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ABSTRACT

Deeper water installations of offshore wind turbines may be supported by jacket structures. This study 
investigates the dynamic response of suction caissons for jackets by analyzing 3D finite element models in the 
frequency domain. The numerical modelling was firstly validated by analytical solutions for pile foundations. 
Groups of crucial dimensionless parameters related to the soil profile and the foundation geometry are 
identified and their effects on the response of suction caissons are studied. Static stiffness coefficients are 
presented in a form of mathematical formulas obtained by fitting the numerical results, pertaining foundations 
with different slenderness ratios and embedded in different soil profiles. 
Sensitivity of the dynamic impedances of suction caissons on the skirt length was showed in this study.   
Moreover, the results for the suction caissons indicated that the overall dynamic response is profoundly affected 
by the  relative thickness of the soil layer and by the variation of soil stiffness with depth. 

Keywords: soil – structure – interaction, dynamic stiffness, damping, floating foundations, suction 

caissons, numerical modelling, site effects

1. Introduction
The offshore wind market is developing towards wind farms with higher capacity generators and in 

deeper waters, which places new demands on current offshore design procedures. So far the selection 

of the type of support structures for offshore wind turbines are determined by the water depth. In 

shallow waters, monopiles and monopod suction buckets are mostly utilized, while jacket structures 

with piles or with suction caissons would be the design configuration for deeper waters following the 

designs traditionally used by the oil and gas industry [1]. In the work of Houlsby et al. [2] the 

applicability of suction caissons as offshore wind turbine foundations is suggested for suitable soil 

conditions and particularly for deeper waters, with a water depth of up to about 40m. Suction caissons 

are skirted shallow foundations (with a slenderness ratio Hp/d lower than 4, where Hp and d are the 

foundation height and diameter, respectively) that are first installed using self-weight and then by 

pumping out the water trapped within the skirts [3]. In contrast to driven piles, heavy duty equipment 
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is not required for suction caisson installation. Moreover the noise disturbance of the marine life is 

diminished, making this type of foundation an attractive alternative for deep water installations.  

In the design of offshore wind support structures one of the critical issues is the fatigue that occurs due 

to the combination of wind, wave and earthquake loading. In addition, the potential of structural 

resonance with the dynamic forces of wind loading would result in large amplitude stresses and 

accelerated fatigue. Therefore, it is fundamental to accurately assess the resonance frequencies of the 

wind turbine structure in order to ensure that the first resonance frequency of the wind turbines does 

not coincide with the excitation frequencies of the rotor system [4]. Furthermore, the overall damping 

of the structure reduces greatly fatigue damage, since the amplitude of vibrations at resonance is 

inversely proportional to the damping ratios [5]. Wolf [6] showed that both the eigenfrequency and the 

damping of any structure subjected to dynamic load are modified due to the soil-foundation 

interaction. Hence the dynamic stiffness and damping of the soil-foundation system should be 

included in the estimation of the natural vibration characteristics of any offshore wind turbine as 

indicated by several studies [7,8,9]. 

In the literature the problem of the dynamic soil-pile interaction has been extensively investigated. 

Indeed, there are several analytical and numerical studies on the estimation of the dynamic 

impedances of the horizontal vibration of single piles. Considering only those for a linear elastic soil 

layer they can be classified as follows: 

a) analytical continuum solutions for end bearing piles [10,11,12], where the soil was modelled as a 

homogeneous layer with hysteretic material damping; 

b) Winkler type analytical solutions [13,14,15], where the supporting soil was substituted by a bed of 

independent elastic springs overlying a rigid bedrock. For dynamic problems Novak [13] 

recommended the use of Winkler foundation coefficients based on Baranov’s equation for the in-plane 

and out-plane vibration of a disk. An improved model incorporating in the analysis the normal and 
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shear stresses acting on the upper and lower faces of a horizontal soil element by integrating the 

governing equations over the thickness of the soil layer was developed by Mylonakis [15]; 

c) numerical continuum finite element solutions [16,17,18,19,20], where the pile was modelled as 

series of regular beam segments with a rigid cross section and the soil was considered as an elastic 

continuum. 

Very few studies investigating the dynamic response of floating piles either numerically [20] or 

analytically [21,22,23] are available in the literature. It was shown that the stiffness and the thickness 

of the soil layer play a fundamental role in the estimation of the dynamic impedances of floating piles. 

In addition, there is a significant number of studies analysing the dynamic lateral response of single 

piles or pile groups embedded in a homogeneous half space, where numerical methods (e.g. finite 

element [24,25,26], and/or boundary element methods [27,28]) or analytical elastodynamic solutions 

[29,30,31] were employed.

In the case of suction caissons the vast majority of research studies has been focused on the analysis of 

the load capacity under the action of combined vertical, horizontal and moment loading [32,33,34]. 

