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ENERGY EQUALITY FOR THE 3D CRITICAL CONVECTIVE

BRINKMAN–FORCHHEIMER EQUATIONS

KAROL W. HAJDUK AND JAMES C. ROBINSON

Abstract. In this paper we give a simple proof of the existence of global-

in-time smooth solutions for the convective Brinkman–Forchheimer equations
(also called in the literature the tamed Navier–Stokes equations)

∂tu− µ∆u+ (u · ∇)u+∇p+ αu+ β |u|r−1 u = 0

on a 3D periodic domain, for values of the absorption exponent r larger than 3.

Furthermore, we prove that global, regular solutions exist also for the critical

value of exponent r = 3, provided that the coefficients satisfy the relation
4µβ ≥ 1. Additionally, we show that in the critical case every weak solution

verifies the energy equality and hence is continuous into the phase space L2. As

an application of this result we prove the existence of a strong global attractor,
using the theory of evolutionary systems developed by Cheskidov.

1. Introduction

In this paper we consider both weak and strong solutions of the three-dimensional
incompressible convective Brinkman–Forchheimer equations (CBF)

(1.1)


∂tu− µ∆u+ (u · ∇)u+∇p+ αu+ β |u|r−1

u = 0,

divu = 0,

u(x, 0) = u0(x),

where u(x, t) = (u1, u2, u3) is the velocity field and the scalar function p(x, t) is
the pressure. The constant µ denotes the positive Brinkman coefficient (effective
viscosity). The positive constants α and β denote respectively the Darcy (perme-
ability of porous medium) and Forchheimer (proportional to the porosity of the ma-
terial) coefficients. The exponent r can be greater than or equal to 1. The domain
on which we consider problem (1.1) is a three-dimensional torus T3 = [0, 2π]3, with
periodic boundary conditions and zero mean-value constraint for the functions, i.e.∫
T3 u(x, t) dx = 0. Very similar arguments should work to prove most of the results

given here (except perhaps the energy equality result) also for the Cauchy problem,
i.e. in the case when the domain is the whole space R3. However, when Ω ⊂ R3

is an open, bounded domain with Dirichlet boundary conditions u|∂Ω = 0, not
all the results proved here are that straightforward. In particular, one has to be
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2 KAROL W. HAJDUK AND JAMES C. ROBINSON

very careful in choosing an approximation in the proof of Theorem 1.4, and we will
address this problem in a future paper.

The CBF equations (1.1) describe the motion of incompressible fluid flows in
a saturated porous medium. While the motivation for introducing an absorption
term |u|r−1

u is purely mathematical, this model is used in connection with some
real world phenomena, e.g. in the theory of non-Newtonian fluids as well as tidal
dynamics (see [7], [17], [22] and references therein). However, its applicability is
believed to be limited to flows when the velocities are sufficiently high and porosities
are not too small, i.e. when the Darcy law for a porous medium no longer applies
(for more details see [13], [12] and the discussion in [11]).

In this paper we use the standard notation for the vector-valued function spaces
which often appear in the theory of fluid dynamics. For an arbitrary domain Ω ⊆ Rn
we define:

C∞0 (Ω) := {ϕ ∈ C∞(Ω) : suppϕ is compact} ,
Dσ(Ω) := {ϕ ∈ C∞0 (Ω) : divϕ = 0} ,
Xq(Ω) := closure of Dσ(Ω) in the Lebesgue space Lq(Ω),

V s(Ω) := closure of Dσ(Ω) in the Sobolev space W s,2(Ω) for s > 0.

The space of divergence-free test functions in the space-time domain is denoted by

Dσ(ΩT ) := {ϕ ∈ C∞0 (ΩT ) : divϕ(·, t) = 0} ,
where ΩT := Ω× [0, T ) for T > 0. Note that ϕ(x, T ) = 0 for all ϕ ∈ Dσ(ΩT ).

We denote the Hilbert space X2(Ω) by H, V 1(Ω) by V and V s(Ω) by V s for
s 6= 1. The space H is endowed with the inner product induced by L2(Ω). We
denote it by 〈·, ·〉, and the corresponding norm is denoted by ‖·‖.

For simplicity, we consider here only the case when there are no external forces
acting on the fluid, i.e. the right-hand side of (1.1) is equal to zero. All the results
proved in this paper hold as well for non-zero forces f(x, t) and the proofs can be
carried out in the similar way with some natural assumptions on the regularity of
the function f . For example, for Theorem 1.4 one can assume that f ∈ L1(0, T ;H).

We consider here primarily the CBF equations when the exponent r = 3

(1.2) ∂tu− µ∆u+ (u · ∇)u+∇p+ αu+ β |u|2 u = 0.

The critical homogenous CBF equations (1.2) have the same scaling as the Navier–
Stokes equations (NSE) only when the permeability coefficient α is equal to zero. In
this case the model is sometimes referred to in the literature as the Navier–Stokes
equations modified by an absorption term (see e.g. [1]) or the tamed Navier–Stokes
equations (see e.g. [17]). We lose the scale-invariance property for other values of
the parameters r and α. This follows at once from the following simple proposition.

Proposition 1.1. Let Ω be the whole space Rn. Let uλ be the usual parabolic
rescaling of the velocity field u:

uλ(x, t) := λu(λx, λ2t) for λ > 0,

and let pλ be the usual rescaling of the pressure function p:

pλ(x, t) := λ2p(λx, λ2t) for λ > 0.

If u and p solve the CBF equations (1.1), then the rescaled functions uλ, pλ satisfy

∂tuλ − µ∆uλ + (uλ · ∇)uλ +∇pλ + λ2αuλ + λ3−rβ |uλ|r−1
uλ = 0.



