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Abstract—Block-structured adaptive mesh refinement
(AMR) is a technique that can be used when solving partial
differential equations to reduce the number of cells necessary
to achieve the required accuracy in areas of interest. These
areas (shock fronts, material interfaces, etc.) are recursively
covered with finer mesh patches that are grouped into a
hierarchy of refinement levels. Despite the potential for
large savings in computational requirements and memory
usage without a corresponding reduction in accuracy, AMR
adds overhead in managing the mesh hierarchy, adding
complex communication and data movement requirements
to a simulation. In this paper, we describe the design and
implementation of a resident GPU-based AMR library,
including: the classes used to manage data on a mesh patch,
the routines used for transferring data between GPUs on
different nodes, and the data-parallel operators developed to
coarsen and refine mesh data. We validate the performance
and accuracy of our implementation using three test problems
and two architectures: an 8 node cluster, and 4,196 nodes of
Oak Ridge National Laboratory’s Titan supercomputer. Our
GPU-based AMR hydrodynamics code performs up to 4.87×
faster than the CPU-based implementation, and is scalable on
4,196 K20x GPUs using a combination of MPI and CUDA.

Keywords-adaptive mesh refinement; hydrodynamics;
CUDA; mini-applications;

I. INTRODUCTION

Block-structured adaptive mesh refinement (AMR) allows
fewer resources to be used to achieve the required accuracy
in interesting areas of a problem [1, 2]. These areas of
interest (shock fronts, material interfaces, etc.) are refined,
and recursively covered with rectangular patches of com-
putational mesh at a higher resolution. The patches are
grouped into a hierarchy of levels of refinement that adapt
throughout the computation as the areas of interest move.
Despite the potential for large savings in resource usage
without loss of accuracy, AMR requires dedicating a portion
of application runtime to managing the mesh hierarchy; this
requires complex data management and communication.

Massively parallel accelerator architectures like graph-
ics processing unit (GPUs) can provide order of magni-
tude improvements in application performance [3–5]. With
tremendous memory bandwidth and the ability to operate
on hundreds of data items in parallel, these architectures

provide the perfect platform for many high-performance
computing applications providing they are ported well.
These many-core architectures are the natural extension of
the architectural trends introduced by multi-core processors,
and consist of processors with even more cores, running
at even lower frequencies. At the node level, it is now
common to see an accelerator attached to at typical multi-
core processor.

Most AMR applications run exclusively on the central
processing unit (CPU), and those that do use GPUs often
copy the necessary data between GPU and CPU memory at
the beginning and end of every GPU-based routine [4, 6, 7].
In this paper, we present the first resident implementation
of block-structured AMR on GPUs, where all data is stored
exclusively on the GPU. The SAMRAI library is a collection
of software components for writing AMR codes [8], and
has been to develop scalable CPU-based applications [9].
Building on SAMRAI, we create classes that manage the life
cycle of AMR patches. All routines that manage the patch hi-
erarchy continue to be handled by SAMRAI on the CPU, but
all AMR-specific routines that operate on patch data, such as
the coarsening and refining of data between adjacent levels
in the hierarchy, execute on the GPU. We use this library to
write a GPU-based version of CleverLeaf, a hydrodynamics
mini-application with AMR. Mini-applications are small,
self-contained programs that embody the key performance
characteristics of some key application [10], and provide the
perfect vehicle for investigating new programming models,
algorithms and architectures. The GPU-based version of
CleverLeaf performs up to 4.87× faster than the CPU-based
implementation on a single node, and has been scaled to over
four thousand nodes using a combination of MPI and CUDA.
In this paper, we make the following specific contributions:

• We describe the design and implementation of our
GPU-based extensions to the SAMRAI library, includ-
ing the classes used to manage patch data, the routines
used for transferring data between GPUs on different
nodes, and the data parallel operators developed to
coarsen and refine mesh data.

• To the best of our knowledge we present the develop-
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ment of the only resident GPU-based shock hydrody-
namics application with AMR.

• The application, CleverLeaf, is designed as a proxy
for shock hydrodynamics applications with AMR, and
thus can be used to investigate the performance of
GPU-based architectures for other large hydrodynamics
codes.

• Furthermore, by developing the code as part of the
SAMRAI library, we provide a collection of compo-
nents that can be re-used in other block-structured
AMR applications.

• Through performance analysis, we show that our GPU-
based application performs up to 4.87× faster than
the CPU-based implementation, and present scalability
results using up to 4,096 NVIDIA K20x GPUs.

