ui − Uoi) (5.12)

The system is closed with the equation of state:

p = ρ c2, (5.13)

where φ is the porosity, η = αφ is the normalised viscous permeability.
Note that 0 < φ� 1, and 0 < η � 1. χ is the solid mask, and defined as,

χi(x) =

{
1 if x ∈ Oi,
0 Otherwise. (5.14)

In Eq. (5.14) the solid mask χ is defined that it is 1 inside the solid and 0
in the fluid.

To improve the numerical accuracy of the rate-of-change of the momen-
tum, χ can be built via a polynomial "quasi-step" function, so that it
varies smoothly from 0 to 1. The step function is sketched in Fig. 5.1.

The step function χ varies smoothly over the smooth interval of width L
normal to the surface, coinciding to a fixed number of mesh cells. The
step function is a function of the signed distance to the solid surface, with
1 at the solid and smoothly goes to 0 at the solid surface. The polynomial
step function is continuous and differentiable, a second order over the first
and last L/4 of the interval, and first order in the intermediate region.
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Figure 5.1: The polynomial step function as a function of the signed distance
to the solid surface (second order over the first and last L/4, and
first order in the intermediate region).

5.3 Brinkman penalisation with hrSPHmethod

After defining the computational domain, and initialising the mesh field
on the mesh, the solid geometry is read as stereolithography triangulation
(STL) file format containing a triangulated surface representation of an
object through triangles described by three corner points and a normal,
this file is called an STL patch. Then the χ fields on the nodes are ini-
tialised as a smooth step function by intersecting the computational mesh
with the triangulated surface and initialising, the desired obstacle veloc-
ity U0 is initialised. Subsequently, the hrSPH method is used directly
without altering the numerical scheme; it intrinsically deals with the term
χ
η (u− Uo) (the penalisation field).

5.4 Verification for Brinkman penalisation with
hrSPH method

To validate the hrSPH method with Brinkman penalisation, we test a
series of benchmark problems:

• Flow through a channel (Poiseuille flow); to verify the implicit bound-
ary approach using the hrSPH method solution with the classical
analytical Poiseuille flow solution.
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• Lid-driven cavity; here we simulate the moving top wall with a con-
stant velocity Umax = 1 as Uo = 1 , and we simulate the viscous flow
with high Reynolds number to validate the method.
• Compressible shock wave; a real compressible flow with high Mach

number.

5.4.1 Poiseuille flow

The Poiseuille flow is a classical test case for laminar flow inside a pipe for
which the analytical solution is known.

We study the flow throw a 2D channel. The computational domain is a
periodic rectangle domain with length L and width L/2. At the centre
of the domain a solid wall is represented as a penalised region, where the
STL patch (triangulated surface) with length L and width L/5 is located
as shown in Fig. 5.2.

Simulating the flow through a channel with a solid wall in the centre of
the computational domain is the simplest way, and requires no additional
work to impose symmetry. The upper part represents the first half of the
channel, where the lower part is the other half. The simulation is started
with a uniform density ρ and zero velocity U = (u, v, w), external force in
x-direction, with φ = 1× 10−2 , and α = 2× 10−2.

Several computational domain resolution were tested to study the spatial
convolution. We start with 32× 32 particle and stop with 256× 256 par-
ticles, resulting in mesh spacings of ∆x/L = 0.28, 0.14, 0.07, 0.035. Note
that the resolution of the triangulated surface (STL patch) can remain the
same, even though the resolution of the computational mesh varies.

(a) (b)

Figure 5.2: The computational domain for the 2D Poiseuille flow with the
penalised area as a Heaviside mask function (a) (χ), and (b) as a
smooth step mask function (χ).

The simulated Poiseuille flow using the hrSPH method with Brinkman
penalisation at different resolutions is shown in Fig. 5.3 for different res-
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olutions of the computational grid, where u/Umax is extracted over the
y-axis from the top of the channel till the centre of the penalised area.
The Brinkman penalisation is able to reduce the velocity to zero. The
results become more accurate for a decrease in the mesh resolution.

is shown in Fig. 5.3 for different resolutions of the computational grid,
where u/Umax is extracted over the y-axis from the top of the channel
till the centre of the penalised area. The Brinkman penalisation is able
to reduce the velocity to zero. The results become more accurate for a
decrease in the mesh resolution.
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Figure 5.3: The normalised velocity magnitude of the Poiseuille flow with dif-
ferent resolution along with the analytical solution for the hrSPH
method with Brinkman penalisation, the surface of the penalised
area successfully managed to represent the required no-slip bound-
ary condition at the channel surface at x/L ≈ 0.4, forcing the nor-
malised velocity u/Umax to drop to ≈ 0 as a result of the penalty
term.