ENERGY EQUALITY FOR THE 3D CBF EQUATIONS 3

Since the linear term αu poses no additional difficulties in the mathematical
treatment of the problem, we set the parameter α to zero. In what follows we will
consider only the following equations

(1.3) ∂tu− µ∆u+ (u · ∇)u+∇p+ β |u|r−1
u = 0

and, consequently, the critical case when r = 3

(1.4) ∂tu− µ∆u+ (u · ∇)u+∇p+ β |u|2 u = 0.

All proofs for the full problem (1.1) can be easily rewritten based on the arguments
given for equations (1.3).

We will use here the following definition of a weak solution.

Definition 1.2. We will say that the function u is a weak solution on the time inter-
val [0, T ) of the convective Brinkman–Forchheimer equations (1.3) with the initial
condition u0 ∈ H, if

u ∈ L∞(0, T ;H) ∩ Lr+1(0, T ;Xr+1) ∩ L2(0, T ;V )

and

−
∫ t1

t0

〈u(s), ∂tϕ(s)〉 ds+ µ

∫ t1

t0

〈∇u(s), ∇ϕ(s)〉 ds+

∫ t1

t0

〈(u(s) · ∇)u(s), ϕ(s)〉 ds

+β

∫ t1

t0

〈
|u(s)|r−1

u(s), ϕ(s)
〉

ds = −〈u(t1), ϕ(t1)〉+ 〈u(t0), ϕ(t0)〉

for all 0 ≤ t0 < t1 < T and all test functions ϕ ∈ Dσ(ΩT ).

A function u is called a global weak solution if it is a weak solution for all T > 0.

Definition 1.3. A Leray–Hopf weak solution of the convective Brinkman–
Forchheimer equations (1.3) with the initial condition u0 ∈ H is a weak solution
satisfying the following strong energy inequality :

‖u(t1)‖2 + 2µ

∫ t1

t0

‖∇u(s)‖2 ds+ 2β

∫ t1

t0

‖u(s)‖r+1
Lr+1(Ω) ds ≤ ‖u(t0)‖2(1.5)

for almost all initial times t0 ∈ [0, T ), including zero, and all t1 ∈ (t0, T ).

It is known that for every u0 ∈ H there exists at least one global Leray–Hopf
weak solution of (1.3). For the proof of existence of global weak solutions for the
case α = 0 see [1].

We want to recall that for the Navier–Stokes equations (α = β = 0) it is well
known that for every u0 ∈ H there exists at least one global Leray–Hopf weak
solution that satisfies the strong energy inequality:

(1.6) ‖u(t1)‖2 + 2µ

∫ t1

t0

‖∇u(s)‖2 ds ≤ ‖u(t0)‖2 .

This can be found in many places, e.g. in Galdi [6] or in the recent book by Robinson,
Rodrigo and Sadowski [15]. However, it is not known if all weak solutions have to
verify (1.6). The problem of proving equality in (1.6) for weak solutions is also open;
there are only partial results in this direction. In particular, it is known that the
energy equality is satisfied by more regular weak solutions for which

(1.7) u ∈ Lp1(0, T ;Lp2(Ω)), where
2

p1
+

2

p2
≤ 1 and p2 ≥ 4,
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or

p ∈ L2(0, T ;L2(Ω)).

This result was established in several papers by Lions [9], Serrin [18], Shinbrot [19]
and Kukavica [8].

From now on, unless stated otherwise, we will assume that Ω is the three-
dimensional torus T3.

We now make the observation that weak solutions of the CBF equations (1.4) by
definition satisfy the condition (1.7). This suggests that the energy equality holds
for all weak solutions of this problem, and we prove this in the following theorem.

Theorem 1.4. Every weak solution of (1.4) with the initial condition u0 ∈ H
satisfies the energy equality:

‖u(t1)‖2 + 2µ

∫ t1

t0

‖∇u(s)‖2 ds+ 2β

∫ t1

t0

‖u(s)‖4L4(T3) ds = ‖u(t0)‖2(1.8)

for all 0 ≤ t0 < t1 < T . Hence, all weak solutions are continuous functions into
the phase space L2, i.e. u ∈ C([0, T ] ;H).

To the best of our knowledge, the validity of the energy equality is not to date
verified for the convective Brinkman–Forchheimer equations (1.3) for the range of
exponent values r ∈ [1, 3]. For larger values of the exponent r > 3, it was already
shown that the CBF equations enjoy existence of global-in-time strong solutions
(see proof for bounded domains in [7]) and hence the energy equality is satisfied.
Theorem 1.4 extends the energy equality to the critical case r = 3. A similar result
was given in the paper of Cheskidov et al. [4] where the energy equality was proved
to hold for weak solutions of the NSE in the functional space

L3(0, T ;D(A5/12)).

Here D(A5/12) is the domain of the fractional power of the Stokes operator
A := −P∆, where P : L2 → H is the Leray projection (for references see [5],
[15] or [21]). This space corresponds to the fractional Sobolev space H5/6.

The result of Theorem 1.4 was stated without a proof in [1] for the Navier–Stokes
equations modified by an absorption term considered on a bounded domain Ω with
a compact boundary ∂Ω; it perhaps seems at first glance that given the results for
the NSE mentioned above no new proof is required in this case. However, in fact
one has to argue more carefully in order to handle the additional nonlinear term:
one cannot use the usual truncations of the Fourier series as an approximating
sequence, since we have regularity of solutions in a Lebesgue space rather than in
a Sobolev space. Therefore, even in the periodic case discussed here, we use more
carefully truncated Fourier series to obtain our result. We adapt the proof given in
Galdi [6], where a specific mollification in time is used.

2. Preliminaries

In the sequel we will make use of the following auxiliary lemma, whose proof
consists of integration by parts and differentiation of the absolute value function
(see [16]).

