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Hey, do you never say goodbye?

And now I’m so sorry

For everything I’ve done.
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Abstract

The single shooting method is applied to the optimal control of very flexible aeroelastic

wings and the combined structural and control design (co-design) of geometrically nonlin-

ear beam models in vacuum. As large deflections occur, the dynamical properties of these

systems can undergo substantial changes. Efficient actuation strategies require charac-

terising, and possibly exploiting, these phenomena. With this purpose, geometrically-

nonlinear models are built using composite beams and an unsteady vortex-lattice aero-

dynamics description. Optimal control is employed to identify actuations time-histories.

Numerical solutions are obtained via single-shooting and sequential quadratic program-

ming upon parametrisation of the control input. The approach is also extended to

assess the feasibility of an integrated design strategy for active geometrically-nonlinear

structures.

Numerical studies are first presented for a very flexible actuated pendulum with

large rigid-body motion. The impact of local (B-splines) and global (discrete sines)

basis functions is investigated for increasing levels of actuation authority, underlining the

importance of the time-frequency resolution of the parametrisation on the convergence

properties and outcome quality of the process. Locking between control and structural

vibrations around specific design points is found, thus highlighting the limitations of a

sequential design approach. Simultaneous designing of control law and structure is seen,

instead, to explore more efficiently larger portions of the design space.

The lateral manoeuvring of very flexible partially-supported wings is then considered.

A flight-dynamics model based on elastified stability derivatives is shown to capture the

relevant dynamics either under slow actuation or for stiff wings, and it is hence used as

a reference. Embedding the full aeroelastic description into the optimisation framework

expands the space of achievable manoeuvres, allowing for quick wing response with low

structural vibrations or large lateral forces with minimal lift losses.
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Chapter 1

Introduction

Since the early 1930s, when the transition from wood and fabric to metal aeroplanes

occurred, aircraft design has been predominantly characterised by relatively heavy ma-

terials and stiff structures [2, 3]. While the quest for high efficiency and low structural

weight have always represented the leitmotiv of aeronautical engineering, slightly over-

sized airframes often offered the only practical solution for increasing the robustness

of aircraft design. By introducing a level of conservatism, these allowed to overcome

some of the modelling uncertainties associated to the design process and guarantee, this

way, safe flight. The need to boost airliners revenue, fuel prices uncertainties and, more

recently, growing concerns about climate change, are, however, only a few of the fac-

tors which kept encouraging the chase for higher fuel efficiency. In civil aviation, this

trend translated in the launch of the Airbus A350 XWB and the Boeing 787 Dreamliner

aircraft families. Aside for improved engine economy and low drag wings, the large cut-

down in operational cost and CO2 emissions claimed by their manufactures is also merit

of a considerable weight reduction, achieved through a large use of composite materials

(arriving to around 50 % of the total structural weight) in the wing and the fuselage

primary structures.

The level of weight reductions in civil or, more generally, manned aircraft is, how-

ever, bounded by the presence of humans and by the safety requirements associated to

it [4]. Uninhabited aerial vehicles (UAVs) offer, instead, an expanded design range in

which aircraft concepts capable, or aiming to, satisfy extreme operational requirements

can fit. Recent developments in communications systems and airborne sensors, in par-

ticular, have lead to a large interest for high-altitude long-endurance (HALE) unmanned

aircraft, that could be used for surveillance, reconnaissance or also as pseudo-satellites

[5–7]. These novel aircraft concepts are required extremely long missions if not even

perpetual flight. Some HALE prototypes, like the solar powered Airbus Zephyr 7 —

which set a world record 336 h flight at altitudes above 70 000 ft, have already took flight

(Fig. 1.1a). Others, like the over 40 m wing-span facebook Aquila (Fig. 1.1b), are still in

early development, but their target missions would last months and would require flying
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Chapter 1. Introduction

at altitudes between 60 000 ft and 90 000 ft.

(a) Airbus Zephyr 7
Image credit: Airbus Defence & Space

(b) facebook Aquila
Image credit: facebook

Figure 1.1: Some representative HALEs.

Aircraft range mainly depends on weight, engine efficiency and lift to drag ratio [8].

As lift is constrained by the aircraft weight, reducing drag is possibly the primal goal of

aircraft design when endurance requirements are extreme. To better understand what

are the main parameters affecting the vehicle drag, one can refer to the drag polar

equation [4]

CD = CD0 +
C2
L

πeAR
(1.1)

which provides a quick estimate of the dependency of the drag coefficient, CD, upon the

lift coefficient, CL. In eq. (1.1) CD0 is the zero lift drag, which depends upon the wing

profile drag and the friction and pressure drag produced by all the aircraft components

— fuselage, engines, control surfaces, etc. The second term in eq. (1.1) is, instead,

referred to as induced drag and is inherently associated to the lift. This is, in fact,

due to the downwash produced by the wing tip vortices structures, and depends on the

wing aspect ratio, AR. The Oswald factor e is a correction term of order one which, at

subsonic speeds, will depend on the wing planform only.

The drag polar equation shows that large ARs, hence large wing spans, are essential

for reducing drag and increasing flying autonomy. Furthermore, large wing areas are

needed for producing enough lift when flying at relatively low speeds and altitudes above

60 000 ft, where the air density is below 10 % the sea level values. From a structural

perspective, however, large wing spans also imply potentially high bending moments at

the wing root. To withstand these, the wing can be reinforced, as shown by the truss-

braced wing concept of the SUGAR Volt hybrid aircraft, Fig. 1.2a [9]. As underlined by

the survey from Cavallaro and Demasi [10], however, the assessment of which class of

aircraft may benefit more from joined wings concepts is still an open research questions,

especially due to the highly multidisciplinary nature of these systems. In particular, a

very careful design would be required to ensure robustness against buckling and flutter

instabilities while maintaining light airframes. These concepts remain very promising

for large transportation aircraft, whose layout provides greater margin than in HALE
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aircraft. In the latter case, instead, most design solutions still consider slender and very

flexible wings, possibly exhibiting large deflections in flight, as the best compromise for

achieving large wing spans while minimising structural weight. This was the case of the

Helios aircraft shown in Fig. 1.2b.

(a) Sugar Volt hybrid aircraft
Image credit: Boeing

(b) NASA Helios HALE
Image credit: NASA

Figure 1.2: Impact of structural reinforcement on the flying shape of very high aspect-
ratio wings.

Designing this kind of vehicles is, however, a challenging task, especially because

modelling techniques have long been tailored for stiffer wings, which exhibit small struc-

tural deformations and frequency separation between flight-dynamics and structural

modes [3]. Exploiting these features, structural models are often based on linear de-

scriptions, while flutter and flight-dynamics analysis are separated [1]. The first ones,

in particular, commonly adopt a frequency description, while the latter rely either upon

flex-to-rigid corrections of the aircraft stability derivatives [3, 11] or the mean-axis ap-

proximation [12, 13]. The inadequateness of these techniques for the modelling of very

flexible wings vehicles was proved by the mishap of the NASA Helios prototype in 2004

which, according to the subsequent technical investigation, was due to an unexpected

change of the wing configuration following a gust. The related report highlighted the

need to develop more advanced multidisciplinary (structures, aeroelastic, aerodynamics,

atmospheric, materials, propulsion, controls, etc.) ”time-domain” analysis methods ap-

propriate to highly flexible, morphing, vehicles and procedure to control wing dihedral in

flight [14].

An excellent re-examination of design procedures for very flexible vehicles is provided

by Cesnik et al. [3]. In this work, four major areas of improvements with respect to

standard procedures are identified:

1. the deformed aircraft geometry [...] should now be the baseline in weight, structural

and stability analyses;

2. transient dynamic simulations should include large nonlinear displacements;

3. aeroelastic models should incorporate rigid-body motion;
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4. flight-dynamics models should incorporate nonlinear aeroelastic effects.

In order to address these points, a number of fully coupled simulation strategies,

based on a geometrically nonlinear description of the wing structural model [15, 16],

have been developed in the last two decades [17–19]. As a consequence of point 4, how-

ever, the complexity of the aircraft flight-dynamics description is largely increased and

becomes harder to define and assess manoeuvres on the vehicle, particularly regarding

their optimality with respect to any energy efficiency or handling quality based per-

formance requirement. On the other hand, unconventional manoeuvres which exploit

aeroelastic effects may also be employed to enhance performance. Control surfaces, for

instance, could morph the very flexible wing and correct its aerodynamics, so as to

improve handling qualities or reduce structural loads. Also the vibrational dynamics,

likely to arise during manoeuvring when airframes have low stiffness, may be exploited

for extra performance; if not possible, the impact of vibrations suppression on the vehicle

manoeuvrability features should still be minimised. These considerations lead directly

to the main scope of this research, which will consider optimal control for defining ma-

noeuvres with very flexible wings.

As numerical methods for optimal control are closely linked to the theory of optimi-

sation, a framework for optimal control of very flexible vehicles would, ideally, also allow

for a relatively straightforward extension to an integrated structural/control design. In

fact, dynamic effects are likely to be relevant when actuating very flexible structures

and it is important to assess how vibrations and actuation mutually influence each other

from an early stage development phase [20]. For this reason, this research may have a

relevant impact not only in the design of very flexible wings HALE aircraft but also on

other novel structures characterised by geometrically nonlinear dynamic response, such

as novel horizontal axis wind turbines (HAWT).

1.1 Literature review and theoretical concepts

As briefly introduced in the preface of this chapter, a methodology for defining manoeu-

vres for vehicles with very flexible wings requires firstly establishing a computationally

efficient description of their flight-dynamics. The state of the art for the aeroelastic mo-

delling of geometrically nonlinear wings is, therefore, presented in Sec. 1.1.1. Sec. 1.1.2

will, instead, show how these methodologies are exploited to characterise the flight-

dynamics of very flexible aircraft and how the model fidelity changes when the control

of these systems is considered.

Next in order, a methodology to define manoeuvres needs to be chosen. For this

reason Sec. 1.1.3 will review relevant numerical methods for optimal control. As this

work will also include studies on the co-design of active structures, an overview of the

topic, which shows connections of this research with non-aeronautical fields like robo-

tics, is presented in Sec. 1.1.4. A final discussion on state of the art of gradient-based
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optimisation algorithms will conclude this review (Sec. 1.1.5).

1.1.1 Aeroelastic modelling methods

Models for flight-dynamics and, more generally, FSI differ greatly in terms of scope,

hence accuracy and computational cost. The literature is vast. Here, the focus will be

on modelling techniques for the flight-dynamics of very flexible vehicles. A high fidelity

modelling of these systems based on CFD and nonlinear FEM would require structural

and aerodynamic models with an extremely large number of degrees of freedom and

characterised by complex dynamic interactions. While this kind of analysis is possi-

ble [21–23], its computational cost is still prohibitive for applications in pre-design or

time-domain optimisation. A compromise between accuracy and computational cost is,

therefore, necessary. Through reduction techniques, geometrically-exact beam models

(GEBM) are therefore widely used to model slender wings, while the modelling of low

speed aerodynamics typically exploits boundary elements methods or strip-line theory.

Developments and features of these solution techniques are presented in the remaining

part of this section.

Coupled rigid/flexible body dynamics of slender bodies

Structural models for aeroelastic analysis of flexible aircraft should address three main

requisites. From a physical perspective, they should capture accurately the large wing

deflections, which change the aerodynamic features of the vehicle. As the stiffness of the

primary structures is reduced, however, the natural frequency of the vibrational modes

is also decreased and coupling effects between flexible and rigid dynamics are strengthen.

By modifying the airframe inertial properties, deflections impact the rigid-body dyna-

mics, while gyroscopic loading have a non-negligible contribution to the deformed wing

shape. These effects are crucial, as they make the very flexible vehicles particularly vul-

nerable to atmospheric gust and affect its manoeuvrability features. Numerical models

should, therefore, describe them adequately. For an efficient integration in a multidisci-

plinary FSI framework, however, a structural model should also limit the computational

cost associated to time-domain analysis. This is especially true in pre-design phase,

when a large number of analysis may be required in order to gain an insight into the

complex dynamics of these vehicles.

In order to obtain computationally treatable models, the wing and fuselage of the

very flexible vehicle are generally modelled through beam finite elements (FE). Due to

their slenderness, in fact, large scale deflections are typically dominant along the span-

wise direction, while only small scale displacements occur along the other dimensions.

Furthermore, a number of cross-sectional reduction techniques have been developed to

account for the latter [24, 25]: these allow considering warping effects and to condensate

in one-dimensional elements the cross-sectional properties of more complex composite
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structures. More recently, Wang et al. [26] have also proposed a reduction technique for

condensing a full three-dimensional FE models into a one-dimensional description based

on nonlinear beam elements. The use of unidimensional elements does not only provide

a computational saving but is also less likely to incur into numerical instabilities [27].

For this reason, their use has spread widely not only for HALE aircraft modelling, but

also in other applications involving very slender components, such as HAWT [28–30].

Conventional linear beam elements are, however, not adequate for capturing the

large deflections that may occur with very flexible wings. Geometrically-exact beam

models (GEBM) are, instead, required [31]. However, while displacements and rotations

can be arbitrarily large, GEBM typically assume linear material constitutive equations,

i.e. small deformations. Earlier GEBM formulations, in particular, dealt directly with

displacements and rotations as primary variables [32, 33]. These descriptions assumed

isotropic materials, but formulations based on anisotropic ones are also found [19]. Sev-

eral parametrisations can be used to describe rotations: Simo and Vu-Quoc [34], for

instance, adopted quaternions, while Gerardin and Cardona [35] exploited Cartesian ro-

tation vectors to reduce the problem size. In FE implementations, however, the rotations

within each element are obtained by interpolations and objectivity issues can arise, i.e.

the strain field may not be invariant under rigid-body rotations [36, 37]. Fine meshing

and high order elements are necessary to address this point [38].

On the contrary, strain based descriptions [39, 40] use force and moment strains as

independent variables and do not integrate rotations during the solution process. As a

result, simple shape functions can be used without incurring into objectivity issues and

also the shear locking is avoided [40]. However, as the displacement field need to be

obtained as a post-processing step, the advantages of this description are reduced when

integrated into a FSI analysis framework.

Hodges [15], instead, introduced a mixed three-field variational formulation, in which

constitutive and kinematic relations are enforced simultaneously to Hamilton’s principle.

This simplifies the solution process, but increases the number of independent variables

— displacements and rotations plus the associated strains and velocities. A two field

description, solving the equations with respect to velocity and strains only, can thus be

introduced [41]. Also this formulation guarantees objectivity and, if external forces do

not depend on the body orientation, the nonlinearity of the system is also reduced. A

procedure to build an intrinsic beam description from a full three dimensional finite-

element model has been proposed by Wang et al. [26].

In all these theories the dynamics of the beam reference line is always derived with

respect to an inertial frame of reference. These formulations, therefore, inherently include

coupling inertial effects between rigid-flexible body dynamics, making them especially

suitable for flight-dynamics applications. An assessment of these models was done by

Palacios et al. [19]. Numerical studies showed quadratic convergence when employing

an intrinsic description, which is reduced to linear for the displacement based solution.
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Overall, strain-based and intrinsic models provide better convergence rates, as rotations

are not integrated. Displacements based formulations, instead, suffer from objectivity

issues and require careful meshing. However, FSI coupling and the implementation of

kinematic constraints are facilitated.

Low-speed aerodynamics

Low to medium fidelity tools are the predominant choice for FSI problems dealing with

dynamics of very flexible structures and attached, high-Reynolds, flows — for typical

HALE aircraft this is of the order 105, but can be as large as 107 for large HAWTs.

While high fidelity CFD based solutions, typically employing RANS or LES [21, 22],

are becoming more common, they are still computationally demanding and not yet

adequate when a large number of time-domain analysis is required, as in preliminary

design or time-domain optimisation. Therefore, their applicability remains confined to

single analysis [23] or static aeroelastic optimisation [42, 43].

As large portions of the flight envelope of a typical HALE aircraft are characterised

by low-speed and fully-attached aerodynamics, potential theory can be used. The flow

is thus assumed to be inviscid, incompressible and irrotational [8, 44]: while only the

induced drag can be modelled, under these flow conditions the lift prediction is accurate

enough to characterise the aeroelastic behaviour of HALE lifting surfaces. Boundary el-

ements methods, in particular, allow for an efficient numerical treatment of these flows:

the problem of determining the three dimensional velocity field around the wing is, in

fact, reduced to a two-dimensional one, where the unknowns are the intensities of a

number of elementary solutions, also known as singularities, distributed over the aero-

dynamic surfaces. For this reason, this class of solutions is also referred to as panel

methods. In order to satisfy the conservation of the angular momentum, however, a

modelling of the wake is also required. Through an appropriate choice of singularities

and wake evolution assumptions, different methods are obtained [44]: an excellent classi-

fication of these, based on the kind of flow solutions (unsteady vs. steady, frequency vs.

time domain) and reduced aeroelastic frequencies validity range is provided by Murua

et al. [45].

In particular, the doublet-lattice method (DLM) has long been the standard indus-

trial tool for the low speed unsteady aerodynamics of fixed wing aircraft [46, 47]. As the

formulation is in the frequency domain, the DLM is particularly suitable for flutter and

aeroelastic analysis: the impact of structural vibrations can, in fact, be computed at

different frequencies by assuming small out-of-plane perturbations of the doublet pan-

elling [48, 49]. While the method can be extended to the time-domain through rational-

function approximations [50], corrections are required for computing steady loads [1, 45]

for flight-dynamics and the wing kinematics is limited: displacements need to be small

and normal to the lifting surface, while the wake is commonly assumed to be flat.

In the unsteady vortex-lattice method (UVLM), instead, lifting surfaces can undergo
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arbitrarily-large geometrical changes. While based on a linear theory, nonlinearities are

introduced in the solution by boundary conditions enforcement at the lifting surfaces.

Furthermore, the free-force wake is derived as part of the solution enforcing conservation

of the angular momentum in the flow field [44]. In particular, as large deflections occur,

this follows the wing, which allows capturing the lag of the unsteady aerodynamic forces

over a wide range of reduced aeroelastic frequencies [51, 52]. For these features, the

method has been employed in a number of aeroelastic simulations of very flexible aircraft

dynamics [31, 45, 53]. Note that, while the solution process is in the time-domain, a

linearisation of the model under the assumption of frozen geometry allows to express

the aerodynamics in state-space form, which makes it suitable for stability analysis

[45]. Importantly, the explicit modelling of the wake allows to simulate the interference

between different aerodynamic surfaces [54], which is critical for the analysis of T-tail

flutter or unconventional aircraft configurations [55].

Finally, the very high aspect-ratio characteristic of HALE aircraft wings has often jus-

tified the use of strip-line based aerodynamics [8]. Several aeroelastic frameworks [39, 56]

have, for instance, used the finite states model of Peters et al. [57], which exploits the

aerodynamic data of the wing cross-sections and includes stall and tip losses corrections.

The flat wake assumption and the absence of span-wise coupling associated to this ap-

proach, however, makes them to lose accuracy as large out-of-plane, but possibly also

in-plane, bending deflections occur. Especially at low frequencies, the three-dimensional

effects associated to these configurations, which are captured by the UVLM, are impor-

tant [19]. At higher frequencies, instead, the span-wise correlation is reduced and the

accuracy of finite states models improves. Despite their lower fidelity, however, strip me-

thods allow for an easier integration of semi-empirical corrections based on aerofoil data.

These have also been recently proposed for UVLM, although they require substantial

calibration [51, 53].

1.1.2 Flight-dynamics of very flexible aircraft

Modelling the fluid-structure interaction of a flying vehicle requires a multidisciplinary

effort which easily translates in very expensive computational models. However, aircraft

design has long been characterised by relatively stiff wings, exhibiting small structural

deformations and with high-frequency structural dynamics. Therefore, flight-dynamics

and aeroelastic analysis, whose responses would typically be separated by an order of

magnitude, could traditionally be disjointed without loss of accuracy [3]. This distinction

is captured in Tab. 1.1, where computational models for FSI analysis are classified based

on the fidelity of their structural and aerodynamics descriptions [1].

Flight-dynamics has traditionally been concerned with the manoeuvring of a rigid

aircraft. Low frequency responses, in particular, allowed using quasi-steady aerodynam-

ics [58]. Aeroelastic analysis would, instead, refer to the stability of a flexible vehicle

[59] and higher frequency dynamics and an unsteady aerodynamics description, typi-
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Aerodynamic forces
Structural dynamics

Omitted Included

Quasi-steady Flight-dynamics
Quasi-steady
aeroelastic

Unsteady
Full-frequency

Full aeroelastic
flight-dynamics

Table 1.1: Possible modelling scenarios for vehicles dynamics and stability analysis ac-
cording to Baldelli et al. [1].

cally based on a DLM, would thus be required. Furthermore, the aircraft attitude could

be frozen, hence allowing to linearise the rigid-body dynamics or to exploit clamped

structural models. This customisation is, however, not possible when dealing with very

flexible aircraft flight dynamics, as deflections may be nonlinear and inertial coupling

between rigid and flexible body dynamics arise [3]. The remaining part of this section

will, therefore, discuss how modelling techniques evolved to deal with this extra degree

of complexity and to merge flight-dynamics and aeroelasticity.

From stiff to very flexible wings

Tools for flexible vehicle flight simulation often rely on elastified stability derivatives,

obtained upon correction of the rigid-aircraft stability derivatives with flex-to-rigid ra-

tios provided by a linear quasi-static aeroelastic analysis [3, 11, 60]. This approach leads

to the easiest simplification: structural deflections are assumed to be very small and

their inertial effects, as well as the rigid/flexible body coupling, are neglected; vibrations

are high frequency and do not impact the wing aerodynamics; this is quasi-steady and

described through stability and control derivatives only. As shown in this work, elastifi-

cation of the stability derivatives is possible also as a first approximation of the response

of very flexible vehicle, as long as the wing deformed configuration at trim is used as a

reference.

For loads prediction and flight control development, however, inertial effects may be-

come relevant even when structural vibrations are within the linear regime. To account

for these, flight-dynamics equations can be augmented with a finite-element model of

the aircraft primary components. Widely spread is the mean-axes approach [61], which

relies on the identification of a floating frame in which the angular and linear momenta

of the vibrational motion are null [62]. An advantage of this formulation is that the

inertia coupling terms responsible for gyroscopic effects and the Coriolis force can be

easily identified and, under the hypothesis of low-energy/small-amplitude vibrations,

neglected [12, 13, 63]. This leads to a set of structurally and inertially decoupled equa-

tions of motion: mean and principal axes can be assumed to coincide [62] and a modal

representation of the vehicle structure dynamics based on its free-free modes can be
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superimposed to the rigid dynamics equations [63, 64].

Coupling effects can, however, be relevant also when the structural dynamics is

linear [12, 65]. In this case, the mean axes formulation becomes more involved [12, 13,

65]. A unified formulation accounting for these effects has been derived by Meirovitch

and Tuzcu [58] employing a linear structural model and quasi-steady aerodynamics.

Similarly, Baldelli et al. [1] extended a DLM based aeroelastic framework to incorporate

their flight-dynamics; rational functions are employed to approximate the aerodynamic

forces in the time-domain and a full aeroelastic model is obtained.

As wings with higher aspect ratio and flexibility are considered, however, large de-

flections can occur not only within different points of the flight envelope but also within

a single manoeuvre. As shown by the Helios mishap [14], these can strongly affect the

aerodynamic features of the vehicle and need, therefore, to be captured. In order to

address this, a number of fully coupled simulation strategies, based on a geometrically

exact description of the wing structural model, have been developed in the last two

decades [18, 19, 31, 53, 66, 67]. Importantly, GEBM are inertial-frame methods and

automatically account for the coupling between rigid and flexible body dynamics.

A first work from Drela [66] led to the develop of ASWING, a framework for very

flexible aircraft flight-dynamics. Beam elements linked via nonlinear joints were used to

model the large deflections of an isotropic wing, while a lifting line model with compress-

ibility corrections described the aerodynamics. These simplifications allowed to obtain

a computationally tractable model, adequate for preliminary design and for both time-

domain and stability analysis. Numerical studies for the SensorCraft program verified

the importance of inertial coupling effects on the dynamics of very flexible vehicles [68].

An extension to composite beams arrived with Patil et al. [56, 67], which coupled

an intrinsic GEBM description of the wing with a finite-state aerodynamic model [57],

including stall and corrections for unsteady effects. This solver formed the core of the

NATASHA (Nonlinear Aeroelastic Trim And Stability of HALE Aircraft) framework

[69], which has later been used to investigate a number of nonlinear effects associated

to the large wing flexibility. Limit cycle oscillations were, for instance, found to occur

above flutter speed due to nonlinear stiffness effects [56, 70]. As a result of the large

dihedral, instead, phugoid instabilities [69] and a reduction of the flutter speed [70, 71]

have been observed. By modelling the vehicle as a multi-beam body, furthermore, the

flight-dynamics and the stability of the trimmed aircraft could also be investigated for

a range of different manoeuvres [17, 72].

In parallel to those developments, Cesnik and Brown [39] adopted a strain-based

structural dynamics formulation and finite-state aerodynamics. This facilitated the mo-

delling of piezocomposite actuators embedded in the wing, whose feasibility was studied

focusing on rolling manoeuvres. The investigation also highlighted coupling effects be-

tween actuation input and the first anti-symmetric roll mode of the wing. This solution

provided the foundation for UM/NAST, the University of Michigan Nonlinear Aeroelas-
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tic Simulation Toolbox [18, 73]. Investigations from the same research group focused on

full-vehicle flight-dynamics studies. By comparing different flight-dynamics formulations

— i.e. a rigid, a linearised and a nonlinear structural model — Shearer and Cesnik [18]

assessed the importance of nonlinear effects due to large deflections during asymmetric

manoeuvres. Su and Cesnik [73], instead, provided a detailed analysis on body-freedom

flutter. Numerical investigations were assessed against experimental results, proving

that the rigid/flexible body coupling can alter the flutter modes of the vehicle.

ASWING [66], NATASHA [69] and UM/NAST [18, 73] all rely on a finite-state aero-

dynamic description, predominantly justified by the large aspect-ratio of HALE aircraft.