Moreover, the seismic response of suction caisson foundations was also investigated [35]. However, 

the dynamic response of suction caissons has received less attention [36,37]. In the work of Liingaard 

[36] the dynamic stiffness coefficients were determined, considering linear viscoelastic soil and 

modelling the suction caisson using a coupled BE/FE model in homogeneous halfspace comparing the 

obtained results with analytical solutions for surface foundations. In that study it was shown that the 

dynamic impedances pattern suggested by the analytical solution for surface foundations did not 

resemble the one obtained from the numerical model for Hp/d>0.25, while it was in good agreement 

with the outcomes of the BE/FE model for the case of surface footing. Moreover, Liingaard [36] 

highlighted the high dependency of the horizontal and rocking component of the stiffness on 

Poisson’s ratio and examined the influence of the skirt flexibility on the dynamic response of caisson 

foundations embedded in a homogeneous soil layer. It was observed that the increase of the dynamic 
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impedances of suction caisson in the frequency domain is more pronounced when the slenderness 

ratio increases (Hp/d=0.25-1).

The current study aims at investigating the dynamic response characteristics of suction caissons, to 

formulate a basis for understanding the natural vibrations characteristics of foundations for jacket 

structures. The literature study has shown that some aspects of the dynamic behavior of this type of 

foundations has not been investigated so far (e.g. site effects). Therefore, a numerical study was 

performed and the dynamic impedances of suction caissons subjected to lateral loading were 

estimated. Experimental studies [38] have shown that multi-caisson supported wind turbine structures 

are mainly influenced by the vertical component of dynamic stiffness, which is not addressed in the 

present study because of space limitations..Due to the absence in the literature of analytical solutions 

on the dynamic response of suction caissons embedded in a soil layer on a rigid bedrock, the 

numerical modelling approach was validated with the rigorous analytical solution of dynamic 

vibration of soil-end bearing pile [10] and soil-floating pile [22]. The effect of the major parameters 

affecting the dynamic response of suction caissons embedded in a soil stratum on a rigid bedrock was 

investigated. The validated numerical methodology was adopted to perform the parametric study, 

while the rationale behind the selection of the parameters was to highlight the role of the 

nondimensional parameters of the problem such as the slenderness ratio Hp/d, the relative stiffness 

Ep/Es and the relative thickness of the soil layer Hs/d. Furthermore, the dynamic response of suction 

caissons was analysed for different soil profiles, considering a stiffness distribution with depth. 

2. Methodology
A series of 3D finite element models in the commercial software ABAQUS [39] were deployed to 

analyze the dynamic impedances of suction caissons. The numerical models accounted for the 

following hypotheses: 1) linear elastic isotropic behaviour of the foundation; 2) linear viscoelastic 
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isotropic behaviour of soil with hysteretic type damping (frequency independent) and 3) perfect 

contact between the foundation and the soil during the analysis.  

Only half of the foundation and the surrounding soil were taken into account in the model, as a result 

of the symmetry of the problem, see Figure 1. Two different foundation modelling approaches were 

used: 1) shell cylinder, where the foundation was discretized by shell elements (S4) and 2) equivalent 

solid cylinder, for which equivalent material properties were applied to 3D continuum elements 

(C3D8) in order to match the bending stiffness of the hollow cylinder and the inner soil. The far field 

soil response (Linf=180m) was modelled using infinite elements to avoid spurious reflections. The near 

field soil domain (Lfin=180m) was discretized by 8-node 3D continuum elements (C3D8). The soil 

and the foundation lateral surfaces were bonded together to satisfy displacement compatibility. The 

steady state linearized response of the model subjected to harmonic excitation in the frequency 

domain was obtained. The dynamic impedances KSu, KSθ, KMu and KMθ at the level of the foundation 

head were then calculated as shear forces, S, and moments, M, when the head of the foundation was 

subjected to unit displacement, u, and rotation, θ. The mesh size was set small enough to capture the 

stress wave accurately even at high frequency range. A mesh size of at least 10 to 20 elements per 

wave length for the frequency range of interest was used, including up to the third eigenfrequency of 

the soil layer α0=5/2π. Note that α0 is a dimensionless frequency related to the eigenfrequency of the 

soil layer, since it is given as the product of the wave number and the thickness of the soil layer. 

    (1)𝛼0 =
𝜔𝐻𝑠

𝑉𝑠

where ω (rad/sec), Hs(m) and Vs(m/s) are respectively the frequency, the thickness and the shear wave 

velocity of the soil layer. 

In addition, the aspect ratios of elements used in the mesh ranged from 1.6 near the foundation head to 

about 8 near the boundaries of the finite element mesh. A view of the model with the mesh refinement 

is shown in Figure 1.
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From the state of the art it is deduced that the dynamic behaviour of suction caissons embedded in a 

halfspace was already investigated, see [36]. Hence this study focused on the case of a soil layer 

overlying a rigid bedrock surface. 3D numerical models were first established to validate the 

numerical methodology against published analytical solutions of the dynamic response of end bearing 

(Figure 2A) and floating piles (Figure 2B). Consequently, the validation of the numerical 

methodology was performed by considering  a small diameter (d=2r0=1m) hollow, flexible, steel pile 

of thickness t=d/50, height Hp=10m embedded in a homogeneous soil layer with thickness Hs=10m 

(Figure 2A), 30m (Figure 2B) and constant profile of shear wave velocity (Vs=250m/s), thickness 

(t=r0/50), hysteretic material damping (ζ=5%, see [40]) and Poisson’s ratio (ν=0.35) over a wide 

frequency range including at least the third eigenfrequency of the soil layer (α0=5/2π).