Lemma 2.1. For every r ≥ 1, if u ∈ W 2,2(Ω), where Ω is either the whole space
R3 or the three-dimensional torus T3 with

∫
Ω
udx = 0, or an open, bounded domain



ENERGY EQUALITY FOR THE 3D CBF EQUATIONS 5

Ω ⊂ R3 with Dirichlet boundary conditions u|∂Ω = 0, then∫
Ω

−∆u · |u|r−1
udx ≥

∫
Ω

|∇u|2 |u|r−1
dx.

Explicitly, the left-hand side of the above equals (integrating by parts)∫
Ω

−∆u · |u|r−1
udx =

∫
Ω

|∇u|2 |u|r−1
dx+ 4

[
r − 1

(r + 1)2

] ∫
Ω

∣∣∣∇|u|(r+1)/2
∣∣∣2 dx

=

∫
Ω

|∇u|2 |u|r−1
dx+

(r − 1)

4

∫
Ω

|u|r−3
∣∣∣∇|u|2∣∣∣2 dx.

In particular, by Lemma 2.1, we can write for the absorption term |u|r−1
u

0 ≤
∫

Ω

|∇u|2 |u|r−1
dx ≤

∫
Ω

−∆u · |u|r−1
udx ≤ r

∫
Ω

|∇u|2 |u|r−1
dx.

We will also need another lemma from the same paper [16].

Lemma 2.2. Take 2 ≤ p < 3. Then there exists a constant cp > 0 such that, for

every u in the Sobolev space W 1,p(R3) we have u ∈ L3(r+1)(R3) and

‖u‖r+1
L3(r+1)(R3) ≤ cp

∫
R3

|∇u|2 |u|r−1
dx,

where r + 1 = p/(3 − p). The same is true if Ω is a bounded (perhaps periodic)
domain and u ∈W 1,p(Ω) with

∫
Ω
udx = 0 or u|∂Ω = 0.

From the proof of Lemma 2.2, it is clear that whenever we can approximate
the function u in the space C∞0 (Ω) and whenever

Ir(u) :=

∫
Ω

|∇u|2 |u|r−1
dx <∞ for r ≥ 1,

then u belongs to the space L3(r+1)(Ω).
Boundedness of the quantity Ir(u) implies as well that the function u ∈W 1,1(Ω)

belongs also to the certain type of Besov space, namely to the Nikol’skĭı space1

N 2/(r+1),r+1. In particular, we have

(2.1) ‖u‖r+1
N 2/(r+1),r+1(Ω) ≤ c Ir(u),

where c > 0 is a constant depending only on r and Ω (see [10] for the details).
We introduce the Nikol’skĭı spaces N s,p for p ∈ [1,∞) and s = m + σ, where

m ≥ 0 is an integer and σ ∈ (0, 1), as the subspaces of the Lp functions for which
the following norm

‖u‖pN s,p(Ω) := ‖u‖pp + |u|pp

:= ‖u‖pp +
∑
|α|=m

sup
0<|h|<δ

∫
Ω

|∂αu(x+ h)− ∂αu(x)|p

|h|σp
dx

is finite. Here δ > 0 is fixed. We have for any ε ∈ (0, 1) the following embeddings
(see [14])

N s,p ↪→W s−ε,p ↪→ N s−ε,p.

Applying the tools described above we will show in Theorem 3.1 that strong
solutions of the convective Brinkman–Forchheimer equations with r > 3 possess

1Nikol’skĭı spaces are a particular case of the Besov spaces when one of the exponents is fixed:

N s,p = Bs,p
∞ . See [20] for more information about these spaces.
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additional regularity compared to the corresponding solutions of the Navier–Stokes
equations. Despite this fact, we will use in this paper the usual definition of a strong
solution.

Definition 2.3. We say that a vector field u is a strong solution of the CBF equa-
tions (1.3) if, for the initial condition u0 ∈ V , it is a weak solution and additionally
it possesses higher regularity, namely

u ∈ L∞(0, T ;V ) ∩ L2(0, T ;V 2).

A function u is called a global-in-time strong solution if it is a strong solution
for all T > 0.

3. Global existence for r > 3

Now we will provide a simple proof of the global-in-time existence of strong
solutions for the convective Brinkman–Forchheimer equations in the case r > 3.
This result was given in [7] for a broader class of nonlinearities in bounded domains
Ω ⊂ R3 and for more regular initial conditions u0 ∈ V 2(Ω), where the proof was
based on a nonlinear localisation technique.

Theorem 3.1. For every initial condition u0 ∈ V and for every exponent r > 3,
there exists a global-in-time strong solution of the CBF equations (1.3). Moreover,
this solution belongs to the spaces

(3.1) Lr+1(0, T ;X3(r+1)(T3)) and Lr+1(0, T ;N 2/(r+1),r+1(T3))

for all T > 0.

We present here only formal calculations which can be justified rigorously via
a Galerkin approximation argument.

Proof. Multiplying both sides of (1.3) by −∆u and integrating over T3, we obtain

1

2

d

dt
‖∇u‖2 + µ ‖∆u‖2 + β

〈
|u|r−1

u, −∆u
〉

+ 〈(u · ∇)u, −∆u〉 = 0.

Using Lemma 2.1 we note that〈
|u|r−1

u, −∆u
〉
≥
∫
T3

|u|r−1 |∇u|2 dx.

