

warwick.ac.uk/lib-publications

Original citation:
Flores Armas, Denys and Jhumka, Arshad (2017) Implementing chain of custody
requirements in database audit records for forensic purposes. In: The 16th IEEE International
Conference on Trust, Security and Privacy in Computing and Communications (IEEE
TrustCom-17), Sydney, Australia, 1-4 Aug 2017

Permanent WRAP URL:
http://wrap.warwick.ac.uk/91146

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting
/republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see the
‘permanent WRAP url’ above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/84915626?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/91146
mailto:wrap@warwick.ac.uk

Implementing Chain of Custody Requirements in
Database Audit Records for Forensic Purposes

Denys A. Flores∗† and Arshad Jhumka∗
∗University of Warwick. Department of Computer Science. Coventry, United Kingdom

{d.flores-armas, h.a.jhumka}@warwick.ac.uk
†Escuela Politécnica Nacional. Departmento de Informática y Ciencias de la Computación (DICC). Quito, Ecuador

denys.flores@epn.edu.ec

Abstract—During forensic database investigations, audit
records become a crucial evidential element; particularly, when
certain events can be attributed to insider activity. However,
traditional reactive forensic methods may not be suitable, urging
the adoption of proactive approaches that can be used to ensure
accountability through audit records whilst satisfying Chain of
Custody (CoC) requirements for forensic purposes.

In this paper, role segregation, evidence provenance, event time-
liness and causality are considered as CoC requirements in order
to implement a forensically ready architecture for the proactive
generation, collection and preservation of database audit records
that can be used as digital evidence for the investigation of
insider activity. Our proposal implements triggers and stored
procedures as forensic routines in order to build a vector-clock-
based timeline for explaining causality in transactional events
recorded in audit tables. We expect to encourage further work
in the field of proactive digital forensics and forensic readiness;
in particular, for justifying admissibility of audit records under
CoC restrictions.

Index Terms—database forensics, proactive, chain of custody,
admissibility, architecture, audit, trigger, stored procedure, role
segregation, provenance, timeline, causality, vector clock.

I. INTRODUCTION

Database Forensics allows investigating malicious activities
performed by trusted employees or insiders who, motivated
by financial gain, could misuse their privileged access [1] in
order to disclose or contaminate [2] transactional databases.
Since audit records may be considered legal evidence [3],
accountability and forensics become crucial investigation
elements for analysing and justifying insider behaviour [4].

However, there is a difficulty in considering audit records
as legally relevant or admissible if the lack of accountability
and forensic features, within the database environment, enables
malicious insiders to cover up their activities, and eventually
make them appear as authorised [5]. For instance, unauthorised
payments were made by malicious employees of a public
institution in Ecuador 1, who used privileged system credentials
for making them look legitimate. Although evidence could
have been retrieved from the database, its audit records were
inconsistent as it was reported to be inadequate and vulnerable.

On the other hand, ensuring admissibility also requires
forensic practitioners to establish an unbroken accountability
trail in order to show ‘due dilligence’ when handling any

1As reported in 2012 by local newspapers Ecuador Inmediato
[https://goo.gl/08KHsi] and El Comercio [https://goo.gl/aOCyBp].

form of data and records. This requirement is known as Chain
of Custody (CoC), which basically describes the ‘evidence
continuum’, delivering proof of adequate handling, and justifi-
cation of actions performed on any evidential item. Nonetheless,
when investigating databases, initiating and maintaining CoC
is difficult because, unlike proactive forensics, the generally
accepted reactive approach [6] may not be able to properly
analyse and justify insider actions.

First of all, reactive database forensics is comprised of
bottom-up methods that adapt traditional digital forensics
techniques for recovering scattered pieces of evidence in
order to reconstruct the database state [7]. Examples of
these methods are table-relationship analysis [8] and data file
carving [9]. However, these methods either lack formalisation
and scientific background [10], or may not be suitable for
investigating databases [11]. As a consequence, ad hoc database
investigations over rely on the practitioner’s knowledge and
expertise, leading to conjectures about insider behaviour since
the only available evidence to fully explain such actions may
be partially recovered or unavailable.

Alternatively, the proactive approach is an emerging top-
down method which is based on the premise that databases
per se were designed with forensically ready features, such as
triggers [12], for auditing insider activities [10]. Hence, audit
records can be generated, collected and preserved in order
to draw conclusions based on more generalistic behavioural
traces than those which may (or may not) be present within
reactively recovered evidence. This research takes on this
approach, introducing a proactive architecture for database
forensics so that the generation, collection and preservation of
audit records can be done under CoC restrictions.

In section II, role segregation, evidence provenance, event
timeliness and causality are considered as Chain of Custody
(CoC) requirements for the proactive investigation of databases.
In section III, the previous requirements are implemented
as functional features of a distributed architecture for the
generation, collection and preservation of audit records that can
be used to explain insider activity. A vector clock mechanism
is implemented in a stored procedure for recording causality
and timeliness every time Data Manipulation Language (DML)
events are triggered. In section IV, experimental results are
presented, regarding the construction of DML event timeliness,
the relationship between causality and provenance, and the

architectural performance. Finally, related and future work
along with conclusions are given in sections V and VI,
respectively.