The remainder of this paper is structured as follows:
Section II contains a description of the AMR technique and
algorithm; Section III discusses related work; Section IV
details the design and development of our GPU-based library
and corresponding hydrodynamics code; Section V presents
a performance analysis library and hydrodynamics code;
and finally, Section VI concludes the paper and offers
suggestions for future work.

II. ADAPTIVE MESH REFINEMENT

Solving equations at higher resolution is more expensive
both in terms of computational time and memory used. AMR
is a computational technique where the resolution of the
simulation is only increased in areas where it is necessary.
For example, when simulating a tsunami travelling across
the ocean the location of the wave is the most important
feature in the solution. The rest of the ocean is much less
interesting, and the impact of the wave is either negligible
or easily approximated. An adaptive simulation would only
simulate the area containing the wave at a high-resolution,
saving both time and memory.

Developed by Berger et al. [1, 2], block-structured AMR
has been successfully applied to many domains that display
disparate physical scales, including cosmology, astrophysics,
and shock hydrodynamics [11–13]. Other domains in which
these disparate scales are observed include various mili-
tary applications (small projectiles impacting much larger
structures) and laser fusion experiments. Improving the
performance of AMR will allow more of these important
problems to be solved without increasing resource usage.

Block-structured adaptive mesh refinement uses a hier-
archy of nested, logically rectangular grids over which the
partial differential equation being solved is discretised. We
briefly present a formal notation for the hierarchy in terms
of these grids. The coarsest grid is the base grid, specified
at the start of the computation and denoted G0. It may be
composed of several patches, which remain fixed throughout
the simulation. Each component patch is denoted G0,j , and

(a) Simple adaptive mesh. Each
grid patch has a thick outline.

G0

G1

G2

(b) Full hierarchy of three grid
levels for the simple mesh.

Figure 1: Example adaptive mesh and the corresponding grid
hierarchy.

thus G0 is the union of its components G0,j :

G0 = ∪jG0,j

During the simulation, refined sub-grids of patches will be
created in response to features in the solution. Sub-grids
are not placed in the coarse grid, but on top of it. Each
sub-grid is defined independently and has its own solution,
and can be advanced almost independently of all other
grids. These independent grids provide a natural method of
domain decomposition allowing for easy parallelisation of
the algorithm.

Fine sub-grids can contain finer sub-grids within their
boundaries. Sub-grids are recursively generated to provide
the necessary level of refinement, creating a hierarchy of
grid levels. The coarse grid G0 is at level 0 in the hierarchy.
Sub-grids of G0 are part of G1 and are described as level 1
refinements. Refined grids within G1 are at level 2. A nested
sequence of sub-grids may be created to cover a portion of
the domain. Figure 1 shows an example hierarchy containing
three grid levels.

The mesh spacing, or resolution, hl for each grid level l
is normally specified in advance, where each hl is an integer
multiple of hl−1. The relationship between the mesh spacing
at each level is typically specified as the refinement ratio:

rl =
hl−1

hl

Grids at different levels of the hierarchy must be properly
nested. A fine grid must start and end at the corner of a
cell in the next coarser grid, and there must be at least one
level l−1 cell separating a grid cell at level l from a cell at
level l− 2 in any direction unless the cell is at the physical
boundary of the domain.

The AMR algorithm we use has three main components:
(i) advancing the simulation using some finite difference
scheme, (ii) error estimation and hierarchy generation, and
(iii) inter-level operations such as solution projection and the
filling of patch boundaries. These procedures are interleaved
to correctly and conservatively advance the simulation on the
adaptive hierarchy. When the simulation is initialised, the



error estimation and hierarchy generation procedure must
be used to generate the hierarchy, since only the coarsest
level is specified by the user. Once the hierarchy is created,
the main loop of the simulation proceeds as follows: first,
the boundary conditions of each patch are filled; second,
the simulation is advanced in time using the integration al-
gorithm; third, the error estimation and hierarchy generation
procedure is used to update the simulation grid.

Each patch will require some data to be placed in ad-
ditional cells around the patch edge to provide boundary
conditions for the system of partial differential equations.
Boundary data for each patch can be filled in one of three
ways: (i) with the physical boundary conditions, (ii) with
the data from a neighbouring patch on the same level, or
(iii) with the data from a neighbouring patch on the next
coarsest level. When data is transferred between levels it
must be interpolated to correctly fill the increased number
of smaller cells on the finer level.

Since each patch is defined as an independent computa-
tional entity with its own solution storage, each patch can
be integrated in time independently once its boundary values
are supplied. This independence means that, using the patch
as a basic unit of work in the simulation, work can be easily
shared between multiple processes. The solution on a patch
is modified in the case when a cell is covered by a fine
grid, and the coarse cell value is replaced by a conservative
average of the fine cell values that cover the coarse cell.