The fact that the geometry of suction caissons differs from that of piles, due to the hollow section and 

the presence of the cap, could introduce different mechanisms of wave propagation, e.g. due to the 

contact of the cap with the soil. This was investigated in a former study by Latini et al. [37], which  

showed that the solid cylinder and the suction caisson does not exhibit different dynamic behaviour. 

Moreover the analytical solution for flexible floating piles [22] cannot capture the response of suction 

caissons, possibly due to the negligence of the vertical displacements and the effect of the smaller 

slenderness ratio in the generation of surface waves. Additionally, it was observed that the presence of 

the cap did not alter the dynamic response of the suction caissons. Hereafter, the geometry of the 

caisson comprising of a hollow cylinder (skirt) and a cap was modelled with shell elements (S4).

3. Validation with analytical solutions
First, the numerical model was validated with the rigorous analytical solution for horizontally 

vibrating end bearing piles proposed by Novak and Nogami [10] for the case of soil profile in Figure 

2A. The static stiffness coefficients of the numerical model were calculated at low frequencies and 
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presented in Table 1, along with the corresponding values obtained by applying the analytical 

solution. A discrepancy of 12.5%, 30.5% and 2.3% was obtained for the horizontal, coupling and 

rocking terms, respectively. This difference can be motivated by the fact that the analytical solution 

does not taken into account the vertical displacements in the estimation of the impedances of the soil-

pile system with the coupling component being mainly influenced. In Figure 3a only the real (KSu) and 

the imaginary (2ζSu) part of the translational dynamic impedances are shown. However the 

conclusions drawn here are valid also for the other two components KSθ, and KMθ. A reduction of 

stiffness at the 1st and 2nd eigenfrequency of the soil layer (α0=1/2π and 3/2π, accordingly) is observed. 

The numerical model exhibited an extra drop in stiffness attained around the 1st vertical resonance 

α0=1/2πη, where , which was less marked for the case of the cross coupling 𝜂 = 2(1 ‒ 𝜈)/(1 ‒ 2𝜈)

and rocking components. This can be explained by the fact that in the analytical formulation vertical 

displacements are disregarded. The generated damping is associated to the imaginary part of the 

dynamic coefficient of the dynamic impedances, due to the soil-pile interaction. Radiation damping 

was developed after the 1st eigenfrequency of the soil layer for all the components. Step increase of 

the damping ratio can be roughly approximated by linear function with the frequency, which is then 

modelled by viscous type damping. A slight increase in the slope of the damping ratio after each 

eigenfrequency of the soil layer is observed. In addition, the results of the shell pile and the equivalent 

solid pile model matched perfectly in the frequency interval investigated. The numerical results 

seemed to be in good agreement with those of the analytical solution, even if a slight discrepancy was 

recorded for frequencies higher than α0=4. In Figure 3b the deformed shape of the pile is plotted as a 

function of the depth at the three first eigenfrequencies of the soil layer and the numerical trend 

resembled the one suggested by the analytical formulation.

For the floating pile, the numerical model was validated by deploying the analytical solution of Latini 

et al. [22]. The static stiffness coefficients were estimated and compared with those attained 

respectively by the analytical solution of Latini et al. [22]. The results are given in Table 1. The 
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deviation in percentage between the results of the analytical formulation of Latini et al. [22] and the 

numerical model were 2.5%, 24.5% and 9.7%. It is evident that the numerical model achieved similar 

values to those obtained by using the analytical formulation, which slightly overestimated the lateral 

and coupling coefficients. In Figure 4 the real (KSu, KSθ, and KMθ) and the imaginary (2ζSu, 2ζSθ, and 

2ζMθ) parts of the dynamic impedances are presented. Note that the numerical model was established 

considering equivalent solid pile in order to be consistent with the assumption of solid pile cross 

section of the analytical formulation. Slightly scattered results were observed comparing the analytical 

solution of Latini et al. [22] and the numerical model after the 2nd horizontal eigenfrequency of the 

soil layer. The damping ratio obtained from the analytical solution was overestimated concerning the 

cross coupling stiffness term for frequencies smaller than the 1st horizontal eigenfrequency of the soil 

layer, while an increased variation of the damping coefficient was observed after the 1st horizontal 

resonance frequency of the soil layer for the rocking component. 

In Figure 5 the deformed shape of the pile is illustrated with respect the depth at the three first 

eigenfrequencies of the soil layer. The modal shapes obtained from the numerical model match almost 

perfectly those of the analytical solution, except only from the 3rd eigenfrequency where the analytical 

solution underestimates the deflection.

In this section the two numerical models were validated against analytical solutions and the 

comparison of Figures 3 and 4 demonstrate that floating piles exert a different behavior than end 

bearing piles. 