This gives us

1

2

d

dt
‖∇u‖2 + µ ‖∆u‖2 + β

∫
T3

|u|r−1 |∇u|2 dx ≤
∫
T3

|u| |∇u| |−∆u|dx

≤ 1

2

(
1

µ

∫
T3

|u|2 |∇u|2 dx+ µ

∫
T3

|∆u|2 dx

)
and hence

d

dt
‖∇u‖2 + µ ‖∆u‖2 + 2β

∫
T3

|u|r−1 |∇u|2 dx ≤ 1

µ

∫
T3

|u|2 |∇u|2 dx.(3.2)
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Now we observe the following estimate for r > 3:∫
T3

|u|2 |∇u|2 dx =

∫
T3

(
|u|2 |∇u|4/(r−1)

)(
|∇u|2(r−3)/(r−1)

)
dx

≤
(∫

T3

|u|r−1 |∇u|2 dx

)2/(r−1)(∫
T3

|∇u|2 dx

)(r−3)/(r−1)

≤ βµ
(∫

T3

|u|r−1 |∇u|2 dx

)
+ c(β, µ, r)

(∫
T3

|∇u|2 dx

)
.(3.3)

In the above we used Hölder’s and Young’s inequalities with the same exponents
(r− 1)/2 and (r− 1)/(r− 3). The value of the constant c(β, µ, r) can be computed
explicitly

c(β, µ, r) =

(
2

βµ(r − 1)

)2/(r−3)(
r − 3

r − 1

)
.

Plugging the estimate (3.3) into (3.2) gives

d

dt
‖∇u‖2 + µ ‖∆u‖2 + β

∫
T3

|u|r−1 |∇u|2 dx ≤ c(β, µ, r)

µ
‖∇u‖2 .(3.4)

In particular, we have

d

dt
‖∇u‖2 ≤ c(β, µ, r)

µ
‖∇u‖2 .

Application of Gronwall’s Lemma yields that ‖∇u‖2 stays bounded on arbitrarily
large time interval [0, T ]. Additionally, since

∫
T3 udx = 0, we have the following

relations

‖u‖V ≤ c ‖∇u‖ and ‖u‖V 2 ≤ c ‖∆u‖ ,

so in particular, u ∈ L∞(0, T ;V ). Then one infers from (3.4) that
∫ T

0
‖∆u‖2 <∞.

Therefore, u is indeed a strong solution on the time interval [0, T ] for all T > 0.
Additional regularity (3.1) for the function u follows now from the inequality

(3.4), Lemma 2.2, and the estimate (2.1). �

4. Global existence for r = 3 and for large coefficients 4µβ ≥ 1

From now on we consider only the critical case of the convective Brinkman–
Forchheimer equations (r = 3). We prove here global-in-time existence of strong
solutions of (1.4) for all initial conditions u0 ∈ V , when the product µβ is sufficiently
large. From the physical point of view this is not a surprising result. It means that
when both the viscosity of a fluid and the porosity of a porous medium are large
enough, then the corresponding flow stays bounded and regular. What is more
interesting is the fact that when the viscosity is small one can still obtain a regular
solution by letting the porosity to be large, and vice versa.

Theorem 4.1. For every initial condition u0 ∈ V , there exists a global-in-time
strong solution of the critical CBF equations (1.4), provided that 4µβ ≥ 1, i.e. both
the viscosity and porosity are not too small.

Again, we present here only a priori estimates which can be made rigorous by
the means of a standard Galerkin approximation argument, see [5], [6], or [21], for
example.
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Proof. Multiplying the equation (1.4) by −∆u and integrating over T3, we obtain

1

2

d

dt
‖∇u‖2 + µ ‖∆u‖2 + β

〈
|u|2 u, −∆u

〉
≤ |〈(u · ∇)u, −∆u〉| .

Applying Lemma 2.1, we have

1

2

d

dt
‖∇u‖2 + µ ‖∆u‖2 + β

∫
T3

|∇u|2 |u|2 dx ≤
∫
T3

|u| |∇u| |−∆u|dx.(4.1)

We want to estimate the right-hand side in such a way to absorb it with the terms
on the left-hand side. Using the Cauchy–Schwarz and Young inequalities we obtain∫

T3

|u| |∇u| |∆u|dx ≤
(∫

T3

|∇u|2 |u|2 dx

)1/2(∫
T3

|∆u|2 dx

)1/2

≤ θ

2

∫
T3

|∇u|2 |u|2 dx+
1

2θ

∫
T3

|∆u|2 dx,

for some positive number θ > 0. We use this estimate in the inequality (4.1)
and then move all the terms to the left-hand side to obtain

1

2

d

dt
‖∇u‖2 +

(
µ− 1

2θ

)
‖∆u‖2 +

(
β − θ

2

)∫
T3

|∇u|2 |u|2 dx ≤ 0.

From the above we see that the norm ‖∇u(t)‖2 is not increasing in time, provided
that

µ− 1

2θ
≥ 0 and β − θ

2
≥ 0 ⇐⇒ µβ ≥ 1

4
.

Hence, there is no blow-up and the strong solution originating from the initial
condition u0 ∈ V exists for all times t > 0. �

We note that the above argument works only for the critical exponent r = 3.
For other values of r ∈ [1, 3) we are not able to balance the exponents in the correct
way to absorb the convective term on the left-hand side of (4.1).

5. Energy equality for critical case r = 3

In this section we will prove Theorem 1.4, mostly following the proof of Theorem
4.1 in [6]. The main idea is to use a weak solution as a test function. We cannot
do this directly since u is not sufficiently regular in space or time. Therefore, we
regularise in time the finite-dimensional approximations of a weak solution and pass
to the limit with both the regularisation and spatial approximation parameters. To
this end we recall here some standard facts of the theory of mollification.

Let η(t) be an even, positive, smooth function with compact support contained
in the interval (−1, 1), such that∫ ∞

−∞
η(s) ds = 1.

We denote by ηh a family of mollifiers connected with the function η, i.e.

ηh(s) := h−1η(s/h) for h > 0.

In particular, we have

(5.1)

∫ h

0

ηh(s) ds =
1

2
.
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For any function v ∈ Lq(0, T ;X), where X is a Banach space, q ∈ [1,∞), we denote
its mollification in time by vh

vh(s) := (v ∗ ηh)(s) =

∫ T

0

v(τ)ηh(s− τ) dτ for h ∈ (0, T ).

We have the following properties of this mollification (see Lemma 2.5 in [6]).