At the beginning of the simulation, and with a given
frequency, an error estimation procedure is invoked to de-
termine the structure of the patch hierarchy. When more
than one level of patches exists, the procedure is applied
recursively from the second finest to the coarsest level of
the hierarchy. This regridding procedure has three steps:
flagging, where a heuristic is applied to determine which
level l cells ought to be covered by the level l+ 1 patches;
clustering, where the new set of level l patches is created
from a set of flagged cells on level l−1; and solution transfer,
where data is copied from the old to the new hierarchy.
Once the regridding procedure is completed, the next time
step starts and the main algorithmic steps (boundary value
determination, integration, and regridding) are repeated until
the end of the simulation.

III. RELATED WORK

Berger’s adaptive mesh refinement algorithm was pre-
sented in 1984, and many computational physics codes
have been ported to GPUs since the release of CUDA in
2007 [1, 3, 14–17]. However, there is little work where
AMR codes have been ported to GPUs. We suppose that
this is due to the large amount of data management required
when updating the adaptive hierarchy, and the fact that the
nave method for porting codes to GPUs revolves around
repeatedly copying simulation data to and from the GPU
across the slow PCI bus.

An early paper by Wang et al. describes an implementa-
tion of a compressible flow solver with AMR on GPUs [4].
At the beginning and end of the Runge-Kutta kernel used to
advance the solution, the required data must be copied from
the CPU to the GPU. This basic implementation achieves a
10x speedup over a single CPU core, although with today’s
supercomputer nodes typically having at least 16 processor
cores, this number is not high enough to make this method
useful.

In [18] the authors briefly describe a forest-of-octrees
based AMR algorithm for seismic wave propagation on
GPUs. The implementation doesn’t appear to be resident,
as although the text lacks sufficient details about the GPU-
based implementation, the results presented include timings
for transferring the mesh and initial data to the GPU from
the CPU memory. Nevertheless, the parallel performance of
the code is scalable on up to 256 GPUs.

Schive et al. introduce GAMER, an astrophysical simu-
lation code with both AMR and GPU support [19]. Both
the Eulerian hydrodynamics and self-gravity phases of the
application are solved on the GPU, but the necessary data is
stored in the CPU memory, and must be transferred to the
GPU memory before a computational kernel is launched.
The data transfer is performed concurrently with other
computation, so its impact is minimised, and the authors
note that data transfer time typically only takes 30% of the
application runtime.

The Uintah framework from the University of Utah is an
AMR framework that supports GPUs [7, 20]. The focus in
Uintah is on heterogeneous platforms, and as with GAMER,
solution data must be copied between the CPU and GPU
memory as required by the numerical kernels. These data
transfers are overlapped with other work, but nevertheless,
this is not a fully resident framework.

The CLAMR application developed at Los Alamos Na-
tional Laboratory is a cell-based AMR code that solves
the shallow-water equations [21]. Implemented in OpenCL,
the code is resident; initial conditions are set on the CPU
and then copied to the GPU memory at that start of the
simulation, but data is not copied back to the CPU during
the simulation timestep. The cell-based scheme is different
to the block-structured approach described by Berger and
used in our work.

The most promising application is presented in [6],
which describes a resident implementation of patch-based
AMR application for solving the shallow-water equations.
The authors take a similar approach to our library and
ensure all computationally expensive parts of the AMR
library are handled on the GPU, and they demonstrate
performance improvements of up to 3.4× compared to a
uniform GPU-based implementation of the same algorithm.
Despite the similarities to our work, the domain (shallow-
water equations) is different, and there is not a focus on
large-scale parallel performance analysis.



To the best of our knowledge we have developed the only
resident GPU-based shock hydrodynamics code with AMR.
Furthermore, by developing the code as part of the SAMRAI
library, we provide a collection of components that can be
re-used in other block-structured AMR applications.

IV. DESIGN AND DEVELOPMENT

In this section we describe our GPU-based extensions to
the SAMRAI library that allow AMR simulations to execute
on accelerator-based node architectures. To test the library in
the context of a real application, we extend the CleverLeaf
mini-application using our newly developed library, and
perform a performance analysis on over 4,000 GPUs. The
development of library and the extensions to CleverLeaf
are made easier by the adherence to the design patterns
present in SAMRAI. We highlight the essential object-
oriented abstractions that allow our GPU-based library to
be fully compatible with existing SAMRAI code.