Fig. 5.3 illustrates how the surface of the penalised area successfully man-
aged to represent the required no-slip boundary condition at the channel
surface at x/L ≈ 0.4, forcing the normalised velocity u/Umax to drop to
≈ 0 as a result of the penalty term. Note that only two cells are re-
quired to represent the smooth stepping in the solid surface. Different
mesh resolutions are used to study the Poiseuille flow cf. Fig. 5.3, with
finer resolution the solution is converging closer to the exact solution, till
a level of refinement, and after that refining the mesh more does not affect
the solution.
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In Fig. 5.4 we show the effect ofof the smoothening of the penalised mask
function χ as a Heaviside function, and as a signed distance smooth func-
tion, representing successfully the no-slip boundary condition.

The smooth function velocity profile is stepping smoothly toward the wall
(channel wall) and needs around 2 cells inside the penalised area to rep-
resent the no-slip boundary condition. On the other hand the Heaviside
function represents the no-slip condition approximately at the channel
wall.
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Figure 5.4: The normalised velocity magnitude of the Poiseuille flow simulated
using a heaviside mask function (χ), and a smooth step mask
function (χ) to represent the penalised term„ together with the
analytical solution.

5.4.2 Flow around a cylinder

In the next test case we study the flow around a cylinder as presented by
Morris [83]. The computational domain is a periodic square L × L, and
the cylinder is placed at the centre of the domain, with radius R = L/5
as in Fig. 5.5.
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Figure 5.5: The periodic computational domain of the flow around a single
solid cylinder in the centre.

The flow characteristic length Reynolds number Re = 1 and Mach number
Ma = 0.1, with porosity φ = 1 × 10−2, and permeability α = 2 × 10−2.
Two different resolutions were tested, with 100, and 200 grid point yield
to ∆x = 0.1, and ∆x = 0.05 for the finer mesh in each direction. We are
presenting the coarser mesh results in this section. The no-slip boundary
conditions on the surface are imposed via Brinkman penalisation method,
where the mask function χ is a smooth signed distance function.

Fig. 5.6 represents the velocity profile extracted over the y-axis at x = L/2,
i.e. throughout the centre of the computational domain, normalised by the
maximum velocity magnitude. Note how the mask function successfully
manage to represent the no-slip condition around the cylinder surface,
representing the cylinder as a porous medium. Fig. 5.7 represents the
velocity magnitude.
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Figure 5.6: Axial velocity profile at x = L/2 (Path1), and x = L (Path2).

Figure 5.7: Velocity magnitude fields.
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5.4.3 Lid-driven cavity

In the second benchmark problem we consider the lid-driven cavity prob-
lem using the hrSPH method with Brinkman penalisation. When simu-
lating the lid-cavity two difficulties arise. First singularities at the top
corners appear, due to the lid moving horizontally and the no-slip con-
ditions on the vertical walls. The second difficulty is the high velocity
gradients that arise at high Reynolds numbers.

The computational domain is a unit square with length L and the top wall
is moving with a constant speed Umax = 1. The computational domain is
completely bounded by an STL patch to represent the domain walls using
the Brinkman penalisation method Fig. 5.8. To simulate the moving top
wall, an extra STL patch is introduced , which is given a constant speed
Umax = 1 as Us = 1 which will represent the moving wall, as seen in
Fig. 5.8.

Figure 5.8: The Lid-driven cavity computational domain, with the bounded
penalised walls represented as a step function. The moving top
wall is presented in grey.

Three different Reynolds number Re = (102, 103, and 104) are simulated
with Mach number Ma = 0.1.

As no analytical solution for the Lid-driven cavity problem exists, we use
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the results of Ghia [103] as a reference solution. Ghia used a highly-
resolved multi-grid finite difference method with 257 × 257 grid. For the
hrSPH method with Brinkman penalisation two grid resolutions are tested
to capture the structure of the flow, 100 × 100 and 200 × 200 particles,
yielding ∆x = 0.01,∆x = 0.005. The results after a steady state occurs
are extracted and compared with the reference solution. The steady state
is reached when the total kinetic energy remains constant in time.

Fig. 5.9(a) presents the steady state field for Re = 102 with ∆x = 0.01.
The velocity magnitude ranges form zero (blue) to Umax = 1 red, along
with the velocity vector fields, which represent the structure of the flow.
As a result of the shear force at the moving wall, a single vortex core is
occurs in the top half of the domain. At the bottom the fluid is moves
relatively slowly.