II. CHAIN OF CUSTODY REQUIREMENTS IN PROACTIVE
DATABASE FORENSICS

Traditionally, digital forensics has been known as a scientific ap-
proach for the identification, collection, validation, preservation,
and subsequent analysis of digital evidence [13]. This life cycle
has a slight variation during proactive investigations, where
evidence must be generated, collected and preserved before the
analysis phase [14]. However, regardless the approach, Chain
of Custody (CoC) must be initiated and maintained according
to the generally accepted 4 principles of digital evidence 2 [15]:
• Principle 1: No action taken by [any insider] should

change [evidence].
• Principle 2: In circumstances where ... [accessing] original

data [is required], ... [evidence must be provided] explain-
ing the relevance and implications of [such] actions.

• Principle 3: An audit trail [or similar record] of all [events]
... should be [generated, collected] and preserved. An
independent third party should be able to examine [those
events] and achieve the same [conclusion].

• Principle 4: The person in charge of the investigation
[must ensure the application of these principles].

When applying the proactive approach, accountability and
forensics are important elements for investigating databases
since audit records become digital evidence for explaining
the occurrence of insertions, deletions and updates which, in
the context of this article, are referred as Data Manipulation
Language (DML) events. Hence, DML event attributability can
be explained when tuples in audit tables capture changes in
transactional data [16] with their corresponding actor (insider
causing the event). However, in order to guarantee the applica-
bility of these principles as established in Principle 4, Chain of
Custody (CoC) must be initiated and maintained, considering
that the generation, collection and preservation of audit records
must be performed whilst transactional database operations
are also being executed. This brings on the consideration
of role segregation, evidence provenance, event timeliness
and causality as CoC requirements so that reproducibility
and verification of insider activity can be ensured within a
forensically ready environment.

A. Separation of Concerns

As established by Principle 1, a clear functional separation
of concerns [17] is required in order to prevent potential
changes in audit records whilst avoiding overlapping functional
responsibilities. Although the administrator role (DBA) is
normally in charge of managing audit functions [18], a
explicit forensic role and a corresponding forensic database
should be created for preventing discretionary violations of
administrative functions, such as disabling audit mechanisms
on convenience [19].

2Where necessary, bracketed text denote paraphrasing for adapting the
concept of the principles to the article’s context.

Definition II.1. Role Segregation
Let S be the set of database users, A and F the set of

administrator and forensic roles, respectively:

segregation = {usr, role|usr ∈ S ∧ role /∈ A ∩ F}

The function segregation prevents a database user having
administrator and forensic permissions at the same time.

By placing transactional event accountability, and controlling
access to audit functionally [3], Def. II.1 follows Principle 2,
allowing monitoring insider actions in order to justify that audit
records were produced without negligent insider intervention.

B. Evidence Provenance

Principle 3 states that audit records should reflect a trail of
events in order to ensure third-party verification; specially, after
an insider security violation [3]. Thus, provenance becomes
a CoC requirement during the generation of audit records,
allowing investigators to relate DML events with their actors.

Definition II.2. Provenance
Let provenance be a 6-attribute tuple representing the

description level of audit records:

provenance = {pn : n ∈ N+ ∧ 1 ≤ n ≤ 6}

In Table I, the required granularity provenance description
level [20] on audit records is described in order to explain
DML events:

TABLE I: The 6-Attribute Provenance Tuple

Attr. Value Description

p1
What audit record has been
generated. Audit record identifier (Id)

p2
When the audit record was
generated.

Real (Hardware) Clock
Timestamp.

p3
Why the audit record was
generated.

Type of DML Event: Insert,
Update or Delete.

p4 Who the actor is. User identifier.

p5 Which the DB actor role is. Type of DB role: DBadmin,
DBforensics, DBuser.

p6
Where the DML event was
triggered. Originating IP Address.

C. Event Timeliness

Principle 3 implies considering timeliness as an important CoC
requirement in order to monitor insider behaviour by applying
time constraints to audit records. Subsequently, building a
timeline of DML events can be useful not only to explain their
global ordering in the entire computation, but also to keep an
audit trail during their generation, collection and preservation:

a. Generating Audit Records: Audit records are generated
every time a DML event is ‘triggered’ in a transactional
table. At the same time, provenance of DML events is
also possible to capture by retrieving DML event-related
attributes (Table I) during the generation of such records.

t2

t1t1

TlTl

t3t3

e11

e21 e22

e31

v1 v3v2 v4

(a) A timeline Tl receives DML event-related
audit records eji from each audit table ti.

t2

t1t1

TlTl

t3t3

e1
1

e2
1 e2

2

e3
1

v1 = (0,1,0) v3 = (1,1,1)v2 = (1,1,0) v4 = (1,2,1)

(b) Representation of Vector Clock values vi
in Tl as received from each audit table ti.

t2

t1t1

TlTl

t3t3

e1
1

e2
1 e2

2

e3
1

v1 = (0,1,0) v3 = (1,1,1)v2 = (1,1,0) v4 = (1,2,1)

Wait

(c) A subsequent audit record e13 must ’wait’
for a previous record e11 to be registered in Tl.

Fig. 1: Global Ordering Representation, where Tl represents a timeline constructed by an ideal external observer of the
computation.