For capturing more accurately three-dimensional effects, Wang et al. [53] coupled the

UVLM with an intrinsic GEBM structural model in the NANSI (Nonlinear Aerodynam-

ics/Nonlinear Structure Interaction) framework. Their investigations focused on gust

response and outlined the importance of this higher fidelity description in identifying the

instabilities associated to large wing dihedral angles. Murua et al. [54] also employed a

UVLM description coupled with a displacements based geometrically-exact description

of the structure. The resulting framework (SHARP, Simulation of High Aspect-Ratio

Planes) has been extensively verified in following investigations [16, 29, 45, 74, 75], which

included assessments of the wake-tail interference effects [74], the development of lineari-

sation techniques aiming to reduce the computational cost associated to flight dynamic

analysis [75] and applications to loads control in large HAWT blades [29].

With the aim of improving the accuracy of the aerodynamics description, Hallissy and

Cesnik have also developed a coupled aeroelastic solution based on an Euler flow and an

intrinsic GEBM [76]. Comparisons against UM/NAST [18, 73] shows good agreements

but highlights that the lower fidelity description can be conservative. However, the

analysis presented in this work are limited to stability and flutter, hence the wing does

not experience large deflections from its trim configuration. The higher computational

cost of this solution and the meshing problems that may result when large geometrical

changes during a single analysis make, overall, CFD based approaches still prohibitive.

From a completely different perspective, instead, Klöckner et al. [77] focused on

creating a multi-disciplinary description of the solar-powered vehicle. This resulted into

a framework integrating the aircraft fundamental systems, i.e. modelling its aerody-

namics, propulsion and energy systems, actuators and aeroelastic behaviour. Even an

environmental module describing the atmosphere properties and predicting the solar ir-

radiation patterns was included. A relatively low-fidelity description of each of these

models was, however, required: the quasi-steady aerodynamics, for instance, is based

upon tabulated values derived from VLM analysis and corrected through Xfoil data,

while the aeroelastic analysis are based on a DLM description. Nonetheless, this created

an environment which, through appropriate adjustment of the modelling fidelity of each

sub-system, could potentially be employed at any stage of the vehicle design cycle, from

pre-design analysis to the integration in a feedback control system.
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Overall, in the last two decades a large number of studies have investigated the

features of very flexible wings. This required a paradigm shift in the analysis, with

the integration of flight-dynamics and aeroelasticity and the development of new tools

based on a nonlinear description of the vehicle flight-dynamics. These investigations

underlined the higher complexity of these systems and large differences with respect to

the dynamics of conventional aircraft. Next section will, therefore, present how previous

studies have addressed the flight control of these vehicles.

Control of very flexible aircraft

As suggested by the Helios mishap report [14], the assumption of linear time invariant

systems may not be enough to describe the behaviour of very flexible aircraft. While

control synthesis could benefit from a nonlinear aeroelastic description, up to date the

proposed control strategies are still largely based on linear methods [16, 78, 79].

A typical solution for stability and flutter analysis consists on linearising the aeroe-

lastic system around a forward flight trimmed condition. Exploiting the unified flight-

dynamics formulation of Meirovitch and Tuzcu [58], Tuzcu et al. [79] have built a

feedback LQR control for flutter suppression. In order to capture the effects of the

large wing deflections at trim, Patil and Hodges [78] worked on a linearisation of a

geometrically-exact description of the wing. State output feedback (SOF) control for

flutter suppression and gust loads alleviation (GLA) proved high sensitivity to the sen-

sor placement, with measurements at wing root, where twist and bending are typically

higher, providing best performance. Importantly, larger perturbations required a non-

linear SOF control, obtained by gain scheduling over various wing configurations.

Following works on GLA also adopted linearisation around trim of the vehicle longi-

tudinal dynamics and investigated the performance of different controllers. Dillsaver et

al. [80], for instance, exploited the strain based formulation of UM/NAST to implement

an LQG controller monitoring changes of the wing curvature. In order to investigate the

maximum achievable performance through a linearised aeroelastic formulation, instead,

Cook et al. [81] assumed a full-state feedback control. This work confirmed the difficul-

ties of controlling these systems with a linear model as deflections become very large.

To overcome these limitation, Haghighat et al. [82] exploited a modal representation of

the system and used modal predictive control (MPC), which was found to be superior to

an LQR architecture. Also this work highlighted the importance of accounting for the

inertial coupling in control synthesis. These finding were confirmed by Simpson et al.

[83] which used a reduced order representation of the flexible aircraft dynamics based

on a geometrically-exact structural description and preserving inertial coupling effects

[16]. As MPC allows for constraints, this formulation also introduced saturation of the

actuators. Wang et al. [84], instead, used Hodges intrinsic beam theory [41] to provide a

reduced order model with only quadratic nonlinearities. Control synthesis was, however,

still based on a linearised model.
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Feedback control has also been exercised for trajectory tracking. Raghavan and Patil

[63] used the mean axes approximation and, assuming small deflections, decoupled the

rigid-body and the flexible structural dynamics. As shown by Hesse et al. [75], however,

neglecting gyroscopic couplings has a relevant impact on the vehicle dynamics even when

deflections are small, meaning that the applicability of the mean axes approximation

should be limited to dynamics with small angular accelerations. Furthermore, when

manoeuvring very flexible vehicles, large geometric changes may alter significantly the

dynamical features of the wing during the manoeuvre itself. Estimation of the trajectory

should, therefore, be based upon a nonlinear aeroelastic description of the aircraft.

To address this point, Shearer and Cesnik [85] developed a heuristic method for

trajectory control based on a geometrically-exact description of the wing dynamics. The

architecture is composed by an outer loop, which mimics the behaviour of a human pilot,

and an inner one, which stabilises the fast dynamics. However, a number of assumption

on the vehicle dynamics are made, while longitudinal and lateral dynamics are handled

separately. As shown by Dillsaver et al. [86], therefore, this method lacks of robustness

and required corrections to avoid instabilities, including gains scheduling at different

stages during manoeuvring. Aside from this limitation, the use of an heuristic approach

makes it clear that the achieved control is likely not to be optimal.

Overall, previous works aiming at regulation of the very flexible aircraft dynamics

showed that consistent linearisation techniques (i.e. preserving inertial coupling effects)

around trim conditions capture the relevant aeroelastic features of these vehicles, hence

allowing control synthesis at a reasonable computational costs. As shown by Patil and

Hodges [78], such control architectures can be improved by repeating the linearisation

around each point of the flight envelope and employing gain schedule procedures. How-

ever, under sufficiently large perturbations, linear descriptions will eventually fail to

predict the system dynamics [84]. Studies on trajectory tracking [85, 86] and flight-

dynamics [75] have shown that a nonlinear description is also required when the aim

is to manoeuvre the aircraft, as relevant geometrical changes are likely to occur. In

this case, however, control architectures for manoeuvring can become very involved —

therefore the use of heuristic approaches — and may lack of robustness due to the high

complexity of the system dynamics [85, 86].

1.1.3 Architectures for optimal control

The review in Sec. 1.1.2 showed the potential advantage of considering nonlinear models

in the control synthesis of very flexible aircraft. This applies not only for the feedback

control of the vehicle dynamics under disturbances, but also when the objective is to

determine efficient strategies for manoeuvring, i.e. for open-loop analysis. Especially

in the latter case, a methodology should be able to deal with the nonlinear behaviour

of a flexible wing as an opportunity for extra performance, rather than a constraint.

From this perspective, therefore, the task of identifying very flexible aircraft manoeuvres
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for optimal performance can be recast as an open-loop optimal control problem with

respect to the time histories of the aerodynamic control surfaces. The contemporary

optimisation of other vehicle design features may also be integrated in this formulation.

As it will be discussed in Sec. 1.1.4, and given the high importance of dynamic effects in

determining critical operative conditions for very flexible vehicles, this would provide the

great advantage of allowing to consider the interaction between control and structural

dynamics from a very early stage of the design process.

Hence, a brief review of available methodologies for the numerical solution of optimal

control problem is included in this section. For more detailed revisions, the reader is

remanded to Betts [87, 88], Sargent [89] and Conway [90], which focus on numerical

solutions techniques, and Bryson [91], which gives an interesting historical perspective

on the topic and links to a number of engineering applications. Due to the strong con-

nection between the theories of optimal control and optimisation, a parallelism between

architectures for multidisciplinary design optimisation (MDO) and numerical strategies

for optimal control exists. This aspect has recently been reviewed by Allison and Herber

[20] and Martins and Lambe [92], among others.

Optimal control problems can be solved through an optimise-discretise approach,

leading to indirect methods [89, 93]. These techniques require the analytical derivation

of the Euler-Lagrange optimality conditions associated the problem — optimisation step

[20, 88]. These relations form a system of ordinary differential equations, with initial

and terminal conditions on the Lagrange multipliers and the state functions [90]. Op-

timal control results from the solution of this multiple-points boundary value problem,

which can be obtained numerically through a shooting method — discretisation step

[89]. Indirect methods have been exploited in the earliest applications to aerospace engi-

neering, which dealt with trajectory optimisation of rockets. Breakwell [94], for instance,

solved this problem through forward and a backward shooting, while later solutions im-

proved the stability of the approach by means of multiple shooting [91]. Of relevance

for HALE aircraft are the works from Klesh and Kabamba [95], which used a simplified

flight-dynamics description of a solar-powered UAV to obtain optimal trajectories for

perpetual flight, and Ma et al. [96], which derived closed form solutions for optimal

turning trajectories.

Indirect methods require an explicit derivation the optimality conditions associated

to the problem, which may be a very complex task — for instance, in problems involving

disequality constraints, an a prior estimate of the constrained subarcs sequence is re-

quired. Furthermore, the resulting two-boundary problem is likely to be ill-conditioned

[88]. The applicability of these approaches is, therefore, bounded to systems governed by

relatively simple dynamics. To achieve optimal control with more complex dynamics, a

discretise-optimise approach is then introduced (direct methods). In direct transcription

(DT), both state and control trajectories are discretised in time and numerical integra-

tion is used to convert the differential equations holding the system dynamics into a
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set of algebraic equations [91, 97, 98]. These are enforced as constraints of a nonlinear

optimisation problem, which is solved with respect to the parametrisation of state and

control input. In MDO this architecture is referred to as an all-at-once or simultane-

ous analysis and design [92]. The optimiser will solve concurrently physics and optimal

control problems, which typically provides good convergence rates; the sparsity of the

algebraic constraints can also be exploited to speed up the sensitivity analysis whenever

analytical derivatives expressions are not available [20].

DT methods, however, typically lead to very large optimisation problems [99]. The

numerical method used to integrate the system dynamics equations becomes, therefore,

crucial [90]. Earlier works using direct collocation would employed piecewise polynomial

and fixed-order integration formula [97]. To reduce the mesh size, higher-order methods

based on Lagrange polynomials and Gaussian quadrature have been more recently imple-

mented [98–100]. These approaches also aim to preserve the sparsity of the constraints

Jacobian, which is necessary to ensure computational efficiency [100]. Nonetheless, DT

still requires a compromise between the number of states and the time horizon length,

which determines the total size of the optimisation problem to be solved. In particular,

flight-dynamics applications are restricted to point-mass models with a few states [101–

104]. Betts and Cramer [101], for instance, optimised the flight path of a commercial

aircraft considering only a longitudinal flight-dynamics; Drury and Whidborne [102],

instead, defined a point-mass method based on a more accurate quaternion description

of the aircraft attitude; including a model of its photovoltaic system, both Hosseini and

Mesbahi [104] and Spangelo and Gilbert [103] finally applied DT to the path planning

of a solar powered UAV.

In order to minimise the size of the resulting optimisation problem, only the control

input can be parametrised [90]. In this case the state needs determining at each iteration

of the optimisation process through an integration of the system dynamics equations.

A multidisciplinary feasible architecture (MDF) is obtained [20, 92]. This approach

is referred to as control vector parametrisation (CVP) or also single-shooting method

and reduces the size of the associated nonlinear programming problem to its minimum

[90, 105]. While not exploiting the sequential dynamics, CVP allows exploiting well

tested optimisation algorithms to reliably handle path constraints [91]. Importantly,

state and control can be defined on different meshes, meaning that fine resolutions can

be used to integrate stiff dynamic equations.

One of the first application of the CVP is from Kelley [106], which defined state and

control input on coinciding fixed grid. An adjoint formulation provided the gradient

and a steepest descent method drove the optimisation problem to a solution. While

earlier works required penalty functions [89], later implementations took advantage of

more and more efficient optimisation algorithms to handle constraints [91]. When a

direct approach is used for the sensitivity analysis, path constraints can be enforced

on the time grid nodes [107–109] without excessively increase the computational cost
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of the optimisation. This strategy is implemented by Kraft in the TOMP (Trajectory

Optimisation by Mathematical Programming) Fortran package [110], which employs a

SQP algorithm for the nonlinear programming solution [111]. Through appropriate

integration, however, path constraints can also be scalarised [105, 112–114], which suits

better adjoint based algorithms. While convergence properties are typically reduced with

respect to grid enforcement [115, 116], in fact, the total amount of constraints handled by

the optimiser is reduced. Overall, shooting methods are commonly used in conjunction

with gradient based optimisers [108–110, 116], so as to contain the cost associated to

the optimisation problem.

In the majority of cases, piecewise constant or linear control parametrisations are

employed [105, 110, 117]. Higher-order parametrisations can, however, be beneficial;

Fabien [109], for instance, proved that piecewise cubic polynomials need fewer nodes

then piecewise linear schemes to accurately represent the control input, hence leading to

more efficient solutions. Other techniques to reduce the amount of control points consider

the switching times, i.e. the nodes of the time mesh, as design variables [112–114, 118]

or employ adaptive parametrisations techniques [116, 117, 119], which sequentially solve

the optimal control problem on refined grids.

As a downside, the single-shooting can in some cases lack robustness: especially for

complex dynamics and long time horizons, instabilities may arise when integrating the

system dynamics [99]. Also, terminal constraints may not be handled very efficiently

[89]. When required, these issues can be tackled switching to an Individual Discipline

Feasible (IDF) architecture, thus leading to the multiple-shooting method [120]. The

time horizon is partitioned into intervals in which the system dynamics is integrated

independently, while additional shooting constraints guarantee the continuity of state

and control [91]. Overall, the integration of the system dynamics becomes more robust

due to the shorter length of the integration interval. Higher computational efficiency

can, furthermore, be obtained by tailoring the optimisation algorithm to exploit the

sparsity of the constraints Jacobian [107]. However, the larger the number of states and

intervals in which the time horizon is divided, the larger is the increase of the associated

NLP problem size.

1.1.4 Co-design of very flexible actuated structures

As discussed by Cesnik et al. [3], due to their large flexibility, critical operation condi-

tions of HALE aircraft may be subject to significant structural vibrations. Furthermore,

as outlined by the Helios mishap report [14], these are also likely to be associated with

complex rigid-flexible flight-dynamics. These considerations extends to a wider class of

advanced engineering systems characterised by light and very flexible primary compo-

nents, including soft robotic manipulators [121] and large HAWT blades. Overall, due

to the importance of dynamic effects, accounting for the interaction between control and

aircraft aeroelastic/structural response becomes highly relevant for design.
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Actively controlled mechanical systems often provide better dynamical characteristics

than non-controlled, or passive, ones. However, the integration of the controller usually

comes late in the design process [20]. This typically relies on a sequential approach:

the aircraft primary structures, for instance, are initially sized for passive response and

an active control is introduced only in a later stage, after the main features of the

system have been established [122]. This process can be iterated but, looking at it from

the perspective of a MDO problem, there is substantial evidence that optimality is not

guaranteed at the coupled system level [92, 123]. As shown by Fathy et al. [123], a

first approach for reaching a true option is a nested or bi-level strategy, in which, for

each iteration of the plant optimisation process, the control is also optimised [124, 125].

An alternative approach, which is likely toend up in a faster convergence, may be to

optimise plant and control simultaneously. This leads to the concept of combined design

or co-deign [20].

The advantages of an integrated design approach have long been proved in space

structures design [124, 125], robotics [126] and noise and vibration control [127, 128].

These studies were based on a linear representation of the closed-loop system dynamics,

which facilitated the approach to design. Asada et al. [126], for instance, directly ma-

nipulated the position of the closed-loop system eigenvalues, while Rao [125] expressed

the control gains in terms of the system energy properties. In this sense, the work from

Onoda and Haftka [124] best fits the modern idea of combined design, as, aside from ex-

ploring a nested approach similar to that presented by Rao [125], they also optimised the

system simultaneously with respect to optimiser gains and structural design parameters.

When dealing with the dynamics of structures outside the linear regime, however,

integrating the design approaches becomes a much more challenging task. Common

MDO architectures, in fact, rarely allow to take advantage of the fact that the control is

inherently dependent on the evolution of a system in time [20]. The larger computational

cost associated to a time-dependent nonlinear analysis, is, therefore, not balanced by the

optimisation approach, resulting in relatively inefficient architectures. Co-design studies

dealing with complex structural dynamic models have required, therefore, to reduce the

analysis cost, either using metamodels [129] or limiting the size of the systems [130, 131].

For this reason, nonlinear systems for aeroservoelasticity studies have also required

reduced-size models and linearised formulations [132–135]. Early works from Suzuki

and Yonezawa [132, 133] employed quasi-steady aerodynamics with linear FEM to co-

design aeroelastic wings with linear feedback control for gust loads alleviation. More

recently, instead, Haghighat et al. [134] used a flight-dynamics model with linear FEs

and quasi-steady lifting-line aerodynamics for modelling longitudinal manoeuvres and

gust response of a HALE aircraft; Jackson and Livne [135], instead, employed linear

aerodynamics and a modal representation of a strain actuated UAV longitudinal dyna-

mics. In both cases the vehicle structural properties were optimised together with the

gains of a LQR feedback control.
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Overall, only a combined design strategy can guarantee optimality at the coupled

system level and, with respect to a nested approach, may lead to a computationally

more efficient architecture. As underlined by Allison and Herber [20], however, efficient

optimisation architectures, exploiting the sequential dynamics of these systems, still

require development. As a result, only low-medium fidelity models have been so far

employed for aeroservoelastic optimisation purposes.

1.1.5 Relevant optimisation algorithms

The numerical solution of optimal control and co-design relies on nonlinear programming

techniques and, therefore, the whole process depends on the efficiency and robustness

of these algorithms. Not surprisingly, the spread of direct methods for optimal control

is clearly correlated to the increase in performance of optimisation methods [89]. While

recent advantages in computing technologies are leading many authors to consider zero-

order global algorithms [90], strong computational restrictions still apply even when

medium fidelity dynamical models are considered. Instead, gradient-based approaches

are often the only solution that guarantees convergence in a feasible number of iterations

[136]. A comprehensive review of these methods is outside the scope of this work. How-

ever, a brief discussion on the main families of gradient-based optimisation algorithms

is presented here so as to outline their applicability bounds. For a more extensive dis-

cussion, the reader is referred to one of the excellent textbooks and reviews available on

the topic [93, 137–141].

Sequential quadratic programming (SQP) algorithms were developed in the 60s-70s

starting from the works of Wilson, Han and Powell [139, 142, 143]. These are amongst

the most effective methods for nonlinear constrained optimisation. The design space

is reconstructed through successive quadratic approximations and, at each iteration of

the optimisation process, the solution of this sub-problem allows finding the next design

point to be explored. Well tested techniques for quadratic programming (QP) are used at

this stage. These rely on active set strategies and solve the QP sub-problem enforcing the

Karush-Kuhn-Tucker (KKT) first-order necessary conditions for optimality [144, 145].

The definition of the QP sub-problem is key for the efficiency of SQP algorithms.

Typically, these adopt a quasi-Newton approximation of the Hessian [137] and limited-

memory implementations are available for large scale problems [138, 140]. Upon solution

of the QP sub-problem, line-search strategies are often used to rescale the step-size: this

compromises a sufficient cost decrease with a not-excessive violation of the nonlinear

constraints [142, 143, 146]. Alternatively, trust region algorithms will establish a region

of confidence in which the quadratic approximation is acceptable [138].

A common SQP algorithm is the Sequential Least Squares Quadratic Programming

(SLSQP) from Kraft [111]. This is based on a Broyden, Fletcher, Goldfarb and Shanno

(BFGS) update of the Hessian and a `1 step-acceptance test function [142, 143], while

the solution of the QP sub-problems relies on Lawson and Hansons solver [147]. The
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algorithm is included in the SciPy Python package [148] and has been used extensively

in optimal control [108–110, 116]. The implementation is, however, not adequate for

large scale problems, as the sparsity of the Hessian matrices is not exploited. For these

situations, a more suitable SQP algorithm is the Sparse Nonlinear Optmiser (SNOPT)

from Gill et al. [149]. This employs a limited memory approximation of the Hessian

[140] and second order corrections in the line search method. Detailed reviews of SQP

methods are provided in Ref. [139, 140].

SQP approaches are typically best suited for nonlinear problems in which the num-

ber of active constraints is comparable to that of design variables [138]. For very large

problems, however, interior points methods often, but not always, outperform SQP al-

gorithms [138]. This is linked to the combinatorial difficulty of active-set strategies in

dealing with inequality constraints [138]. To overcome this, interior point methods intro-

duce barrier terms, which are relaxed as the process approaches a solution. Therefore,

all the system constraints are accounted for during the solution of each QP sub-problem.

The KKT system size is increased but always shows the same block structure, meaning

that specific algorithms can be developed. Nonetheless, these methods are less mature

as compared to SQP based approaches, and may lack robustness in some cases [138].

A widely spread interior point algorithm is IPOPT (Interior Point Optimisation) [150],

which is based on a line search algorithm. For a more extensive review on interior points

methods, the reader is referred to Forsgren et al. [141].

A few studies have compared the performance of the optimisation algorithms dis-

cussed above. Perez et al. [151] compared a wide range of SQP methods and zero-

gradient optimisers for small size, canonical problems. As expected, the former provided

the best performance for smooth design spaces. Furthermore, all SQP algorithm tested

in their work showed comparable performance, though the SLSQP algorithm typically

required less iterations for convergence. Larger scale problems have instead been consid-

ered by Lyu et al. [43], who showed that SNOPT outperforms the SLSQP algorithm as

the size of the problem increases. Importantly, however, the number of iterations remains

comparable, showing that computational saving is achieved during the QP sub-problem

solution. For the test cases proposed by Lyu et al. [43], the interior point required a

number of iterations to convergence comparable to the other SQP methods tested.

1.2 Open problems and research questions

As shown in the previous section, in the last two decades several methodologies for pre-

dicting the flight dynamics of vehicles with very flexible wings have been developed.

They characterise their geometrically nonlinear behaviour and the inertial coupling be-

tween rigid and flexible body dynamics. Overall these models are highly nonlinear and

can now predict adequately the wing response to prescribed actuation input and exter-

nal disturbances in the time-domain. While a few works, mainly based on linearisations
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around the wing deformed configuration, have focused on the development of feedback

control laws for vibration suppression and trajectory tracking [78, 79, 85], to the author’s

knowledge the problem of formalising the definition of actuation strategies for manoeu-

vring vehicles with very flexible wings has never been addressed. This leads to the main

research question of this work, namely:

1. is optimal control a suitable tool for defining aircraft manoeuvres when

wing flexibility may result in large geometrical changes?

As previous studies on trajectory tracking showed that during manoeuvre the air-

craft is characterised by nonlinear dynamics [85, 86], it derives that this methodology

should interface with the full complexity of a geometrically nonlinear description. In

this sense, therefore, the choice of an optimal control approach also derives from the

need of providing a realistic understanding of the best performance that these systems

can achieve. For this reason, and contrarily to conventional flight dynamic models,

this methodology should also include the vehicle structural dynamics, as very light high

aspect-ratio wings are more than likely to experience relevant vibrations during ma-

noeuvres. While this work does not deal directly with feedback methods for vibrations

control, therefore, it is important to assess whether these can be exploited for enhancing

the system performance or, if not, how to suppress them without negatively impacting

the aircraft handling qualities. In this sense, the open-loop optimal control can also

be used as a reference for the development of feedback control strategies for vibrations

suppression/enhancement in wings exhibiting geometrically nonlinear deflections [20].

A generalisation of these considerations paves the way for a further query. While it is

important to verify that the optimal control methodology can deal with the complexity

of a geometrically nonlinear formulation, it is also relevant to assess whether this can

exploit the richness of this description and enhance, this way, the performance of the

flexible aircraft during manoeuvring. Unnecessary conservatism, for instance, may be

avoided by allowing the process to explore unconventional and/or unintuitive control

input. In summary:

2. can optimisation identify actuation strategies that use nonlinear geo-

metrical changes to improve performance?

Overall, as the aeroelastic analysis of very flexible vehicle is associated to high com-

putational costs, the applicability of optimal control translated directly into establishing

whether gradient methods for optimisation can be employed. Therefore, addressing these

points will also imply determining how the problem definition and the choices made to

parametrise the actuation affect the smoothness of the control space explored by the

optimiser.

As most of the critical operating conditions of very flexible vehicles — both in terms

of loading and stability — are associated with unsteady phenomena, an accurate repre-

sentation of the coupling between aeroelastic response and control system is a necessary,
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but not sufficient, condition to achieve optimal designs. In this respect, previous works

have already highlighted the importance of considering as early as possible in the design

process the interaction between control and structural dynamics [3, 20]. Though outside

of the main scope of this dissertation, therefore, further studies have been included to

assess the feasibility of an integrated design approach for controlling very slender beams

under strong vibrations. As the effectiveness of gradient-based optimisation approaches

depends on the design space smoothness, an estimation of how this is affected when

structural design variables are added to the problem is required. This leads to the final

query of this research:

3. what are the potential gains of an integrated structural/control design

approach?

The following section will highlight the computational approach proposed to address

these questions. Further details on the structuring of this thesis will be provided in

Sec. 1.4.

1.3 Present approach

The starting point for addressing the research questions presented in Sec. 1.2 is a flight-

dynamics model — including nonlinear aeroelastic effects — capable to accurately pre-

dict the behaviour of HALE aircraft with very flexible wings. Importantly, such a model

could also serve for simulating the aeroelastic behaviour of other novel aeroelastic struc-

tures, such as the large blades of novel offshore HAWT.