4. Parametric study

The role of key dimensionless parameters such as the stiffness ratio Ep/Es, the slenderness ratio Hp/d 

and the pile flexibility factor Kr on the response of end bearing piles has been illustrated previously 

([41] and [42]). Moreover, studies on the dynamic response of floating piles ([21], [22]) highlighted 

the influence of the thickness of the soil layer on the dynamic impedances of this type of foundations. 
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The dependency of dynamic stiffness coefficients on the dimensionless parameter Hs/d, defined as the 

relative thickness of the soil layer, was pointed out only for the case of surface footings in the work of 

Gazetas [43]. Since these studies have been investigating piles with slenderness ratio more than 10 or 

surface footings, the relevance of these findings to suction caissons and the effects of the 

abovementioned dimensionless parameters to the dynamic soil suction caisson interaction is hereafter 

investigated. The cases selected in the current analysis and the dimensionless parameters are listed in 

Table 2, while the rationale behind their selection was to investigate foundations with different skirt 

length and diameter to study the dynamic response of suction caissons for different slenderness ratios 

(Hp/d) and site conditions (Ep/Es, Hs/d).

Three soil profiles were considered, each with a different distribution of Es(z) with depth as reported 

in Figure 6. In the numerical analysis the shear wave velocity of the soil layer was assumed to 

increase with depth according to the following expression [44]:

 (2)𝑉𝑠(𝑧) = 𝑉𝐻[𝑏 + (1 ‒ 𝑏)
𝑧

𝐻𝑠
]𝑛

where b is given as a function of the shear wave velocity at the surface (V0) and base (VH) of the 

inhomogeneous soil layer (b=(V0/VH)1/n), n is a dimensionless inhomogeneity factor (n=0 1) and z ÷

represents the depth measured from the ground surface. Profile A has constant shear wave velocity 

(Vs=250, 300, 400, 500m/s – cases 5-18), which is typical for overconsolidated clay deposits. The 

parameter n was set equal to 0.25 for profile B, representing uniform medium-dense sand deposits, see 

cases 19- 21. In profile C, Es(z) is proportional to depth and n=0.5 was taken into account in order to 

investigate normally consolidated clay strata (cases 22- 24). 

Shear wave velocity ratio V0/VH (at the surface and the base of the inhomogeneous layer) was 

considered equal to 0.01 and 0.1 respectively for the soil models B and C to account for strong 

gradient in shear wave velocity. And the reference base shear wave velocity was 500m/s in order to 

model a continuously inhomogeneous viscoelastic soil medium of thickness Hs over rigid bedrock. 

The hysteretic material damping (ζ=5%) and Poisson’s ratio (ν=0.35) were identical for all the 
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examined cases. These three models may adequately represent the dynamic characteristics of a fairly 

wide range of real soil profiles.

4.1 Static stiffness

The effect of the slenderness ratio on the static stiffness components of suction caisson foundations 

was herein analysed. In the literature there are several approximate closed-form solutions expressions 

for the static stiffness terms of piles [19,41,42]. For large slenderness ratio (Hp/d 10), Randolph [42] ≥

suggested a set of stiffness expressions depending on the stiffness ratio (Ep/G*), where 𝐺 ∗ = 𝐺

 in order to predict accurately the response of flexible foundations. Nevertheless, for smaller (1 +
3
4𝜐),

slenderness ratio – like in the case of suction caissons – the deformation mode changes and the Hp/d 

affects the static stiffness. Carter and Kulhawy [45] accounted for this effect by suggesting 

expressions based on the slenderness ratio for rigid shafts.  Another approach would be to consider the 

stiffness of surface foundations [46], while Gelagoti et al. [47] modified the previously suggested 

expressions for embedded foundations [43] by translating the load reference point at the top of the 

foundation. 

In this work the closed-form expressions suggested by Randolph [42] for flexible piles were modified 

by accounting also the contribution of the slenderness ratio, in order to provide closer approximations 

of the static stiffness components of suction caissons. The results of the numerical analysis were fitted 

with the exponential functions shown in Figure 7a. It was observed that the curve fitting is better for 

Hp/d>0.5. In addition, the numerical results of the static stiffness components for the suction caisson 

case were compared respectively with previously published expressions [46,47,48]. The static 

stiffness components obtained by the mathematical expressions were divided by the corresponding 

numerical ones and they are presented with respect to the slenderness ratio in Figure 7b. It may be 

observed that the expressions from Wolf and Deeks [46] slightly overestimate all the static 
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components up to Hp/d=0.5 for Ep/Es=60, while the opposite is observed for the expressions of 

Gelagoti et al. [47] for the horizontal and coupling terms. In addition, the calculated stiffness 

coefficients using the expressions by Shadlou and Bhattacharya [48] which were developed for higher 

Hp/d values are very similar to the ones obtained by Gelagoti et al. [47]. The deviation of the previous 

studies [46,47,48] becomes more apparent for higher Hp/d values. 