Lemma 5.1. Let w ∈ Lq(0, T ;X), 1 ≤ q < ∞, for some Banach space X. Then
wh ∈ Ck([0, T );X) for all k ≥ 0. Moreover,

lim
h→0

∥∥wh − w∥∥
Lq(0,T ;X)

= 0.

Finally, if {wn}∞n=1 converges to w in Lq(0, T ;X), then

lim
n→∞

∥∥whn − wh∥∥Lq(0,T ;X)
= 0.

Since our domain is the three-dimensional torus, we can approximate functions
in Lp spaces using carefully truncated Fourier expansions. We state this more
precisely in the following theorem (see e.g. Theorem 1.6 in [15] for more details).

Theorem 5.2. Let Qn := [−n, n]3 ∩ Z3. For every w ∈ L1(T3) and every n ∈ N
define

(5.2) Sn(w) :=
∑
k∈Qn

ŵke
ik·x,

where the Fourier coefficients ŵk are given by

ŵk :=
1

|T3|

∫
T3

w(x)e−ik·x dx.

Then for every 1 < p <∞ there is a constant cp, independent of n, such that

‖Sn(w)‖Lp(T3) ≤ cp ‖w‖Lp(T3) for all w ∈ Lp(T3)

and
‖Sn(w)− w‖Lp(T3) → 0 as n→∞.

We remark that the convergence S̃n(w)→ w in Lp(T3) does not hold in general
if we sum over Fourier modes with |k| ≤ n,

S̃n(w) :=
∑
|k|≤n

ŵke
ik·x

(see e.g. Section 1.6 in [15] for a brief discussion of this result and for some further
references).

Now we can prove the following density result which will be used in the proof of
Theorem 1.4.

Lemma 5.3. Dσ(T3 × [0, T )) is dense in L4(0, T ;X4(T3)) ∩ L2(0, T ;V ).

Proof. Let w ∈ L4(0, T ;X4(T3)) ∩ L2(0, T ;V ) and define

whn(x, t) := Sn(w(x, t)h) =
∑
k∈Qn

ŵhk (t)eik·x for h ∈ (0, T ),

where Sn is the same as in (5.2). Clearly, whn ∈ Dσ(T3 × [0, T )). By Theorem 5.2
we have

(5.3) lim
n→∞

∥∥whn(t)− wh(t)
∥∥4

L4(T3)
= 0
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and
(5.4)

lim
n→∞

∥∥whn(t)− wh(t)
∥∥2

V
= lim
n→∞

(∥∥whn(t)− wh(t)
∥∥2

+
∥∥∇whn(t)−∇wh(t)

∥∥2
)

= 0

for all t ∈ [0, T ). By Lemma 5.1, for a given ε > 0, we can choose h > 0 so small
that ∫ T

0

∥∥wh(t)− w(t)
∥∥4

L4(T3)
dt < ε and

∫ T

0

∥∥wh(t)− w(t)
∥∥2

V
dt < ε.(5.5)

On the other hand, from (5.3), (5.4), and the Lebesgue Dominated Convergence
Theorem, we have that for all fixed h ∈ (0, T )

lim
n→∞

∫ T

0

∥∥whn(t)− wh(t)
∥∥4

L4(T3)
dt = 0 and lim

n→∞

∫ T

0

∥∥whn(t)− wh(t)
∥∥2

V
dt = 0,

(5.6)

since, respectively,
∥∥whn(t)

∥∥
L4(T3)

≤ c
∥∥wh(t)

∥∥
L4(T3)

, and
∥∥whn(t)

∥∥
V
≤ c

∥∥wh(t)
∥∥
V

for all n ∈ N and t ∈ [0, T ), and

wh ∈ L4(0, T ;X4(T3)) ∩ L2(0, T ;V ).

Thus, the lemma follows from the relations (5.5), (5.6) and the triangle inequality.
�

Now, we are in a position to prove Theorem 1.4.

Proof. Let {un}∞n=1 ⊂ Dσ(T3 × [0, T )) be a sequence converging to a weak solution
u in L4(0, T ;X4(T3)) and in L2(0, T ;V ), see Lemma 5.3. For every fixed time
instant t1 ∈ (0, T ), we choose in Definition 1.2 (with t0 = 0) a sequence of test
functions

ϕhn(x, s) :=
(
un(x, s)χ[0,t1](s)

)h
=
(
unχ[0,t1] ∗ ηh

)
(x, s)

=

∫ T

0

un(x, τ)χ[0,t1](τ)ηh(s− τ) dτ =

∫ t1

0

un(x, τ)ηh(s− τ) dτ

for (x, s) ∈ T3 × [0, T ), with the parameter h satisfying the following conditions:

0 < h < T − t1 and h < t1.

We obtain a sequence of equations

−
∫ t1

0

〈
u(s), ∂t(unχ[0,t1])

h(s)
〉

ds+ µ

∫ t1

0

〈
∇u(s), ∇(unχ[0,t1])

h(s)
〉

ds

+

∫ t1

0

〈
(u(s) · ∇)u(s), (unχ[0,t1])

h(s)
〉

ds+ β

∫ t1

0

〈
|u(s)|2 u(s), (unχ[0,t1])

h(s)
〉

ds

= −
〈
u(t1), (unχ[0,t1])

h(t1)
〉

+
〈
u(0), (unχ[0,t1])

h(0)
〉
.(5.7)

Note that our choice of h ensures that ϕhn(x, T ) = 0. Additionally, observe
that the functions ϕhn are divergence-free, since divϕhn = (divϕn)h = 0, so indeed
ϕhn ∈ Dσ(T3 × [0, T )).