A. Programming Models

The design of the GPU-based extensions to SAMRAI
are constrained by the design of accelerator-based nodes.
Accelerators such as GPUs are devices specialised for fast
floating point performance, that are attached to a CPU, but
have their own memory space. Currently, the CPU and GPU
communicate by transferring data across the PCI bus. This
link between the two memory spaces is much slower than
access to main memory, so a key design point is avoiding
unnecessary transfer of data over this interface. Typically,
the network interface will also be connected to the CPU,
and when data must be transferred from the GPU across the
network, it must first be copied to the CPU memory.

Programming for GPUs typically requires the use of a
programming model such as CUDA or OpenCL [22, 23].
More recent developments in directive-based approaches like
OpenACC and OpenMP 4 provide another way to execute
code on an attached accelerator [24, 25]. For this work, we
use NVIDIA’s CUDA programming model. GPU functions
are written as kernels which are executed simultaneously
in a single-instruction-multiple-data (SIMD) fashion on the
device.

A CUDA-capable GPU is a collection of stream multipro-
cessors (SMs), consisting of a number of stream processors
(SPs) that share an instruction cache. The CUDA program-
ming model revolves around the concept of threads, blocks,
and grids that execute on these hardware units. A thread
executes on a single SP, and blocks are groups of threads
that are mapped to SMs and will execute concurrently. A
grid is a collection of thread blocks, typically dependent on
the size of the data being manipulated. The grid can be either
one- or two-dimensional, and defines the total index space
for the threads. These grids are used to map threads onto
portions of the application domain. When a device kernel is
launched, each thread runs one instance of the kernel. The

co-ordinates of a thread can be accessed inside the kernel,
allowing each thread to determine which elements of global
data to process.

OpenCL uses a similar programming model to CUDA,
with GPU functions being written as kernels that will be
executed in parallel on a given device. The use of CUDA in
our work is an implementation detail, and the techniques we
apply would map equally well to OpenCL. The OpenACC
and OpenMP programming models rely on source code
annotation to mark regions of code for execution on the
GPU. These annotations are flexible and portable between
different architectures, and hence tend to discourage explicit
control of important parameters such as the number of
threads launched. They also hide the low level control
required to explicitly manage memory, a feature of CUDA
(and OpenCL) that is essential in our library.

B. CudaPatchData

The SAMRAI library uses object-oriented design patterns
to allow for easy interaction with user-supplied code [26].
Each of the basic structural units of the AMR hierarchy:
patches, patch levels, and the patch hierarchy itself; are pro-
vided as fundamental software constructs by SAMRAI. The
Patch class is a container for all the data living in a partic-
ular mesh region, and provides a way to access this data. All
the data on a patch are handled using PatchData objects,
each of which represents some simulation quantity on the
mesh. The PatchData interface uses the Strategy design
pattern [27], and defines a set of operations that an object
must provide in order to be interoperable with SAMRAI’s
data management and communication routines. We use this
interface to develop a library capable of storing patch-based
data in GPU memory whilst still using SAMRAI for mesh
management, communication, and visualisation.

1) PatchData Interface: The PatchData interface de-
fines the operations a class must provide to allow SAM-
RAI to gather data from the patch in order to transfer it
to other patches in the hierarchy. The functions that the
PatchData routines must perform include copying data
from one PatchData object to another, packing the data
corresponding to a given region of the patch into a buffer,
and unpacking data from a buffer into a given patch region.
These methods are the key points of the PatchData
interface that we implement. By allowing an application
to fully control data management, SAMRAI is easy to use
in an existing application. In the case of our GPU-based
extensions, the abstraction provided by the PatchData
interface is at the perfect level to let us store simulation
data in the GPU memory at all times and only copy data
across the PCI bus when necessary. Figure 2 documents the
full PatchData interface.

2) CudaPatchData Libray: The CudaPatchData library
we have developed contains two packages: pdat, which
contains three different PatchData implementations for



PatchData

- Box d_box
- Box d_ghost_box
- IntVector d_ghosts
- double d_timestamp

+ getBox() : Box
+ getGhostBox () : Box
+ getGhostCellWidth() : IntVector

+ setTime(timestamp : double) : void
+ getTime() : double

+ copy(src : PatchData) : void
+ copy2(dst : PatchData) : void
+ copy(src : PatchData, overlap : BoxOverlap) : void
+ copy2(dst : PatchData, overlap : BoxOverlap) : void

+ canEstimateStreamSizeFromBox() : void
+ getDataStreamSize(overlap : BoxOverlap) : void
+ packStream(stream : MessageStream, overlap : BoxOverlap) : void
+ unpackStream(stream : MessageStream, overlap : BoxOverlap) : void

+ getFromRestart(restart_db : Database) : void
+ putToRestart(restart_db : Database) : void

+ getDim() : Dimension

Figure 2: The SAMRAI PatchData inteface.