From a structural perspective, the key physical phenomena to be captured are the

rigid/flexible body dynamics coupling and the large geometrical changes of the primary

structures. To this purpose, a number of cross-sectional reduction techniques [24, 25]

and geometrically-exact beam descriptions [15, 19, 35, 40] have been developed in the

last decades (Sec. 1.1.1). In particular, a formulation in displacement and rotations

[152], which allows an easy implementation of kinematic constraints, has been chosen

for this work. While deflections can be arbitrarily large, local displacements are small and

can be characterised by a linear material model. In this respect it is worth to remark

that, while the studies presented in this work will focus on simplified geometries and

isotropic materials, this structural description allows considering composite materials,

which are essential in the design of novel HALE aircraft and HAWT blades. The resulting

equations of motion are discretised using finite elements and solved with respect to a

moving reference frame [15, 152].

Despite their large aspect-ratio, three-dimensional aerodynamic effects have been

shown to be relevant in HALE wings under large bending deflections, especially at low

frequencies [19]. For this reason, an unsteady vortex-lattice model [16, 45, 153] is pre-

ferred over a strip based description for characterising their low-speed aerodynamics.

39



Chapter 1. Introduction

Constraints on the control surfaces rate and amplitude will, in fact, aim to ensure

fully-attached flows during manoeuvring, hence allowing for a potential flow assump-

tion. The UVLM is essentially linear, and complex flow fields can be defined through

a combination of elementary vortex solutions distributed over the lifting surface. As

these can undergo arbitrary kinematics, therefore, nonlinearities are introduced at the

lifting-surfaces boundaries through the coupling with the nonlinear structural solution.

In order to reduce the computational cost of the coupled fluid-structure interaction

analysis, a partitioned solution is used to numerically integrate the aeroelastic equations

[154, 155]. Kinematic constraints, which in the studies presented will allow to simplify

the wing dynamics, are included through an augmented Lagrangian method [35]. These

solutions are implemented in SHARPy, a framework for the Simulation of High Aspect

Ratio Planes in Python. This software is the result of the aeroelastics research group

effort and derives from SHARP, a previous Matlab based implementation [16, 54, 75].

The Author, in particular, contributed to the development of the structural solver and

the Python version of this code — refer to Sec. 7.2 for details.

The studies presented in this work will focus on open-loop control. As the dynamic

behaviour of geometrically nonlinear wings may differ considerably from that of stiffer

ones, in particular, an optimal control approach is proposed for defining their actuation

input. This choice will, in fact, allow to deal with the extra-degree of complexity due to

the large deflections and inertial coupling effects. Furthermore, unconventional actua-

tion strategies can be explored. Aeroelastic systems as those considered in this work are,

however, characterised by a large number of states and relatively large time horizons.

For limiting the size of the resulting optimisation problem, therefore, a direct shooting

method, in which only the control input is parametrised, has been implemented [105].

Despite not exploiting the sequential dynamics, the CVP allows using well tested algo-

rithms for optimisation, which reliably handle constraints [91]. While this method can

lack of robustness for long time horizons and complex dynamics [20], the optimisation

studies considered in this work did not incur into numerical instabilities and, therefore, a

multiple-shooting implementation was not required. On the other hand, single shooting

allowed to minimise the problem size and simplified the extension to co-design.

A choice about the optimisation algorithm driving this solution is finally required.

As this work deals with dynamics, a global reconstruction of the design space via a zero-

order optimisation method is not computationally feasible. A gradient-based implemen-

tation [108–110, 116] has been, instead, required for reducing the number of aeroelastic

analysis. The sequential least squares quadratic programming (SLSQP) algorithm [111]

has been chosen to this purpose. This is a SQP method which performs very well for

medium size problems as those considered in this work [43, 151] and has already been

integrated in previous single shooting frameworks successfully [109, 110, 116]. Impor-

tantly, a robust implementation is available in the open-source SciPy Python package

[148]. The extensions of this framework to larger problem may, however, require an
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algorithm tailored for large scale optimisation, such as SNOPT [149] or IPOPT [150].

As nonlinearities are introduced in the flight-dynamics of very flexible vehicles through

the geometrically-exact structural description (the UVLM is, otherwise, linear), the

single-shooting approach is first assessed for the optimal acceleration of a very flexible

pendulum in vacuum. Despite of its relative simplicity, in fact, this system shows a num-

ber of complex dynamical features — large deflections and inertial coupling — common

to HALE aircraft, large HAWT blades and flexible robotic arms. The investigation will

explore whether optimal control correctly exploits this complex dynamics, thus linking

directly to research questions 1 and 2. As a gradient-based optimiser is used, an assess-

ment of whether — and if so, how — problem definition and discretisation affect the

smoothness of the design space is also included. This will be extended to characterise

the structural/control co-design space, thus linking to the third research query. These

investigations will provide the relevant background knowledge for applying the optimal

control approach to the manoeuvring with very flexible wings. More studies will support

how the optimal control approach can facilitate the identification of actuation input for

rolling under structural dynamics and nonlinear aeroelastic effects.

1.4 Dissertation outline

The remaining part of this thesis is arranged as follows:

Chapter 2 introduces the nonlinear aeroelastic solution implemented in SHARPy. The main

feature of the geometrically-exact beam formulation is the modelling of rotations,

which describe the orientation of the beams elements and allows, therefore, for large

geometrical changes to occur [15, 35]. The derivation includes considerations of the

kinematic constraints enforcement and the time marching scheme used to integrate

the final equations of motion. Potential flow theory is, instead, the starting point

for introducing the UVLM based low-speed aerodynamic description. The chapter

will conclude discussing the numerical solution and the structure/aerodynamics

coupling scheme.

Chapter 3 presents the general formulation of the optimal control problem defining the actua-

tion of a very flexible structure. The spline and discrete sines parametrisations used

to recast this into an finite-dimension optimisation problem are also introduced. A

substantial part of the chapter will deal with theory of constraint optimisation: a

thorough presentation of sequential quadratic programming is, in fact, important

to understand applicability and limitations of the SLSQP algorithm [111] for this

class of problems.

Chapter 4 will address the optimal control of very flexible structures in vacuum. Applying

the CVP technique, the actuation on the structure has been written as an optimal

control problem using both a local (B-spline) and a global (discrete sine series,
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DSS) parametrisation. This is used to manipulate the dynamics of a very flexible

pendulum, modelled as a beam in hinged configuration and exhibiting large defor-

mations. As the pendulum flexibility increases, not only larger deformations arise,

but the level of coupling between rigid and flexible modes also increases. Concep-

tually, therefore, this problem has many analogies to that of the control of a very

flexible aircraft in calm air. In particular, the impact of several factors — namely

the level of nonlinearities, the problem formulation and the parametrisation used —

on the optimal control results will be assessed.

Chapter 5 will focus on co-design of the active system introduced in Chap. 4. The pendu-

lum structural properties are, therefore, allowed to vary as the actuation input is

defined. As a gradient-based optimiser is used, from a different perspective this

implies an assessment on how large can changes in the structural design space

be. Due to the high level of coupling between control and structure, a multidis-

ciplinary feasible (MDF) architecture is used [92]. The implication of different

modelling choices for the actuation is shown and guidelines for the co-design pro-

cess of structures exhibiting strong nonlinear dynamics are finally provided.

Chapter 6 will finally focus on rolling manoeuvres with very flexible wings. A hinged model of

a characteristic HALE wing will be used. This constraint, in particular, allows to

isolate the dynamics associated to the wing flexibility from that of the rest of the

aircraft. In order to emphasize the nonlinear effects captured by the full aeroelastic

solution, a lower fidelity flight-dynamics description, based on elastified stability

derivatives, has also been derived. Both models are used to define optimal rolling

manoeuvres. While in the latter case these can be identified manually, the single

shooting optimisation technique has been used to deal with the higher complexity

of the full aeroelastic model. This implementation is assessed against the result

obtained through the flight-dynamics description and used to investigate the trade-

off between different performance indices associated rolling manoeuvres.

Chapter 7 A summary of this work and an outline of the main contributions of this work will

be presented.
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Chapter 2

Aeroelastic modelling of

geometrically nonlinear wings

This chapter introduces the nonlinear aeroelastic description used in this work for the

coupled rigid-flexible body dynamics of very flexible wings. During manoeuvring, these

wings are expected to undergo large deflections, which can significantly alter their shape

and aerodynamic features. To capture these effects, the wing is modelled as a geomet-

rically exact beam using a displacement-based formulation [15, 19]. Typically, linear

beam models are derived using a small displacement field defined along the beam span.

In a GEBM, instead, the dynamics of the beam reference line is expressed in terms of

a position and a rotation vector field which define, respectively, the location and orien-

tation of each infinitesimal element of beam. As a result, and while the material model

can still be assumed to be linear (small deformations hypothesis), arbitrarily large geo-

metrical changes are allowed. Importantly, rigid and flexible-body dynamics are derived

simultaneously, meaning that the coupling effects associated to the changes of the wing

inertial properties are automatically accounted for. Kinematic constraints, which in a

preliminary design phase allow to considerably simplify the wing dynamics, can, instead,

be conveniently included through the augmented Lagrangian method [35].

For modelling the low speed aerodynamics of HALE aircraft, on the other hand,

a methodology based on potential flow theory has been chosen. While this theory is

restricted to incompressible and fully-attached flows, in fact, these characterise a wide

portion of the flight envelope of HALE aircraft. The unsteady vortex lattice method,

in particular, allows to determine unsteady flow solutions even when the aerodynamic

surfaces are subjected to large changes of shape. While the UVLM solves linear aerody-

namic relations (which derive from Laplace’s equation), nonlinearities are introduced in

the aeroelastic solution through the enforcement of the boundary conditions at the lifting

surface. The modelling of the wake, furthermore, allows to capture the aerodynamics

lag over a wide range of reduced aeroelastic frequencies [52].

In this chapter, the building blocks of the nonlinear aeroelastic framework used in this
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Chapter 2. Aeroelastic modelling of geometrically nonlinear wings

work, namely the GEBM and the UVLM, are introduced in Sec. 2.1 and 2.2, respectively.

The theoretical description of these methodologies follows closely the implementation of

Hesse [156] for the GEBM and Murua [52] for the UVLM formulation. In this work, the

two solutions have been coupled in a Python-based framework, SHARPy, which allows

to simulate the flight-dynamics of very flexible vehicles, possibly under kinematic con-

strains. Considerations about the numerical integration of the two schemes are presented

in Sec. 2.3.

2.1 Rigid-flexible body dynamics of a geometrically-exact

beam

The modelling of the coupled rigid-flexible body dynamics of very flexible wings is based

on a geometrically-exact displacement based description [15, 19, 35]. Strains are ex-

pressed in a local frame defined along the beam reference line. This allows to assume

a linear material model (i.e. small local deformation) and use cross-sectional reduction

techniques to conveniently define the local properties of the composite beam. Along

the beam reference line, elastic deflections are characterised through the position and

orientation — expressed through a Cartesian rotation vector — of the local frame with

respect to a moving body-attached frame. This allows for large geometrical changes and

rigid body dynamics to be included. The orientation of the wing, required to derive the

aerodynamic forces, is instead tracked using a quaternion operator.

The description of the GEBM follows closely the notation proposed by Hesse et al. [75]

and is organised as follows. In Sec. 2.1.1, the frame of references used to describe the

beam rigid and flexible kinematics are introduced. In particular, the Cartesian rotation

vector and quaternion operators, which define, respectively, the orientation of the wing

and of its cross-sections, are used to address the kinematics of finite rotations. Sec. 2.1.3

will provide the relevant relations describing the beam kinematics, which are required to

enforce Hamilton’s principle. Determining the position of each cross-section with respect

to the inertial frame will allow to describe the virtual work produced by external forces;

strains and velocities, both projected in the local frame, will lead to an expression of the

internal and kinetic energy density. The equations of motion of the unrestrained beam

are obtained in Sec. 2.1.4, while the enforcement of kinematic constraints is discussed

in Sec. 2.1.5. Finally, the finite elements discretisation and the time integration scheme

will be addressed in Sec. 2.1.6 to 2.1.7.

2.1.1 Notation and frames of reference

For modelling slender, flexible structures, a geometrically-exact multibeam model with

coupled rigid-flexible body dynamics is used [15, 35]. The frames of references (FoRs)

and the relevant vector quantities defining the beam dynamics are shown in Fig. 2.1
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2.1. Rigid-flexible body dynamics of a geometrically-exact beam

— which also assumes a finite elements discretisation. Note that vectors are indicated in

bold and, when required, subscripts will be used to refer to their components. Matrices,

instead, are written in capital letters.

At each section of the beam, force and moment strains are expressed into a local

frame, B, defined along the beam mean axis, s [15]. The position of a point belonging

to the local cross-section is measured relatively to the local frame, B, by the vector ζ.

Its position with respect to the inertial frame, G, is defined as

X(s, t, ζ) = r(t) +R(s, t) + ζ(t) (2.1)

where r and R are, respectively, the position of the body frame A with respect to

G and the relative position of B with respect to A, as shown in Fig. 2.1. The rigid

G

r

R

v

A B

Ω
Vω

Figure 2.1: Definition of frames of reference over the very flexible structure

body dynamics of the beam is solved in terms of the translational (v) and rotational

(ω) velocity of the body attached frame, A. Similarly, the translational and rotational

velocities of the local frame B are defined as V and Ω. In all cases, these are measured

with respect to the inertial frame, G.

It is worth noticing that, so far, the quantities introduced are not projected into any

specific frame of reference. When deriving the beam kinematic relations and dynamics

equations of motion, however, these will be expressed into one or another frame according

to convenience. Subscripts will be used to specify the coordinates system used.

2.1.2 Finite rotations

The description of the A and B frames orientation is a crucial part of the model. Ac-

cording to Euler’s rotation theorem, every sequence of rotations around a fixed point can

be expressed in terms of a single rotation of amplitude, Ψ, around a fixed axis, n̂. At

each time, t, the orientation of the local frame B at the s curvilinear coordinate along

the beam reference line can be defined with respect to the body attached frame, A, in
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Chapter 2. Aeroelastic modelling of geometrically nonlinear wings

terms of the Cartesian rotation vector (CRV):

Ψ(s, t) = Ψ(s, t) n̂(s, t) (2.2)

Note that in eq. (2.2) the sign of Ψ and the orientation of n̂ define the rotation required

to move the frame A over B — and not vice-versa. While other parametrisations of

the rotations are possible, the CRV introduces the minimum number of states (three

per point) without producing singularities, hence limiting the size of the finite elements

discretisation and the computational cost associated to the numerical solution. Further-

more, as rotations become small, Ψ → 0, the CRV approaches to the linear rotation

vector.

The rotation matrix associated to this transformation can be expressed as [35]

CAB = C(Ψ) = I +
sin Ψ

Ψ
Ψ̃ +

1− cos Ψ

Ψ2
Ψ̃2 =

∞∑
k=0

1

k!
Ψ̃k (2.3)

where I is the unit matrix and (̃·) is the cross-product operator. This is defined as

Ψ̃ =

 0 −Ψ3 Ψ2

Ψ3 0 −Ψ1

−Ψ2 Ψ1 0

 (2.4)

where Ψi is the i−th component of Ψ. Note that in the definition of the rotation matrix

CAB, eq. (2.3), a series expansion can be used to avoid the singularity occurring for

Ψ = 0. Importantly, CAB also defines the coordinate transformation matrix projecting

vectors from B to A, i.e.

qA = CABqB (2.5)

where the subscripts indicate the frame in which vector q is expressed. Finally, from

eq. (2.2) it can be also observed that the CRV in non-additive, hence

C(Ψa + Ψb) 6= C(Ψa) + C(Ψb) (2.6)

This can lead to objectivity issues when the model is discretised via finite elements:

in this case, in fact, the rotations inside each element are obtained via interpolation,

hence high-order elements and/or fine parametrisations are required to reduce the error

associated to the inequality (2.6).

The orientation of the body attached frame A with respect to the inertial frame,

G, is instead described by the quaternions. These are very suitable for describing large

rotations, which is the case of the floating frame A. This representation, in fact, always

allows to define a biunivocal relation between rotation matrix and quaternion vector
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2.1. Rigid-flexible body dynamics of a geometrically-exact beam

[157]. Quaternions are four elements vectors of the form

χ =

{
χ0

χv

}
(2.7)

whose scalar (χ0) and vector (χv) parts are defined respectively as

χ0 = cos
χ

2
(2.8a)

χv = sin
χ

2
n̂ (2.8b)

and where the angle χ and the axis n̂ define the rotation from the frame G to A. The

associated transformation matrix has no singularities, and can be expressed as

CGA = C(χ) = H(χ)LT (χ) with
H(χ) =

(
−χ χ0I + χ̃

)
L(χ) =

(
−χ χ0I − χ̃

) (2.9)

From a rotation matrix, C, the corresponding quaternion representation can instead be

obtained as described by Steven and Lewis [157, Chap. 1]. An important feature of

eq. (2.9) is that no trigonometric relation is involved, which makes this expression less

vulnerable to round off errors. Furthermore, a sequence of rotations can be combined

using the quaternion multiplication rule [35]. However, this representation is less suitable

than CRVs for FE models, as the number of states is increased and the |χ| = 1 property

needs to be enforced when interpolating inside finite-elements.

The use of quaternion algebra allows to conveniently express the attitude propagation

equation in terms of FoR A angular velocity, ω, as [158]

χ̇ = −1

2

(
0 ωTA
ωA ω̃A

)
χ (2.10)

It is worth anticipating that, during a full aeroelastic solution, eq. (2.10) is solved to-

gether with the wing rigid-flexible body dynamics equations, as external forces may

depend on the orientation of the body frame A. For instance, the incidence of the aero-

dynamic surfaces with respect to the air-stream (and, hence, the aerodynamic loads)

depends on the A frame attitude. For very flexible structures, furthermore, structural

deflections produced by gravity loads may vary considerably according to the FoR A

orientation, with obvious consequence on the wing aerodynamic features.

2.1.3 Kinematic relations

To derive the equations of motion defining the dynamics of geometrically-exact beams,

Hamilton’s principle is enforced (Sec. 2.1.4). This, however, requires an expression of the

internal and the kinetic energy density along the beam, as well as of the the virtual work
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Chapter 2. Aeroelastic modelling of geometrically nonlinear wings

done by the external forces. In this section, therefore, the kinematic relation necessary

to obtain these quantities — namely position and velocity of each infinitesimal segment

of beam and the associated strains — are presented.

The beam kinematics is derived under the assumption that warping effects are negli-

gible, i.e. that the beam cross-sections rotate rigidly. As in very slender structures large

scale, span-wise, displacements typically dominate over small scale cross-sectional defor-

mations, this assumption is realistic. Nonetheless, if relevant, warping effects may still

be included in this formulation through appropriate cross-sectional reduction techniques

[24, 25]. Under this hypothesis, the position of a generic point at the s cross-section

with respect to the inertial frame origin is given by

XG(s, t, ζB) = rG(t) + CGA(χ(t))RA(s, t) + CGA(χ(t))CAB(Ψ(s, t))ζB (2.11)

where X is projected in G coordinates and the B coordinates of the local position

vector, ζB, is assumed to remain constant as the beam deforms. Note that this relation

is required to express the work done by the external forces.

As the beam each cross-sections move rigidly, their kinetic energy is uniquely defined

by the translational (V ) and rotational (Ω) velocities of corresponding local frame, B.

These quantities are expressed as

VB(s, t) = CBA
(
ṘA(s, t) + vA(t) + ω̃A(t)RA(s, t)

)
(2.12a)

ΩB(s, t) = T (Ψ(s, t))Ψ̇(s, t) + CBA(Ψ(s, t))ωA(t) (2.12b)

where (•̇) indicates a time derivative; note that in eq. (2.12) the projection into local

coordinates has been chosen as the inertial properties of the cross-section are more

conveniently described in this frame; this will allow simplifying the expression of the

kinetic energy density at each beam segment (Sec. 2.1.4). In eq. (2.12b) the tangential

rotation operator [35]

T (Ψ) = I +
cos Ψ− 1

Ψ2
Ψ̃ +

(
1− sin Ψ

Ψ

)
Ψ̃2

Ψ2
=

∞∑
k=0

(−1)k

(k + 1)!
Ψ̃k (2.13)

has been introduced. This links the infinitesimal rotation of the local frame, δφB, to an

infinitesimal change in CRV representation, δΨ, according to

δφ̃B = CBAδCAB = T̃ δΨ (2.14)

In order to compute the beam internal energy, an expression of the strains is also

required. At each time, t, force strains are obtained by comparing the rate of change

along the arc-length of the reference line, R′ = dR/ds, against the one associated to the
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2.1. Rigid-flexible body dynamics of a geometrically-exact beam

undeformed beam (t = 0). This leads to the following expression

γ(s, t) = CBA(Ψ(s, t)) R′A(s, t)− CBA(Ψ(s, 0)) R′A(s, 0) (2.15)

where the first component of γ is associated to deformations along the tangent of the

beam reference line; the others refer, instead, to normal deflections and account for shear

effects. Similarly, a compact expression for the moment strains is given by

κ(s, t) = KB(s, t)−KB(s, 0) (2.16)

where

KB(s, t) = T (Ψ(s, t))Ψ′(s, t) (2.17)

is the local beam curvature [35]. The first component of K refers to torsional deforma-

tions about the beam reference line, while the other two describe bending strains along

the remaining two axis of the B frame. Finally, it is worth noticing that an alternative

expression for KB(s, t) is obtained from from eq. (2.14) as:

K̃B = CBA
d

ds
CAB (2.18)

2.1.4 Dynamics of the unrestrained beam

The equation of motion describing the dynamics of a multi-beam system over a time

horizon [t1, t2] can be derived enforcing Hamilton’s principle of stationary action [159]:∫ t2

t1

∫
Υ

(δT − δU + δW) ds dt = 0 (2.19)

In eq. (2.19), the spatial integration is performed over the one-dimensional domain Υ

defined by the union of several interconnected slender bodies. Variations are taken over

the kinetic and internal energy density per unit of beam length, T and U , and the

virtual work per unit of length of the applied, non-conservative, loads, W. Using the

kinematic relations provided in Sec. 2.1.3, the kernel of the integral in eq. (2.19) can

be expanded in terms of positions, R, and rotations, Ψ, along the beam reference line

and of translational, v, and rotational, ω, velocities of the body frame, A. As discussed

next, this will lead to the weak form of the GEBM equations of motion.

Kinetic energy density

At each segment of the beam, the kinetic energy per unit of length is

T =
1

2

(
V T
B ΩT

B

)
M
(
V T
B ΩT

B

)T
= V T

B PB + ΩT
BHB (2.20)
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where PB andHB are the translational and rotational momenta. In eq. (2.20), projecting

the velocities in the local frame, B, allows to express the inertial properties of the beam

arc through the cross-sectional mass matrix

M =

(
mI −mζ̃cgB
mζ̃cgB J

)
(2.21)

where m is the mass per unit of length, J the cross-sectional inertia tensor and ζcgB the

distance between the beam reference line and the center of mass of the cross-section itself.

Note that, while not explicitly stated in eq. (2.21), these quantities will in general depend

on the curvilinear coordinate s. The variational form of the kinetic energy becomes

δT =
[
δV T

B δΩT
B

]
M
[
V T
B ΩT

B

]T
= δV T

B PB + δΩT
BHB (2.22)

Using eq. (2.14) to introduce the virtual rotation of the B frame, δφB, the variations of

translational and rotational velocity can be derived from eq. (2.12) as:

δVB = CBA
(
δṘA + δvA + ω̃AδRA − R̃AδωA

)
+ ṼBδφB (2.23a)

δΩB = δφ̇B + CBAδωA + Ω̃BδφB (2.23b)

Variations of the rigid-body velocities δvA and δωA are instead obtained in terms of

virtual position, δrA, and rotation, δϕA, of the frame A as [35]

δvA =δṙA + ω̃AδrA (2.24a)

δωA =δϕ̇A + ω̃AδϕA (2.24b)

in which, as done for δφB in eq. (2.14), δϕA is defined such that δϕ̃A = CGAδCGA.

Internal energy density

Under the assumption of a linear material model, the density of internal energy per unit

length, U , takes the form:

U =
1

2

[
γTκT

]
S
[
γT κT

]T
=

1

2

(
γTFB + κTMB

)
(2.25)

where the internal forces and moments, FB and MB, are expressed in local components.

At each curvilinear coordinate s, instead, the 6× 6 matrix of elastic coefficients, S, can

be determined through an appropriate cross-sectional analysis [24]. The variation of the

internal energy density becomes

δU =
[
δγT δκT

]
S
[
γT κT

]T
= δγTFB + δκTMB (2.26)

52



2.1. Rigid-flexible body dynamics of a geometrically-exact beam

where force and moment strains variations are derived from eq. (2.15) and (2.16) as:

δγ =CBAδR′A + R̃′AδφB (2.27a)

δκ =δφ′B + K̃BδφB (2.27b)

Work of external forces

Finally, at each curvilinear coordinate, s, an expression for the virtual work per unit

length of the external forces, δW, is required. This can be obtained through

δW =

∫
A
δXGµG dA (2.28)

where δXG is the virtual position of each point of the cross-section, µG are the applied

force and the integration is extended to the whole cross-sectional area, A. The expression

of δXG is obtained from eq. (2.11), thus leading to

δW =
[
δrTGC

GA + δRT
A + δϕTA

(
R̃A + CAB ζ̃BC

BA
)]

CABfB + δφTBmB (2.29)

where the applied forces, f , and moments, m, per unit length

fB =

∫
A
µB dA (2.30a)

mB =

∫
A
ζ̃BµB dA (2.30b)

have been isolated and expressed in local components.