To compare the computed flows with those of Ghia we extract the velocity
in the y-direction across a centreline in the x-direction (Uv(x)), and the
velocity in the x-direction across a centreline in the y-direction (Ux(y)). In
Fig. 5.10(a) the computed profiles for Re = 102 over the horizontal, and
vertical centrelines. Both velocity profiles show a good agreement with
Ghia’s reference solutions [103].

The velocity fields for the higher Reynolds number at Re = 103 and 104 are
presented in Fig. 5.9(b), and Fig. 5.9(c). For an increase of the Reynolds
number, the vortex core moves clearly to the centre of the domain, and
the intensity of the vortex increases as well. The velocity also increases
in the bottom part of the cavity. The coarse grid with (∆x = 0.01)
failed to accurately predict the vortex location for both higher Reynolds
number Re = 103 and 104, as can be seen in Fig. 5.10(b), and Fig. 5.10(c),
where both velocity profiles (Ux(y)), (Uv(x)) are slightly shifted off the the
reference solution. To capture the flow structure at Re = 103, a finer grid
with ∆x = 0.005 is used. Employing this grid, the solution shows a good
agreement with Ghia’s results as the velocity profiles illustrate.
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(a) Re = 102 (b) Re = 103

(c) Re = 104

Figure 5.9: The velocity fields (magnitude and direction) computed for the
lid-driven cavity problem for different Reynolds numbers.
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Figure 5.10: The velocity profiles for the lid-driven cavity problem compared
to those of Ghia [103].

5.4.4 Compressible shock wave

To simulate a compressible flow exposed to a shock wave, a rectangu-
lar computational domain [−L, 2L], [−L,L] with periodic boundary con-
ditions, a penalised cylinder with radius L/10 at the centre of the com-
putational domain is considered (see Fig. 5.12(a)). The initial conditions
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are pressure perturbations p′ resulting from a Gaussian distribution [86]:

p′ = 10−3 exp

[
− ln(2)

(
(x− 4)2 + y2

0.04

)]
(5.15)

with the following initial density:

ρ = 1 + p′. (5.16)

In this case φ = 0.02, and α = 0.05 are used.

The initial pressure perturbations form an acoustic wave, which propa-
gates towards the solid cylinder at the origin of the computational do-
main, as illustrated in Fig. 5.11(a). When the wave front reaches the
solid cylinder, it reflects , thereby producing a second wave propagating
in the opposite direction. The main wave splits into two parts as a re-
sult of the interaction with the solid cylinder and continues to move in the
same direction as shown in Fig. 5.11(b), which represents an instantaneous
snapshot of the pressure perturbation at time t = 4.0. At time t = 6.0 the
two parts of the main wave collide and merge on the left side of the solid
cylinder producing a third wave, as shown in Fig. 5.11(c). In Fig. 5.11(d)
the reflected wave and the main one both continue to propagate towards
the boundaries and completely surround the solid cylinder.

The main issue in this example is the method’s ability to capture the
physical structure of the reflected wave and the third propagated wave.
The quality of the reflected wave and the third propagated one strongly
depends on how well the Brinkman penalisation method can map the solid
cylinder in the computational domain and how well the no-slip condition
is incorporated. Five points around the cylinder are marked as sample
points (A-E in Fig. 5.12(a)), and the time history of the perturbation
pressure is extracted. As the flow is symmetric around the x-axis, only
the upper side of the cylinder is covered with the sample points, points A
and E are important to observe the quality of the reflected wave and the
third propagated wave.

The numerical results are shown in Fig. 5.12(b-e), together with the exact
solution (which is taken from [86]). Fig. 5.12(b) shows the perturbation
pressure of the main wave at time t ≈ 2.0 and, later the reflected wave at
time t = 4.0 and later at time t = 5.0 for point B. Fig. 5.12(e) presents
the perturbation pressure of the third wave after the two seperated waves
merge and collide. All the numerical results show a good agreement with
the exact solution, indicating the ability of the hrSPH method coupled
with the Brinkman penalisation to capture the correct physics of the prop-
agating waves, which is a results of the method’s correct representation of
the no-slip boundary condition.
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(a) time = 2 (b) time = 4

(c) time = 6 (d) time = 8

Figure 5.11: Pressure profiles computed for the compressible flow exposed to
a shock wave at t = 1.0, t = 4.0, t = 6.0 and t = 8.0
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(a) The five sampling points in the do-
main.
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(b) Sampling point A.
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(c) Sampling point B.
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(d) Sampling point C.
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(e) Sampling point D.
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(f) Sampling point E.