We want to pass to the limit in (5.7) as n → ∞. To this end, using Hölder’s
inequality and Lemma 5.1, we observe the following estimates for the nonlinear
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terms:

∣∣∣∣∫ t1

0

〈
(u(s) · ∇)u(s), (unχ[0,t1])

h(s)
〉

ds−
∫ t1

0

〈
(u(s) · ∇)u(s), (uχ[0,t1])

h(s)
〉

ds

∣∣∣∣
≤
∫ t1

0

‖u(s)‖L4(T3) ‖∇u(s)‖
∥∥(unχ[0,t1])

h(s)− (uχ[0,t1])
h(s)

∥∥
L4(T3)

ds

≤ ‖u‖L4(0,T ;X4(T3)) ‖u‖L2(0,T ;V )

∥∥(unχ[0,t1])
h − (uχ[0,t1])

h
∥∥
L4(0,T ;X4(T3))

→ 0

(5.8)

as n→∞, and

∣∣∣∣∫ t1

0

〈
|u(s)|2 u(s), (unχ[0,t1])

h(s)
〉

ds−
∫ t1

0

〈
|u(s)|2 u(s), (uχ[0,t1])

h(s)
〉

ds

∣∣∣∣
≤
∫ t1

0

‖u(s)‖3L4(T3)

∥∥(unχ[0,t1])
h(s)− (uχ[0,t1])

h(s)
∥∥
L4(T3)

ds

≤ ‖u‖3L4(0,T ;X4(T3))

∥∥(unχ[0,t1])
h − (uχ[0,t1])

h
∥∥
L4(0,T ;X4(T3))

→ 0 as n→∞.
(5.9)

Estimating the linear terms in a standard way and using (5.8), (5.9) we can pass
in the weak formulation (5.7) to the limit as n→∞. We arrive at the identity

−
∫ t1

0

〈
u(s), ∂t(uχ[0,t1])

h(s)
〉

ds+ µ

∫ t1

0

〈
∇u(s), ∇(uχ[0,t1])

h(s)
〉

ds

+

∫ t1

0

〈
(u(s) · ∇)u(s), (uχ[0,t1])

h(s)
〉

ds+ β

∫ t1

0

〈
|u(s)|2 u(s), (uχ[0,t1])

h(s)
〉

ds

= −
〈
u(t1), (uχ[0,t1])

h(t1)
〉

+
〈
u(0), (uχ[0,t1])

h(0)
〉
.

Since the function ηh is even in (−h, h), we have η̇h(r) = −η̇h(−r) and so

∫ t1

0

〈
u(s), ∂t(uχ[0,t1])

h(s)
〉

ds =

∫ t1

0

(∫ t1

0

η̇h(s− τ) 〈u(s), u(τ)〉 dτ

)
ds

= −
∫ t1

0

(∫ t1

0

η̇h(τ − s) 〈u(s), u(τ)〉 dτ

)
ds

= −
∫ t1

0

(∫ t1

0

η̇h(τ − s) 〈u(τ), u(s)〉 dτ

)
ds

= −
∫ t1

0

(∫ t1

0

η̇h(τ − s) 〈u(τ), u(s)〉 ds

)
dτ = 0.
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Next, by repeating the arguments in (5.8), (5.9) with (uχ[0,t1])
h in place of

(unχ[0,t1])
h and uχ[0,t1] in place of (uχ[0,t1])

h, we obtain

lim
h→0

∫ t1

0

〈
(u(s) · ∇)u(s), (uχ[0,t1])

h(s)
〉

ds =

∫ t1

0

〈
(u(s) · ∇)u(s), (uχ[0,t1])(s)

〉
ds

=

∫ t1

0

〈(u(s) · ∇)u(s), u(s)〉 ds = 0,

lim
h→0

∫ t1

0

〈
|u(s)|2 u(s), (uχ[0,t1])

h(s)
〉

ds =

∫ t1

0

〈
|u(s)|2 u(s), (uχ[0,t1])(s)

〉
ds,

lim
h→0

∫ t1

0

〈
∇u(s), ∇(uχ[0,t1])

h(s)
〉

ds =

∫ t1

0

〈
∇u(s), ∇(uχ[0,t1])(s)

〉
ds,

which give us

µ

∫ t1

0

‖∇u(s)‖2 ds+ β

∫ t1

0

‖u(s)‖4L4(T3) ds = − lim
h→0

〈
u(t1), (uχ[0,t1])

h(t1)
〉

+ lim
h→0

〈
u(0), (uχ[0,t1])

h(0)
〉
.

Finally, from the fact that u is L2-weakly continuous in time and from (5.1), we
have 〈

u(t1), (uχ[0,t1])
h(t1)

〉
=

∫ T

0

ηh(s)χ[0,t1](t1 − s) 〈u(t1), u(t1 − s)〉 ds

=

∫ t1

0

ηh(s) 〈u(t1), u(t1 − s)〉 ds =

∫ h

0

ηh(s) 〈u(t1), u(t1 − s)〉 ds

=
1

2
‖u(t1)‖2 +

∫ h

0

ηh(s) 〈u(t1), u(t1 − s)− u(t1)〉 ds→ 1

2
‖u(t1)‖2

as h→ 0. In the same manner we show that〈
u(0), (uχ[0,t1])

h(0)
〉
→ 1

2
‖u(0)‖2 as h→ 0.

Finally, we obtain the identity

1

2
‖u(t1)‖2 + µ

∫ t1

0

‖∇u(s)‖2 ds+ β

∫ t1

0

‖u(s)‖4L4(T3) ds =
1

2
‖u(0)‖2(5.10)

for all t1 ∈ (0, T ). The energy equality (1.8) follows easily from (5.10).
Now we will prove the last part of the theorem, namely that all weak solutions

of the critical CBF equations (1.4) are continuous into L2 with respect to time, i.e.