Equations of motion

The variations of kinetic and internal energy described by eq. (2.22) and (2.26), together

with the expression of virtual work in eq. (2.29), can be substituted into Hamilton’s

principle, eq. (2.19). The weak form of the unconstrained beam equations of motion is

thus retrieved:∫ t2

t1

{∫
Υ

[
δRT

A CAB
(
ṖB + Ω̃BPB − fB

)
+ δR′

T
A CABFB

+ δφTB

(
ḢB + Ω̃BHB + ṼBPB − K̃BMB − R̃′AFB −mB

)
+ δφ′

T
BMB

]
ds

+ δrTGC
GA
(
ṖA + ω̃APA −FA

)
+ δϕTA

(
ḢA + ω̃AHA −MA

)}
dt =

=

∫
Υ

[
δRT

AC
ABPB + δφTBHB

]t2
t1
ds+

[
δrTGC

GAPA + δϕTAHA

]t2
t1

(2.31)

In eq. (2.31) the total momenta, P and H, and external forces, F and M, acting on

the beam have been collected and expressed in FoR A coordinates. These are defined
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as:

PA =

∫
Υ
CABPB ds , HA =

∫
Υ

(
R̃AC

ABPB + CABHB

)
ds

FA =

∫
Υ
CABfB ds , MA =

∫
Υ

(
R̃AC

ABfB + CABmB

)
ds

(2.32)

An integration by parts in time has been required to obtain eq. (2.31). This introduces

the time derivatives of local and total momenta Ṗ , Ḣ, Ṗ and Ḣ, which are associated

to the translational and rotational accelerations of each segment of the beam and of the

FoR A through eq. (2.12) and (2.20).

The strong form of the equations of motion can finally be derived by enforcing that

eq. (2.31) is verified for each variation of positions, RA and rG, and rotations φB and

ϕA. To this aim, the spatial derivatives δR′A and δφ′
B are rewritten as∫

Υ
δR′AC

ABFB ds =
[
δRAC

ABFB
]
∂Υ
−
∫

Υ
δRAC

AB
(
K̃BFB + F ′B

)
ds (2.33a)∫

Υ
δφ′

T
BMB ds =

[
δφTBMB

]
∂Υ
−
∫

Υ
δφTBM

′
B ds (2.33b)

where ∂υ indicates the boundaries of the Υ one-dimensional domain, i.e. the connection

point of the beams defining the structural model, and eq. (2.18) has been exploited

in order to develop the spatial derivative of the CAB rotation matrix. Substituting

eq. (2.33) into the weak form of eq. (2.31) leads to:

∫ t2

t1

{∫
Υ

[
δRT

A CAB
(
ṖB + Ω̃BPB − fB − K̃BFB − F ′B

)
+

+ δφTB

(
ḢB + Ω̃BHB + ṼBPB − K̃BMB −M ′

B − R̃′AFB −mB

)]
ds

+ δrTGC
GA
(
ṖA + ω̃APA −FA

)
+ δϕTA

(
ḢA + ω̃AHA −MA

)}
dt =

=

∫
Υ

[
δRT

AC
ABPB + δφTBHB

]t2
t1
ds+

[
δrTGC

GAPA + δϕTAHA

]t2
t1

+

−
∫ t2

t1

[
δRAC

ABFB + δφTBMB

]
∂Υ
dt (2.34)

Enforcing that the integral in eq. (2.34) vanishes for each variation of δRA, δφB, δrG

and δϕA, leads to the strong form of the unrestrained beam dynamics equations [19]

ṖB + Ω̃BPB = K̃BFB + F ′B + fB (2.35a)

ḢB + Ω̃BHB + ṼBPB = K̃BMB +M ′
B + R̃′AFB +mB (2.35b)

ṖA + ω̃APA = FA (2.35c)

ḢA + ω̃AHA = MA (2.35d)
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2.1. Rigid-flexible body dynamics of a geometrically-exact beam

whose boundary and initial conditions can be derived from the right-hand side of eq. (2.34)

itself. Finally, it is worth remarking that, as in flight dynamics the external loads, fB

and mB, generally depend on the beam orientation with respect to the inertia frame,

G, these relation need to be coupled with the attitude propagation equation (2.10).

2.1.5 Enforcing kinematic constraints

Several approaches are available to constrain the kinematics of a dynamical system. A

brief overview of the topic, leading to the augmented Lagrangian method used in this

work for implementing hinge kinematic constraints, is here presented: for a more detailed

discussion, the reader is remanded to the work of Gerardin and Cardona [35].

Defining as

c(vA,ωA,RA,Ψ,χ) = 0 (2.36)

the column vector containing the kinematic constraints enforced to the system dynamics,

a first solution consists in applying the implicit function theorem to eq. (2.36). This

allows expressing the variation of some of the parameters describing the system dynamics

(vA,ωA,R or Ψ) with respect to the others, thus reducing the number of unknowns.

This approach is commonly referred to as constraint elimination method. With reference

to the unrestrained beam dynamics described in eq. (2.31) in this work this strategy

is used for implementing clamp constraints, which are obtained by enforcing that the

body attached frame velocity is null, i.e. vA = 0. Most commonly, however, strong

enforcement of the constrains equations is not preferable, as extensive modifications to

the original solution, and its numerical implementation, may be required.

Penalty functions and Lagrange multipliers methods allow to overcome these restric-

tions, as the equations of motion of the unrestrained beam dynamics only need to be

augmented. In the penalty function method, the system size is not increased, as an aug-

menting term, vanishing only when the constraints are verified, is added to the original

equations of motion [35]. The method, however, does not allow for an efficient scaling

of the constraints and its performance depend strongly on the choice of the penalty

factor. If this is too large, an ill-conditioned systems may be obtained but, if this is

not sufficiently large, constraints may be verified with bad approximation. In the La-

grange multiplier method, instead, the constraints equations are added to the original

system, and coupling is provided through the Lagrange multiplier. These are determined

during the solution process, and offer the main advantage of automatically scaling the

constraints equations.

For improving the convergence properties of the Lagrange multipliers method, a small

penalty term can be included. This leads to the augmented Lagrangian method, which

has been used in this work for developing hinge kinematic constraints. The method

is here described in a general form, starting from the analytical formulation behind

the equation of motions of the unrestrained beam. For a different derivation, based
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Chapter 2. Aeroelastic modelling of geometrically nonlinear wings

on the discretised equations of motion of a dynamical system, the reader can refer to

Gerardin and Cardona [35]. The equations of motion of the constrained beam are derived

augmenting the Lagrangian describing Hamilton’s principle, eq. (2.19), as follows:∫ t2

t1

[∫
Υ

(δT − δU + δW) ds + δ

(
kνTc+

1

2
pcTc

)]
dt = 0 (2.37)

In eq. (2.37) ν is the vector of Lagrange multipliers, k is the scaling factor of the Lagrange

multipliers terms and p the penalty factor. As the penalty term 1
2p c

Tc is only used

as a regularisation term, p is typically chosen to be considerable smaller then k [35].

Developing the variational form of the second term in eq. (2.37) leads to:∫ t2

t1

[∫
Υ

(δT − δU + δW) ds + δνT (kc) + δc (kν + pc)

]
dt = 0 (2.38)

The term associated to the variation of the Lagrange multipliers implies adding to the

equations of motion of the unrestrained beam the scaled set of constraints kc = 0. The

one associated to variation of the constrains, δc, instead, provides the coupling terms.

Hinge constraints

For modelling a hinge, both the translation and the rotation of the body frame A have

to be constrained. In this work, the hinge position and its axis of rotation, r̂, are fixed

with respect to the inertial frame, G. The origin of frame A can thus be located the

hinge point, and the constraints elimination method can be used to avoid translations.

Restraining the frame A rotations requires, instead, that its angular velocity, ω, is

at all times parallel to the hinge axis of rotation, r̂, i.e. r × ω = 0. Taken two unit

vectors, p̂T1 and p̂T2 , perpendicular to r̂, this condition can be equivalently expressed as1

c =

(
p̂T1A
p̂T2A

)
ωA = B ωA = 0 (2.39)

Note that, as the angular velocity is expressed in A components in the beam equations

of motion, eq. (2.31), the p̂i vectors are also projected into the A frame. If these are

chosen to be fixed in the inertia frame, G, the transformation p̂iA = CAG(χ) p̂TiG is

required, and the B matrix will depend on the quaternion, χ, associated to the A frame

attitude. Alternatively, these can also be chosen to be attached to the A frame, as the

projection of the hinge axis of rotation in this frame, r̂A, is time invariant. In this case

B becomes a constant coefficients matrix and the constraints variation is simply:

δc = B δωA (2.40)

1A similar result is obtained by enforcing r ×ω = r̃ω = 0, thus replacing the B matrix in eq. (2.39)
with the cross-product matrix r̃. The approach in eq. (2.39) is, however, preferred as it can be extended
to constraint the A frame translational degrees of freedom. Furthermore, the r̃ matrix can have an
identically zero row, thus leading to an undetermined system of equations.
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2.1. Rigid-flexible body dynamics of a geometrically-exact beam

Substituting eq. (2.39) and (2.40) into eq. (2.37) allows to retrieve the weak form of the

equations of motion of the hinged beam.

2.1.6 Discretised form of the equations of motion

Starting from the week form of beam rigid-flexible dynamics in eq. (2.31) and (2.37), a

finite-element discrete formulation is obtained by expressing positions and rotations as

RA(s) =

3∑
i=1

Ni(s)RA(si) (2.41a)

Ψ(s) =

3∑
i=1

Ni(s)Ψ(si) (2.41b)

where RA(si) and Ψ(si) are their nodal values within an element. Quadratic shape func-

tions, corresponding to 3-noded elements, are used for this work. Superlinear elements,

in particular, allow reducing the objectivity issues associated to the interpolation of the

Cartesian rotation vector [38], which arise when the strain field is not invariant under

rigid-body rotations [36, 37].

Defining η as the column vector containing the nodal values of positions and CRV,

the coupled nonlinear flexible/rigid body dynamics equations are finally expressed as:

M(η)

{
η̈

ν̇

}
+

{
Qs
gyr(η, η̇,ν)

Qr
gyr(η, η̇,ν)

}
+

{
Qs
stif (η)

0

}
=

{
Qs
ext(η,χ,ν, t)

Qr
ext(η,χ,ν, t)

}
, (2.42)

where νT =
{
vTA,ω

T
A

}
, M(η) is the global mass matrix, and Qgyr, Qstif , Qext are,

respectively, gyroscopic, stiffness and external forcing terms. A detailed definition on

how the gyroscopic and stiffness terms are built is provided by Hesse and Palacios [152]:

their origin can be, however, retrieved by comparing eq. (2.42) with the strong continuous

form of the GEBM dynamics in eq. (2.35). From eq. (2.35a) and (2.35b), for instance,

it can be understood that the gyroscopic term Qgyr accounts for the fact that the forces

and moments acting at each beam cross-section also depend on the global (frame A) and

local (frame B) accelerations. Importantly, this term provides coupling between flexible

and rigid-body dynamics. The external forces, Qext, instead, includes prescribed loads,

aerodynamic and gravitational forces. This term, in particular, defines the coupling the

the aerodynamics solution, which is discussed in Sec. 2.3. In general, Qext depends on

the orientation of the body frame A, and hence on the quaternion χ, meaning that

eq. (2.42) needs to be coupled with the attitude propagation equation (2.10).

A linearised form of eq. (2.42) is required for the solution of eq. (2.43) via a Newton-

Raphson scheme (Sec. 2.1.7). For a given set of nodal displacements and rotations η∗
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Chapter 2. Aeroelastic modelling of geometrically nonlinear wings

and velocities, ν∗, of the body frame A, this takes the form [35, 152]

M(η∗)

{
∆η̈

∆ν̇

}
+ Ct(η

∗,ν∗)

{
∆η̇

∆ν

}
+Kt(η

∗,ν∗)

{
∆η

0

}
=

= ∆Qext(η
∗,∆η,χ∗,∆χ,ν∗,∆ν, t,∆t) (2.43)

where Ct and Kt are the damping and stiffness tangent matrices. While the stiffness

force in eq. (2.42) only depends on the beam displacements and rotations, the tangent

stiffness matrix also includes a contribution from the gyroscopic forces, hence explaining

the dependency of Kt on the body frame translational and rotational velocities, ν. The

columns of the tangent stiffness matrix associated to ν are, however, null. Finally, it is

worth remarking that the tangent damping matrix Ct does not result from modelling

the structural damping — which is, in fact, neglected — but rather derives from the

perturbation of the gyroscopic forcing term, Qgyr [152].

2.1.7 Time marching scheme

The mass matrix in eq. (2.42) contains information on both the rigid and flexible body

dynamics of the beam and, as a result of the large spread in eigenvalues, it is generally

quite stiff. A number of numerical techniques are available for integrating stiff second

order ODEs [160, 161]: these tackle stability issues by introducing a controllable level

of artificial damping for damping spurious high-frequency oscillations. In this work, in

particular, a Newmark-β method [35] has been developed. For linear problems, this

approach can be proven to be unconditionally stable. For nonlinear solutions, higher

levels of numerical damping may be required and the method may become too dissipative,

especially in the low-frequency range [160]. For the studies presented in this work,

however, the level of artificial viscosity required to guarantee stability has been found

not to compromise accuracy.

For implementing the Newmark-β integration method, the unknowns appearing in

eq. (2.42) and eq. (2.10) are organised in an array τ = {η,
∫
ν,

∫
χ}T such that

τ̇ = {η̇, ν, χ}T and τ̈ = {η̈, ν̇, χ̇}T . Note that the integrals appearing in the

definition of τ have no physical meaning and do not contribute to the system dynamics;

however, these have been used here for consistency of notation. Starting from positions

(τ ), velocities (τ̇ ) and accelerations (τ̈ ) at the time-step n, the structural dynamics

solution at the next time-step is expressed by the sum of a predictor and a corrector

part as

τn+1 = τp(τn, τ̇n, τ̈n) + τc(τ̈n+1) (2.44a)

τ̇n+1 = τ̇p(τ̇n, τ̈n) + τ̇c(τ̈n+1) (2.44b)
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2.1. Rigid-flexible body dynamics of a geometrically-exact beam

where:

τp(τn, τ̇n, τ̈n) = τn + ∆t τ̇n +

(
1

2
− θ2

)
∆t2 τ̈n (2.45a)

τ̇p(τ̇n, τ̈n) = τ̇n + (1− θ1) ∆t τ̈n (2.45b)

τc(τ̈n+1) = θ2∆t2 τ̈n+1 (2.45c)

τ̇c(τ̈n+1) = θ1∆t τ̈n+1 (2.45d)

The scheme has been shown to be unconditionally stable if the weights θ1 and θ2 satisfy

θ1 =
1

2
+ ν (2.46a)

θ2 =
1

4

(
θ1 +

1

2

)2

(2.46b)

where ν > 0 regulates the level of artificial viscosity added to stabilise the scheme [35].

As the integration is initialised (t = 0 and n = 0) positions and velocities τ0 and

τ̇0 are given as initial conditions2 and the accelerations are found by solving eq. (2.42)

for τ̈0. However, as the mass matrix is characterised by a very large condition number,

its inversion can be inaccurate and give rise to high frequency spurious oscillations.

These are especially large when seeking a coupled flexible-rigid body dynamic solution

and modelling very slender wings, as the spread in eigenvalues is particularly large.

However, if the system is initialised from a steady state, i.e. if no structural vibrations

are occurring at t = 0, the initial acceleration τ̈0 can be obtained via a lagged solution,

where the rigid-body dynamics sub-problem is solved first.

During the time-stepping, the correction terms in eq. (2.44), and hence the acceler-

ations τ̈n+1 at the time-step n+ 1, need to be determined. These are required to satisfy

the residual form of eq. (2.42)

R(τ̈n+1) = M(τc(τ̈n+1)) τ̈n+1 +Q(τ̈n+1) = 0 (2.47)

where Q = Qgyr(τ , τ̇ ) +Qstif (τ )−Qext(τ , τ̇ ) includes gyroscopic, elastic and external

forces. Eq.(2.47) is solved for τ̈n+1 using a Newton-Raphson iteration, in which the

accelerations at the iteration k + 1 are obtained as:

∂R
∂τ̈

∣∣∣∣k
n+1

(
τ̈ k+1
n+1 − τ̈

k
n+1

)
= −Rk

n+1 (2.48)

At the first iteration (k = 0) the acceleration at time-step n + 1 can be conveniently

taken to be: τ̈ 0
n+1 = τ̈n. Under this assumption, in fact, the positions and velocities at

2In a flight-dynamics solution, this would typically correspond to a steady flight configuration, with
the structural nodal velocities being zero and the wing geometry determined by the steady-level flight
aerodynamics loads.
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Chapter 2. Aeroelastic modelling of geometrically nonlinear wings

time n + 1 computed via eq. (2.44) and (2.45) are equivalent, respectively, to a second

and first order Taylor expansion. The Jacobian of the residual is obtained linearising

eq. (2.47), leading to:

∂R
∂τ̈

∣∣∣∣k
n+1

=
(
Mk + θ1∆t Ckt + θ2∆t2 Kk

t

)
(2.49)

For systems involving coupled rigid-flexible body dynamics, the condition number of

this matrix is typically lower then the one of the initial mass matrix, thus increasing the

stability margin of the numerical solution.

2.2 Unsteady vortex-lattice method

This section introduces the analysis model used in this work to describe the low speed

aerodynamics of high aspect ratio wing. In Sec. 2.2.1 basic aspects of potential flow

theory and their numerical solution via boundary elements methods will be discussed.

The vortex based discretisation and the UVLM will be described in more detail in

Sec. 2.2.2. Finally, Sec. 2.2.3 will focus on the computation of the aerodynamic loads.

2.2.1 Solution of potential flow using singularity elements

Unsteady aerodynamics is computed via the UVLM under the assumptions of incom-

pressible, inviscid and irrotational flow. These hypothesis, in particular, prevent the

applicability of the method for flight conditions when flow separation is expected, e.g.

high angles of attack or large flap deflections, but are realistic when dealing with low-

Mach-number aerodynamics on thin wings at low angles of attack. If changes of the

wing geometry occur slowly with respect to the flow characteristic time scales, in fact,

this is fully attached and vorticity is confined to a thin region around the lifting surface.

Due to the inviscid flow assumption, the method can only predict lift and induced drag,

while drag effects linked to skin friction and flow separations are not captured. These,

however, can be neglected when characterising the aeroelastic behaviour of high-altitude

long-endurance aircraft flying at low speed and in attached flow conditions.

The flow velocity field U is sought inside a volume V enclosing a body of surface

Sb. A cut-out of the solution domain is sketched in Fig. 2.2. Using the zero vorticity

assumption, ∇ × U = 0, the velocity field can be expressed in terms of a potential

function, Φ, such that U = ∇Φ. At very low Mach number, however, the flow can also

be assumed to be incompressible, ∇ ·U = 0: it derives that the potential function Φ is

a solution of the Laplace’s equation:

∇2Φ = 0 (2.50)

Laplace’s equation is a linear, elliptic partial differential equation and is completed by
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2.2. Unsteady vortex-lattice method

two kind of boundary conditions. The first ensures that the flow is tangent to the body

(non-penetration) and takes the form:

(∇Φ + vb) · n̂ = 0 (2.51)

where vb and n̂ are the velocity of the aerodynamic surface and its unit normal vector.

A farfield constraint, instead, ensures that flow disturbances decay at infinity. This is

written as

lim
r→∞

∇Φ = 0 (2.52)

whit r measuring the distance from the body.

Sb

Sw

S∞
n̂

n̂

V

P

r

Figure 2.2: Cut-out of the potential flow solution domain of the potential flow problem.

Laplace’s equation is verified by a number of basic solutions which can be superim-

posed to represent complex flow configurations. As shown by Katz and Plotkin [44], a

general solution to eq. (2.50) can be obtained by applying Green’s function theory. At

each point P of the flow field this takes the form

Φ(P ) =
1

4π

∫
Sw+Sb

µ
∂

∂n̂

(
1

r

)
dS − 1

4π

∫
Sb

σ
1

r
dS + Φ∞ (2.53)

Eq. (2.53) shows that a solution to Laplace’s equation is provided by a combination of

doublet and sources of intensity µ and σ distributed over the body and wake boundaries,

Sb and Sw. These are also referred to as singularity functions as they are not defined on

Sb and Sw, hence when r → 0. It is important to notice that a wake boundary, Sw, has

been introduced in eq. (2.53). From a mathematical point of view, this is required so

as to account for possible discontinuities of the velocity and/or velocity potential across

the wake. From a physical perspective, instead, this allows to verify the conservation

of angular momentum (Kelvin’s theorem); this aspect will be, in particular, discussed

further in Sec. 2.2.2. Finally, in eq. (2.53) Φ∞ is the contribution arising from the

external boundary of the domain, S∞, and produced by the free stream, undisturbed,

flow (see also Fig. 2.2). Being {X,Y, Z} the Cartesian coordinates of the inertial frame,
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Chapter 2. Aeroelastic modelling of geometrically nonlinear wings

G, this is written through the scalar product

Φ∞ = {X,Y, Z} ·U∞ (2.54)

where U∞ is the free-stream velocity.

The solution obtained in eq. (2.53) transforms a three-dimensional problem into

a two-dimensional one, where the aim is to obtain a distribution of basic solutions

over the domain boundaries which verify the non-penetration and farfield constraints

in eq. (2.51) and (2.52). It is thus particularly suitable to numerical implementations

(panel methods). Furthermore, while eq. (2.53) is expressed in terms of doublet and

sources, other singularity functions, such as vortex elements, can be used [44]. As lift is

associated to nonzero velocity circulation (Joukowski’s theorem), these last are especially

suited for lift prediction over thin body, i.e. when drag effects are secondary.

The unsteady vortex-lattice method belongs to this class of solutions and approxi-

mates the lifting body and its wake as infinitesimally-thin surfaces. As shown in Fig. 2.3,

these are discretised as a lattice of quadrangular vortex rings. These singularity elements

are equivalent to doublet quadrangular elements [44], hence showing that the method is,

in fact, based on the discretisation of the analytical solution in eq. (2.53). Each vortex

ring is associated to a circulation strength Γk and the velocity induced is provided by

the Biot-Savart law. To each element discretising the lifting surface (bound vortices) is

associated a collocation point where the non-penetration boundary condition (2.51) is

enforced. At each time-step, a row of vortices — whose intensity is determined by en-

forcing Kelvin’s theorem — is shed tangentially at the wing trailing edge, thus building

up the wake. This can be either prescribed (hence assuming that shed vortices move

according to the undisturbed flow velocity) or computed as part of the flow solution,

thus allowing the vortex rings to align with the local flow velocity.

2.2.2 Numerical solution via vortex-elements

In the most general case, i.e. when the wake shape is not prescribed, a flow solution

requires computing the circulation strength of the bound and wake vortices, as well as

the position of the wake grid coordinates. In this section, the most relevant aspects

of this process, namely the enforcement of the non-penetration boundary condition in

eq. (2.51) and the modelling of the wake, are outlined: for a more detailed description

of the numerical implementation, the reader is referred to Murua [52].

As introduced in Sec. 2.2.1, a distribution of vortex rings singularity elements auto-

matically verifies not only the Laplace’s equation (2.50) but also the farfield boundary

condition, eq. (2.52). Therefore, the first step of the solution process requires the en-

forcement of the non-penetration boundary condition in eq. (2.51) at the collocation

points associated to the bound singularity elements. As shown in Fig. 2.3, these are

placed at the middle of each element. Each each vortex ring is, instead, positioned a
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wing lattice

wake lattice

U∆t

collocation point

lifting surface

wake vortex ring

bound vortex ring

A

Γbk

Γwk

n̂k

lifting surface panel

Figure 2.3: Schematics of wing and wake vortex lattices.

quarter of a panel dimension rearwards from the respective lifting surface panel. For

two-dimensional cases, in fact, these choices allow for an exact agreement with classical

thin-aerofoil theory, even when the wing is discretised with one element in the chord-wise

direction [8, 162].

Using the Biot-Savart law, the velocity per unit circulation strength induced by the

vortex ring j at the collocation point of the ring element i is:

qij = − 1

4π

∮
Cj

rij × dsj
|rij |3

(2.55)

where the integration is extended over the entire j-th ring, Cj , and rij measures the

relative position of point i with respect to the infinitesimal segment of vortex, dsj . At

time-step n, therefore, the impermeability condition (2.51) can be expressed as:

Ab(ζb)Γ
n
b +Aw(ζb, ζw)Γnw +wn(ζb, ζ̇b,ν,χ) = 0 (2.56)

where Γb and Γw are column vectors of length Nb and Nw containing the circulation

strength of bound and wave vortices. The wing-wing and wing-wake aerodynamics

influence coefficients matrices, Ab and Aw, are defined based on eq. (2.55) as

(Ab)i,j = qij · n̂i , i, j = 1 . . . Nb (2.57a)

(Aw)i,j = qij · n̂i , i = 1 . . . Nb , j = 1 . . . Nw (2.57b)

where n̂i is the normal unit vector of the i-th panel. As underlined in eq. (2.56), these
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Chapter 2. Aeroelastic modelling of geometrically nonlinear wings

depend on the bound and wake vortex rings coordinates, ζb and ζw, thus providing

a first coupling term with the structural and control disciplines. The first two terms

in eq. (2.56) return the velocity induced by the vortex rings system on the collocation

points, while the vectorw contains all the non-circulatory normal velocity. This accounts

for the movement of aerodynamic control surfaces and for gust induced velocity, as well

as for the lifting surface rigid-body motion (through its velocities, ν =
(
vT ,ωT

)T
, and

orientation, χ), deflections,3 ζb, and rate of deflections, ζ̇b.

The enforcement of the non-penetration condition in eq. (2.56) provides a set of Nb

independent algebraic equations. These are not enough to determine the state of all the

variables describing the flow field, namely the vortex elements intensity Γb, Γw and the

wake grid coordinates ζw. For achieving the system closure, further physical conditions

on the wake dynamics (addressing the wake circulation, Γw) are required, including a

model for the wake propagation — i.e. a criterion on how to set ζw.

As introduced in Sec. 2.2.1, modelling the wake surface is required to satisfy Kelvin’s

theorem. In a potential flow, in fact, the total circulation, Γtot, around a curve consisting

of the same fluid particles flow has to remain constant, i.e.:

dΓtot
dt

= 0 (2.58)

As lift is associated to a production of circulation (Joukovsky’s theorem, [8, 44]), there-

fore, vorticity has to be shed behind the lifting surface so as to verify eq. (2.58) and,

thus, building up the wake. In the UVLM method, in particular, the cross-sections of

the lifting surface are assumed to be streamlines, hence the shedding occurs at the trail-

ing edge. Furthermore, as no external forces are acting on the wake, the circulation of

the vortex rings remains constant as they move downstream (third Helmholtz’s theorem

[44]). In reality, large dissipation typically occurs beyond the near field, and this ap-

proximation becomes inaccurate. Nonetheless, the influence of the vortex rings on the

velocity field nearby the wing also decreases as these move downstream, hence bounding

the error associated to this assumption.