CudaArrayData

double* d_cuda_buffer;

CudaCellData

CudaArrayData* d_array_data;

CudaNodeData

CudaArrayData* d_array_data;

CudaSideData

CudaArrayData* d_array_data;

PatchData

Figure 3: The SAMRAI CudaPatchData data-types.

managing data in GPU memory; and geom, which provides
a collection of coarsen and refine routines that are essential
when copying data between patches at different levels of the
hierarchy.

The three different PatchData implementations are
specialised for the three data-centrings required for the
hydrodynamics scheme implemented in CleverLeaf. The
common data store for each class is the CudaArrayData
object. This class is responsible for allocating a contiguous
array of data in GPU memory, corresponding to a given box
size. This class also contains data-parallel routines to copy
data, pack a region of the array into a buffer, and unpack a
buffer into a region of the array. Each data-centring passes
a slightly different Box to the CudaArrayData object
it owns, ensuring the necessary data is stored. The three
centrings required for CleverLeaf are: cell-centred, node-
centred, and side-centred. Figure 3 shows the design of each
class, as well as the data that each stores.

double* cuda_stream;

packStream()

(3,3)

(4,4)

CudaArrayData

double* d_cuda_buffer;

CudaCellData

CudaArrayData* d_array_data;

T2T0 T3T1

Figure 4: Data-parallel buffer packing for MPI operations.

During an AMR simulation, boundary conditions can be
filled using the physical boundary conditions, with data from
a neighbouring patch on the same level, or with data from
a patch on the next coarser level. Filling the boundary cells
with the physical boundary conditions is handled by the
application, and requires no additional features to be added
to our library. When data must be transferred between two
patches at the same level of refinement, a copy routine is
used. If the two patches involved in the copy operation
are located on different nodes the required data must be
packed and transferred using MPI. Supporting large parallel
architectures is essential for any modern scientific code, and
by including the necessary routines in our library we can
use MPI to run on multiple GPUs.

The data-parallel copy and packing operators use the same
general design. Each operation will receive a Box as one of
its parameters. This box describes the region of the patch that
needs to be operated on. In all cases, the size of this box
controls the number of CUDA threads that will be launched.
Each thread will then be responsible for copying, packing,
or unpacking one array element.

In the case of the pack and unpack methods, we provide
CUDA kernels to pack data from the required region into a
contiguous buffer in GPU memory. This buffer is then copied
to the host memory and passed to SAMRAI, which handles
the MPI communications. To unpack received data, the
buffer is copied into the GPU memory and then unpacked in
parallel using another CUDA kernel. Once the data has been
transferred, a new PatchData object is created locally and
the copy operators described previously can be used to fill
the boundary cells on the receiving processor. We launch
one CUDA thread per element to be packed into the buffer,
ensuring the maximum amount of parallelism is exposed. As
an example, Figure 4 shows how the overlapping region is
copied into the contiguous buffer in parallel.

The routines described by the PatchData interface are
sufficient for transferring data between objects at the same



level of refinement. However, to transfer data between ob-
jects at different refinement levels, we must use a refinement
operator or a coarsen operator. These operators interpolate
the data to fill the differing number of cells on the receiving
level. In SAMRAI, these operations are handled by two
interfaces: CoarsenOperator and RefineOperator;
that provide the necessary methods for coarsening or refining
data. To allow the CudaPatchData classes to be used in
an AMR simulation, we must provide operators to coarsen
and refine data resident in GPU memory between different
levels of the hierarchy.

The four operators we provide for coarsening and refining
are fully data-parallel. As with the copy, pack, and un-
pack routines, each method executes using multiple CUDA
threads. These are, to the best of our knowledge, the first
data-parallel implementations for each of these operators.
As an illustrative example, we consider linear interpolation
for node-centred data. The code listing for our data-parallel
algorithm is shown in Figure 5. In a typical implementation,
data dependencies exist between temporary variables in
different loop iterations and the algorithm is not immediately
amenable to the data-parallel programming model of a GPU.
Through substitutions and some operation re-ordering, we
remove these dependencies and develop an algorithm that
is fully data-parallel. When this kernel is launched to refine
some region of data, one CUDA thread can be used per
fine node, offering massive parallelism. We also provide
conservative linear refine operators for the cell- and side-
centred data, as well as a node-centred injection operator.