(5.11) ‖u(t)− u(t0)‖ → 0 as t→ t0

for all t0 ∈ [0, T ).
First, we remark that all weak solutions of (1.1) are L2-weakly continuous with

respect to time

(5.12) u(t) ⇀ u(t0) as t→ t0

for all t0 ∈ [0, T ). This can be proved similarly as for the Navier–Stokes equations
and follows immediately from the definition of a weak solution (see e.g. Lemma 2.2
in [6] for the details).
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Now, let u be a weak solution of (1.4). It suffices to have the energy inequality
to obtain convergence of the norms, since from (1.5) we deduce immediately that

lim sup
t→t0

‖u(t)‖2 ≤ ‖u(t0)‖2

and from the weak continuity (5.12) we have

lim inf
t→t0

‖u(t)‖2 ≥ ‖u(t0)‖2 .

Therefore, it follows from the first part of Theorem 1.4 that for all weak solutions
of (1.4) we have

(5.13) u(t) ⇀ u(t0) and ‖u(t)‖ → ‖u(t0)‖ as t→ t0.

Since in a Hilbert space weak convergence and convergence of norms implies strong
convergence, the result (5.11) follows immediately from (5.13). �

6. Strong global attractor

We have now proved that all weak solutions of the convective Brinkman–
Forchheimer equations with critical exponent r = 3 satisfy the energy equality. As
a consequence, we obtained unconditional continuity of all weak solutions into L2.

In the paper of Ball [2] it was shown for the three-dimensional incompressible
Navier–Stokes equations that strong L2-continuity leads to the existence of a global
attractor in the phase space H. Due to technical difficulties we cannot apply his
method of generalised semiflows to our problem. Instead, we make use of the theory
of evolutionary systems due to Cheskidov [3] to show existence of a strong global
attractor for the critical convective Brinkman–Forchheimer equations (1.4). First,
we introduce some necessary notation from [3].

6.1. Evolutionary systems. Let (X, ds(·, ·)) be a metric space endowed with
a metric ds, which will be referred to as a strong metric. Let dw(·, ·) be another
metric on X satisfying the following conditions:

1. X is dw-compact.
2. If ds(un, vn) → 0 as n → ∞ for some un, vn ∈ X, then dw(un, vn) → 0 as
n→∞.

Note that any ds-compact set is dw-compact and any weakly closed set is strongly
closed.

Let C([a, b];X•), where • ∈ {s, w}, be the space of d•-continuous X-valued
functions on [a, b] endowed with the metric

dC([a,b];X•)(u, v) := sup
t∈[a,b]

{d•(u(t), v(t))} .

Let also C([a,∞);X•) be the space of d•-continuous X-valued functions on [a,∞)
endowed with the metric

dC([a,∞);X•)(u, v) :=
∑
T∈N

1

2T
sup {d•(u(t), v(t)) : a ≤ t ≤ a+ T}

1 + sup {d•(u(t), v(t)) : a ≤ t ≤ a+ T}
.

To define an evolutionary system, first let

T := {I : I = [T,∞) ⊂ R for T ∈ R, or I = (−∞,∞)} ,

and for each I ⊂ T , let F(I) denote the set of all X-valued functions on I.
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Definition 6.1. A map E that associates to each I ∈ T a subset E(I) ⊂ F(I) will
be called an evolutionary system if the following conditions are satisfied:

(1) E([0,∞)) 6= ∅.
(2) E(I + s) = {u(·) : u(· − s) ∈ E(I)} for all s ∈ R.
(3) {u(·)|I2 : u(·) ∈ E(I1)} ⊂ E(I2) for all pairs I1, I2 ∈ T , such that I2 ⊂ I1.
(4) E((−∞,∞)) =

{
u(·) : u(·)|[T,∞) ∈ E([T,∞)) for all T ∈ R

}
.

We will refer to E(I) as the set of all trajectories on the time interval I. Trajec-
tories in E((−∞,∞)) will be called complete. To relate the notion of evolutionary
systems with the classical notion of semiflows, let P (X) be the set of all subsets of
X. For every t ≥ 0, define a map R(t) : P (X)→ P (X), such that

R(t)A := {u(t) : u ∈ A, u ∈ E([0,∞))} for A ⊂ X.

Note that the assumptions on E imply that R(t) enjoys the following property:

R(t+ s)A ⊂ R(t)R(s)A, A ⊂ X, t, s ≥ 0.

One can check that a semiflow defines an evolutionary system (see details in [3]).
Furthermore, we will consider evolutionary systems E satisfying the following

assumptions:

(A1) (Weak compactness) E([0,∞)) is a compact set in C([0,∞);Xw).
(A2) (Energy inequality) Assume that X is a bounded set in some uniformly

convex Banach space H with the norm denoted by ‖·‖, such that

ds(x, y) = ‖x− y‖ for x, y ∈ X.

Assume also that for any ε > 0, there exists δ > 0, such that for every
u ∈ E([0,∞)) and t > 0,

‖u(t)‖ ≤ ‖u(t0)‖+ ε,

for t0 ∈ (t− δ, t).
(A3) (Strong convergence a.e.) Let u, un ∈ E([0,∞)) be such that un → u in

C([0, T ];Xw) for some T > 0. Then un(t)→ u(t) strongly for a.e. t ∈ [0, T ].

Consider an arbitrary evolutionary system E . For a set A ⊂ X and r > 0, denote
an open ball

B•(A, r) := {u ∈ X : d•(u,A) < r} ,
where

d•(u,A) := inf
x∈A
{d•(u, x)} .

Definition 6.2. A set A ⊂ X uniformly attracts a set B ⊂ X in the d•-metric if
for any ε > 0 there exists t0, such that

R(t)B ⊂ B•(A, ε), ∀ t ≥ t0.

Definition 6.3. A set A ⊂ X is a d•-attracting set if it uniformly attracts X in
the d•-metric.

Definition 6.4. A set A• ⊂ X is a d•-global attractor if A• is a minimal d•-closed,
d•-attracting set.