Causal_Table (Tl)Causal_Table (Tl)

Tl_IdTl_IdPKPK

t1_Id (FK)t1_Id (FK)

t2_Id (FK)t2_Id (FK)

Aud_Table_i (ti)Aud_Table_i (ti)

(p1) ti_Id(p1) ti_IdPKPK

(p2) ti_evt_time(p2) ti_evt_time

(p3) ti_evt_type(p3) ti_evt_type

(p4) ti_evt_actor(p4) ti_evt_actor

(p5) ti_evt_db_user(p5) ti_evt_db_user

(p6) ti_evt_ip_addr(p6) ti_evt_ip_addr

ti_id (FK)ti_id (FK)

......

Aud_Table_1 (t1)Aud_Table_1 (t1)

(p1) t1_Id(p1) t1_IdPKPK

(p2) t1_evt_time(p2) t1_evt_time

(p3) t1_evt_type(p3) t1_evt_type

(p4) t1_evt_actor(p4) t1_evt_actor

(p5) t1_evt_db_user(p5) t1_evt_db_user

(p6) t1_evt_ip_addr(p6) t1_evt_ip_addr

Aud_Table_2 (t2)Aud_Table_2 (t2)

(p1) t2_Id(p1) t2_IdPKPK

(p2) t2_evt_time(p2) t2_evt_time

(p3) t2_evt_type(p3) t2_evt_type

(p4) t2_evt_actor(p4) t2_evt_actor

(p5) t2_evt_db_user(p5) t2_evt_db_user

(p6) t2_evt_ip_addr(p6) t2_evt_ip_addr

Fig. 2: A de-normalised forensic database collects DML events
in tables ti, and constructs a causal timeline in table Tl.

b. Collecting Audit Records: When a DML event is triggered
in a transactional table, its corresponding 6-attribute audit
table ti in the forensic database (Fig. 2) collects its audit
record, along with its provenance attributes (Def. II.2).

c. Preserving Audit Records: Whilst audit records are
generated and collected in audit tables, their temporal
occurrence can be preserved and ordered in a timeline
using causal audit records stored in a causal table Tl

within the forensic database (Fig. 2).
By using causal audit records preserved in the causal table not
only losing sequentiality of DML events can be prevented, but
also their temporal occurrence can be explained. For example,
if an insider inserts data in a transactional table, a DML
event is triggered. A corresponding audit record is generated
along with its provenance attributes, which is later collected
inside an audit table, and finally, the corresponding causal

audit record is preserved in the causal table. In Fig. 1a, these
interactions are represented from the perspective of an ideal
external observer [21] who is in charge of receiving, recording
and ordering DML event-related audit records eji in a causal
table Tl. Then, a timeline is built using causal audit records per
each DML event-related audit record generated and collected in
a finite number of audit tables ti. In the following definitions,
these event timeliness characteristics are formalised for better
understanding:

Definition II.3. Evidence Sources
Let D be the set of i evidence sources, then:

D = {ti : i ∈ N+}

where ti is the ith audit table considered as evidence source.

Definition II.4. Evidential Events
Following from Def.II.3, let E be a set of audit records
registering DML events in their corresponding audit tables,
then:

E = {eji : i, j ∈ N+} (1)

where eji is the jth audit record generated by the ith audit table.

Each audit record eji in ti is denoted using canonical
enumeration, where j denotes the jth audit record generated
in the ith audit table. For example, some audit records in the
1st and 4th audit tables can be identified as:

e11, e
2
1, e

3
1, . . .

e54, e
6
4, . . . , e

10
4 , . . .

From the vector clock definition in [21], in Fig. 1b, the
logical order of audit records generated in an audit table ti
and recorded into a timeline Tl, is a vector clock mechanism
which is used to track audit record order values, making them
causally consistent. I.e., a vector clock is a simple logical order

of DML event occurrence represented by the Cartesian power
V n of the corresponding audit record timestamps vi:

V n = {(v1, v2, v3, . . . , vn)|vi ∈ N, i ∈ N+} (2)

From (1) and (2), timestamps vi can be expressed in terms of
audit records eji in order to explicitly identify the audit table
ti which they belong to:

vi = Ts(e)[i] (3)

The index i is sufficient to represent the n-tuple of the vector
clock V n since an audit table ti must be identified for assigning
its corresponding timestamp Ts. Whereas the index j becomes
irrelevant as it denotes local ordering of the audit record e in
its corresponding audit table ti.

Definition II.5. Event Timestamps
For building a DML event timeline Tl as shown in Fig. 1b,
and following from (3) in Def.II.4, the timestamp Ts of an
audit record e registered in the ith audit table can be defined
as follows:

Ts(e)[i] :=

(a)
Ts[i] + 1, if e = sendti(Ts)

(b)
max{Ts[i], sendti(Ts)}, if e = receiveti(Ts)

Where:

(a) if an audit record e is being generated or ’sent’, then
the local vector clock component in its audit table ti is
incremented.

(b) if an audit record e is being ’received’ for registration in
the timeline Tl, then the value of the reporting component
of the vector clock in Tl is updated to the maximum value,
obtained by comparing the corresponding previous vector
clock value in Tl with the received timestamp Ts from the
corresponding audit table ti.

Definition II.6. Causal Audit Record
Following from Def. II.5, in order to represent the n-tuple
vector clock V n in Def. II.4 (2), let a causal audit record, in a
causal table Tl, be an array of timestamps Ts(e)[i], recording
the occurrence of a DML event e collected in its corresponding
audit table ti:

record : ti 7→ Ts(e)[i]

Definition II.7. Event Timeline
Following from Def. II.6, let Tl be a sequence of records,
representing the global occurrence of DML events in their
corresponding audit records e, considering the timestamps Ts,
as reported by each audit table ti:

Tl = [(ti, Ts(e)[i]) | ti ∈ D, e ∈ E]

Hence, the timestamp values of each component of the vector
clock can be registered on the timeline Tl and retrieved when
required.