Together, the pdat and geom packages provide all the
necessary components for a block-structured AMR sim-
ulation to be solved on a GPU, all that the user code
must provide is a black-box integrator that can advance the
simulation on a single patch.

C. Adding GPU Support to CleverLeaf

We have used the GPU-based SAMRAI extensions de-
scribed so far port the CleverLeaf mini-app to GPUs.
The original version of CleverLeaf is a CPU-based code,
which extends the CloverLeaf mini-app by adding AMR.
CloverLeaf is a 2D explicit hydrodynamics mini-app that
solves Euler’s equations on a structured grid [28–30]. Both
CloverLeaf and CleverLeaf are available for download as
part of the award-winning Mantevo suite [31].

CleverLeaf uses a single class to control the integration
of the numerical solution on a patch. This class functions as
a black box, and the remaining routines written to advance
the simulation on the mesh hierarchy can remain unchanged
even when a new programming model is used.

To develop the GPU-based version of CleverLeaf, we
created a new patch integrator class that contains the code
specific to advancing the solution on a single patch on a
GPU. All references to the CPU-based PatchData objects
provided by SAMRAI were replaced with references to the

const int nblocks = (fine_box_size + BLOCK_SIZE - 1)/BLOCK_SIZE;

const int2 ratio = make_int2(ratio_vector[0], ratio_vector[1]);

cudaEvent_t fine_kernel;
cudaStreamSynchronize(coarse_stream);

cartcudanodelinrefine2d_kernel
<<<nblocks, BLOCK_SIZE, 0, fine_stream>>>(
coarse_data,
coarse_data_offset,
coarse_data_width,
fine_data,
fine_data_offset,
fine_data_width,
fine_box_width,
fine_box_height,
ratio);

cudaEventCreate(&fine_kernel);
cudaEventRecord(fine_kernel, fine_stream);
cudaStreamWaitEvent(coarse_stream, fine_kernel, 0);

(a) Host C++ code for launching the data-parallel linear refine
kernel.
if (column < fine_box_width && row < fine_box_height) {

const double realrat0 = 1.0/static_cast<double>(ratio.x);
const double realrat1 = 1.0/static_cast<double>(ratio.y);

const int ic0 = floor(column/static_cast<double>(ratio.x));
const int ic1 = floor(row/static_cast<double>(ratio.y));

const int ir0 = column - (ic0*ratio.x);
const int ir1 = row - (ic1*ratio.y);

const double x = ir0*realrat0;
const double y = ir1*realrat1;

const int coarse_index = (coarse_data_offset+ic0)
+ (ic1*coarse_data_width);

arrayf[fine_index] = (arrayc[coarse_index]*(1.0-x)
+ arrayc[coarse_index+1]*x)

*(1.0-y) + (arrayc[coarse_index+coarse_data_width]*(1.0-x)
+ arrayc[coarse_index+1+coarse_data_width]*x)*y;

}

(b) Data-parallel CUDA linear refine kernel for node-centred
data.

Figure 5: Host and device code for data-parallel node-
centred linear refine.

CleverLeaf

LagrangianEulerianIntegrator

LagrangianEulerianLevel
Integrator

Cleverleaf

main Create and compose simulation objects

Manage adaptive hierarchy and advance 
simulation

Advance simulation on a single level

Advance simulation on a single patch 
using appropriate physics kernelsCudaleaf

Figure 6: Flexible CPU and GPU implementation in Clev-
erLeaf.

GPU-based CudaPatchData objects we have developed.
We advance the simulation by passing a pointer to the
data from these objects to CUDA kernels functions. Figure
Figure 6 shows how the two patch integrator classes are
driven by the top level algorithm.

Control of data communication and mesh



management continues to be provided by the
LagrangianEulerianIntegrator and
LagrangianEulerianLevelIntegrator classes
using SAMRAI’s various packages. This code is identical
to the CPU-based version of the mini-app, and observing
and implementing the PatchData interface meant that no
additional changes were needed to allow CleverLeaf to run
on GPUs.

To support adaptive simulation of Euler’s equations on
NVIDIA GPUs, we require three additional routines to allow
data-parallel execution on GPU hardware. These routines are
used to flag cells for refinement, and coarsen data between
two levels in two specific ways: mass-weighted and volume-
weighted.

Evaluating the tagging heuristic at each mesh cell is triv-
ially parallel. Since the heuristic does not update any mesh
data, and since each point can be calculated independent of
any other, the routine can evaluate each point in the patch
using a separate CUDA thread. However, once cells have
been flagged for refinement, they must be transferred to the
host memory to allow SAMRAI to construct the updated
mesh hierarchy.