Theorem 6.5. Every evolutionary system possesses a weak global attractor Aw.
Moreover, if a strong global attractor As exists, then As

w
= Aw.
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Definition 6.6. The evolutionary system E is asymptotically compact if for any
sequence tn → ∞ as n → ∞, and any xn ∈ R(tn)X, the sequence {xn}∞n=1 is
relatively strongly compact.

Theorem 6.7. If an evolutionary system E is asymptotically compact, then Aw is
a strongly compact strong global attractor As.

Theorem 6.8. Let E be an evolutionary system satisfying (A1), (A2), and (A3).
If every complete trajectory is strongly continuous, i.e. if

E((−∞,∞)) ⊂ C((−∞,∞);Xs),

then E is asymptotically compact.

6.2. Application to the critical CBF equations. In [3] it was shown that all
Leray–Hopf weak solutions of the space-periodic 3D NSE form an evolutionary
system E satisfying (A1), (A2), and (A3). We will show here that this result can be
extended also to all weak solutions of the critical CBF equations. Actually, this is
true also for all Leray–Hopf weak solutions of the CBF equations with the exponent
r ≥ 1. However, only for the critical case r = 3, due to Theorem 1.4, there is no
need to distinguish between these solutions. We begin by setting our problem into
the framework of evolutionary systems.

We define the strong and weak distances by

ds(u, v) := ‖u− v‖ , dw(u, v) :=
∑
k∈Z3

1

2k
|ûk − v̂k|

1 + |ûk − v̂k|
, u, v ∈ H,

where ûk and v̂k are the Fourier coefficients of u and v respectively.

Definition 6.9. A ball B•(0, r) ⊂ H is called a d•-absorbing ball if for any bounded
set A ⊂ H, there exists t0, such that

R(t)A ⊂ B•(0, r) ∀ t ≥ t0.

For the 3D NSE it is well known that there exists an absorbing ball (see e.g. [5]).
The same can be easily proved for the CBF equations.

Proposition 6.10. There exists a radius R > 0 such that the ball Bs(0, R) ⊂ H is
a ds-absorbing ball for the CBF equations (1.3).

Let X be a closed absorbing ball for the critical CBF equations (1.4),

X := {u ∈ H : ‖u‖ ≤ R} ,

which is also weakly compact. Then for any bounded set A ∈ H there exists a time
t0, such that

u(t) ∈ X for all t ≥ t0,

for every weak solution u(t) with the initial condition u(0) ∈ A.
Contrary to the NSE, all weak solutions of the critical CBF equations satisfy

the energy inequality. In fact they verify the stronger condition (1.8). Therefore,
we consider an evolutionary system for which a family of trajectories consists of all
weak solutions (instead of all Leray–Hopf weak solutions as in [3]) of the critical
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convective Brinkman–Forchheimer equations in X. More precisely, we define

E([T,∞)) := {u(·) : u(·) is a weak solution on [T,∞)

and u(t) ∈ X ∀ t ∈ [T,∞)}, T ∈ R,
E((−∞,∞)) := {u(·) : u(·) is a weak solution on (−∞,∞)

and u(t) ∈ X ∀ t ∈ (−∞,∞)}.
Clearly, the properties 1–4 of an evolutionary system E hold. Therefore, thanks
to Theorem 6.5, the weak global attractor Aw exists for this evolutionary system.
Additionally, we can prove the following theorem.

Theorem 6.11. The weak global attractor Aw for the evolutionary system E of the
critical CBF equations is a strongly compact strong global attractor As.

Proof. Since every complete trajectory of the evolutionary system E for the critical
CBF equations is strongly continuous, due to Theorem 6.7 and Theorem 6.8, it is
enough to prove that E satisfies the assumptions (A1), (A2), and (A3).

First note that E([0,∞)) ⊂ C([0,∞);Hw) by the definition of weak solutions, see
(5.12). Now take any sequence un ∈ E([0,∞)) for n = 1, 2, . . . . Thanks to classical
estimates for Leray–Hopf weak solutions of the NSE (Lemma 8.5 in [3], for more
details see [5]), which apply also to the CBF equations, there exists a subsequence,
still denoted by un, that converges to some u1 ∈ E([0,∞)) in C([0, 1];Hw) as
n → ∞. Passing to a subsequence and dropping a subindex once more, we obtain
that un → u2 in C([0, 2];Hw) as n→∞ for some u2 ∈ E([0,∞)). Note that u1(t) =
u2(t) on [0, 1]. Continuing this diagonalisation procedure, we obtain a subsequence{
unj

}
⊂ {un} that converges to some u ∈ E([0,∞)) in C([0,∞);Hw) as nj → ∞.

Therefore, (A1) holds.
The energy inequality (A2) follows immediately from the energy equality (1.8).

Note also that to prove (A2) it is enough to have only the strong energy inequality
(1.5).

Let now un, u ∈ E([0, T ]) be such that un → u in C([0,∞);Hw) as n → ∞ for
some T > 0. Classical estimates for the NSE (see e.g. [5] or [15]), which hold as well
for the CBF equations, imply that the sequence {∂tun} is bounded in L4/3(0, T ;V ′),
where V ′ is the dual space of V . Since the sequence {un} is bounded in L2(0, T ;V ),
by the Aubin–Lions Lemma, there exists a subsequence

{
unj

}
⊂ {un}, such that∫ T

0

∥∥unj
(t)− u(t)

∥∥2
dt→ 0 as nj →∞.

In particular,
∥∥unj

(t)
∥∥→ ‖u(t)‖ as nj →∞ for a.e. t ∈ [0, T ], i.e. (A3) holds. �

Finally, we note that all the other results from [3] apply to the three-dimensional
convective Brinkman–Forchheimer equations (1.3) as well. For instance, the tra-
jectory attractor U exists for the critical CBF equations, and uniformly attracts
E([0,∞)) in L∞loc((0,∞);H).
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