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The AMP-activated protein kinase (AMPK) is an energy sensor that monitors AMP:ATP and 

ADP:ATP ratios in living cells (1). Once activated by rises in these ratios (signifying a fall in cellular 

energy), it acts to restore energy balance by switching on metabolic pathways that generate ATP 

(catabolism), while switching off processes that consume ATP, including synthesis and storage of 

macromolecules (anabolism). Not surprisingly, energy balance at the cellular and whole body levels 

are intimately connected. Obesity, which occurs when whole body energy intake exceeds energy 

expenditure for prolonged periods, is a major public health issue because it increases the risk of 

disorders such as Type 2 diabetes. In obese individuals, liver and muscle may store excess fat, leading 

to resistance to the hormone insulin. Released when blood glucose rises after meals, insulin normally 

promotes glucose uptake by muscle and represses glucose production by liver, thus rapidly returning 

blood glucose to normal. This is impaired in insulin-resistant individuals and glucose may become 

persistently elevated, eventually causing debilitating or life-threatening complications. Because AMPK 

was known to promote muscle glucose uptake by insulin-independent mechanisms, it was proposed in 

1999 that AMPK-activating drugs might represent a novel approach to treat diabetes (2). A report in 

this issue of Science (3), and another recent paper (4), represent the culmination of over 15 years of 

development of this concept by pharmaceutical companies. 

 The role of AMPK in diabetes treatment was reinforced in 2001 by findings that it was activated by 

metformin (5). Introduced in the 1950s, metformin remains the front-line drug treatment in Type 2 

diabetes, prescribed to >150,000,000 patients worldwide. It activates AMPK by inhibiting 

mitochondrial ATP synthesis, thus increasing cellular AMP/ADP. Given this indirect mechanism, it is 

not surprising that metformin has multiple effects, some (6) but not all (7) being AMPK-independent. 

Nevertheless, because of its pharmacokinetics and cellular uptake mechanisms, effects of metformin 

are largely confined to liver and gut, so drugs that act on muscle might have additional benefits. 

 AMPK exists as complexes of three subunits, a catalytic α and regulatory β and γ subunits. Each 

occurs as multiple isoforms (α1/α2, β1/β2, γ1/γ2/γ3), generating up to twelve possible combinations 

(1). Repeated sequences in the γ subunits generate three binding sites for the regulatory nucleotides 

AMP, ADP and ATP, and some AMPK activators (e.g. AICAR) target these. However, a new 

regulatory mechanism was discovered in 2006 when a novel activator, A-769662, was identified in a 



high-throughput screen (8). Although mimicking two of the activating effects of AMP on AMPK, A-

769662 clearly bound at a different site (9), which was identified when an AMPK complex was 

crystallized in the presence of A-769662 or another activator, 991. The structures revealed that 

A769662 and 991 bind in a tunnel between two domains of the α and β subunits (Fig. 1A) (10). This 

site is unique to AMPK and has been termed the Allosteric Drug and Metabolite (ADaM) site (11) 

because, although currently only known to bind synthetic activators, it is widely assumed there are 

unidentified metabolite(s) that bind there (one natural product, salicylate, binds the site (12), but only 

occurs naturally in plants). 

 Fig. 1B/C shows structures of ADaM site activators, including the new compound reported in 

Science by Merck (MK-8722 (3)), three from Pfizer (PF-249, PF-06409577, PF-739 (4, 13)) and one 

from Mercury Pharmaceuticals (MT 63-78 (14)). Those in 1B only activate AMPK complexes 

containing the β1 isoform, while those in 1C also activate β2 complexes. This is important because 

liver expresses mainly β1 (at least in rodents) while muscle expresses mainly β2. MK-8722 activates 

all twelve possible human AMPK complexes, with EC50 values ranging from 1-6 nM for β1 and 30-60 

nM for β2 complexes. It also enhanced glucose uptake by skeletal muscle in vitro, and improved 

glucose tolerance in several rodent models of diabetes in vivo, while in non-human primates (rhesus 

macaques) with Type 2 diabetes, it improved glucose tolerance and lowered HbA1c, a marker of 

persistently elevated blood glucose (3). 

 The Pfizer compound PF-739 is structurally very similar to MK-8722 (Fig. 1C). A comparison of 

PF-739 (pan-β) with PF-249 (β1-selective) showed that only the former activated muscle AMPK and 

lowered blood glucose in mice with diet-induced obesity (4). Neither compound affected glucose 

production by the liver, while only PF-739 increased peripheral glucose disposal in vivo. Consistent 

with this, a liver-specific double knockout of AMPK (α1-/-α2-/-) had no impact on glucose reduction by 

PF-739, while a muscle-specific double knockout attenuated it. PF-739 also lowered blood glucose and 

insulin in non-diabetic Cynomolgus monkeys. While reducing blood glucose therefore requires a pan-β 

activator, β1-selective activators may be useful for other purposes. For example, PF-06409577 

activated AMPK in the kidney, and reduced urinary protein and other markers of kidney damage in a 

rat model of diabetic kidney disease (13). 



 While these results seem very promising, concerns about adverse effects of AMPK activators were 

raised by previous studies of humans with dominantly-acting mutations in the PRKAG2 gene, encoding 

the AMPK-γ2 subunit. These mutations increase basal AMPK activity, and were associated with 

increases in cardiac glycogen content and hypertrophy, as well as potentially life-threatening cardiac 

arrhythmias (15). In rats and rhesus macaques, long-term use of MK-8722 was indeed associated with 

increased cardiac glycogen content and hypertrophy, although not with arrhythmias which may be a 

consequence of elevated AMPK during fetal development (3). Effects of the Pfizer compounds on 

these cardiac parameters were not reported, so it remains unclear whether these effects on the heart are 

common to all pan-β activators. 

 In summary, the potent and very similar pan-β activators MK-8722 and PF-739 were very effective 

in reversing elevated blood glucose in rodents and non-human primates, and this was due to activation 

of AMPK in muscle, not liver. This might make them valuable adjuncts to metformin, which acts 

primarily on the liver. One caveat is their potential to cause cardiac hypertrophy, which is likely to 

raise concerns with regulatory authorities. However, as the authors point out (3), cardiac hypertrophy 

observed with MK-8722 is reminiscent of that found in elite athletes (which may even be the result of 

AMPK activation during training), and does not necessarily have adverse consequences. Finally, 

although there are now seven AMPK activators that bind at the ADaM site, whether there is a natural 

metabolite in mammalian cells that binds there remains unclear, although those in the field may now be 

stimulated to look. 
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Figure 1: (A) Location of ADaM and catalytic sites in AMPK; (B) structures of β1-selective 

activators; and (C) structures of pan-β  activators. The view in (A) was rendered using 

MacPyMOL v1.7.4.2 using the atomic co-ordinates of the human α2β1γ1 complex (PDB 

ID 4CFE (10)); the model is in sphere view with H atoms omitted. Staurosporine and 991 

are shown with C atoms pale blue and O atoms red. The ADaM site is a tunnel between 

the β subunit carbohydrate-binding module and the N-lobe of the α subunit kinase domain, 

so that only the ends of the 991 molecule are visible. The kinase inhibitor staurosporine is 

bound in the active site between the N- and C-lobes of the kinase domain, where the 

substrate MgATP would bind. 
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