To transfer the data, we compress the array of tags (stored
as ints) to an array of bits, where a 1 represents a flag,
and 0 represents no flag. This compression minimises the
amount of data that must be transferred, and is particularly
important when a patch is large. Additionally, we store a
tagged flag for each patch. If no cells in a patch are flagged
for refinement then we don’t copy data, since re-creating the
appropriate data in the host memory is trivial.

Volume- and mass-weighted coarsen operations are essen-
tial in hydrodynamics simulations using AMR because they
ensure that the quantities being simulated are conserved. To
the best of our knowledge, we present the first implementa-
tion of these data-parallel operators. Each coarsen operator
follows the same general pattern, with one CUDA thread
being launched for every coarse value that needs to be
filled. This thread then reads the relevant fine values and
performs the necessary mathematical operations to calculate
the coarse value. Figure 7 shows this operation for the
volume-weighted coarsen schematically, and the algorithm
we use is presented in Figure 8.

Combining the CudaPatchData classes and the rou-
tines described in this section allows CleverLeaf to simulate
Euler’s equations natively in GPU memory. Simulation data
is stored in global memory at all times, and the relevant
regions of data are copied to the host memory in three sit-
uations: regridding, boundary updates, and synchronisation.

V. PERFORMANCE ANALYSIS

To asses the performance and scalability of our imple-
mentation we performed a series of experiments using two
different architectures: the IPA testbed machine at Lawrence
Livermore National Laboratory and the Titan supercomputer

Fine Box

(1,1)

(4,4)

Coarse Box

(1,1)

(2,2)

T0T0 T0T0

T0

ci =
⌃4

j=1fjvol(j)

vol(i)

Figure 7: Data-parallel volume-weighted coarsen operator.

const int global_index = blockDim.x * blockIdx.x + threadIdx.x;

const int coarse_row = global_index / box_width;
const int coarse_column = global_index % box_width;

const int fine_row = coarse_row*row_ratio;
const int fine_column = coarse_column*column_ratio;

const int coarse_index = (coarse_data_offset + coarse_column)
+ (coarse_row * coarse_data_width);

const int fine_index = (fine_data_offset + fine_column)
+ (fine_row * fine_data_width);

if (coarse_row < box_height && coarse_column < box_width) {

double spv = 0.0;

for (int j = 0; j < row_ratio; j++) {
for (int i = 0; i < column_ratio; i++) {
const int current_fine_index = fine_index + i
+ (j * fine_data_width);

spv += fine_data[current_fine_index]*Vf;
}

}

coarse_data[coarse_index] = spv/Vc;
}

Figure 8: Code listing for the data-parallel volume-weighted
coarsen kernel.

at Oak Ridge National Laboratory. The hardware and soft-
ware configuration of each platform is detailed in Table I.
The experiments use a range of problem sizes and node
counts, and are designed to test both serial performance and
parallel scalability.

IPA Titan

Processor Intel Xeon E5-2670 AMD Opteron 6274
Clock 2.6 GHz 2.2 GHz

Accelerator NVIDIA Tesla K20x NVIDIA Tesla K20x
PCI gen

Nodes 8 18,688
CPUs/node 2 × 8 cores 1 × 16 cores
GPUs/node 2 1

CPU RAM/node 128 Gb 32 Gb
GPU RAM/node 6 Gb 6 Gb

Interconnect Mellanox FDR Infiniband Cray Gemini
Compiler Intel 13.1.163 Intel 13.1.3.192

MPI MVAPICH 1.9 Cray MPT
CUDA Version 5.5 5.5

Table I: IPA and Titan: hardware and software configura-
tions.



3125 200000 6400000

10.62
200
400
600
800

940.47

Resolution (coarse zones)

R
un

tim
e

(s
)

NVIDIA K20x
Intel E5-2670

Figure 9: Serial performance.

A. Serial

Our first study compares a single NVIDIA Kepler K20x
to one node (16 cores) of dual-socket Intel Xeon E5–2670
“Sandy Bridge” running at 2.6GHz. We use the Sod problem
described previously and run 1000 timesteps at a range of
coarse resolutions from 3 thousand to over 6 million zones,
using 3 levels of refinement and a refinement ratio of 2.
Figure 9 contains the results of this experiment. At small
problem sizes the GPU and CPU performance are similar,
and in all cases less than 200,000 cells the performance
of the GPU is an average of 1.6× slower than the CPU.
However, at large problem sizes, we see a performance
improvement of up to 2.67×. The average speedup of the
GPU on problem sizes 200,000 cells and over is 1.99× This
performance improvement at larger problem sizes is typical
of the throughput-oriented GPU architecture.