D. Event Causality

Form the forensic point of view, applying Principle 3 not only
enables the construction of a timeline (section II-C), but also
allows sequencing DML events in order to identify and explain
their interactions [22]. Likewise, for accountability purposes,
timeliness allows the generation and collection of audit records
with time restrictions, so they can be stored and reviewed in
later investigation stages [3]. As shown in Def. II.7, the global
history of audit records in a timeline initiates and maintains
CoC requirements by introducing an element of causality [23]
for explaining the sequential relationship or their corresponding
DML events. Since audit records in databases are strictly bound
to timestamps, sequencing them requires establishing a ‘happen-
before’ relation (represented by →) with a strong timestamp
condition [21][24].

Definition II.8. Event Sequentiality Property
Being ea (sending) and eb (receiving), two sequential DML
events recorded in their corresponding audit records; then, the
timestamp Ts of ea must be less than the timestamp value
Ts(eb)[a] of the vector clock corresponding to the receiving
DML event eb:

∀ea, eb ∈ E • (ea → eb ⇒ sendta(Ts) < Ts(eb)[a])

Definition II.9. Event Transitive Property
Similarly, by transitivity, having three evidential DML events
registered in their corresponding audit records ea, eb, and ec,
if ea ‘happens before’ eb, and eb ‘happens before’ ec, then
ea precedes ec, and the timestamp Ts of the sending event ea
is less than the timestamp value Ts(ec)[a] of the vector clock
corresponding to the receiving event ec:

∀ea, eb, ec ∈ E •
(ea → eb ∧ eb → ec ⇒ ea → ec ∧ sendta(Ts) < Ts(ec)[a])

Definition II.10. Event Concurrency Property
Since concurrency explains the occurrence of DML events
that are not affected by a “happen-before” relation [24], they
can be defined in a more general perspective as they are not
restricted by a timestamp condition.

Given two DML events e and e′, if they are not sequential
with each other then they are concurrent:

∀e, e′ ∈ E • (e||e′ ⇒ ¬(e→ e′ ∧ e′ → e))

From the transitive property in Def. II.9 and its implication
in concurrent events (Def. II.10), one can infer that an ideal
external observer must be “informed” of the existence of an
intermediate event eb [21] as concurrent events are not bound
to timestamp restrictions. However, determining whether or
not such an event actually ‘happened before’ a receiving event
ec is a concurrency challenge for building the timeline Tl.
This requires the introduction of an asynchronous method
for preventing inconsistent observations, and therefore make
an intermediate event ‘wait’ if an ongoing event has not
been registered yet (Fig. 1c). The solution to this problem
is explained later in section III-C3.

III. IMPLEMENTING A DISTRIBUTED ENVIRONMENT FOR
PROACTIVE DATABASE FORENSICS

Transactional
Database

Forensic Evidence
Database

Proactive DB Forensics
Routines

i
Proactive DB Forensics
Routines

i<<Generate DML
Audit Record>>

<<Register DML
Audit Record>>

Client Event
Generator-2 (CeGen-2)

Client Event
Generator-1 (CeGen-1)

<<Send DML
 Request>>

<<Send DML
Request>>

Master Event Generator (MeGen)

<<Coordinate
 Concurrent

Activity>>

<<Coordinate
Concurrent Activity>>

JMeter
192.168.0.2
Windows 7

JMeter
192.168.0.4
Linux Ubuntu

JMeter
192.168.0.1
Windows 10

SQL Server 2014
Database:forensics
Role:dbforensics

SQL Server 2014
Database:test

Role: dbadmin/dbuser

C#.Net
Assemblies

A
C

B

Fig. 3: Experimental Architecture

In a proactive forensics approach audit records must be
generated, collected and preserved within a forensically ready
environment. However, for making them admissible, the Chain
of Custody (CoC) requirements explained in section II must
be considered as functional specifications. In Fig. 3, an
experimental architecture is outlined in order to proactively
generate and collect audit records, and at the same time,
preserve a timeline of their occurrence (sections II-C and II-D).
In the following sections, these architectural components are
explained in detail.

A. Separation of Concerns
For achieving role segregation (section II-A), separation of
concerns is implemented by using a transactional and a
forensics database (Fig. 3-A). Whilst the transactional database
(and its corresponding roles) is in charge of transactional
operation and administration, the forensics database with a
explicit forensic role deploys the forensic routines for the
generation, collection and generation of DML event-related
audit records (section II-C, lit. a - c). As a result, an event
timeline can be created based on the causal relation of
sequential events with timestamp restrictions, as explained
in section II-D.

B. Concurrent DML Event Generation
For experimental purposes, in order to generate concurrent
events, synthetic workload is produced by means of a Master
Event Generation Server (MeGen) and two Event Generation
Clients (CeGen) (Fig. 3-B). MeGen is a master terminal coordi-
nating concurrent activity using threaded database connections
to emulate transactional behaviour in a distributed environment.
Meanwhile, CeGen is comprised of two slave terminals which
are in charge of passing concurrent DML requests from MeGen
to the transactional database.