Thus, displacements of suction caissons can be expressed by these simple mathematical equations 

obtained by fitting the numerical data:

                                           (3)𝑢 = 0.56( 𝑆

𝐺 ∗ 𝑑)( 𝐸𝑝

𝐺 ∗ ) ‒ 0.18(𝐻𝑝

𝑑 ) ‒ 0.156 + 7.10( 𝑀

𝐺 ∗ 𝑑2)( 𝐸𝑝

𝐺 ∗ ) ‒ 0.52(𝐻𝑝

𝑑 ) ‒ 0.656 

                                          (4)𝜃 = 7.10( 𝑆

𝐺 ∗ 𝑑2)( 𝐸𝑝

𝐺 ∗ ) ‒ 0.52(𝐻𝑝

𝑑 ) ‒ 0.656 + 2.29( 𝑀

𝐺 ∗ 𝑑3)( 𝐸𝑝

𝐺 ∗ ) ‒ 0.40(𝐻𝑝

𝑑 ) ‒ 0.728 

The new suggested expressions reduce substantially the scatter and provide a better approximation of 

static stiffness components of suction caissons.

4.2 Dynamic impedances

4.2.1 Effect of the slenderness ratio

Figure 8 illustrates the real (KSu, KSθ, and KMθ) and the imaginary (2ζSu, 2ζSθ, and 2ζMθ) parts of the 

dynamic impedances for several values of the slenderness ratio Hp/d (cases 2-6, in Table 2) by varying 

the skirt length, while the same soil profile is considered. Note that all investigated cases resemble 

rigid foundation response according to the flexibility criterion suggested by Poulos and Davis [41]. 

Overall the pattern of the stiffness variation with frequency is influenced by the slenderness ratio after 

the 1st vertical eigenfrequency of the soil layer. It was observed that the reduction in stiffness attained 

at the 1st horizontal eigefrequency (α0=π/2) of the soil layer became less marked as the slenderness 

ratio decreased. The decrease of the dynamic stiffness components of suction caissons with decreasing 

slenderness ratio at higher frequency range, has been previously observed for the case of suction 

caisson in homogeneous halfspace [36]. Regarding the higher frequency range (larger than a0>3) a 
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distinctively different behaviour is observed for Hp/d>1, where the dynamic stiffness appears to 

increase attaining values even higher than the static ones especially for the coupling and rocking term. 

This can be explained by the effect of the coupling between the horizontal and the rotational degrees 

of freedom, which appears more evident with increasing slenderness ratio (Hp/d>1), as more rotation 

and less lateral governs the response. Results of the displacement vectors in the higher frequency 

range showed a kind of a scoop-slide mechanism, which resembled the failure mechanism of suction 

caissons embedded in clay as observed in the work of  Randolph and House [33].  On the contrary, in 

the case of suction caissons with Hp/d<1 horizontal vibrations due to the interaction between the 

foundation skirt and the soil layer are mainly transmitted to the surrounding soil at shallow depths, 

enhancing the lateral response of the foundation. Indeed, it was noticed that the contribution of the 

vertical displacement to the displacement resultant is negligible along the whole foundation skirt.

The effect of the skirt length on the damping is not consistent for all the damping components, while 

Hp/d=0.25 gives consistently the lowest damping ratios of all the examined cases. The pattern of the 

damping variation with respect to the normalised frequency is not affected by the slenderness ratio; it 

is still observed an increase of the slope after each eigenfrequency of the soil layer. There is indication 

that the increase of Hp/d would result to higher damping ratio, especially for the horizontal component 

and frequency range lower than the 2nd eigenfrequency of the soil layer.

4.2.2 Effect of the soil thickness

In order to address the effect of the thickness of the soil layer, first it is prudent to figure out the 

adequate corresponding dimensionless parameter. This was investigated by keeping all dimensionless 

parameters constant and changing only the diameter and the soil layer thickness, while referring to the 

same slenderness ratio and relative thickness of the soil layer (Hs/d) in the dynamic analysis of suction 

caissons. The results of the real (KSu, KSθ, and KMθ) and the imaginary (2ζSu, 2ζSθ, and 2ζMθ) parts of 

the dynamic impedances (cases 7-10, in Table 2) are reported in Figure 9. It appears that the relative 
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thickness of the soil layer Hs/d is an adequate nondimensional parameter in the estimation of the 

dynamic impedances of suction caissons, since the sensitivity of the dynamic stiffness coefficients on 

the variation of the diameter was found hardly noticeable for the frequency range investigated. 

Moreover, this conclusion is valid for both the minimum and maximum slenderness ratio in this study. 

The effect of Hs/d ratio on the frequency variation of the dynamic stiffness and damping coefficients 

is depicted in Figure 10 (cases 8, 10 - 12, in Table 2). The trend of the dynamic impedances appears to 

be influenced by the variation of the dimensionless parameter Hs/d in the frequency range considered. 

First the drop of stiffness exhibited at the 1st resonance, when referring to same slenderness ratio Hp/d, 

becomes more distinct as the relative thickness of the layer Hs/d decreased. This can be explained by 

the fact that the longer the path the propagating waves travel, the more the stress waves are attenuated 

with the distance and therefore the decay of the dynamic impedances is less appreciable. The decrease 

of the dynamic impedances with the smaller Hs/d has been previously observed for the dynamic 

response of surface footing [43].

A small influence of the relative thickness of the soil medium on the variation of the rocking 

component is recorded, while the translational and coupling coefficients seemed to be more affected 

by the dimensionless parameter Hs/d. 