B. Parallel

The second performance experiment investigates the scal-
ability of our code as the number of GPUs is increased
from 2 to 16 (1 to 8 nodes), we also include equivalent
results for the CPU-based code. The experiment is a strong-
scaling study, where the problem size remains constant as
the number of GPUs (or nodes) is increased. We use the 6.4
million zone problem and run for 1000 timesteps. The results
of this experiment are detailed in Figure 10, and for all node
counts, the performance of the GPU-based code is better
than the GPU-based code. For a single node, with two GPUs
compared against two CPUs (16 cores), the GPUs are 4.87×
faster. At eight nodes (16 GPUs vs. 128 cores) the GPU-
based code is still 1.92× faster. We attribute this reduction
in performance to the data transfer required during the
boundary exchanges and the regridding phase beginning to
dominate the simulation runtime; a consequence of running
our experiment as a strong-scaling study and the effects of
Amdahl’s law. Since the parallel region of the code is so
small, runtime is dominated by the serial fraction and as
additional GPUs are added, the parallel region represents
only a small portion of overall runtime compared to the
serial regions of the code [32].

Our third experiment investigates the performance of our
code at large scale, running on over 4 thousand GPUs on
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Figure 10: Strong-scaling parallel performance.
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Figure 11: Weak-scaling performance analysis on Titan.

the Titan system at Oak Ridge National Laboratory. This
experiment is a weak-scaling study, where the problem
size is increased as the number of GPUs is increased. In
theory, this means that each GPU will have a constant
amount of work, and any costs associated with using an
increasing number of nodes will be highlighted. We use
a modified version of the triple point shock interaction
problem presented in [33]. A rectangular domain is split
into three regions, and as the simulation progresses from its
initial state a strong shock travels from left to right. This
shock generates a large amount of vorticity and creates a
complex area of interest, with a large number of patches
moving throughout the simulation domain.

We run at seven different node counts, from 1 to 4,096; we
use effective resolutions from 2 million to over 8 billion cells
with 3 levels of refinement and a refinement ratio of 2. Weak
scaling an AMR problem can be difficult since keeping
the computational work per-GPU the same is difficult. In
this experiment we increase only the coarse resolution and
always run to the same physical end time regardless of the
number of timesteps required. Figure 11 presents our results,
normalised as average grind times per-cell for each node
count. Each component of simulation runtime gradually
increases as more nodes are added, however, we are able
to run the problem on over four thousand nodes. It is also
interesting to note that the majority of the simulation runtime
is spent in the hydrodynamics of the application (including
numerical kernels and halo exchanges). The AMR-specific
runtime components, regridding and synchronisation, com-



prise only a fraction of the overall runtime.
Specifically, at 4,096 nodes 44% of the runtime is spent

advancing the simulation; this includes the hydrodynamics
kernels and boundary exchanges. Calculating the timestep,
which contains the only global reduction operation consumes
6% of the runtime. Synchronising fine data to the coarser
levels takes an average of 3% of the runtime. In contrast,
on a single node 59% of the runtime is spent advancing
the simulation, with only 1% of time spent synchronising
levels, and less than 1% calculating the global timestep. In
both cases the time taken to fill boundaries remains roughly
the same.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have described our GPU-based AMR
package, and shown how it can be used in a shock hydrody-
namics mini-application. Using the object-oriented design
of the SAMRAI library we developed a set of classes
that allocate and manipulate patch-based data on the GPU.
Our implementation is resident, with data located in GPU
memory at all times, and we provide the routines necessary
for transferring data between GPUs on different nodes, and
coarsening and refining data in parallel on the GPU. The
novelty of this work lies in the fact that our implementation
is resident, and that we have developed the first fully data-
parallel versions of a range of coarsen and refine operators.
We have compared the performance and scalability of our
GPU-based code to the existing CPU-based code. The GPU-
based code is up to 4.87× faster than the CPU-based code.
Finally, we have demonstrated scalability on up to 4096
GPUs on the Titan system at Oak Ridge National Laboratory.
In future work, we plan to investigate ways to mitigate the
performance impact of copying data between the GPU and
host memory by overlapping data transfer and computation.
We also plan to investigate mechanisms to allow efficient
use of the CPU and GPU memory simultaneously, such as
allowing patches to be “spilled” into CPU memory and then
be transferred back to the device when necessary. Using both
CPU and GPU resources will allow larger problems to be
solved and increase the relevance of our implementation to
production codes.
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