Following these consideration, it derives that the circulation strength of the wake

vortices, Γw, in eq. (2.56) is a known quantity, exception made for those terms associated

to the line of vortices shed at the trailing edge. Their value can, however, be determine

enforcing Kelvin’s condition: using a first order integration scheme, eq. (2.58) leads to

Γnw0
= Γn−1

bTE
(2.59)

where the column vector associated to the circulations strength of the wake vortices

shed at time-step n, Γnw0
, is enforced to be equal to the trailing edge bound vortices

at the previous time-step, Γn−1
bTE

. An important, yet not obvious, consequence of this

3These determine the orientation of the vortex rings, which is required to extract the normal compo-
nent of the velocities at the collocation points.
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2.2. Unsteady vortex-lattice method

condition is that the time-step size is now constrained. As the bound and wake trailing

edge vortices have the same circulation strength, they should also approximatively have

the same area. Hence, the time-step will depend on both the chord-wise size of the last

row of panels and the flow speed, U∞. In particular, assuming M equally spaced rows

of panels in the chord-wise direction, this leads to:

∆t =
c

M |U∞|
(2.60)

Further details of the time-stepping procedure are provided by Mauermann [51] and

Murua [52]. Here it is worth underlining that, when a steady solution is sought, eq. (2.59)

allows to retrieve the Kutta condition at the lifting surface trailing edge line [163].

This states that the flow leaves the body smoothly, i.e. such that there is no pressure

jump between lower and upper streamline occurs. This is ensured by enforcing that the

circulation around the trailing edge line at each span-wise location, γTE , is null, hence

leading to:

γTE = Γw0 − ΓbTE = 0 (2.61)

Finally, the wake propagation needs to be addressed. This step is required so as to

retrieve the wake grid coordinate, ζw, and, therefore, evaluate the wing-wake aerody-

namics influence coefficient matrix in eq. (2.56). For the wake to be a free force surface,

vortex rings need to align with the local flow speed, so as to satisfy Helmholtz’s theorem.

This can be achieved updating the wake grid corner points position at each time step.

The process is, however, computationally expensive, as it requires to evaluate the in-

duced velocity produced by all of the other vortex rings in the field. For this reason, the

wake grid coordinates ζw can be updated once per time-step using a first order explicit

Euler integration scheme. This method has proven good accuracy for the low-frequency

flight-dynamics of very flexible vehicles as changes in wake geometry occur smoothly and

can be captured adequately using sufficiently refined time-steps [74].

The force free wake obtained through this approach for a large dihedral wing during

a rolling manoeuvre is shown in Fig. 2.4a. In the figure, the tip vortices structures

and the wake roll up produced by the ailerons deflections can be observed. As vortices

are carried downstream, their induced velocity at the wing decreases rapidly: in the

numerical implementation, therefore, the wake is cut a number of chords downstream

the wing and its length is determined via a convergence study.

A computationally cheaper — yet very accurate for the low frequency dominated

studies presented in this work — approach for defining the wake is to neglect the vortex

induced velocity and update the wake grid based on the free stream and, possibly, gust

induced velocity only. This leads to the prescribed wake model, Fig. 2.4b. Importantly,

in this case the wake can still capture — and keep memory of — large wing bending,

rigid-body motion and ailerons deflections. The comparison with Fig. 2.4a, however,

shows that the roll up caused by the ailerons deflection is not accurate.
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direction of flight

(a) Force free wake (b) Prescribed wake

Figure 2.4: Comparison of different models of wake for a high-aspect-ratio wing during
a rolling manoeuvre.

Wake roll up may be important when the characteristic frequency of the structural

dynamics are large as compared to those associated to the flow field, u∞/c [164]. For

the studies presented in this work, in which the wing dynamics is relatively slow, as

the vorticity structures grow in size they are also quickly carried downstream, and their

impact on the induced velocities at the wing is reduced. A prescribed wake model has

been found, therefore, to be a very good approximation and has been used throughout

this work.

2.2.3 Aerodynamic loads

Once the bound circulation Γb is found, the inviscid loads acting on the lifting surface

at each time-step are finally computed applying the unsteady Kutta-Joukowski theorem

[165]. The force produced by a bound vortex ring can be divided into two component.

The first is a quasi-steady contribution which accounts for leading edge suction effects.

This depends on the circulation intensity Γ of the vortex ring according to

dfs = ρ∞Γ U × ds (2.62)

where ds is an infinitesimal segment of vorticity and ρ∞ is the air density. The local

velocity U is tangent to the lifting surface only at the collocation points, eq. (2.56),

hence this force may not be perfectly aligned to the panel surface normal if the wing

vortex-lattice is not sufficiently refined.

The unsteady contribution derives from the ∂Φ
∂t term in the unsteady Bernoulli’s

equation [166]
∂Φ

∂t
+

1

2
ρ∞|U |2 +

p

ρ∞
= const (2.63)

and accounts for the added mass effect; note that in eq. (2.63) p is the flow pressure and
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the gravity term has been neglected. The resulting force acts along the lifting surface

normal, n̂, and can be expressed as [165]

dfu = ρ∞
∂Γ

∂t
n̂ dS (2.64)

where dS is a surface element.

An alternative way to obtain the aerodynamic loads is to compute the pressure jump

between upper and lower surface of the wing lattice through the unsteady Bernoulli’s

equation [44]. This approach computes lifting loads accurately but it can not account for

leading edge suction and, as a result, overestimates the induced drag. While corrections

are available [44, 45], the unsteady Kutta-Joukowski theorem has been shown good

accuracy in computing both lift and drag loads, as well as good convergence properties

[153].

2.3 Multidisciplinary integration and fluid-structure inter-

action

Sec. 2.1 and 2.2 addressed one by one the modelling of the flexible-rigid body dynamics

of geometrically nonlinear wings and of the inviscid flow surrounding them. This section

will discuss how these solutions can be coupled for dealing with fluid-structure interaction

problems. Together with the modelling aspects of the structural dynamics and the

aerodynamics, the integration of the two methodologies forms a core part of SHARPy

(Simulation of High Aspect Ratio Planes in Python), a framework for flight-dynamics

analysis of very flexible aircraft.4

The fluid-structure interaction scheme has been based on an already existing Matlab

implementation of this framework, which has been extensively verified in previous studies

[16, 54, 75] and is described in high detail by Murua [52] and Hesse [156]. Here the

two main aspects of the coupling process, namely the mapping between structural and

aerodynamics disciplines and the time-stepping scheme, are discussed. In particular,

as a large number of analysis is performed during the optimisation process, the latter

has required modifications with respect to the original scheme developed by Murua [52],

so as to increase the robustness of the integration process. This will be discussed in

Sec. 2.3.2.

2.3.1 Mapping between structural and aerodynamics discretisations

The starting point for coupling the structural and aerodynamics solutions presented

in Sec. 2.1 and 2.2 is to define a mapping scheme for retrieving the instantaneous 3D

shape of the lifting surfaces lattices from the 1D beam description of the wing deformed

4SHARPy is open-source and free access to the code is available through the GitHub website at
https://github.com/SalvatoreMaraniello/SHARPy.
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Chapter 2. Aeroelastic modelling of geometrically nonlinear wings

configuration. This implies determining the vortex-lattice panels coordinates, ζb (defined

in Sec. 2.2.2), from the nodal positions R(si, t), and orientation, Ψ(si, t), of the local

frame B with respect to the body frame A. For enforcing the impermeability condition

at the vortex rings collocation points, eq. (2.56), however, the rate of change of ζb is also

required. Therefore, the procedure also needs to include the rate of change of R(si, t)

and Ψ(si, t), as well as the velocities v and ω of the moving frame A and its orientation,

which is described through a quaternion, χ.

The mapping process is defined upon the assumption that the spanwise discretisation

of beam nodes and wing panels coincides. Together with the kinematic hypothesis that

the wing cross-sections remain undeformed (Sec. 2.1.3), this simplifies considerably the

mapping of both the lattice geometry and the aerodynamics loads. The use of the

same spanwise discretisation for the structural and aerodynamic solution has the only

downside of requiring a careful assessment of the wing discretisation. For flight-dynamics

applications, in fact, the UVLM grid needs a high refinement in proximity of the wing

tips, while a higher density of finite elements is commonly necessary at the wing root of

the structural mesh, where loads and deflections are larger.

When the interface is initialised, the mapping is defined over the undeformed wing

geometry. The coordinates of the j-th point of the wing lattice grid at the cross-section

i are described in the corresponding local frame B as ζB(si, vj), where s and v are curvi-

linear coordinates along the span-wise and chord-wise directions. Note that ζB(si, vj)

does not depend on time, as wing cross-sections rotate rigidly. As the wing deforms,

their orientation is retrieved through the associated Cartesian rotation vector, Ψ(si, t),

while its position with respect to the body attached frame A is provided by R(si, t).

The coordinated of the grid point can be, therefore, expressed in the inertial frame G as

ζG(si, vj , t) = rG(t) + CGA(χ(t))
[
RA(si, t) + CAB(Ψ(si, t)) ζB(si, vj)

]
(2.65)

where rG is the FoR A position. Note that from eq. (2.65) the rate of change of the grid

points due to the elastic dynamics can also be obtained. Their total speed in the inertial

frame can finally be expressed as

ζ̇G(si, vj , t) = CGA(χ(t))
[
vA(t) + ω̃A(t)RA(si, t) +

+ ṘA(si, t) + CAB(Ψ(si, vj , t))Ω̃B ζB(si, vj)
]

(2.66)

Eq. (2.65) and (2.66) provide the surface lattice position and rate of change, which

are required to enforce the impermeability condition in eq. (2.51). Once the distribution

of circulation on both surface and wake lattices has been found, the forces acting on

each segment of the lattice grid are obtained integrating eq. (2.62) and (2.64) over the

vortex elements segments and areas, respectively. As the aerodynamics and structural

discretisation match, loads are equally split between adjacent cross-sections first and,
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finally, condensates at the beam nodes. The resulting forces feed the external force Qext

term in eq. (2.42), thus closing the coupling.

Finally, it is worth noticing that the effect of control surfaces deflections is also

included at this stage. Their movement is, in fact, modelled by displacing the corner

points of the vortex rings used to discretise them.

2.3.2 Time integration

The structural and aerodynamics solutions presented in Sec. 2.1 and Sec. 2.2, together

with the interface relations in Sec. 2.3, describe the evolution in time of a geometrically

nonlinear aeroelastic system with coupled rigid-flexible body dynamics. As shown in

Sec. 2.1.7 and 2.2.2, however, the time discretisation of the two solutions is based on

different schemes. For rigid-flexible body dynamics problems, a second order implicit

Newmark-β method has been employed for improving stability. For the UVLM solution,

instead, an explicit first order integration ensures that the costly evaluation of the aero-

dynamics influence coefficient matrices in eq. (2.56) is performed only once per time-step.

The main obstacle in implementing a coupled aeroelastic solution is, therefore, that of

combining these integrations schemes together in a way that retains their good stability

and numerical performances.

A first approach can consist in a fully coupled, monolithic, solution strategy. As

the coupled system is nonlinear, this approach would require deriving the Jacobian

terms coupling structural dynamics and aerodynamics. Such implementation would,

however, lead to very stiff systems, as the characteristic eigenvalues associated to the

two disciplines may differ of several orders of magnitude. This is a common issue in

fluid-structure interaction problems which, as a result, are commonly solved through

a partitioned solution, in which structural and aerodynamics solutions are integrated

separately [154, 155].

According to how the information flows from one discipline to another and the level

of coupling enforced, different partitioned architectures are obtained. The most accurate

solution relies on a tightly coupled scheme, which can be obtained combining an outer

fluid solution loop to a structure subiteration loop [167]. This scheme guarantees that

both structural and aerodynamics residuals, eq. (2.42) and eq. (2.56), are verified, but

is computationally expensive as large number of UVLM solutions is required.

However, when dealing with optimisation problems — hence, possibly, a large number

of analysis — a scheme should guarantee not only accuracy, but also robustness and

computational efficiency. To reduce the number of UVLM solutions per time-step, a

loosely coupled scheme can be used. A widely spread approach consists in a staggered

scheme [168], in which the structural solution at time-step n + 1 is evaluated using

the aerodynamic load predicted at the previous time-step. In this case the residuals

associated to the flow and structural solution is not verified, but only one UVLM solution

is derived per time-step.
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τn
τ̇n
τ̈n

Predict displacements
and rotations

with τ̈0
n+1 = τ̈n:

τ̇0
n+1 = τ̇n + ∆tτ̈n

τ0
n+1 = τn + ∆tτ̇n + 1

2
∆t2τ̈n

Flow solution:
update lattice

and
compute loads

Correct displacement
and rotations,

eq. (2.44) and (2.45)

τn+1

τ̇n+1

τ̈n+1

Newton-Raphson:
update τ̈kn+1, eq. (2.48)

Figure 2.5: Loosely coupled scheme for aeroelastic solution.

A compromise between these two schemes is shown in Fig. 2.5. In this case, the

aerodynamic loads are still computed once per time-step but the structural solution is

now estimated at time-step n + 1 via an explicit Taylor expansion. As discussed in

Sec. 2.1.7, this is obtained assuming the accelerations to be τ̈n+1 = τ̈n and predicting

displacements and velocities, τn+1 and τ̇n+1, according to eq. (2.44) and eq. (2.45) —

note that τ is defined as Sec. 2.1.7 such that τ =
{
η,
∫
ν,
∫
χ
}T

. While also in this case

the structural and aerodynamics residuals are not verified, the unbalance is reduced.5

As a result, accuracy and robustness are improved with respect to a staggered scheme

while maintaining the same computational cost. For this reason this approach has been

preferred for all the studies presented in this work.

5For instance, in the numerical studies on rolling manoeuvres presented in Chap. 6, the magnitude of
the initial residual associated to the structural inner loop in Fig. 2.5, and provided by eq. (2.47), would
show reductions as large as 3 orders of magnitude when considering very flexible wings.
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Numerical solution of the optimal

control problem

In this chapter the direct single-shooting framework for optimal control is described. This

will be firstly used to control the dynamics of very flexible structures in vacuum and then

applied to the manoeuvring of very flexible wings. The starting point is the definition

of an optimal control problem, whose cost function and constraints depend on some

performance requirements. A numerical solution can be obtained upon discretisation of

the control input. Two parametrisations are employed in this work, namely discrete sines

and B-splines. These have been selected for investigating possible advantages between

using a local or a global set of basis function. Optimal actuations are obtained by

solving an optimisation problem with respect to the coefficient parametrising the control

input. The implementation is monolithic, hence an aeroelastic solution is required at

each iteration of the optimisation process, and minimises the size of the resulting finite-

dimensional optimisation problem. Importantly, this formulation can also be extended

to co-design by simply including in the problem any design variable associated to the

system to be controlled.

This process relies upon the numerical solution of a discrete optimisation problem. In

this work, this is obtained using a SQP method, the SLSQP algorithm developed by Kraft

[111]. In order to explore the suitability of this method for the analysis considered in this

work, the second part of this chapter will outline the relevant theoretical background

for illustrating the algorithm (Sec. 3.5). This is complemented by App. A and B, which

include further details on the methodology, and Sec. 3.5.3, which briefly summarises

the limitations of the method and alternative strategies for dealing with larger scale

problems.

3.1 Problem statement

In this section, a brief introduction to the optimal control problems treated in this work
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is provided. This follows the reviews of Lin et al.[105] and Allison and Herber [20],

to which the reader is referred for further details. The optimal control is defined as

an optimisation problem in which the design variables are a set of Nu time-dependent

functions, the control input vector

u(t) = {um(t)} , m = 1 . . . Nu (3.1)

The problem takes, thus, the form

min. I(t,y,u)

w.r.t. u(t),y(t)

s.t. c(t,y,u) ≥ 0

ẏ = f(t,y,u)

(3.2)

where the array

y =
{
ηT , η̇T ,νT ,χT , ζTb , ζ

T
w ,Γ

T
b ,Γ

T
w

}T
(3.3)

defines the state of the spatially-discretised aeroelastic system discussed in Chap. 2. This

is determined over the time horizon [0, T ] by the aeroelastic state equations

ẏ = f(t,y,u) (3.4)

which are obtained combining:

• eq. (2.10) and (2.42), which define attitude, χ, velocities, ν, nodal displacements

and rotations, η with their rates, η̇, of the flexible vehicle, modelled as a system

of interconnected beams;

• eq. (2.56) and (2.59), which provide the circulation intensity of the wake and bound

vortex-lattices, respectively Γw and Γb, through enforcement of the nonpenetration

boundary condition at the lifting surfaces and Kelvin’s circulation theorem.

• eq. (2.62) and (2.64), which exploit the unsteady Kutta-Joukovski theorem to

derive the aerodynamic force acting on each panel of the lifting surfaces.

• eq. (2.65) and (2.66), which allow retrieving positions and rates of change of the

nodes of the lifting surfaces vortex-lattices.

Finally, in eq. (3.2) I is the cost functional to minimise and c is a set of constraints.

Note that these functionals are all problem dependent.

In general, cost and constraints will depend on both the state, y, and the control

input, u. Referring to the generic functional in problem (3.2) as g, this can commonly

be expressed in the Bolza form

g = h
(
t̃,y(t̃),u(t̃)

)
+

∫ T

0
G(t,u,y)dt (3.5)
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where h and G are referred to as Mayer and Lagrangian term [105, 107] and t̃ ∈ [0, T ].

When g is the cost of the optimisation problem, for instance, it is typically assumed

t̃ = T so as to use the Mayer term to specify terminal conditions — this form is, for

instance, used in Chap. 4, where the optimal control aims to maximise the final tip

velocity of a very flexible pendulum. Initial or final time constraints are enforced on the

state of the system or the actuation input setting t̃ = 0 or t̃ = T and assuming G = 0.

Continuous inequality or path constraints may instead be obtained either by allowing t̃

to vary in the interval [0, T ] or through condensation techniques — e.g. using maximum

and minimum functions or any of their continuously differentiable counterpart [105].

This choice affects the amount of constraints obtained once the problem is discretised

and will be further discussed in Sec. 3.2. Similarly, bound constraints are enforced on

the control input u to limit its amplitude and rate of change as per:

uL(t) ≤ u(t) ≤ uH(t)

u̇L(t) ≤ u̇(t) ≤ u̇H(t)
for t ε [0, T ] (3.6)

In this work, bound constraints as per eq. (3.6) are employed in Chap. 4 and 5 to limit

the actuating torque used to control the dynamics of a very flexible pendulum, while

in Chap. 6 these will restrain the movement of the aerodynamic control surfaces used

to manoeuvre very flexible wings. More details on the discretisation of the problem are

given in the next section.

3.2 Numerical solution

This section introduces the direct single-shooting technique employed for the numerical

solution of problem (3.2). In order to better motivate this choice, the discussion will

start with a brief review of analytical and numerical difficulties associated to indirect

methods and direct transcription (DT).

As introduced in Sec. 1.1.3, a solution to problem (3.2) can be attempted through an

optimise-discretise approach [89, 93]. Assuming only equality constraints, and writing

the cost functional in Bolza form as

I(t,u,y) = I (T,y(T ),u(T )) +

∫ T

0
I(t,u,y)dt , (3.7)

the Euler-Lagrange necessary conditions for optimality are derived by imposing that the

first variation of the augmented performance index

Î = I(t,u,y) +

∫ T

0

[
pi (f i − ẏi) + λici

]
dt =

= I (T,y(T ),u(T )) +

∫ T

0

[
I(t,u,y) + pi (f i − ẏi) + λici

]
dt (3.8)
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is null [88]. In eq. (3.8) the time dependent vectors p(t) and λ(t) are, respectively,

adjoint variables and Lagrange multipliers. The δÎ = 0 condition leads to a system

of differential-algebraic equations. Aside for the aeroelastic state relations (3.4), this

includes the adjoint

ṗi = −∂H
∂yi

(3.9)

and control equations
∂H
∂ui

= 0 (3.10)

which have been expressed in terms of the Hamiltonian

H = pif i + λici . (3.11)

These relations are finally completed by the transversality conditions

pi(0) = 0 (3.12a)(
pi −

∂I

∂yi

)∣∣∣∣
t=T

= 0 (3.12b)(
∂I

∂t
+H

)∣∣∣∣
t=T

= 0 (3.12c)

For a more detailed formulation, which includes the treatment of terminal constraints,

the reader is reminded to Betts [88] or to the review from Limebeer and Rao [99].

Indirect methods attempt to solve the optimal control problem (3.2) by finding a

root to the system composed by eq. (3.4), (3.9), (3.10) and (3.12). A first drawback is,

therefore, the analytical development of these relations, which is a problem dependent,

and often complex, task [131]. A more careful analysis will also reveal that eq. (3.9) to

(3.12) depend on the active constraints; problem involving inequality constraints may

therefore require partitioning the time horizon into sub-arcs characterised by different

sets of active constraints [88]. Furthermore, and as it will be discussed further in Sec. 3.4,

the Euler-Lagrange equations are only necessary conditions for optimality; as a result,

the control equation (3.10) does not always allow to determine the the control u. This

situation leads to bang-bang or singular controls and requires special treatments [88]

— the reader can, for instance, refer to the Goddard rocket problem [99]. Finally, even

once all the solution sub-arcs have been identified, the multiple-points boundary values

problem resulting from the enforcement of eq. (3.4), (3.9), (3.10) and (3.12) is likely

to be ill-conditioned due to the non-physical nature of adjoint variables and Lagrange

multipliers.

For these reasons, a discretise-optimise approach is required in most applications. In

this case problem (3.2) is discretised in time and solved using nonlinear programming

techniques [99]. As discussed in Sec. 1.1.3, in particular, DT results from an implicit

solution strategy. Quadrature approximations are first employed to reduce the differ-
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ential state equations (3.4) to a set of algebraic constrains; next, the optimiser solves

simultaneously for state and control over a set of collocation points. Due to the large

dimensionality of y(t), however, this approach could lead to very large optimisation

problems, especially when considering the time horizons and range of frequencies char-

acterising the dynamics of the studies included in this work. Each element of y(t), in

fact, would require to be discretised in time and the size of this parametrisation should

be refined enough to reconstruct the relevant frequencies of the wing aeroelastic re-

sponse. In order to minimises the size of the resulting optimisation problem, therefore,

the control vector parametrisation approach has been employed.

A considerable size-reduction of the finite-dimensional optimisation associated to

problem (3.2) can be achieved by eliminating the aeroelastic state, y(t). For a given

control input u(t), therefore, y(t) is determined by performing a full aeroelastic analysis

and problem (3.2) is recast in the form of an MDF architecture [92]:

min. I(t,y(u),u)

w.r.t. u(t)

s.t. c(t,y(u),u) ≥ 0

(3.13)

where the dependency of the state on the control, y = y(u), has been explicitly stated.

Problem (3.13) can be discretised in time by expressing each control function, um(t), as

a linear combination of Nc basis functions, φn(t), defined over the time horizon [0, T ].

This leads to

um(t) =

Nc∑
n=1

xcm,n φn(t) (3.14)

where xcm is an Nc length array containing the coefficients parametrising the m-th

control input, um(t). The discrete form of problem (3.13) becomes, thus,

min. I(t,y(xc),xc)

w.r.t. xc

s.t. c(t,y(xc),xc) ≥ 0

(3.15)

where

xc =
{
xTc1 , . . . ,x

T
cNu

}T
(3.16)

groups the Nu arrays xcm defining the control input. Problem (3.15) can be solved via

nonlinear optimisation techniques. Its size is minimised and only depends on the para-

metrisation chosen to describe the control input (Sec. 3.3). Importantly, the time grid

over which the aeroelastic solution is obtained can be refined for capturing the aeroe-

lastic frequencies necessary to resolve the system dynamics without affecting the size of

the optimisation problem (3.15). The integration methods described in Sec. 2.1.7 and

2.3.2 can be used and, overall, no further modification to the solution process described
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in Chap. 2 is necessary.

The extension of problem (3.15) to an MDO that simultaneously optimises control

action and structural properties is straightforward. This only requires the inclusion of a

set of structural design parameters, xs, and augmenting, if required, the vector c with

additional structural constraints:

min. I(t,y(xc,xs),xc,xs)

w.r.t. xc,xs

s.t. c(t,y(xc,xs),xc,xs) ≥ 0

(3.17)

The general form of the inequality constraints used in this work has been shown in

eq. (3.5). Some considerations are required for the discretisation of the Mayer term, h,

when this is evaluated at each time of the horizon [0, T ], i.e. to discretise path constraints

of the form:

h(t,y(t),u(t)) ≥ 0 , t ∈ [0, T ] (3.18)

Note that this form also includes the actuation bound constraints introduced in eq. (3.18).

A difficulty in treating these kind of constraints is that they need to be satisfied at each

time instant in the time horizon [0, T ]. In this implementation, a point-wise approach, in

which the constraints are only enforced over a defined collocation grid, has been applied

[107, 110, 137]. This solution does not guaranty that path constraints are not violated

between grid points. However, the aeroelastic state y(t) typically varies smoothly in

time, hence a bound on how much eq. (3.18) is violated can be imposed by adjusting

the collocation grid according to the range of aeroelastic frequencies characterising the

problem [107]. Similarly, for the bound constraints in eq. (3.18) the density of the collo-

cation grid will be adapted based on the maximum frequency of the control input, which

is determined by the parametrisation chosen (Sec. 3.3).

While this approach can generate a relatively large number of constraints, the compu-

tational cost of the optimisation is not impacted, as the sensitivity analysis is performed

using finite differences. For adjoint based frameworks, on the other hand, condensation

techniques would be necessary [105, 169], so as to contain the number of adjoint solutions

required for evaluating the gradient. Point-wise enforcement, however, typically offers

better convergence properties [116].

The treatment of continuous inequality constraints completes the discretisation pro-

cess. Before discussing optimisation strategies for the solution of the resulting finite-

dimensional problems (3.15) and (3.17), it is worth remarking that scaling can affect

both the robustness and the convergence rate of the nonlinear programming algorithm

used [88]. For this reason, and despite SQP methods being generally robust when deal-

ing with badly scaled problems [138], in the numerical studies considered in this work

the terms appearing in problems (3.15) and (3.17) are normalised so as to have the

same order of magnitude. Therefore, the control inputs, xci , and the design parame-
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ters, xsi , are scaled with respect their upper bounds such that |xci | ≤ 1 and |xsi | ≤ 1.