A possible explanation of this trend is that the coupling between the horizontal and the rotational 

degrees of freedom is enhanced by the nondimensional parameter Hs/d, since the suction caisson 

foundation experienced higher rotation at the tip for frequencies greater than the 1st vertical resonance 

when the relative thickness of the soil layer assumed lower values. 

In regards to the imaginary components, it appears that the step-linear increasing pattern of the 

damping ratio at higher frequencies is characterized by higher slope as the relative thickness of the 

soil layer decreases. This increase of the variation of the damping ratio observed for smaller values of 

soil profile thickness is related to the concurrent decrease of the dynamic component of the stiffness 

coefficients. On the other hand, the viscous damping coefficients in the frequency range studied 
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increase by increasing Hs/d, in agreement with the fact that more energy is dissipated as the 

propagating waves travel at longer distance.

Concluding, the numerical outcomes show that the relative thickness of the soil layer Hs/d is a 

fundamental dimensionless parameter for understanding the dynamic response of floating foundations.

4.2.3 Effect of the soil stiffness

Figure 11 shows the real (KSu, KSθ, and KMθ) and the imaginary (2ζSu, 2ζSθ, and 2ζMθ) part of the 

dynamic impedances varying the stiffness of the homogeneous soil layer (profile A) respectively for 

Hp/d=2 (cases 2, 13, 14 and 15). The increase of the shear wave velocity of the soil layer affects 

marginally the dynamic impedances, which are increased for the entire frequency range. In addition, 

the rocking term appears fairly constant with frequency particularly when it is higher than the 1st 

eigenfrequency of the soil medium, and when the factor Kr decreased. The damping ratios are slighlty 

decreased for increased soil stiffness. The effect of the soil stiffness for profile A was also 

investigated for small slenderness ratio (Hp/d=0.25). The results, which are not presented here due to 

space limitations, indicated that at small skirt lengths the dynamic response of the caisson is 

insensitive to the soil stiffness at homogeneous soil layers. This can be motived by the fact that the 

horizontal vibrations are transmitted to the surrounding soil at relatively larger depth than the tip of 

the caisson. 

The effect of the stiffness variation with depth is presented in Figure 12 and 13 respectively for 

profiles B and C. The outcomes are plotted with respect to the frequency normalized by the 

fundamental resonant frequency of the homogeneous soil layer, f1soil (4.17 Hz). A common trend for 

all the stiffness components was the observed drop of stiffness at f =0.92 f1soil  (profile B) and 0.76 f1soil 

(profile C), which is slightly shifted back from the 1st eigenfrequency of the homogeneous layer. The 

first resonance of the inhomogeneous soil profiles are in agreement with that calculated according to 

analytical solutions [44].
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After the 1st resonance the lateral stiffness coefficient is characterized by a decreasing pattern, while 

the slope increased for lower value of the slenderness ratio Hp/d both for profiles B and C, with profile 

C attaining larger slope increase. Regarding the coupling and rocking stiffness term, the larger 

slenderness ratios are related with a fairly constant variation of stiffness with frequency for profile B. 

On the other hand, the same stiffness terms of the caisson with shorter skirt length showed a 

monotonous decrease trend after the 1st resonance for profile C. 

The imaginary part of the dynamic impedances is associated with the generated damping due to soil-

caisson interaction. The damping ratio for both profiles at the lower frequency range is decreasing  for 

increasing slenderness ratio. In addition, it was found that the horizontal impedance obtained by 

considering profile C exhibited an exponential rather than a linear trend for frequencies higher than 

the first resonance and particularly for Hp/d=0.25. The sensitivity of the dynamic impedances on the 

variation of Es in the high frequency range has been previously observed for end bearing piles [19]. 

Furthermore, looking at Figure 13 it becomes apparent that the stronger the variation of Es with 

respect to depth the higher is the reduction in dynamic stiffness after the 1st resonance. Additionally, 

this trend is even more emphasized by decreasing the slenderness ratio. Therefore, it can be stated that 

the type of variation of soil modulus with depth has a significant effect on the dynamic response of 

suction caissons, especially at high frequencies. 

5. Conclusions 
In this study numerical analyses were performed to investigate the horizontal dynamic response of 

suction caissons embedded in viscoelastic soil. The numerical modelling procedure was validated 

against existing rigorous analytical solutions for end bearing and floating pile foundations. A 

parametric study was conducted to analyse the vibration characteristics and the effects of the main 

parameters on the dynamic impedances of suction caisson foundations. The numerical results 

provided the basis for the formulation of simple mathematical expressions for the static stiffness 
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components of suction caissons. The proposed expressions accomodate a more accurate estimation of 

the stiffness components compared to previous analytical expressions.

 The main nondimensionless parameters investigated were the slenderness ratio, the relative soil layer 

thickness and the relative stiffness. The skirt length was found quite substantial parameter to 

determine the behaviour of the suction caissons. It can be stated that the dynamic stiffness coefficients 

of suction caissons increased by increasing the skirt length for frequencies higher than the 1st vertical 

resonance. In addition, the reduction in the dynamic stiffness due to the decrease of the soil stiffness 

with depth was more marked by decreasing the skirt length. 