C. Proactive Database Forensics Routines

Triggers and stored procedures are implemented as external
forensic routines (Fig. 4) with explicit enable/disable
permissions assigned to a specific forensic database role
(section II-A). This prevents them to be easily accessed, or
conveniently disabled by malicious insiders with administrator
privileges. Additionally, abstraction can be provided by
obscuring their implementation particularities from normal
database roles, achieving access control for ensuring Chain
of Custody compliance during the generation, collection and
preservation of audit records:

1) Evidence Generation - Fig. 4-1: Every time DML
requests are sent from CeGen to the transactional database, a
corresponding evidence generation trigger in a receiving table
is executed. These triggers not only generate audit records,
but also automatically capture specific provenance descriptive
attributes (section II-B) related to the occurrence of a DML
event in the transactional database.

2) Evidence Collection - Fig. 4-2: Data tables within
the transactional database have their corresponding audit
tables in the forensic database (Fig. 2). Then, evidence
generation triggers in the transactional database execute
evidence collection stored procedures in the forensic database
for storing audit records and their provenance descriptive
attributes in the audit tables (Def. II.2).

3) Evidence Preservation - Fig. 4-3: A causal table in the
forensic database (Fig. 2) is used to build an event timeline Tl

(Def. II.7). Whilst audit records are generated and collected in
the audit tables ti, their corresponding evidence preservation
triggers execute an evidence preservation stored procedure
in order to create a causal audit record, assigning timestamp
values Ts to build a timeline Tl in the causal table. The
implementation of this stored procedure, following the vector
clock mechanism specification in Def. II.5, is shown in the
following pseudo code (List. 1):
1 # b e g i n c a u s a l S t o r e d P r o c e d u r e
2 p u b l i c s t a t i c vo id spLogCausa lEven t (t imes t amp Ts ,

i d e n t i f i e r t i) }
3 # b e g i n s e r i a l i s e d T r a n s a c t i o n
4 /∗ 1 . Get t h e number o f a u d i t t a b l e s t i ∗ /
5 numTables := a u d i t t a b l e s . getNumber () ;
6 /∗ 2 . Get t h e t i m e l i n e Tl o f e v e n t s ∗ /
7 t i m e l i n e := e v e n t r e c o r d s . g e t S e q u e n c e () ;
8 /∗ 3 . I f t h e r e a r e no e v e n t s r e p o r t e d ∗ /
9 i f t i m e l i n e . g e t R e c o r d s () = [] t h e n

10 t b l i n d e x := 0 ;
11 /∗ 3 . 1 Timestamp Ts i s a s s i g n e d t o t h e

s e n d i n g t a b l e t i ∗ /
12 w h i l e t b l i n d e x < numTables do
13 i f t i = t b l i n d e x t h e n
14 e v e n t r e c o r d [t b l i n d e x] := Ts ;
15 e l s e
16 e v e n t r e c o r d [t b l i n d e x] := 0 ;
17 end i f
18 end w h i l e
19 /∗ 4 . I f a t l e a s t one e v e n t has been r e p o r t e d ∗ /
20 e l s e
21 /∗ 4 . 1 R e t r i e v e l a s t e v e n t r e c o r d ∗ /

Evidence GenerationEvidence GenerationEvidence Generation
Evidence CollectionEvidence CollectionEvidence Collection

Evidence PreservationEvidence PreservationEvidence Preservation

SQL Server 2014
Transactional Database

Evidence.Generation.TriggersEvidence.Generation.TriggersEvidence.Generation.Triggers

public static void trgAudt_Tbl_2()

public static void trgAudt_Tbl_n()

<<deployed_in>>

public static void trgAudt_Tbl_1()

Evidence.Collection.StoredProceduresEvidence.Collection.StoredProceduresEvidence.Collection.StoredProcedures

public static void spLogAudtEvt_Tbl_1()

public static void spLogAudtEvt_Tbl_2()

public static void spLogAudtEvt_Tbl_n()

SQL Server 2014
Forensics Database

<<inserts_audit_on>>

Evidence.Preservation.TriggersEvidence.Preservation.TriggersEvidence.Preservation.Triggers

public static void trgLogCauslEvt_Tbl_1()
public static void trgLogCauslEvt_Tbl_2()

public static void trgLogCauslEvt_Tbl_n()

<<depends>><<depends>><<depends>>

<<deployed_in>>

Evidence.Preservation.StoredProceduresEvidence.Preservation.StoredProceduresEvidence.Preservation.StoredProcedures

public static void spLogCausalEvent
(timestamp Ts, identifier tbl_id)

<<depends>><<depends>><<depends>>

<<inserts_causal_event_on>>

...

...

...