The same approach is used to determine the scaling factors for the path constraints in

eq. (3.18) but can not be applied to the objective function I. In this case, instead, an

estimate of the magnitude of the cost function in the optimum region (which can be ob-

tained through numerical studies on low-dimensional aeroelastic models or other kinds

of simplified analyses) is used.

3.3 Control parametrisations

As shown in Sec. 3.2, a finite-dimensional version of problem (3.13) is obtained by

discretising its control input, eq. (3.14). In this respect, many implementations found in

literature use piecewise constant or linear parametrisations [110, 112, 113, 117], which

are easy to build and offer good convergence properties [105]. However, to describe the

movement of typical control actuators on a relatively large time domain, these choices

would lead to set of basis functions of substantial size.

For example, numerical studies on dynamical control of very flexible structures in

Chap. 4 and 5, will consider a time horizon of 2 s and will require a small time-step of

2× 10−4 s to integrate the system dynamics. Defining the control input on this time-grid

would lead to a very large optimisation problem, whose solution is impractical unless

an adjoint solver is employed. While automatic differentiation is possible [170], this is

not easily applicable to the current SHARPy implementation, whose core routines are

written both in Fortran and C++ and for which, therefore, an analytical derivation of

the adjoint equations would be required. Furthermore, this level of refinement is not

only unnecessary but could also be detrimental. In the example considered, for instance,

defining the control input on the solution time grid would allow expressing very high

frequencies (up to 103 Hz). These are far outside the range of interest of our studies (of

the order of 10 Hz) and, with the aim of avoiding unrealistic steep changes, the control

input would require smoothing, either enforcing additional constraints on its rate of

change or applying a low frequency filter to its gradient during the optimisation process

itself [171].

With the purpose of modelling smooth actuation signals while limiting the number

of coefficients used to parametrise the control, Nc, only C1 continuous or higher para-

metrisations are considered for this work. As the dynamics of structures is strongly

linked to the frequency of excitations of external disturbances and control forces, it is

natural to use a parametrisation that can be easily linked to the frequency range of

the control. An obvious candidate is the discrete Fourier series or, for control signals

with u(0) = u(T ) = 0, the discrete sine series (DSS) obtained using the following basis

functions of the form:

φn(t) = sin 2πfnt with: fn = nf0 , f0 =
1

2T
(3.19)
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The DSS expansion of a general signal u defined over a domain [0, T ] can instead be

obtained by applying a Fourier transform to the extended signal

ũ =

ũ = u(t) , t ε [0, T ]

ũ = −u(−t+ 2T ) , t ε [T, 2T ]
(3.20)

defined over the domain [0, 2T ]. This parametrisation has the advantage of allowing to

directly regulate the maximum actuation frequency of the control input. While sines

are globally defined in time, however, they are collocated in the frequency domain, each

harmonic being associated to a specific frequency fn — see eq. (3.19). This feature does

not pose an issue in terms of reconstruction properties,1 but may reduce the robustness

of the single-shooting approach. As the basis functions are global, in fact, large changes

in control input may occur from an iteration to another of the optimisation process,

possibly resulting in excessively high control forces and rate of changes and, overall,

increasing the risk of instabilities arising during the numerical integration.

For this reason, local basis functions are also considered. Third order B-splines, in

particular, have been chosen for their smoothness properties [109, 116, 137]. A set of

B-splines basis functions of order p can be built recursively over a set of Nτ control

points τn as [116]:

φ(0)
n (t) =

1 if τn < t < τn+1

0 else
(3.21)

and

φ(p)
n (t) =

t− τn
τn+p − τn

φ(p−1)
n (t) +

τn+p+1 − t
τn+p+1 − τn+1

φ
(p−1)
n+1 (t) , p > 0 (3.22)

Note that, if Nτ control points are used, the number of spline basis required is Nc =

Nτ+p− 1. Third-order B-splines were found to provide good and smooth reconstructions

for the applications in this work.

The frequency range of actuation can be regulated by noticing that, in order to

capture a frequency, fmax, a spacing between control points ∆τ ≤ 1/(2fmax) is necessary

(Nyquist criterion). If control points are equally spaced, therefore, their total number,

Nτ , is related to the maximum frequency captured by the parametrisation through:

Nτ ≈ 2Tfmax + 1. This is observed in Fig. 3.1, where two B-spline basis, built assuming

non-dimensional frequencies 2Tfmax equal to 16 and 32, are compared in both time

(Fig. 3.1a) and frequency domain (Fig. 3.1b). In the time domain the length of the

B-spline reduces as the spacing between control points, ∆τ halves; higher rates u̇ and

ü are also reconstructed. Their DSS decomposition (Fig. 3.1b), on the other hand,

shows a slower decay in the frequency domain, where the frequency range covered is

1From Fourier’s theorem any signal u defined over the domain [0, T ] can be reproduced by a large
enough sine series.
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3.4. Problem formulation vs. optimal control nature

approximately doubled. It results that, fixed a fmax value, DSS and B-splines basis have

comparable size and similar reconstruction properties, although it should be noted that

the frequency spectrum of each spline basis has a smooth decay to zero towards fmax,

Fig. 3.1b. As it will be shown in Sec. 4.4, this means that harmonic components whose

frequencies is near fmax are not reconstructed accurately. While local in time, however,

spline basis have a distributed frequency content, thus providing opposite properties to

the DSS basis during a sensitivity analysis.
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Figure 3.1: Comparison between third-order B-splines obtained when doubling the non-
dimensional frequency 2Tfmax.

3.4 Problem formulation vs. optimal control nature

Before discussing the optimisation algorithm used to solve the discrete optimisation prob-

lems (3.15) and (3.17), some considerations on the optimal rolling manoeuvres studied in

Chap. 6 are included here. The aim is to show how the optimality conditions introduced

in Sec. 3.2 can be used to identify relevant features of the sought optimal control. This

knowledge can, in fact, allow to anticipate numerical difficulties in the solution of the

associated finite-dimensional problem and shed light on how to overcome these.

For the purpose of this discussion, a simplified flight-dynamics model of the wing roll

dynamics is considered:

Φ̈ = cβ(t) , c = q∞Sb
CMβ

Ixx
(3.23)

In eq. (3.23) Φ is the wing roll angle, while β the amplitude of the control surfaces.

Aerodynamic damping is neglected and the constant c depends on the dynamic pressure

(q∞), the wing surface (S) and moment of inertia (Ixx), the control surfaces moment

arm, b, and effectiveness, CMβ
.

An optimal control problem arises when aiming to determine the ailerons deflections

time histories, β(t), required to roll the wing of a prescribed angle, Φ̃, in minimum time.
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Chapter 3. Numerical solution of the optimal control problem

In its simplest form, this problem can be formulated as:

min. I =
∫ T

0 1 dt

w.r.t. u(t),y(t)

s.t. ẏ = f(t,y, u)

|u| ≤ βmax
y(0) = 0

y(T )T = (Φ̃, 0)

(3.24)

in which u = β, yT = (Φ, Φ̇) and fT = (y2, cu). While initial and terminal conditions

are enforced on the state, y, the deflection amplitude is free at the boundaries. This is,

however, bounded to be |u(t)| < βmax. When this inequality constraint is not active,

the Hamiltonian (3.11) is H = 1 + p1y2 + cp2u and the adjoint equations are{
ṗ1 = 0

ṗ2 = −p1

⇒

{
p1(t) = P1

p2(t) = −P1t+ P2

(3.25)

with P1 and P2 being constant. The control equation (3.10) reduces instead to p2(t) = 0.

It results that an expression for the control can not be obtained through any of the

optimality conditions in eq. (3.4), (3.9), (3.10) and (3.12). The problem can instead be

solved either using slag variables [89, 172] or invoking Pontryagin minimum principle.

This states that at each instant in time the optimal control, u∗, is a minimiser of the

Hamiltonian, H(u), i.e. [99]:

u∗ = arg min
u
H (3.26)

The solution to problem (3.24) is, therefore, the bang-bang control:

u∗ =

{
−βmax , p2 < 0

βmax , p2 > 0
(3.27)

It is worth noticing that u∗ does not verify the control equation (3.10), proving that

this condition is not necessary for optimality when inequality constraints are considered.

As from eq. (3.25) p2(t) is linear, the solution will be composed by two sub-arcs, with

switching time τ | p2(τ) = 0. Assuming Φ̃ > 0, it can be inferred that u∗ = βmax on the

first arc. A solution can be found by integrating the state equations over the two sub-

arcs and enforcing initial and terminal conditions, as well as the continuity of the state

vector at the junction t = τ . It results that the time to roll the wing is T = 2
√

Φ̃
cβmax

,

while the control switch happens at τ = T
2 . Optimal control and the associated wing

response

Φ∗(t) =

{
1
2cβmaxt

2 , t < τ

−1
2cβmax(t− T )2 + Φ̃ , t > τ

(3.28)
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3.4. Problem formulation vs. optimal control nature

are shown in Fig. 3.2a.

The optimal rolling manoeuvres defined in Chap. 6 impose a maximum rate of deflec-

tions on the actuators. Even in this case, however, optimal control requires a bang-bang

strategy. This can be shown reformulating problem (3.24) as

min. I =
∫ T

0 1dt

w.r.t. u(t),y(t)

s.t. ẏ = f(t,y, u)

|u| < β̇max

y(0) = 0

(y1(T ), y2(T )) = (Φ̃, 0)

(3.29)

where the control variable is chosen to be u = β̇ and the ailerons deflection amplitude, β,

is treated as a state [88] — i.e. yT = (Φ, Φ̇, β) and fT = (y2, cy3, u). While constrained

to be initially null, no terminal condition is imposed on β.
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(a) Bang-bang control with bounded ampli-
tude — problem (3.24).
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(b) Bang-bang control with bounded rates —
problem (3.29)
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(c) Smooth control with actuation penalty —
problem (3.33)

Figure 3.2: Optimal ailerons deflections and wing response for problems (3.24), (3.29)
and (3.33).

As in problem (3.24), the Hamiltonian, H = 1 + p1y2 + cp2y3 + p3u, is linear in the

control, hence u can not be defined through the control equation, p3 = 0. Furthermore,
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Chapter 3. Numerical solution of the optimal control problem

the adjoint relations
ṗ1 = 0

ṗ2 = −p1

ṗ3 = −cp2
⇒


p1(t) = P1

p2(t) = −P1t+ P2

p3(t) = P1
2 t

2 − P2t+ P3

(3.30)

reveal that it can not be p3(t) = 0 over a sub-arc of the solution. Therefore, the control

is bang-bang

u∗ =

{
−β̇max , p3 < 0

β̇max , p3 > 0
(3.31)

and, being p3(t) quadratic, it admits at most two switch times. In particular, as y3 = β

is not constrained at t = T , the terminal condition p3(T ) = 0 holds, meaning that a

maximum of two sub-arcs are admissible for t < T . Assuming that u = β̇max in the first

sub-arc and enforcing the continuity at the switch time, τ , the state equations can be

integrated, leading to (Fig. 3.2b):

β =

{
β̇maxt , t < τ

β̇max(2τ − t) , t > τ
(3.32a)

Φ =

{
β̇max

c
6 t

3 , t < τ

β̇max
c
6

[
2τ3 − 6τ2t+ 6τt2 − t3

]
, t > τ

(3.32b)

τ =

(
1−
√

2

2

)
T (3.32c)

T =

(
12

2−
√

2

Φ̃

cβ̇max

)− 1
3

(3.32d)

In problem (3.29) no bounds on the maximum ailerons deflections have been imposed.

If this was the case, the optimal control of Fig. 3.2b would result in additional sub-

arcs corresponding to β = ±βmax, which is the case of the numerical studies of Chap. 6.

Similarly to what just shown, bounds could be imposed also on the ailerons acceleration,

β̈, but this is avoided in the numerical studies. Instead, this is naturally introduced by

the control parametrisation.

Problems (3.24) and (3.29) result in a bang-bang control as, in both cases, the Hamil-

tonian is linear in the control. This is avoided if their cost function is augmented with

a quadratic penalty term depending on u. For example, problem (3.29) can be reformu-

lated as
min. I =

∫ T
0

(
1 + αu2

)
dt

w.r.t. u(t),y(t)

s.t. ẏ = f(t,y, u)

y(0) = 0

(y1(T ), y2(T )) = (Φ̃, 0)

(3.33)
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3.4. Problem formulation vs. optimal control nature

where, for simplicity, rate limits have been removed. The Hamiltonian becomes H =

1 + αu2 + p1y2 + cp2y3 + p3u and the control equation

2αu+ p3 = 0 ⇒ u∗ = − p3

2α
(3.34)

now allows to define the optimal control, u∗. The adjoint equations are as per eq. (3.30).

Enforcing the terminal condition p3(T ) = 0, the system leads to

p3(t) = (t− T )

[
P1

2
(t+ T )− P2

]
(3.35)

The solution has a single arc: integrating the state equations and enforcing initial and

terminal conditions leads to:

β =
20Φ̃

3c

t

T 5
(6T 2 − 15Tt+ 8t2) (3.36a)

Φ =
Φ̃

3

t3

T 5
(20T 2 − 25Tt+ 8t2) (3.36b)

T =

(
1600α

Φ̃2

c2

) 1
6

(3.36c)

As shown in Fig. 3.2c, the ailerons deflection time history follows the same trend as

those in Fig. 3.2a and 3.2b, but the control is now smooth.

Contrarily to the problems discussed so far, the numerical investigations of Chap. 6

only consider fixed time manoeuvres. This, in fact, allows to guarantee a constant control

bandwidth at each iteration of the discrete optimisation problem (3.15) while also fixing

the number of design variables (Sec. 3.3). The impact of this choice on the nature of the

resulting optimal control can be analysed reformulating problem (3.24) as

min. I =
∫ T

0 (y1 − Φ̃)2 dt

w.r.t. u(t),y(t)

s.t. ẏ = f(t,y, u)

|u| ≤ βmax
y(0) = 0

(3.37)

where u = β, yT = (Φ, Φ̇) and fT = (y2, cu). With respect to problem (3.24), rolling

is now obtained through the minimisation of the quadratic error (y1 − Φ̃)2, rather than

through the enforcement of terminal conditions. The Hamiltonian of this system, H =

2y1 − 2y1Φ̃ + Φ̃2 + p1y2 + cp2u, is also linear in the control, hence a bang-bang control

arises when p2 6= 0. As opposed to problem (3.24), however, a singular arc is now
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Chapter 3. Numerical solution of the optimal control problem

admitted when p2 = 0: using the adjoint equations{
ṗ1 = 2(Φ̃− y1)

ṗ2 = −p1

(3.38)

this leads to the condition

y1 = Φ̃ (3.39)

The optimal control law for problem (3.37) is, therefore

u∗ =


−βmax , p2 < 0

0 , p2 = 0

βmax , p2 > 0

(3.40)

which results in a bang-bang-singular sequence whenever time allowed for the manoeuvre,

T , is large enough to achieve Φ = Φ̃.

Singular arcs can lead to numerical difficulties because the control equation is verified

any control u. For example, the discrete optimisation problem (3.2) resulting from DT

would not guaranteed to have a positive definite Hessian at the solution [87]. More

generally, as optimisation algorithms typically rely on an approximation of the Hessian

matrix (see Sec. 3.5 and B.2), singular arcs may result is slow convergence and/or an

oscillatory behaviour of the control signal [88]. The singular arc in problem (3.37) can,

however, be avoided by augmenting the cost function with a quadratic penalty term

depending on the control input, as done in problem (3.33). This strategy has been, for

instance, implemented in the numerical studies of Chap. 6 and allowed to avoid spurious

oscillations of the control during the last phase of the manoeuvre.

3.5 The SLSQP algorithm

As discussed in Sec. 1.3, a quasi-Newton sequential quadratic programming algorithm,

the SLSQP (Sequential Least Squares Quadratic Programming) is used in this work for

solving the discrete optimisation problems (3.15) and (3.17). The algorithm has been

developed by Kraft [111] for the TOMP (Trajectory Optimisation by Mathematical

Programming) Fortran package [110], for which a Python interface is available through

the SciPy package [148]. The SLSQP is based on a modified version of the Wilson,

Han and Powell [151, 173, 174] SQP algorithm. The Hessian matrix of the Lagrangian

associated to the optimisation problem is estimated through a BFGS update formula

[138]. This approximation is built at each design point from the gradient of the cost

and constraint functions, which are computed via FD. At each iteration, the quadratic

sub-problem is, instead, solved using Lawson and Hanson’s constrained least-squares

method [110, 147, 175] — from which the SLSQP acronym originates.

In this section, the main features of this algorithm are discussed further. The aim is
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3.5. The SLSQP algorithm

to illustrate how this method suits the optimisation problems considered in this work and

its limitations. These considerations may be especially relevant for future work aiming

to apply this framework to larger-scale problems — refer, in this respect, to Sec. 3.5.3,

where the algorithm efficiency is briefly discussed, and 7.3, where suggestions for future

works are included. This section will start introducing general principle of constrained

optimisation (Sec. 3.5.1) and will then move to discuss the Wilson-Han-Powell SQP

strategy in Sec. 3.5.2. Further details on the method are included in App. A and B.

3.5.1 Optimality conditions

In this section, the optimal control and co-design problems (3.15) and (3.17) introduced

in Sec. 3.1 are expressed in the form:

min. I = I(x)

w.r.t. x

s.t. ck(x) = 0, k ∈ E
ck(x) ≥ 0, k ∈ I

(3.41)

where all the design variables are included in the vector x, while equality (k ∈ E) and

inequality (k ∈ I) constraints have been separated. In this work equality constraints

only arise from initial/final conditions imposed on the actuation input (e.g. zero ailerons

deflection and rate of changes are imposed at the beginning of the analysis), while

inequality constraints result by evaluating the path constraints in (3.18) on a collocation

grid.

The points x satisfying the constraints of problem eq. (3.41) define the feasible set

Ω. In an unconstrained problem, for a feasible point, x∗, to be a minimum of I, the

gradient of this function has to be null, ∇I(x∗) = 0, while its Hessian ∇2I(x∗) positive

semidefinite; the condition becomes sufficient if the latter is positive definite [138]. When

constraints are included, optimal points must belong to the sub-space defined by the

equality constrains, cE . Furthermore, these may be located at the boundary of the

feasible set, Ω, where the disequality constrains, cI , have zero value. To identify these,

the notion of active set

A(x) = E ∪ {k ∈ I | ck = 0} (3.42)

is introduced. A necessary optimality condition is obtained referring to the Lagrangian

L(x,λ) = I(x)−
∑

k ∈ E∪I
λkck(x) (3.43)

where λk is the k−th component of the Lagrangian multipliers vector, λ. The Karush-

Kuhn-Tucker (KKT) relations [138, 176] provide a first-order necessary condition for the
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optimality of the point x∗:

∇xL(x∗) = ∇xI(x∗)−
∑

k ∈ E∪I
λk(x

∗)∇xck(x) = 0 (3.44a)

cE(x
∗) = 0 (3.44b)

cI(x
∗) ≥ 0 (3.44c)

λ(x∗) ≥ 0 (3.44d)

λk ck(x
∗) = 0 , for k ∈ E ∪ I (3.44e)

Importantly, condition (3.44e) implies that λk = 0 for all the non-active constraints,

ck(x
∗) > 0. On the contrary, the magnitude of the Lagrangian multipliers associated

to active constraints can be shown to be proportional to the sensitivity of the cost I to

violations of the associated constraint. A proof of these relations, with also a geometrical

insight, is provided by Nocedal and Wright [138]. Here it is worth remarking that an

analogy exists between the KKT conditions (3.44) and Pontryagin’s principle [90].

A second order optimality conditions is obtained by verifying that the Hessian of the

Laplacian with respect to the design variables, ∇2
xxL(x∗,λ∗), is positive definite for all

the feasible directions, w, belonging to the the critical cone, C(x∗,λ∗),2 i.e.:

wT∇2
xxL(x∗,λ∗)w > 0, ∀ w ∈ C(x∗,λ∗), w 6= 0 (3.45)

For further details the reader is remanded to any textbook on the topic [138, 176].

Instead, it is worth underlying here that gradient-based optimisation algorithm typically

rely on approximations of the Hessian matrix, ∇2
xxL: therefore, the sufficient condition

(3.45) is almost never checked [90] and numerical convergence tests, typically measuring

the decrease of the the cost function, are employed instead [138].

3.5.2 Wilson-Han-Powell method

Sequential quadratic programming algorithms are a well established family of optimisa-

tion methods, especially suitable for the optimisation problems involving strongly non-

linear constraints [137, 138]. At each iteration of the optimisation, the cost of problem

(3.41) is approximated through a quadratic expansion and the solution of the resulting

2Feasible directions are such the that active constraints are not violated in a neighbourhood of x and
are identified upon linearisation of the problem constrains:

F(x) =

{
w | w

T∇ck(x) = 0, ∀ k ∈ E
wT∇ck(x) ≥ 0, ∀ k ∈ A(x) ∩ I

}
For a set of points (x∗,λ∗) satisfying the KKT conditions (3.44), the critical cone is the sub-set of F
including only directions perpendicular to the inequality active constraints:

C(x∗,λ∗) =
{
w ∈ F(x∗) | wT∇ck(x∗) = 0, ∀ k ∈ A(x∗) ∩ I with λ∗k > 0

}
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quadratic programming (QP) sub-problem is used to determine the next design point.

In this section the theoretical basis of the SQP formulation are established so as to intro-

duce the Wilson-Han-Powell algorithm [139, 142, 143, 173], on which the SLSQP method

is based [111]. Details on the Lawson and Hanson’s constrained least-squares method

[110, 147, 174, 175] used for the solution of each sub-problem, as well as a more detailed

description on the Hessian approximation method and the step acceptance criterion used

by the algorithm, are included for completeness in App. A and B, respectively.

Problem (3.41) defines a nonlinear optimisation problem in its most general form.

The first order necessary optimality conditions in eq. (3.44), requires x to verify

F =

{
∇xL(x)

cA(x)

}
=

{
g(x)−AT (x)λ

cA(x)

}
=

{
0

0

}
(3.46)

where g(x) = ∇xI is the cost function gradient, cA = {ck(x)} for k ∈ A(x) is the

active constraints column vector and the rows of the matrix A contain the gradient of

the constraints with respect to the design variables, i.e. AT = {∇xck(x)} for k ∈ A(x).

The root of the nonlinear equation (3.46) can be found through the Newton-Raphson

method. Being n an iteration counter, this leads to(
H(xj) −AT (xn)

A(xn) 0

){
∆x

∆λ

}
=

{
AT (xn)λ− g(xn)

−c(xn)

}
(3.47)

where the Hessian matrix of the Lagrangian H = ∇2
xxL(xn) has been introduced. If

only equality constraints are present (A = E), eq. (3.47) can be solved recursively until

the KKT necessary condition (3.46) is verified (Lagrange-Newton method, [146]).

More generally, replacing ∆λ = λn+1−λn and solving for λn+1 shows that eq. (3.46)

is equivalent to the KKT condition of the following QP sub-problem [138]

min. I(xn) + gT (xn)∆x+ 1
2∆xTH(xn)∆x

w.r.t. ∆x

s.t. ck(xn) + ∇T
x ck(x) ∆x = 0, k ∈ E

ck(xn) + ∇T
x ck(x) ∆x ≥ 0, k ∈ I

(3.48)

in which the cost function is approximated around xn by a quadratic form and constraints

are linearised. An important feature of this approach is that QP can always be solved, or

shown to be infeasible, in a finite number of computations, typically through active-set

strategies [138]. However, as the size of the problem increases, a large computational

effort may be required to determine the active set at the solution point (App. A) due

to the combinatory nature of this problem. The active-set strategy implemented in the

SLSQP, in particular, is based on the least-squares method of Lawson and Henson [147],

which performs well for small size problems. This is described in App. A.2 (algorithm

3). Importantly, the solution of the sub-problem (3.48) provides not only the search
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direction, ∆x, but also an estimate of the active set at the following design point,

A(xn+1). Especially as x approaches the optimum design point, this will generally

provide a good initial guess for the solution of the next QP sub-problem, allowing to

reduce the computational cost of identifying the active constraints [138].

The search direction ∆x can be used to define the next design point explored by the

optimiser, xn+1, around which a quadratic problem is defined; the process is repeated

until convergence. This strategy is the foundation of the Wilson-Han-Powell method

[173, 174], upon which the SLSQP algorithm is built, and is summarised in algorithm

1. Two important additions complete the scheme: a criterion for step acceptance and a

method to approximate the Hessian of the Lagrangian.

While the step ∆x solution of the local QP problem (3.48) is locally feasible, the

constraints of problem (3.41) are nonlinear and will almost inevitably be violated at

xn + ∆x. The step size requires, therefore, adjusting, so as to compromise a sufficient

cost reduction with a reasonable violation of the constraints. This is achieved through

an `1 merit function [111, 138], which is discussed in App. B.1. Finally, the evaluation of

the Hessian term H = ∇2
xxL, which is required for building the KKT matrix of problem

(3.48), needs to be addressed. For the numerical studies considered in this work, this

operation is too costly to be performed numerically by FD, while an analytical expression

would require a very involved derivation. Therefore, this term is approximated through

the widely spread BFGS formula [138], which creates an approximation matrix that

satisfies some of the properties of the exact Hessian matrix, namely the symmetry and

the secant equation. Further details on this method are provided in App. B.2.

3.5.3 Algorithm efficiency

It is finally important to examine points of strength and weakness of the SLSQP al-

gorithm (1). This discussion, in particular, complements the review in Sec. 1.1.5 with

further technical details and linking to the implementation and numerical studies pre-

sented in this work. The aim is to underline how the algorithm compares to other op-

timisation methods and highlight whether, and possibly which, other strategies should

be considered for larger scale aeroelastic optimisation problems.