The influence of the stiffness ratio Ep/Es for homogeneous profiles was proven to affect slightly the 

dynamic impedances of suction caissons in the frequency range investigated. On the other hand, the 

type of variation of soil modulus with depth in inhomogeneous profiles had a significant effect on the 

dynamic response of suction caissons. The soil profile with linearly increasing stiffness with depth 

was shown to influence to a greater extent the dynamic stiffness and damping of the suction caisson in 

the examined frequency range, indicating that steep variations of stiffness with depth may lead to 

small dynamic stiffness and high damping ratios at high frequencies.

In addition, the study showed that the dynamic impedances of suction caissons are profoundly 

affected by the nondimensionless parameter Hs/d and valuable insight on the physics of the problem is 

achieved by considering the relative thickness of the soil layer. The applied numerical methodology 

was shown to be a versatile practical tool that provides the soil-foundation dynamic impedances, 

which can be further applied to the dynamic response of the jacket. However, the suggested model is 

limited by the assumptions of linearity in the soil layer and foundation materials, and the perfect 

contact at the soil-foundation interface. 
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NOTATION 
Latin upper case

Es : soil modulus of elasticity

Ep : Young modulus of foundation

G: soil shear modulus

Hs : thickness of soil layer

Hp: height of foundation

I : moment of inertia of pile

Linf: length of the infinite soil domain

Lfin: length of the finite soil domain

Kr: foundation flexibility factor
: dynamic stiffness coefficient -real part- force suK

for unit displacement
: dynamic stiffness coefficient –real part– muK

moment  for unit displacement
: dynamic stiffness coefficient -real part- force sK

per unit rotation
: dynamic stiffness coefficient -real part- mK

moment  for unit rotation
: static stiffness coefficient - force for unit suK 0

displacement
: static stiffness coefficient - moment for unit muK 0

displacement
: static stiffness coefficient - force for unit sK 0

rotation
: static stiffness coefficient - moment for mK 0

unit rotation
: reaction moment at the foundation headM

: horizontal reaction force at the foundation S
head

Vs : soil shear wave velocity

V0 : surface soil shear wave velocity

VH : reference base soil shear wave velocity

Latin lower case

d : diameter of foundation

n: dimensionless inhomogeneity factor

r0: radius of foundation

t: thickness of foundation

tcap: thickness of caisson cap

tskirt: thickness of caisson skirt 

: translational degree of freedom at the u
foundation head

Greek 

α0 : dimensionless eigenfrequency of soil layer
: damping coefficient - force for unit su

displacement
: damping coefficient - moment for unit mu

displacement
: damping coefficient - force for unit rotation s

: damping coefficient - moment for unit  m

rotation
: rotational degree of freedom at the foundation 

head

ν: soil’s Poisson’s ratio

ξ : hysteretic soil damping ratio

ρ : density of soil

 wave velocity ratio𝜂:
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TABLES
Table 1. Static end bearing and floating pile stiffness obtained from the numerical models and the analytical 
solutions [10, 22].

Reference K0
Su/Esd K0

Sθ/Esd2 K0
Mθ/Esd3

Novak and Nogami [10] 2.24 -1.02 1.23Figure 2A

Numerical model 1.96 -0.71 1.26

Latini et al.  [22] 1.96 -0.93 1.17Figure 2B

Numerical model 1.91 -0.70 1.30
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Table 2. Dimensionless parameters and cases selected in the parametric analysis.

Soil Profile

Case Nr. Hs
[m]

Hp
[m]

d
[m] Hp/d Hs/d Type n VH

[m/s]
V0/VH

Ep/Es Kr Behaviour

1
(Ref.)

30 10 1 10 10 A 1 250 1 60 2.88e-4 Flexible

2 30 10 5 2 6 A 1 250 1 60 1.80e-1 Rigid
3 30 7.5 5 1.5 6 A 1 250 1 60 5.68e-1 Rigid
4 30 5 5 1 6 A 1 250 1 60 2.88 Rigid
5 30 2.5 5 0.5 6 A 1 250 1 60 46.08 Rigid
6 30 1.25 5 0.25 6 A 1 250 1 60 737.3 Rigid
7 30 1 4 0.25 7.5 A 1 250 1 60 737.3 Rigid
8 15 0.5 2 0.25 7.5 A 1 250 1 60 737.3 Rigid
9 30 8 4 2 7.5 A 1 250 1 60 1.80e-1 Rigid
10 15 4 2 2 7.5 A 1 250 1 60 1.80e-1 Rigid
11 30 0.5 2 0.25 15 A 1 250 1 60 737.3 Rigid
12 30 4 2 2 15 A 1 250 1 60 1.80e-1 Rigid
13 30 10 5 2 6 A 1 300 1 41 1.28e-1 Rigid
14 30 10 5 2 6 A 1 400 1 23 7.20e-2 Rigid
15 30 10 5 2 6 A 1 500 1 15 4.71e-2 Rigid
16 30 1.25 5 0.25 6 A 1 300 1 41 515.6 Rigid
17 30 1.25 5 0.25 6 A 1 400 1 23 295.1 Rigid
18 30 1.25 5 0.25 6 A 1 500 1 15 193.0 Rigid
19 30 7.5 5 1.5 6 A 1 500 1 15 1.49e-1 Rigid
20 30 5 5 1 6 A 1 500 1 15 7.54e-1 Rigid
21 30 2.5 5 0.5 6 A 1 500 1 15 12.1 Rigid
22 30 10 5 2 6 B 0.25 500 0.01 15 4.71e-2 Rigid
23 30 5 5 1 6 B 0.25 500 0.01 15 7.54e-1 Rigid
24 30 1.25 5 0.25 6 B 0.25 500 0.01 15 193.0 Rigid
25 30 10 5 2 6 C 0.5 500 0.1 15 4.71e-2 Rigid
26 30 5 5 1 6 C 0.5 500 0.1 15 7.54e-1 Rigid
27 30 1.25 5 0.25 6 C 0.5 500 0.1 15 193.0 Rigid
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FIGURE LEGENDS