1
2 3

Fig. 4: Architecture of Proactive DB Forensic Components implemented as CLR C# Static Methods

22 e v e n t r e c o r d := t i m e l i n e . g e t L a s t R e c o r d () ;
23 t b l i n d e x := 0 ;
24 /∗ 4 . 2 Ass ign t i m e s t a m p s t o r e c e i v i n g e v e n t s

∗ /
25 w h i l e t b l i n d e x < numTables do
26 /∗ 4 . 3 The s e n d i n g t imes t amp Ts i s compared

wi th i t s p r e v i o u s Ts v a l u e ∗ /
27 i f t i = t b l i n d e x t h e n
28 /∗ 4 . 4 The max Ts v a l u e i s a s s i g n e d t o

t h e c o r r e s p o n d i n g s e n d i n g t a b l e t i ∗ /
29 e v e n t r e c o r d [t i] := max (e v e n t r e c o r d [

t b l i n d e x] , Ts) ;
30 e l s e
31 /∗ 4 . 5 P r e v i o u s t imes t amp v a l u e s o f non−

s e n d i n g t a b l e s a r e m a i n t a i n e d ∗ /
32 e v e n t r e c o r d [t b l i n d e x] := e v e n t r e c o r d [

t b l i n d e x] ;
33 end i f
34 end w h i l e
35 end i f
36 /∗ 5 . Add r e p o r t e d e v e n t t o t h e t i m e l i n e ∗ /
37 t i m e l i n e . add (e v e n t r e c o r d) ;
38 # commit s e r i a l i s e d T r a n s a c t i o n
39 }# end c a u s a l S t o r e d P r o c e d u r e

Listing 1: Causal Event Registration Pseudo code

Since the construction of a timeline Tl must be accurate with
no ‘events lost’ due concurrent user activity (Def. II.10), in
List. 1, causal event registration is executed using serialised
transactions. This prevents the occurrence of concurrent
intermediate events (Fig. 1c) which, due to incorrect transitivity
(Def. II.9), may be recorded before an ongoing sending event
is received.

IV. EXPERIMENTAL RESULTS

The technical specifications of the forensically ready environ-
ment depicted on Fig. 3 are briefly explained as follows:

a. A transactional and a forensics database (Fig. 3-A)
were implemented in MSSQL Server 2014 with oper-

ative (DBUser), administrative (DBAdmin) and forensic
(DBForenics) roles enabled.

b. For concurrent DML event generation, both MeGen
and CeGen implement JMeter 3 in master-slave mode,
respectively (Fig. 3-B).

c. Proactive DB forensic routines (Fig. 3-C) are implemented
using Common Language Runtime (CLR) C# Assemblies,
and deployed in their respective databases, following the
deployment architecture shown in Fig. 4.

720 concurrent DML request samples were modelled and
executed in MeGen and CeGen, and captured using the forensic
routines. This allowed analysing timeliness, the relationship
amongst causality and provenance, and finally, measuring the
architectural performance.

TABLE II: Vector Clock Components in the Causal Table Tl

seq Ts[1] Ts[2] Ts[3] RTs[seq]

...

17 5 5 [7] 2017-03-06 16:51:49.000

18 [6] 5 7 2017-03-06 16:51:49.263

19 6 [6] 7 2017-03-06 16:51:49.283

...

24 [7] 6 11 2017-03-06 16:51:49.360

25 7 6 [12] 2017-03-06 16:51:49.367

26 7 [7] 12 2017-03-06 16:51:49.370

Sequences of events recorded in audit table t1
Sequences of events recorded in audit table t2
Sequences of events recorded in audit table t3

3JMeter official site explains its deployment in master-salve mode
[https://goo.gl/qK1tCt].

A. Analysing Timeliness

In Table II, a sample of captured DML event sequences shows
the timestamps Ts[i] assigned to them in the causal table Tl. The
causal relationship amongst the 17th, 18th and 19th sequence
can be proved using Def. II.9:

Being sendt3(Ts[2]) := 5 ∧ Ts(e19)[2] := 6
As 5 < 6 (true)⇒ e17 → e19

∴
e73 → e61 ∧ e61 → e62 by transitivity.

If real clock timestamps RTs[seq] are assigned, then:

RTs[17] < RTs[18] ∧RTs[18] < RTs[19]

This proves that using hardware and logical clock timestamps is
equivalent since the causal relationship between the 17th, 18th
and 19th sequence remains. This is very useful considering that
auditors and forensic practitioners usually rely on timestamps
associated with hardware clock values for explaining DML
event sequencing; i.e., date and time of a particular DML event.
However, if these values are tampered with by a malicious
insider, audit record integrity can be compromised. Also, if
hardware clocks were used, they have to be synchronised which
is transactionally expensive if the database is geographically
distributed.

B. Relation of Provenance and Causality

Using the causal timestamps Ts[i] as conditions, provenance
descriptive attributes can be queried on their corresponding
audit tables ti as shown in List. 2:

1 use f o r e n s i c s ;
2 s e l e c t t 1 . t 1 I d as ’ Ts [t 1] ’ , t 1 . t 1 e v t t i m e ,
3 t 1 . t 1 e v t t y p e , t 1 . t 1 e v t a c t o r ,
4 t 1 . t 1 e v t d b u s e r , t 1 . t 1 e v t i p a d d r
5 from dbo . t 1 where t 1 . E v t r i u s = 7 ;
6 s e l e c t t 3 . E v t r i t r a s ’ Ts [t 3] ’ , t 3 . t 3 e v t t i m e ,
7 t 3 . t 3 e v t t y p e , t 3 . t 3 e v t a c t o r ,
8 t 3 . t 3 e v t d b u s e r , t 3 . t 3 e v t i p a d d r
9 from dbo . t 3 where t 3 . E v t r i t r = 1 2 ;

10 s e l e c t t 2 . E v t r i p y as ’ Ts [t 3] ’ , t 2 . t 2 e v t t i m e ,
11 t 2 . t 2 e v t t y p e , t 2 . t 2 e v t a c t o r ,
12 t 2 . t 2 e v t d b u s e r , t 2 . t 2 e v t i p a d d r
13 from dbo . t 2 where t 2 . E v t r i p y = 7 ;