The SLSQP is an active set SQP method, suitable when dealing with significant

nonlinearities in the constraints and when the number of active constraints is compa-

rable to the number of design variables — i.e. when the number of free variables is

reduced [137, 138]. Especially when the active set does not change considerably from

one iteration to another, this optimisation strategy can be very efficient, as a warm

start-up is exploited (Sec. 3.5.2). This was typically the case of the studies considered

in this work. A slow-down of the SLSQP algorithm was, however, observed in some of

the numerical studies in which dynamics under resonance was controlled (Chap. 4 and

5). When high-frequency and large-amplitude oscillations arise in the control input, in

fact, the active-set can change more frequently during the optimisation as the bound
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constraints (3.6) are activated at different nodes of the collocation grid. However, the

increase in computational cost was marginal, as this is dominated by the structural

dynamics solution and the sensitivity analysis.

As introduced in Sec. 1.1.5, the SLSQP algorithm becomes less efficient when the

dimensionality of the problem increases [43]. While a QR decomposition is exploited

to speed up the solution of each QP sub-problem [147], in fact, Kraft’s implementation

does not exploits the sparsity of the Hessian matrix — neither for the BFGS update or

the KKT system solution, eq. (3.44). Therefore, while the current implementation would

still be adequate for higher fidelity aeroelastic analysis, it would not be suitable for very

large optimisation problems even upon implementation of an adjoint based sensitivity

analysis. A well established SQP based optimiser for very large problems is SNOPT [149],

which approximates the Hessian of the Lagrangian with a limited memory quasi-Newton

method. For the small/medium size problems as those considered in this work, instead,

the effort required to solve the QP sub-problem is virtually null and the computational

cost of the optimisation is driven by the number of aeroelastic analysis performed. In this

respect, previous comparative studies showed that, especially under active constraints,

the SLSQP algorithm may require less iterations to convergence then other SQP methods

[43, 151] and it has, therefore, been preferred for the current implementation.

Algorithm 1 SLSQP (modified Wilson-Han-Powell SQP, [173, 174])

Requires:
definition of problem (3.41)
starting point x0

tolerance ε
Initialisation:

compute cost xn = x0

compute cost I(x0)
compute gradients g(x0) and A(x0)
define R0 = I ≈∇−1

xxL(x0)
while |∆x| > ε do

Solve QP sub-problem: . exploit R ≈∇−1
xxL

call algorithm 3: output → ∆x
Line search:

α = 1
while eq. (B.2) is not verified do
xn+1 = xn + α∆x
evaluate I(xn+1), cE(xn+1), cI(xn+1)
evaluate `1 merit function, eq. (B.1)
update α — Brent’s method [177]

Update solution:
compute gradients g(xn+1) and A(xn+1)
BFGS update, eq. (B.7): Rn → Rn+1

return x
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Chapter 3. Numerical solution of the optimal control problem

Finally, and as already outlined in Sec. 1.1.5, for very large numbers of design vari-

ables and active constraints, interior points methods should also be considered [138, 150].

In these algorithms, all constraints are considered during the solution of each QP sub-

problem [141]. While this results in larger KKT system, eq. (3.47), its block structure

is unchanged from one iteration to another. This is, therefore, exploited to reduce the

computational cost of the QP solution.
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Optimal control of very flexible

structures

In this chapter, optimal control is used to manipulate very flexible slender structures in

vacuum. In the aeroelastic model illustrated in Chap. 2 nonlinearities are introduced

through the geometrically-exact beam description of the aircraft primary components.

Even in vacuum, therefore, their dynamics preserves a great part of the complexity

associated to the control of very flexible aeroelastic systems, as large amplitude vibrations

are possible. Controlling these is a necessary assessment of the optimal control approach

described in Chap. 3, which will shed light on limitations and efficiency of this method

when dealing with very flexible aerospace structures.

The remaining part of the chapter is structured as follows. At first, the GEBM

implementation with constrained kinematics is verified (Sec. 4.1). Single-shooting is

then applied to the control of a very flexible actuated pendulum. This study case

was first proposed by Wang and Yu [171] and is described in Sec. 4.2. The pendulum

is modelled as a very flexible beam and can undergo large rigid body rotations and

geometrical deformations. Despite its simplicity, therefore, this system shares important

features to very flexible wings, including inertial coupling between rigid and flexible body

dynamics. As no external disturbances are accounted for, furthermore, the problem is

fully deterministic and allows to easily assess the outcome of the control process. In

Sec. 4.3 the parametrisations introduced in Sec. 3.3 are exercised for the optimal control

of this system and results are compared against Wang and Yu [171]. The impact of

actuation bandwidth and structural nonlinearities is further assessed in Sec. 4.4. Finally,

a multi-resolution strategy is proposed for improving the convergence characteristics of

the process (Sec. 4.5).
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Chapter 4. Optimal control of very flexible structures

4.1 Structural model verification

The implementation of hinge kinematic constraints is initially tested for describing the

motion of a rigid compound pendulum (i.e. having a distributed mass along its length)

under large amplitude oscillations. As shown in Fig. 4.1, the hinge axis of rotation

is parallel to the Y axis of the inertia frame, G, and the orientation of the pendulum

is measured with respect to the vertical line through the angle Φ. The pendulum is

modelled as a stiff beam of total mass M = 1 kg and length b = 1 m. Its cross-sectional

properties are constant along its span and each section has a small rotatory inertia,

Ic = 10−4 kg m2.

g

X

Z

Φ

Figure 4.1: Geometry of rigid compound pendulum.

The rigid-body dynamic of this system is governed by

Φ̈ + ω2
0 sin Φ = 0 , ω2

0 =
Mgb

2IY
(4.1)

where g = 9.80 m s−2 is the gravitational acceleration and the total inertia about the Y

axis is:

IY =

∫ b

0

(
M

b
s2 + Ic

)
ds =

1

3
Mb2 + Icb (4.2)

At time zero, the pendulum has zero angular velocity (Φ̇ = 0), hence the period of large

amplitude oscillations, T , only depends on the initial angle, Φ0, between the pendulum

and the vertical line (see Fig. 4.1). This can be expressed as

T =
2π

ω0
K

(
sin

Φ0

2

)
(4.3)

where K is defined through the series [178]:

K(k) =

∞∑
n=0

(2n)!

(2n n!)2
k2n (4.4)
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An analytical solution to eq. (4.1) is derived in Ref. [179]:

Φ(t) = 2 arcsin

{
sin

Φ0

2
sn

[
K

(
sin2 Φ0

2

)
− ω0t, sin2 Φ0

2

]}
(4.5)

where sn(u,m) is the Jacobi elliptic function.

The case in which the pendulum has an initial angle with respect to the vertical

line equal to Φ0 = 90 deg is studied. From eq. (4.3) the exact period of oscillations is

T = 1.936 s. For the numerical solution, the structure is modelled with 8 quadratic beam

elements of very large stiffness: note that, being elastic deflections negligible, only a few

finite elements are sufficient for accurately modelling the gravitational load. Any source

of friction is neglected but, despite the conservative nature of the system, an artificial

viscosity ν = 10−4 has been required in order to damp out spurious high-frequencies

and ensure, this way, the stability of the time-marching scheme (Sec. 2.1.7). A time-step

of 10−3 T has been initially chosen. As shown in Fig. 4.2, the time histories of the

X and Z components of the tip position are in excellent agreement with those derived

through the analytical solution in eq. (4.1). The period of large amplitude oscillations is

computed by averaging the lag between the stationary point of these time histories. The

relative error with respect to the analytical solution is below the 0.05 %, hence within

the accuracy of the measurement.
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Figure 4.2: Time histories of the tip position of a free falling rigid pendulum in horizontal
position at time t = 0 s.

In the numerical solution, the dynamics of the rigid pendulum is determined by

the attitude of the local frame, A, which is described in terms of quaternions. This is

obtained through the attitude propagation equation — eq. (2.10) — and depends on the

angular velocity of the body frame, ω. To further assess the hinge kinematic constraints

implementation, the same solution has been derived when modifying the initial attitude

of the local frame A. This has been obtained by applying a pitch rotation Θ0 about

the X. As the hinge axis in unchanged in the inertial frame G, the dynamics of the

pendulum is expected to be the same. However, the projection of the angular velocity
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Chapter 4. Optimal control of very flexible structures

in the FoR A, ωA, and the quaternions time histories, will vary as a consequence of the

different orientation of the A frame.

This is reflected in Fig. 4.3, where the A frame attitude is shown for two different

initial pitch angles, Θ0 = 0 deg (Fig. 4.3a) and Θ0 = 45 deg (Fig. 4.3b). In the latter

case, in particular, pitch and yaw angles are not constant in time. Nonetheless, the

accuracy of the solution is unchanged. In Fig. 4.4 the error of the numerical period of

oscillations is shown against the time-step size — both are normalised with respect to

the analytical period T = 1.936 s: as expected, curves related to different values of Θ0

coincide. Note that the error decreases almost linearly with the time-step: while the

Newmark-β integration scheme is superlinear (Sec. 2.1.7), the error here is dominated

by the lower accuracy of the measurement of the oscillation period — averaging between

a small amount of consecutive stationary points.
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Figure 4.3: Time histories of the attitude of the local frame A, described in terms of
pitch (Θ), roll (Φ) and yaw angles.
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Figure 4.4: Error between the numerically predicted period of oscillation and the one
provided by the analytical solution in eq. (4.3) for different time steps and initial pitch
attitudes, Θ0, of the body frame A.

Finally, the hinge kinematic constraint are verified for a case in which flexibility

effects are included. To this aim, the pendulum is assumed to have a bending stiffness

EI = 0.15 kg m2. As in the previous cases, this is free falling from an horizontal position.

The tip displacements compare have been compared against Wang and Yu [171], who

also used a GEBM solver. As expected, the motion is planar and the agreement against
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the reference is excellent.
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Figure 4.5: Free falling hinged flexible beam (the beam is horizontal at time t = 0 s).

4.2 Compound pendulum: problem description

The numerical studies in this chapter will refer to the flexible pendulum configuration

proposed by Wang and Yu [171], which is sketched in Fig. 4.6. This is modelled as a

hinged elastic beam and lies initially in a stable equilibrium position along the vertical

direction (Z axis), gravity effects being accounted for. In order to control the system, an

actuating torque, MY (t), chosen to be zero at the initial and final time of the simulation,

is applied at its root (Fig. 4.6), causing the pendulum to oscillate about the hinge

point. The torque time history MY (t), in particular, is optimised such as to maximise

the leftward X velocity of the pendulum tip, vX , measured in the global FoR at time

T = 2 s. The problem is fully deterministic and any sources of friction or damping are

not considered.

l3

MY

g

l2

l3

X

Z

Y

X

Z Y

Figure 4.6: Flexible pendulum geometry
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To account for the cost of actuation, Wang and Yu [171] augmented the cost function

with the quadratic force regulator term

P [MY ] =
1

2

∫ T

0

[
π1 M

2
Y + π2

(
dMY

dt

)2
]
dt (4.6)

which depends on both the magnitude and the rate of change of the actuation. The

optimal control problem can thus be written, in its continuous form, as:

min. I = κ1 vX(T ) + κ2 P

w.r.t. MY (t)

s.t. MY (0) = MY (T ) = 0

−Mmax(t) < MY (t) < Mmax(t)

−Φmax ≤ Φ(t) ≤ Φmax

(4.7)

where I is the augmented cost function and the constants κi and πi are scaling parameters

to ensure that all the terms in the cost function and the force regulator equations have

same units and comparable magnitude; note, in particular, that κ1 is required to have

negative value. In the following, we will refer to problem (4.7) as the augmented problem.

In the numerical implementation, MY is discretised by mean of DS (eq. 3.19) and B-

spline (eq. 3.21, 3.22) basis functions; the optimisation is thus performed with respect to

the coefficients of the parametrisation, xc. Finally, Φ is the angle between the pendulum

and the vertical direction as defined in Fig. 4.5: by setting Φmax < 180 deg this path

constraint ensures that the control will not spin the pendulum but only exploit its

oscillatory motion.

The augmented problem (4.7) defines a trade-off between performance (vX term) and

cost of actuation (P term). While this approach is in line with many practical control

strategies (e.g. LQR feedback controllers), it introduces a trade-off between actuation

effort and performance which can affect the convexity of the design space and lead to

path dependent solutions in the optimisation process. Therefore, the optimal control

problem has also been formulated in a constrained version:

min. vX(T )

w.r.t. MY (t)

s.t. P ≤ Pmax
MY (0) = MY (T ) = 0

−Mmax(t) < MY (t) < Mmax(t)

−Φmax ≤ Φ(t) ≤ Φmax

(4.8)

The integral term P acts as a measure for the energy that the actuation can trans-

fer into the dynamical system. Constraining this quantity allows, therefore, to bound

the level of kinematic displacements displayed by the structure and, consequently, the
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4.3. Optimal actuation of a compound pendulum

amount of nonlinear effects experienced of the system. As it will be shown in Sec. 4.4,

this has a significant impact on the design space smoothness.

4.3 Optimal actuation of a compound pendulum

The optimal control problem for the flexible pendulum (Fig. 4.6) is initially solved using

the augmented formulation defined in problem (4.7) and results are compared to those

obtained by Wang and Yu [171]. The pendulum is modelled as a beam of constant

rectangular cross-section with area A = 10−2 m2 and negligible rotational inertia; an

isotropic material of Young’s modulus E = 1.2 Pa and density ρ = 100 kg m−3 was

used to reproduce the inertia and stiffness properties in Ref. [171]. The actuation was

bounded not to exceed absolute value of Mmax = 3.5 N m, while cost and penalty term

parameters appearing in problem (4.7) were set as per Ref. [171] to be

κ1 = −1 s m−1 , κ2 = 1

π1 = 1 N−2m−2s−1 , π2 = 10−2 N−2m−2s

The gradient is computed numerically by forward FD with respect to the coeffients

of the parametrisation modelling the input torque MY . As FD are subjected to both

truncation and cancellation errors [170], an assessment of the optimal step-size to be use

during the sensitivity analysis is included in App. C.

Since rigid body rotations and deformations are all planar, the only relevant elastic

quantity is the bending stiffness in the plane of motion. Two beams, one being 10

times stiffer than the other, are obtained varying the sides of the cross-section l2 and l3

while keeping the sectional area. They are referred to as stiff and flexible pendulum in

Tab. 4.1.

Case
l2 l3 EI fr fb

[m] [m] [Nm2] [Hz] [Hz]

stiff pendulum 0.1000 0.1000 10.0 0.50 7.76
flexible pendulum 0.3162 0.0316 1.0 0.50 2.45

Table 4.1: Pendula structural properties for the optimal control problem.

The characteristic frequencies in Tab. 4.1 have been computed around the under-

formed pendulum configuration. As the structure becomes more flexible, the natural

frequency related to the first bending mode fb drops and the coupling between flexible

and rigid body dynamics increases. It is worth underlining that the natural frequencies

in Tab. 4.1 are computed for small amplitude perturbations, hence assuming a linear

vibrational dynamics: these figures, therefore, only provide and estimation of where the

resonance points are located in the nonlinear structure.
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For both cases proposed in Tab. 4.1 the optimal control problem is solved with

B-spline and DSS parametrisations of different basis sizes, based on the maximum fre-

quency, fmax, captured by the control. However, fixed a certain value of fmax, the size

of DSS and B-spline basis are comparable (Sec. 3.3). In particular, for each parametri-

sation the basis size was chosen such as to exclude (fmax < fb, low bandwidth control)

and include (fmax > fb, high bandwidth control) the flexible mode natural frequency of

vibration. It should be finally noted that the range of frequencies of interest falls within

the domain of simple optical recognition methods [180], making this set-up suitable for

experimental verification.

4.3.1 Stiff pendulum

The stiff pendulum will be subject to the control actions in Tab. 4.2. In the table, Nc and

fmax refer to the basis size of each parametrisation and the related maximum frequency

of actuation. Optimal control results are presented in terms of cost (I), penalty factor

(P ) and final pendulum tip velocity, vX(T ). NI is the number of iterations required to

complete the optimisations.

Parametrisation Nc fmax [Hz] NI vX(T ) [ms−1] P I

spline 11 2 20 6.08 2.73 -3.35
DS 8 2 14 6.08 2.73 -3.35

spline 43 10 33 12.35 6.18 -6.17
DS 40 10 44 10.57 4.77 -5.80

Table 4.2: Optimal control results of the stiff pendulum using different parametrisations.
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Figure 4.7: Snapshots (25 frames per second) of the stiff pendulum response for the
optimal actuation with a control maximum frequency fmax = 2 Hz using a DSS para-
metrisation. (Initial shape in red)

When using fmax = 2 Hz, the optimal actuation does not excite the first bending

mode of the pendulum, which, therefore, mostly swings rigidly. This can be observed

in Fig. 4.7, where the snapshots of the actuated pendulum position, driven by the DSS

modelled optimal torque, show no relevant elastic deformation. Comparing optimal ac-

tuation and tip displacements time histories against Ref. [171] demonstrates that both

the spline and DSS parametrisation can capture well the rigid-body motion frequency
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4.3. Optimal actuation of a compound pendulum

(Fig. 4.8), thus returning very similar performances (Tab. 4.2). As physically expected,

the control moment, MY , excites the rigid-body motion only and uses the gravity poten-

tial energy to increase the final tip velocity, vX(T ), while limiting the overall actuation

cost, P .
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Figure 4.8: Time histories under optimal control of the stiff pendulum using different
parametrisations of the torque signal.

Setting fmax > fb leads to a large increase of the final tip velocity, vX(T ), as the

first bending mode is excited. The active system is now capable of storing elastic energy,

which is converted into kinetic energy as t→ T , providing a further contribution to vX

and enhancing the overall system performance. With both splines and DSS, the high

frequency component is larger than in the solution obtained by Wang and Yu [171]. It

has to be noticed, however, that results in Ref. [171] are obtained from optimisations

that are stopped after only 10 iterations and a beam model that includes structural

damping. This likely explains the small differences between both sets of results.

While the optimal actuation always shows to correctly exploit the system physics,

the 10 Hz bandwidth solutions obtained with the two parametrisations point towards

two different minima, corresponding to two different levels of control actuation, P . To

verify the existence of local minima, the control design space has been sampled for a

case in which the pendulum is actuated by a control parametrised with only two sine

waves. To model a low bandwidth actuation, these were chosen to have frequencies
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Figure 4.9: Snapshots (25 fps) of the stiff pendulum response for the optimal actuation
obtained using a B-spline parametrisation with Nc = 43 control points (fmax = 10 Hz).
Initial shape in red.

0.5 Hz and 0.75 Hz, with amplitudes x0.5 and x0.75 respectively. These are associated to

a left/right and left/right/left rigid-body modes and, as physically expected, had been

observed to have a large contribution in both the 2 Hz and 10 Hz DSS parametrised

optimal actuations.

The contour lines of the cost I, obtained when varying the amplitude of the two

sine waves, are showed in Fig. 4.10a, together with the isolines of the force regulator

term, P (thick curves). The design space is smooth with a minimum at (x0.5, x0.75) =

(0.88, 1.83) Nm. Despite the reduced size of the parametrisation, cost and penalty at

the minimum (I = −2.94 and P = 2.46) compare well with those obtained using a low

bandwidth actuation (fmax = 2 Hz in Tab. 4.2).

(a) Low bandwidth (b) High bandwidth

Figure 4.10: Cost function, I, associated to a rigid pendulum when varying the ampli-
tude of the sine waves parametrising the actuating torque, MY .

To model a high bandwidth control, the amplitude x0.75 of the 0.75 Hz sine wave

was fixed to be 1.7 Nm and a high frequency sine wave (7.75 Hz, near the first nat-

ural frequency) of amplitude x7.75 was added to the parametrisation. As before, both

coefficients of the parametrisation were varied so as to reconstruct the cost function I

over the control design space (Fig. 4.10b). While a minimum — corresponding to a
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4.3. Optimal actuation of a compound pendulum

predominantly low-frequency actuation that only exploits the rigid-body dynamics — is

still observed for x7.75 ≈ 0, a new minimum, corresponding to a peak of structural reso-

nance, appears. A further investigation on how both minima change with the amplitude

and frequency of the excitation is included in Sec. 5.2.

Sampling the cost function I has therefore shown that when the control can exploit

resonances, multiple minima can populate the design space. The reason why the high

bandwidth actuations provided by splines and DSS lead to distinct point of minimum can

then be linked to how different sets of basis functions reconstruct the actuation. While a

control signal parametrised with a low number of spline basis can not be built for direct

comparison with Fig. 4.10b, it is clear that as the mapping between parametrisation

coefficients xc and final cost I changes, so does the location of the minima.

4.3.2 Flexible pendulum

The study of the low-bandwidth actuated stiff pendulum has shown that, when the

actuation can only excite the rigid-body mode of vibration, the design space is smooth

and the actuations provided by splines and DSS parametrisations are in good agree-

ment. As the pendulum flexibility is increased, however, the distance between rigid and

flexible body characteristic frequencies, fr and fb, is drastically reduced (Tab. 4.1) and

it becomes harder to excite one of the modes without exciting the other.

The implications of an increasing rigid-flexible body dynamics coupling are high-

lighted by the results obtaining using DSS and spline basis to parametrise two low-

bandwidth actuations (fmax < fb) having fmax = 1.25 Hz and a fmax = 1.5 Hz. The

optimal torque time histories (Fig. 4.12a) and the associated cost, I, and penalty factor,

P , compare well across parametrisations only when fmax = 1.25 Hz (Tab. 4.3). How-

ever, as clearly shown by the snapshots in Fig. 4.11, the DSS modelled actuation with

fmax = 1.5 Hz can already excite the pendulum bending mode, allowing to reach a cost

22% lower then when using a splines parametrisation. This is verified in Fig. 4.12b,

where the DS decompositions of the spline optimal actuations, which have been com-

puted through eq. (3.20), are shown. While for the fmax = 1.25 Hz cases these can only

excite the rigid-body dynamics, raising fmax allows the control to mildly excite the pen-

dulum bending mode. The different resolution between the parametrisation becomes,

at this point, critical: the DSS basis can express a strong frequency content around

fmax = 1.5 Hz, whereas this can not be achieved using splines. The more aggressive

control obtained using DSS (note that the force regulator term P almost doubles with

respect to the corresponding spline case) is, therefore, justified by the different resolution.

As seen in Fig. 4.13, when using a higher bandwidth control (fmax > fb), both

discretisations capture well the very flexible beam dynamics. However, and as already

discussed for the rigid pendulum in Sec. 4.3.1, the dynamics under resonance increases

the path dependency of the results. This can be seen in Fig. 4.12c and 4.12d: while

the final cost, I, compares well across parametrisations, the splines obtained solution
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Parametrisation Nc fmax [Hz] NI vX(T ) [ms−1] P I

spline 8 1.25 29 4.63 1.59 -3.04
DS 5 1.25 16 4.48 1.59 -2.89

spline 9 1.5 22 5.40 2.19 -3.21
DS 6 1.5 40 8.42 4.50 -3.92

spline 19 4 57 15.92 5.73 -10.19
DS 16 4 53 13.11 3.48 -9.63

Table 4.3: Optimal control results of the flexible pendulum using different parametrisa-
tions.
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Figure 4.11: Snapshots (25 fps) of the flexible pendulum response for t ∈ [1.60, 2.00] s
with optimal control parametrisation having a maximum frequency fmax = 1.5 Hz.
(Initial shape in red)

has now a considerably more aggressive actuation (Tab. 4.3). Results also include those

from Wang and Yu [171], which account for damping in the model and, as before, show

a smoother behaviour.

4.3.3 Path dependency vs. problem formulation

When dealing with resonance conditions the optimal actuation torque, MY , obtained

from the augmented problem (4.7), was found to be parametrisation dependent. The

control of the flexible pendulum has also underlined that the parametrisation resolution

can also have an effect, especially when dealing with an increasing coupling between

flexible and rigid body dynamics. To isolate the impact of the problem formulation from

that of the parametrisation (which will be the focus of Sec. 4.4), the optimal control of

the stiff and flexible pendulum is obtained now using the constrained formulation (4.8).

Large deformations are still allowed due to a large maximum actuation (Pmax = 6) and

a high bandwidth (fmax > fb). The results are shown in Tab. 4.4 and present a much

higher consistency in the optimal control across both discretisations. Having removed

the penalty term from the cost function definition, the optimal actuation always reaches,

as expected, the limit Pmax = 6. For the stiff pendulum case, the two parametrisations
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Figure 4.12: Time histories under optimal control of the flexible pendulum using different
parametrisations of the torque signal.

are in extremely good agreement. As the system becomes more nonlinear (flexible pen-

dulum), however, spline basis seem to be able to better capture the system resonance,

leading to a 1.9% higher tip velocity vX(T ).

Pendulum Basis fmax [Hz] NI vX(T ) [ms−1] P

stiff spline 10 40 12.30 6.00
stiff DS 10 170 12.27 6.06

flexible spline 4 54 15.73 6.00
flexible DS 4 158 15.43 5.96

Table 4.4: Optimal control results for the stiff and flexible pendulum using the con-
strained formulation (4.8) and setting Pmax = 6.

Fig. 4.14 shows however that better performance of the spline is not linked to better

reconstruction properties. Converting the spline parametrised optimal actuation in a

DSS shows, in fact, that this has no relevant frequency content over fmax = 4 Hz

(Fig. 4.14a). In fact, the spline optimal actuation is reconstructed using a DSS series
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Figure 4.13: Snapshots (25 fps) of the flexible pendulum response for the optimal
actuation obtained using a B-spline parametrisation with Nc = 19 control points
(fmax = 4 Hz). Initial shape in red.

in Fig. 4.14b. Applying the reconstructed torque to the pendulum, a final tip velocity

vX(T ) = 15.62 ms−1, which is in line with the performance provided by the spline

optimal actuation, is achieved.
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Figure 4.14: Comparison between spline and DSS optimal actuation for flexible pendu-
lum case and no penalty factor.