Figure 1: Finite element model of the foundation and the surrounding soil.

Figure 2: Illustration of the two soil profiles and the foundation types investigated in this study. The soil 
profile and the foundation type in Figure 2A and 2B are adopted in the validation; while those in Figure 2C 
are deployed in the parametric study. 

Figure 3: End bearing pile. Variation of the translational stiffness and damping coefficients with respect to the 
dimensionless frequency (a) and distribution of the pile displacement along the depth at the three first 
eigenfrequencies of the soil layer (b) for profile in Figure 2a.

Figure 4: Variation of the three dynamic stiffness coefficients with respect to the dimensionless frequency. 
The real component and the imaginary component for profile in Figure 2b.

Figure 5: Distribution of the pile displacement along the depth at the three first eigenfrequencies of the soil 
layer for profile in Figure 2b.

Figure 6: Soil profiles considered for dynamic response of suction caissons.

Figure 7: Static stiffness components of suction caissons. Mathematical expressions for the static stiffness 
components (a). Comparison of the static stiffness components given by the numerical model and three 
analytical expressions(b).

Figure 8: Variation of the three dynamic stiffness and damping coefficients with respect to the non-
dimensional frequency. Effect of the slenderness ratio on the real component (a) and the imaginary component 
(b).

Figure 9: Variation of the three dynamic stiffness and damping coefficients with respect to the non-
dimensional frequency. Effect of the diameter of suction caisson on the real component (a) and the imaginary 
component (b).

Figure 10: Variation of the three dynamic stiffness and damping coefficients with respect to the non-
dimensional frequency. Effect of the relative thickness of the soil layer on the real component (a) and the 
imaginary component (b).

Figure 11: Variation of the three dynamic stiffness and damping coefficients with respect to the non-
dimensional frequency. Effect of the stiffness of homogeneous soil layer (profile A) on the real component 
and the imaginary component  for Hp/d=2.

Figure 12: Variation of the three dynamic stiffness and damping coefficients with respect to the non-
dimensional frequency. Effect of slenderness ratio in the inhomogeneous soil layer (profile B) on the real 
component (a) and the imaginary component (b).

Figure 13: Variation of the three dynamic stiffness and damping coefficients with respect to the non-
dimensional frequency. Effect of the slenderness ratio in the inhomogeneous soil layer (profile C) on the real 
component (a) and the imaginary component (b).
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FIGURES
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Figure 1: Finite element model of the foundation and the surrounding soil.
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Hs>Hp

A

Hs>Hp
Hs=Hp

B C

Figure 2: Illustration of the two soil profiles and the foundation types investigated in this study. The soil 
profile and the foundation type in Figure 2A and 2B are adopted in the validation; while those in Figure 2C 
are deployed in the parametric study. 
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Figure 9: Variation of the three dynamic stiffness and damping coefficients with respect to the non-
dimensional frequency. Effect of the diameter of suction caisson on the real component (a) and the imaginary 
component (b).
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Figure 10: Variation of the three dynamic stiffness and damping coefficients with respect to the non-
dimensional frequency. Effect of the relative thickness of the soil layer on the real component (a) and the 
imaginary component (b).
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Figure 11: Variation of the three dynamic stiffness and damping coefficients with respect to the non-
dimensional frequency. Effect of the stiffness of homogeneous soil layer (profile A) on the real component 
and the imaginary component  for Hp/d=2.
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Figure 12: Variation of the three dynamic stiffness and damping coefficients with respect to the non-
dimensional frequency. Effect of slenderness ratio in the inhomogeneous soil layer (profile B) on the real 
component (a) and the imaginary component (b).
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Figure 13: Variation of the three dynamic stiffness and damping coefficients with respect to the non-
dimensional frequency. Effect of the slenderness ratio in the inhomogeneous soil layer (profile C) on the real 
component (a) and the imaginary component (b).

    





























 New expressions for the static stiffness coefficients of suction caissons
 Definition of the dimensionless parameters of dynamic response of suction caissons
 Effect of the slenderness ratio on coupling impedances
 Importance of the relative thickness of the soil layer on the dynamic impedances
 Governing influence of soil stiffness variation with depth on the dynamic impedances