Listing 2: Provenance Queries on Audit Tables

TABLE III: Querying Provenance Descriptive Attributes

Ts Time Type Actor ID DB User IP Addr

[7] 16:51:49.360 Insert 1705997013 DBUser 192.168.0.2

[12] 16:51:49.363 Insert 1705997013 DBAdmin 192.168.0.4

[7] 16:51:49.367 Insert 1705997013 DBUser 192.168.0.2

Description of event e7 recorded in audit table t1
Description of event e12 recorded in audit table t2
Description of event e7 recorded in audit table t3

Table III shows the resulting provenance queries, providing
a fine grained description of the 24th, 25th, and 26th event
recorded in the causal table Tl. If a DBUser role has been

assigned to external application users for interacting with the
transactional database, the provenance attributes can detect
misuse, for example when the DBAdmin has performed an
insertion with the same Actor ID as the one used by a DBUser.

C. Measuring Architectural Performance

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1

2
0

3
9

5
8

7
7

9
6

1
1

5

1
3

4

1
5

3

1
7

2

1
9

1

2
1

0

2
2

9

2
4

8

2
6

7

2
8

6

3
0

5

3
2

4

3
4

3

3
6

2

3
8

1

4
0

0

4
1

9

4
3

8

4
5

7

4
7

6

4
9

5

5
1

4

5
3

3

5
5

2

5
7

1

5
9

0

6
0

9

6
2

8

6
4

7

6
6

6

6
8

5

7
0

4

IN
 S

E
C

O
N

D
S

SAMPLES

DML Requests Latency

Audit & Forensics Audit None

Fig. 5: Latency Graph of DML Requests

Fig. 5 shows three stress test scenarios (Table IV) used to
measure the database response latency per each one of the 720
DML Request samples: Despite having some latency, the values

TABLE IV: DML Requests Latency Results (Seconds)

Maximum Minimum Average

Audit & Forensics 1.263 0.005 0.24404

Only Audit 0.797 0.003 0.17255

None 0.223 0.000 0.02750

in Table IV are acceptable for a concurrent scenario, where
using rudimentary audit features may even increase latency
beyond the shown thresholds. For avoiding adding throughput
on the database, our featured audit and forensic components
(Fig. 4) perform serialised operations in relays so that a causal
record can be produced only after its corresponding audit event
has been recorded, adding 3 to 5 ms. of latency, when enabling
‘only audit’ and ‘audit & forensics’ features, respectively.

V. RELATED AND FUTURE WORK

An early attempt to capture a notion of timeliness was
developed in [25]. Later, in [23], research on separation of
concerns in NoSQL databases was conducted whilst the usage
of de-normalised tables for handling evidence was introduced
in [26]. On the contrary, despite not being strictly related
to databases, [27] recently introduced timeline construction
based on audit trails. Our research considers these contributions
in order to formalise Chain of Custody requirements, and
implement a forensically ready architecture for the generation,
collection and preservation of database audit records. Our

findings have established a relationship between provenance
and causality for databases, also inspired by the approach used
in [28]. Future work is expected to be developed for capturing
provenance during the occurrence of SELECT events, which
cannot be done using database triggers.

VI. CONCLUSIONS

For justifying Chain of Custody (CoC) requirements in proac-
tive database forensics, role segregation, provenance, timeliness
and causality must be captured within a forensically ready
architecture.

Regarding role segregation, although trigger auditing func-
tionality can be used, conventional SQL implementations
cannot prevent them to be disabled by malicious or negligent
insiders. We use an explicit forensic database role to deploy
CLR C# triggers and stored procedures, obscuring implemen-
tation details and restricting their access from operational and
administrative database roles (Section III-C).

With regard to provenance, the implemented forensic
database uses de-normalised audit tables to capture provenance
descriptive attributes (Section II-B) along with audit records.
This enables capturing time and type of DML events along
with information about their actors.

Finally, timeliness and causality are mutually related CoC
requirements because one cannot be explained without the
other. Although auditors and forensic investigators may rely
in hardware clock timestamps for explaining DML event
sequentiality, we have proved that vector clock logic timestamps
are equivalent to hardware clock timestamps. Thus, DML
events become independent of hardware clock failures and
manipulations because their occurrence real time becomes a
descriptive provenance attribute rather than an element for
explaining their causality.

ACKNOWLEDGEMENTS

This research was funded by the Secretariat of Higher
Education, Science, Technology and Innovation of the Republic
of Ecuador. We also thank Warwick Cyber Security GRP
for partially funding our research. A special thanks to our
colleague Matthew Bradbury for his valuable comments towards
enhancing this work. A special recognition to Bolı́var Palán
who was, and still is, a dear source of inspiration and example.

REFERENCES

[1] G. B. Saathoff, T. Nold, and C. P. Holstege, “Chapter 3 - we have met
the enemy and they are us: Insider threat and its challenge to national
security,” in Strategic Intelligence Management, B. Akhgar and S. Yates,
Eds. Butterworth-Heinemann, 2013, pp. 24–35.

[2] D. A. Flores, F. Qazi, and A. Jhumka, “Bring your own disclosure:
Analysing byod threats to corporate information,” in 2016 IEEE Trust-
com/BigDataSE/ISPA, 2016, pp. 1008–1015.