Figure 5.12: Compressible shock wave perturbation pressure responses for the
compressible flow exposed to a shock wave at five points.

5.5 Summary

The coupled Brinkman penalisation technique with the hrSPH proved its
efficient implementation, and good simulations results.
The technique is efficient to implement as there is no need to change the
hrSPH numerical scheme, only a penalty term is added to the hrSPH
Navier-Stokes equations, and a mask function is added on the mesh with
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value = 1 wherever a solid obstacle is required in the computational do-
main.

Number of benchmark problem are presented to test the accuracy of the
presented method. We start with a simple periodic laminar flow inside a
pipe (Poiseuille flow),to flow around a cylinder. We tested more complex
applications too, lid-driven cavity case is simulated with high Reynolds
number, and finally we tested a case where a shock compressible wave
is reflected from an obstacle and propagate throw out the computational
domain. The results were found in good agreement with the exact solution
and with the results that different methods provided.



Chapter 6

Conclusions

In the first part of this thesis we simulate the scavenging and swirling flow
in the static geometry of a simplified model of a large diesel engine using
LES with four different turbulence models. The results were compared
with the experimental results.

It is found that the both the ’localised dynamic one-equation model’ and
the ’dynamic one-equation model’ yield qualitatively and quantitatively
good predictions of the mean axial and tangential velocity profiles. In
contrast, the ’one-equation model’ and the ’mixed-scale model’ both fail
to predict qualitatively the correct profile of the axial flow profiles.

We show that the position of the piston has a dramatic effect on simulated
flow fields: displacing the piston such that the intake is covered by 50 %
changes the time-averaged axial velocity profiles from a wake-like shape
to a jet-like shape.

the LES simulation using the dynamic one equation eddy is able to predict
the confined swirling flow with a reasonable accuracy. The piston position
has a dominating influence on the in-cylinder flow, creating a qualitatively
change in the flow topology.

In the second part we presented a remeshed particle-mesh method for the
simulation of three-dimensional compressible turbulent flow. The method
extends the classical smooth particle hydrodynamics method.
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A uniform grid is introduced, where the quantities of the particles are
interpolated onto the grid as a solution of the particle distortion. This
hybrid particle-mesh method enjoys the advantage of the Lagrangian ad-
vection, and the finite difference efficient calculation of the pressure gradi-
ent, and turbulent diffusion. The method is capable of providing quality
simulations while maintaining its robustness and adaptivity.

The method is based on the three dimensional pressure-velocity Navier-
Stokes formulation, the algorithm is based on interpolating the impulse
and mass of the particles into the grid, where the rate-of-change of fluid
momentum is computed on the mesh, finally the interpolated rate of
change in velocity is used to update the velocity and position of the par-
ticle.

The method has been validated through detailed simulations of the tur-
bulent flow, two- and three-dimensional Taylor-Green flow, thin double
shear layer, and three-dimensional isotropic turbulence. Two models were
implemented direct numerical simulations, and Smagorinsky model. The
results were found in good agreement with exact solutions, and the hrSPH
exhibits a third order convergence in space for the Taylor Green flow case.
As a result of the Lagrangian advection that the method enjoys, we were
able to resolve the double thin shear layer without producing the spurious
vortical structure with a coarser mesh than what other studies suggested.
Finally the method resolved the the three-dimensional isotropic turbu-
lence flow with high Reynolds number on a coarse mesh using Smagorinsky
model.

The coupled Brinkman penalisation technique with the hrSPH proved its
efficient implementation, and good simulations results.

The technique is efficient to implement as there is no need to change the
hrSPH numerical scheme, only a penalty term is added to the hrSPH
Navier-Stokes equations, and a mask function is added on the mesh with
value = 1 wherever a solid obstacle is required in the computational do-
main.

Number of benchmark problem are presented to test the accuracy of the
presented method. We start with a simple periodic laminar flow inside a
pipe (Poiseuille flow),to flow around a cylinder. We tested more complex
applications too, lid-driven cavity case is simulated with high Reynolds
number, and finally we tested a case where a shock compressible wave
is reflected from an obstacle and propagate throw out the computational
domain. The results were found in good agreement with the exact solution
and with the results that different methods provided. The results were
found in good agreement with the exact solution and with the results that
different methods provided.
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