[3] B. Guttman and E. A. Roback, An Introduction to Computer Security :
NIST SP 800-12. Gaithersburg, US: National Institute of Standards and
Technology, 1995.

[4] D. Takahashi and Y. Xiao, “Retrieving knowledge from auditing logfiles
for computer and network forensics and accountability,” Security and
Communication Networks, vol. 1, no. 2, pp. 147–160, 2008.

[5] F. Cohen, “Forensic methods for detecting insider turning behaviors,” in
2012 IEEE Symposium on Security and Privacy Workshops, 2012, pp.
150–158.

[6] S. Alharbi, J. Weber-Jahnke, and I. Traore, “The proactive and reactive
digital forensics investigation process: A systematic literature review,”
International Journal of Security and Its Applications, vol. 5, no. 4, pp.
59–72, 2011.

[7] O. M. Fasan and M. S. Olivier, “On dimensions of reconstruction in
database forensics,” in Seventh International Annual Workshop on Digital
Forensics and Incident Analysis (WDFIA), Hersonissos, Crete, Greece,
2012, pp. 97–106.

[8] D. Lee, J. Choi, and S. Lee, “Database forensic investigation based on
table relationship analysis techniques,” in 2nd International Conference
on Computer Science and its Applications, 2009, pp. 1–5.

[9] J. Wagner, A. Rasin, and J. Grier, “Database forensic analysis through
internal structure carving,” Digital Investigation, vol. 14, no. 1, pp. S106–
S115, 2015.

[10] W. K. Hauger and M. S. Olivier, “The state of database forensic research,”
in Proceedings of the Information Security for South Africa (ISSA)
Conference. IEEE, 2015, pp. 1–8.

[11] K. E. Pavlou and R. T. Snodgrass, “Generalizing database forensics,”
ACM Transactions on Database Systems, vol. 38, no. 2, pp. 12–12:43,
2013.

[12] W. K. Hauger and M. S. Olivier, “The role of triggers in database
forensics,” in 2014 Information Security for South Africa, 2014, pp. 1–7.

[13] G. Palmer, “A road map for digital forensic research,” DFRWS
Technical Report, 2001, [Accessed 03 March 2017]. [Online]. Available:
http://bit.ly/28YEaXP

[14] A. Al-Dhaqm, S. A. Razak, S. H. Othman, A. Nagdi, and A. Ali, “A
generic database forensic investigation process model,” Jurnal Teknologi,
vol. 78, no. 6-11, pp. 45–57, 2016.

[15] Association of Chief Police Officers. (2012) Good Practice Guide
for Digital Evidence. [Accessed 03 March 2017]. [Online]. Available:
https://goo.gl/UUHFwQ

[16] W. Lu, G. Miklau, and N. Immerman, “Auditing a database under
retention policies,” The VLDB Journal, vol. 22, no. 2, pp. 203–228,
Apr. 2013.

[17] L. Liu and Q. Huang, “A framework for database auditing,” in 2009
Fourth International Conference on Computer Sciences and Convergence
Information Technology, 2009, pp. 982–986.

[18] Y. A. Rathod, M. B. Chaudhari, and G. B. Jethava, “Database intrusion
detection by transaction signature,” in Computing Communication
Networking Technologies (ICCCNT), 2012 Third International Conference
on, 2012, pp. 1–5.

[19] Q. Huang and L. Liu, “A logging scheme for database audit,” in 2009
Second International Workshop on Computer Science and Engineering,
vol. 2, 2009, pp. 390–393.

[20] A. Rani and S. Thalia, “Knowledge driven decision support system
for provenance models in relational database,” in 2014 International
Conference on Data Science Engineering (ICDSE), 2014, pp. 68–75.

[21] O. Babaoğlu and K. Marzullo, in Distributed Systems (2nd Ed.),
S. Mullender, Ed. New York, NY, USA: ACM Press/Addison-Wesley
Publishing Co., 1993, ch. Consistent Global States of Distributed Systems:
Fundamental Concepts and Mechanisms, pp. 55–96.

[22] E. Casey, Handbook of Digital Forensics and Investigation. Elsevier,
2010.

[23] P. Bailis, A. Ghodsi, J. M. Hellerstein, and I. Stoica, “Bolt-on causal
consistency,” in Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’13. New York,
NY, USA: ACM, 2013, pp. 761–772.

[24] S. Vömel and F. C. Freiling, “Correctness, atomicity, and integrity:
Defining criteria for forensically-sound memory acquisition,” Digital
Investigation, vol. 9, no. 2, pp. 125 – 137, 2012.

[25] G. Bhargava and S. K. Gadia, “Relational database systems with
zero information loss,” IEEE Transactions on Knowledge and Data
Engineering, vol. 5, no. 1, pp. 76–87, 1993.

[26] Y. Zhang and Y. Lin, “Research on the key technology of secure
computer forensics,” in 2010 Third International Symposium on Intelligent
Information Technology and Security Informatics, 2010, pp. 649–652.

[27] W. Halboob, R. Mahmod, M. Abulaish, H. Abbas, and K. Saleem,
“Data warehousing based computer forensics investigation framework,”
in 2015 12th International Conference on Information Technology - New
Generations, 2015, pp. 163–168.

[28] M. Vieira and H. Madeira, “Detection of malicious transactions in dbms,”
in 11th Pacific Rim International Symposium on Dependable Computing
(PRDC’05), 2005, pp. 8–15.