It can thus be concluded that, despite the use of a constrained problem formulation,

the two parametrisations can still converge to different minima as the nonlinearity of the

system increases. While results are in very good agreement for the stiff pendulum, the

DSS actuation leads to a control with a higher low frequencies for the flexible pendulum

case (Fig. 4.14a). The use of a constrained problem formulation, however, reduces the

gap between the two solutions, as the level of actuation, Pmax — and consequently the

final tip velocity, vX(T ) — are now comparable. This formulation, which diverges from

that of Wang and Yu [171], has been therefore chosen to further investigate the impact

of both frequency resolution and level of actuation in the next section.
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4.4. Parametrisation vs. system nonlinearity

4.4 Parametrisation vs. system nonlinearity

In order to investigate further the duality between local and global parametrisations,

the optimal control problem of the pendulum is solved using both B-splines and DSS

for a range of beams of different stiffness. In both cases the number of basis functions

is chosen such as to achieve a maximum frequency fmax = 6 Hz. The pendulum

bending stiffness is varied by changing the dimension of the beam cross-section l2 and l3

(Fig. 4.6). With the aim of not altering the rigid-body mode natural frequency, fr, the

beam cross-sectional area is maintained constant (A = 10−2 m), meaning that only one

of the two structural parameters is actually independent.

Varying l3 between [0.05, 0.10] m resulted in a design space including situations

for which the control maximum frequency, fmax, is either greater or smaller than the

pendulum first bending natural frequency, fb. More specifically, fb varies linearly with l3,

ranging between 3.88 Hz and 7.76 Hz and entering in the actuation range (fb = fmax)

when EI = 5.98 Nm2 and l3 = 0.0773 m. The lower bound for the beam stiffness

is, furthermore, such that the resonance of the second bending mode of the beam is

avoided. While this could also be exploited, it was not included in this exploratory

study to simplify the analysis of the results.

So as to limit the impact of the problem definition, the constrained formulation (4.8)

has been used (Sec. 4.3.3). In particular, the optimal control was solved for three levels of

admissible actuation (Pmax = 2, 4, 6) to assess the impact of increasing nonlinear effects

on the solution; results are shown in Fig. 4.15. The design space can be divided into three

regions according to whether the control can or can not excite the pendulum bending

mode. When the bending natural frequency, fb, is well below the maximum frequency

of actuation fmax (l3 / 0.070 m), the control signal can excite the rigid-flexible body

dynamics, providing high performance. In this situation, in fact, the actuation has a

high bandwidth in relation to the physical properties of the system (fmax � fb). When

l3 ' 0.085 m, on the other hand, the same control with fmax = 6 Hz has now a low

bandwidth. As a result, only the rigid body dynamics is exploited and performance

decreases. At last, a transition region (0.070 m / l3 / 0.085 m), in which resonance

outsets, can be identified.

The classification introduced can be more clearly understood by looking at Fig. 4.16,

where the magnitude |xcm |, eq. (3.14), of the basis functions of the DSS parametrised

optimal control is shown for a range of different pendula stiffness and actuation cost,

Pmax. As it can be seen, the control effort in concentrated in two regions, the first one

located in the low frequency range so as to excite the rigid body dynamics. The second

one is observed when fb is in the control range: a peak around this frequency appears and,

as the beam stiffness varies, this moves to follow the bending mode natural frequency.

Increasing the level of actuation, Pmax, larger geometrical deformations appear and

resonance intensifies. The consequently higher level on nonlinearities in the problem is
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Figure 4.15: Design of experiment for different parametrisations and level of actuation
Pmax.

clearly reflected in the design space smoothness, which is visibly reduced when passing

from Pmax = 2 (Fig. 4.16a) to Pmax = 6 (Fig. 4.16c).
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Figure 4.16: Optimal actuation frequency content (|xci|) using a DSS parametrisation
(fmax = 6 Hz) and a constrained problem formulation (4.8). Different levels of actuation,
Pmax, are allowed.

Under low frequency actuation (fmax � fb), spline basis can achieve slightly better

performance because their spectrum extends above fmax = 6 Hz, allowing the torque to

mildly excite the pendulum bending mode. The phenomenon is consistently stronger for

larger values of actuations.

As expected, the transition region (0.070 m / l3 / 0.085 m) sees a change in

performance due to the switch from rigid-flexible to rigid body only dynamics. The

difference increases with Pmax, as stronger actuations induce a more intense level of

resonance. The change in maximum tip velocity, vX , is sharper when using a DSS,

whose related optimal control generally provide higher performance than the spline one.

Contrarily to what it was seen in Sec. 4.3.3, however, this is not linked to the DSS

providing better convergence properties but to the fact that in the transition region the

solution quality is dictated by the parametrisation frequency content.
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4.5. A multi-resolution strategy

This is demonstrated in Fig. 4.17, where the optimal actuations provided by the two

parametrisations for the case l3 = 0.0750 m and Pmax = 4 are compared. The DSS

representations of the two signals (Fig. 4.17a) shows that the DSS parametrised control

has a higher frequency content around the bending natural frequency, fb = 5.63 Hz:

this allows to better excite the mode and achieve a larger final tip velocity, vX . As

observed in Fig. 4.17b, however, the optimal actuation obtained using a DSS cannot

be reproduced using B-splines. In the specific case, therefore, DS generally outperform

B-splines as they can better excite the high frequencies.
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Figure 4.17: Optimal actuation in the transition region (l3 = 0.0750 m and Pmax = 4)
using different parametrisations.

4.5 A multi-resolution strategy

In this section, a multi-resolution approach is proposed to improve the convergence pro-

perties of the optimal control process when strong nonlinearities appear in the structural

solution. Fig. 4.15 shows that for high frequency actuations and mild level of nonlinear-

ity (Pmax = 2, 4), results compare well across different parametrisations. Both DS and

B-splines can, in fact, reconstruct accurately not only the low frequencies but also the

relevant high frequencies, necessary to induce the system resonance. When the level of

actuation is increased (Pmax = 6), peaks of resonance become more evident as a conse-

quence of larger displacements and, in particular, a more violent resonance. As shown

in Fig. 4.15, these tend to arise whenever the bending oscillation period is a divisor of

the total simulation time T . While the location of the peaks is well captured by both

basis, their amplitude becomes parametrisation dependent; this is clearly visible for the

optimal control at l3 ≈ 0.0650 m. As it was already seen in Sec. 4.3.3, even in this case

the mismatch is caused by a convergence slow down of the DSS parametrised control:

the optimal spline actuation can be reconstructed using a DSS, reducing the gap in
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Chapter 4. Optimal control of very flexible structures

performance to the 2.5%.

While the convergence slow down is more dramatic when using the DSS, the phe-

nomenon is always observed around the peaks of resonance, also when using B-splines.

In these areas, in fact, large changes in performance occur even for small variations

in the actuation, as a consequence of the locally higher nonlinearity associated to the

resonance. Local basis, however, tend to perform better as they scale more efficiently.

During the sensitivity analysis, in fact, a variation applied to one of the basis functions

only affects a portion of the domain, leading to an overall smaller perturbation of the

original signal. For the same reason, when updating the actuation, changes in torque

signal tend to be more contained than when using a DSS. As a consequence, smaller steps

between one design point and another are taken by the optimiser. This facilitates the

reconstruction of the design space around the peak regions, despite the high sensitivity

of the cost function to variations of the design itself.

In order to improve the convergence of the optimisation process, a multi-resolution

strategy, in which the optimal control problem is hierarchically solved for parametrisa-

tions of increasingly higher bandwidth, can be employed. The method is demonstrated

here for the case of a pendulum of bending stiffness EI = 6.4 Nm2 and whose actuation

is obtained through a large bandwidth DSS parametrisation (fmax = 12 Hz). The steps

of the process are summarised in Tab. 4.5, where the results obtained without apply-

ing a multi-resolution strategy are also reported (direct label). Initially, the actuation

bandwidth is set to 6 Hz. Once an optimal actuation is found, this is increased of 2 Hz

so as to refine the torque time history; the procedure is repeated until fmax = 12 Hz.

Stage
Nc fmax vX P

[Hz] [ms−1]

1 24 6 10.71 6.00
2 32 8 13.41 6.00
3 40 10 13.51 6.04
4 48 12 13.54 6.05

direct 48 12 12.22 6.02

Table 4.5: Optimal control results at different stages of a multi-resolution based process
using a DSS parametrised actuation (fmax = 12 Hz).

.

As expected, the pendulum final tip velocity, vX , is drastically increased at the second

stage of the process, as the actuation bandwidth becomes larger then the pendulum

bending mode natural frequency (fb = 6.21 Hz). Further increments to the maximum

actuation frequency, fmax, however, do not lead to any relevant change in vX : contrarily,

as the parametrisation becomes over-resolved (fmax = 10, 12 Hz) the convergence of the

optimisation process is compromised and the constraint P ≤ 6 is not fully recovered.

The link between over-resolution and convergence slowdown is even more clear when

looking at the results obtained without multi-resolution analysis (direct label in the
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table). In this case, not only the constraint P ≤ 6 is not fully recovered, but also the

final actuation time history shows to be not fully converged, as the vX achieved is 8.9 %

lower then the one provided by the multi-resolution approach.
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Chapter 5

Co-design of flexible active

structures

In this chapter, optimal control is extended to the combined structural/control optimi-

sation of very flexible structures. The investigations in the previous chapter allowed to

underline how problem definition and control input parametrisation affect the design

space smoothness and, as a result, the outcome of optimal control. Starting from this

knowledge, therefore, the following studies will aim to characterise the potential of co-

design when applied to structural dynamics under geometrically-nonlinear effects. As in

Chap. 4, this will imply an assessment of how the design space smoothness is affected

when switching from optimal control to co-design.

The flexible pendulum proposed by Wang and Yu [171] (Sec. 4.2) will be used as

test case also for the co-design approach. In fact, studies in Chap. 4 have outlined that,

despite its simplicity, the dynamics of this system has several affinities with that of

very flexible wings, including large amplitude vibrations and inertial coupling between

rigid/flexible modes. The co-design problem considered is introduced in Sec. 5.1. As the

pendulum bending stiffness has been shown to be the most relevant structural property

to impact the system dynamics, it will be allowed to vary while the actuation itself is

being defined. The effect of choosing a different starting condition for the actuation,

as well as the potential disadvantages of using a sequential approach, is investigated in

Sec. 5.2. Sec. 5.3 focuses on the efficiency of the process, showing how the convergence

speed can be affected near resonance and how to tackle the issue. Finally, the impact of

the frequency resolution chosen to model the actuation is discussed in Sec. 5.4.

5.1 Problem description

For all the co-design cases considered in this section, the beam rectangular cross-section

(Fig. 4.6) is initially set to have a relatively high bending stiffness, EI = 6.4 Nm2,

and size l2 × l3 = 0.080 × 0.125 m2. During the co-design, l3 has been bounded to be
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l3 ∈ [0.055 m, 0.200 m], while l2 is constrained to maintain the beam cross-sectional area

constant (A = 10−2 m2). As the bending mode natural frequency of the initial design

is fb = 6.21 Hz, the basis size of the parametrisation has been adjusted so as to reach

a maximum frequency fmax equal to 4 Hz, 6 Hz (as per the design of experiments in

Fig. 4.15) and 12 Hz. The optimisation has been formulated as the constrained problem

(4.8) with Pmax = 6. This allows to test the co-design process for a highly nonlinear

configuration while reducing the path dependency of the solution.

The constraint enforced on the sectional area maintains the mass distribution con-

stant and, thus, the characteristic frequency associated to the rigid-body dynamics. To

minimise the cost in problem (4.8), therefore, the co-design can only adjust the pendulum

stiffness and tune its bending mode natural frequency with the frequency content of the

actuation. While a larger number of structural design parameters could be considered, a

single parameter facilities our exploration as it allows for a much clearer analysis of the

results. Furthermore, dealing with nonlinear dynamics and a large number of structural

design variables would require the development of an adjoint based sensitivity analysis,

which is beyond the scope of this work.

The main results obtained of the co-design problem have been summarised in Tab. 5.1

and 5.2. For each case, the size of the parametrisation, Nc, and the related maximum

frequency of excitation, fmax, have been reported. The identifications zero and opt refer

to the torque time-history at the beginning of the optimisation process, MY 0: For the

opt cases, the initial design uses the actuation found in pure optimal control problem; for

the zero cases, it is simply chosen to be MY 0(t) = 0 (zero cases). The optimal structural

design is described both in terms of final geometry (l3) and the bending mode natural

frequency (fb) of the non-actuated structure. System performance is quantified by the

final tip velocity, vX(T ), which is compared to the tip velocity given by the optimal

control problem on the initial beam geometry (DOE in the tables).

ID Nc
fmax l3 fb vX(T )
[Hz] [m] [Hz] [ms−1] %

zero 16 4 0.0550 4.27 10.61 33.5%
zero 24 6 0.0739 5.73 13.70 28.0%
zero 48 12 0.0792 6.15 13.34 -0.5%

opt 16 4 0.0819 6.36 8.41 5.8%
opt 24 6 0.0800 6.21 10.71 0.0%
opt 48 12 0.0800 6.21 13.41 0.0%

DOE 16 4 0.0800 6.21 7.95 —
DOE 24 6 0.0800 6.21 10.71 —
DOE 48 12 0.0800 6.21 13.41 —

Table 5.1: Results of the combined optimisation problem using DSS control parametri-
sations of different basis size. Percentage values are with respect to the optimal control
only case (DOE).

.
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5.2. Initial condition: sequential vs. co-design

ID Nc
fmax l3 fb vX(T )
[Hz] [m] [Hz] [ms−1] %

zero 19 4 0.0550 4.27 12.55 45.6%
zero 27 6 0.0717 5.56 13.54 24.0%
zero 51 12 0.0828 6.43 12.64 -9.2%

opt 19 4 0.1465 11.4 8.65 0.3%
opt 27 6 0.0800 6.21 10.92 0.0%
opt 51 12 0.0800 6.21 13.71 0.0%

DOE 19 4 0.0800 6.21 8.62 —
DOE 27 6 0.0800 6.21 10.92 —
DOE 51 12 0.0800 6.21 13.71 —

Table 5.2: Results of the combined optimisation problem using spline control parametri-
sations of different basis size. Percentage values are with respect to the optimal control
only case (DOE).

5.2 Initial condition: sequential vs. co-design

First, we will focus on the co-design results obtained when initialising the torque actua-

tion with a previously computed pure optimal control solution (opt cases). This defines

a situation similar to a sequential optimization, and in fact, it is clear from Tab. 5.1 and

5.2 that co-design brings almost no changes in either the structural design and in the

actuation with respect to the initial design. This can also be observed by comparing the

DOE and opt curves in Fig. 5.1, where the optimal actuations obtained with 4 Hz and

6 Hz bandwidth parametrisations are shown.

For the larger bandwidth controls (fmax = 6 Hz, 12 Hz) this can be explained

noticing that at the start of the optimisation the actuation MY 0, which is the solution of

an optimal control problem, already excites the bending mode of the pendulum (note, for

instance, the high frequency component in the DOE curve in Fig. 5.1a). As the process is

initiated from a resonance condition, control force and the structural design are de facto

locked into a local minimum. Further changes in the structure size would only lead to

poorer performance, the system moving away from the resonance condition. Conversely,

changes in the actuation signal would also imply moving away from resonance. As no

descending direction can be found, the optimisation is interrupted after few iterations.

When the starting torque includes only lower frequencies (fmax = 4 Hz), the phe-

nomenology that limits the performance improvements is similar. The initial excitation

(see the DOE curve in Fig. 5.1b) exploits the rigid-body dynamics of the pendulum and,

being far from resonance conditions, system performance can initially only be improved

by stiffening the design, which ensures that all the energy transferred to the pendulum

is stored by the rigid mode. Consequently, the co-design leads to a stiffer beam with

only a small refinement on the actuation so as to better exploit the rigid-body dynamics

of the system (see the opt curve in Fig. 5.1b).
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Figure 5.1: Optimal actuation provided by the co-design using different starting condi-
tions and parametrisations.

The changes in the control design space leading to locking can be better understood

with the reduced basis already introduced in Sec. 4.3.1. To reproduce a high-bandwidth

actuation, the amplitude of the sine basis of frequencies 0.5 Hz (x0.5) and 7.75 Hz (x7.75)

was varied, while the 0.75 Hz wave amplitude was fixed to 1.7 Nm. The final tip velocity

of the pendulum, vX(T ), associated to different points (x0.5, x7.75) is shown in Fig. 5.2a.

The isolines of the force regulator term P are also highlighted (black curves). Three

high velocity regions, strongly dependent on the amplitude of the 7.75 Hz wave, are

observed. For P ≤ 6, the maximum velocity, vX(T ) = 9.36 ms−1, is found at point

A= (0.95,−0.49) Nm. This is associated to a condition of resonance, as the bending

mode natural frequency is fb = 7.76 Hz . As the initial structural design (l3 = 0.1 m) is

varied, the system moves away from resonance. The high velocity regions initially move

(Fig. 5.2b and 5.2c) and gradually smooth out (Fig. 5.2d and 5.2e). This shows that in

the co-design space (l3, x0.5, x7.75) a maximum is located around l3 = 0.1 m, i.e. where

the bending mode natural frequency tunes with the actuation frequency of 7.75 Hz.

The mechanism determining the position of the high tip velocities regions in Fig. 5.2a

is linked to the phase between the high frequency component of the actuation and the

response of the pendulum in terms of its tip horizontal position. The global maximum

(point A) is associated to the rigid-flexible body dynamics, while a second minimum, as-

sociated to predominantly rigid-body dynamics, is located at point B= (1.00, 0.063) Nm.

The actuation torque, MY , and the X tip position time histories of these cases are shown

in Fig. 5.3 for t ε [1.8, 2] s. As expected, for the actuation corresponding to point A,

the high frequency component of MY synchronises with the displacements in such a way

that, as t → T , the tip velocity due to the structural vibration adds to the rigid-body

rotation. Note that this is achieved for a negative amplitude of the 7.75 Hz wave, x7.75.

As expected, when x7.75 increases and changes sign, the final tip velocity reduces be-

cause resonance provides a negative velocity increment. When, however, x7.75 & 0.5 Nm,

vX(T ) can be observed to grow again (Fig. 5.2a), meaning that the phase between actu-
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5.2. Initial condition: sequential vs. co-design

(a) l3 = 0.100 m

(b) l3 = 0.097 m (c) l3 = 0.103 m

(d) l3 = 0.090 m (e) l3 = 0.110 m

Figure 5.2: Visualisation of velocity profile for a high bandwidth actuation, modelled
with a reduced number of sine waves, for structural designs in the neighbourhood of
l3 = 0.1 m. Points A, B and C correspond to the coordinates of the local maxima found
for l3 = 0.1 m
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Figure 5.3: Tip horizontal position and torque moment MY time histories for t ≥ 1.8 s.
Results are for the stiff pendulum under the reduced DSS parametrised actuations cor-
responding to points A, B and C in Fig. 5.2a.

ation and pendulum tip response also depends on the actuation amplitude, x7.75. This

is also shown in Fig. 5.3, where the time histories of the actuation corresponding point

C= (1.10, 0.98) Nm in Fig. 5.2a are presented. This nonlinear effect is linked to the large

rigid-body rotations of the pendulum and the changing in geometric stiffness.

5.3 Robustness of the design

Contrarily to what it was observed in the previous section, when a null starting torque

is used (zero cases in Tab. 5.1 and 5.2) structural design and final system performance

undergo a significant evolution. The outcome of the process largely depends in this

case on the control bandwidth. Generally, the co-design is driven towards a resonance

region, which, as it was already seen in Sec. 4.4, implies a slowdown of convergence,

particularly for DSS parametrised controls. As a result, the optimiser typically does not

fully recover the integral constraint P ≤ Pmax. To overcome this, the following two-stage

strategy was found to be an effective solution: once variations in the structural design

are negligible between iterations, the pendulum geometry is fixed (end of first stage)

and the actuation is refined by solving a pure optimal control problem (second stage).

The improvements obtained by using the two-stage approach to refine the actuation are

summarised in Tab. 5.3; as expected, the benefit is higher when the solution is closer to

a peak of resonance — i.e. when fmax > fb.

The causes of the convergence slow down can be further investigated referring to the

spline parametrised solution obtained with a 6 Hz bandwidth control. In this case, the

optimiser correctly drives the structural design towards the peak region located around

l3 = lref = 0.0715 m (curve Pmax = 6 in Fig. 4.15). The neighbourhood of the peak

of resonance is shown in more details in Fig. 5.4. Here the coefficients of the optimal

actuation xc (Fig. 5.4b), and the resulting control signal (Fig. 5.4d), are compared for
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5.4. Impact of frequency resolution

Basis
fmax l3 fb vX(T ) [ms−1] Gain
[Hz] [m] [Hz] not refined refined %

splines 4 0.0550 4.27 12.55 12.55 0.0%
splines 6 0.0717 5.56 11.55 13.54 17.2%
splines 12 0.0828 6.43 12.35 12.64 2.3%

DSS 4 0.0550 4.27 10.50 10.61 1.0%
DSS 6 0.0739 5.73 12.56 13.70 9.1%
DSS 12 0.0792 6.15 11.72 13.34 13.8%

Table 5.3: Performance gains obtained using a two-stage co-design strategy.

structural designs in the vicinity of the peak of resonance. Despite the variations in the

structure size being small,1 ∆l3 = ± 0.007 lref , the changes in the optimal actuation are,

in proportion, considerably larger. This can be easily observed by comparing Fig. 5.4b

against Fig. 5.4a, where the optimal control coefficients around l3 = lref = 0.0715 m,

found enforcing a lower cost of actuation (Pmax = 2), are shown. Note that, in the latter

case, nonlinear effects are significantly smaller.

The change in optimal actuation can be quantified by measuring the integral norm

ε =

∫ T
0 (MY −MY ref )2 dt∫ T

0 M2
Y ref dt

(5.1)

where MY ref and MY are the optimal actuations at the reference, lref = 0.0715 m,

and the perturbed, l3 = lref ± ∆l3, design points (Fig. 5.4d). While perturbations in

structural design are around 0.7%, the norm in eq. (5.1) reaches values 16 times higher,

being in both cases ε ≈ 11%. Large values of ε imply that, fixing the actuation and

applying even a small change in the structural design, the system will tend to move far

away from the optimal control condition. Not only, therefore, performance will decrease

consistently, but, as discussed in Sec. 4.4, the parametrisation of the actuation will

usually require a large number of iterations to adjust to the new structural design.

5.4 Impact of frequency resolution

From Tab. 5.1 and 5.2, it can be observed that setting MY 0(t) = 0 at the beginning of the

co-design generally gives better performance. Moreover, improvements are consistently

larger when reducing the bandwidth of the control. When the highest bandwidth control

is used (fmax = 12 Hz), the actuation is capable of inducing resonance also on the

initial design. Consequently, no major changes in the structural design occur, as this

is driven towards the nearest peaks of resonance. The disadvantage of exploring a non-

smooth region using a gradient based approach is shown by the fact that, while the DS

1It is interesting to notice that, being the relation between l3 and the bending mode natural frequency,
fb, linear, percentage variation in l3 and fb are equal.
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Figure 5.4: Optimal control torque (parametrised with B-splines) for structural designs
in the proximity of lref = 0.0715 m for small (Pmax = 2) and large (Pmax = 6) amplitude
oscillations.

parametrisation improves performance, with B-splines it degenerates and resonance is

reduced at the solution.

Decreasing the actuation bandwidth, instead, leads to important performance in-

creases with respect to the optimal control problem, regardless of the parametrisation

used. The pendulum stiffness is, in fact, always reduced so as to drive its bending mode

natural frequency towards the range on actuation of the control (note the fb values in

Tab. 5.1 and Tab. 5.2). When fmax = 6 Hz, the structural design is moved towards the

peak of resonance located in the region l3 ∈ (0.070 m, 0.075 m) and clearly visible from

the design of experiments in Fig. 4.15. When fmax = 4 Hz, the increase in flexibility is

even larger and the lower bound of the structural design space, l3 = 0.0550 m, is hit.

Especially in this case, the combined optimisation is shown to be capable of driving

the structural design to a configuration where the initial control (with its limitations

in terms of maximum frequency resolution), can fully exploit the physical properties

of the system. The performance gains with respect to the optimal-control-only case

(DOE label in Tab. 5.1 and 5.2) are as large as 45%, due to the switch from rigid to

flexible-rigid body dynamics. This effect is clearly reflected by the development of a high

frequency component in the optimal actuation signal (zero label in Fig. 5.1b). Also for
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5.4. Impact of frequency resolution

the fmax = 6 Hz case, where a mild level of resonance can already be induced on the

initial design, the stiffness reduction achieved via co-design allows to better exploit it

(compare the DOE and zero curves in Fig. 5.1a).

The dependency of the co-design-derived optimal solution on the actuation band-

width has important implications when a multi-resolution strategy (Sec. 4.5) is em-

ployed for the co-design problem. When the combined optimisation is hierarchically

solved using actuations of increasing bandwidth, in fact, the final structural design is

driven by the bandwidth used to initialise the process. This is shown in more detail in

Tab. 5.4, where the integrated multi-resolution design approach is demonstrated for a

case in which the actuation is parametrised with a DSS. The optimisation is initiated

using both a control bandwidth of 4 Hz and 6 Hz (stage 0): once the first combined

optimisation is terminated, this is restarted after incrementing the maximum actuation

frequency, fmax, of 2 Hz. Note that at stage 0 structural design and actuation are the

same as in the 4 Hz and 6 Hz bandwidth zero cases in Tab. 5.1.

When the multi-resolution process is started with a 6 Hz bandwidth actuation, lock-

ing between structural design and control force prevents any changes of the structural

properties. Therefore, when a 12 Hz bandwidth is reached, the integrated design pro-

vided by the 12 Hz zero case in Tab. 5.1 is not retrieved. The final tip velocity value,

vX(T ), is, however, comparable as in both cases resonance is exploited. When the pro-

cess is started from a 4 Hz bandwidth solution, on the other hand, structural design and

actuation are not initially locked in a peak of resonance, being the bending natural fre-

quency of the pendulum (fb = 4.27) outside the actuation range. As a result, design and

actuation are refined during the first stage and the final tip velocity of the pendulum,

vX(T ), is increases by 7.1%. Once, however, structural design and actuation are locked,

no further change is observed as the actuation bandwidth is increased.

The solutions in the multi-resolution process obtained from an initial 4 Hz bandwidth

actuation in Tab. 5.4, can be compared against the corresponding co-design solutions in

Tab. 5.1. In all cases, the final tip velocities and the level of actuation are very similar.

However, the structural design obtained via multi-resolution is consistently more flexible.

The low bandwidth actuation chosen at the first stage, in fact, leads to a considerable

reduction of the pendulum bending stiffness. Especially in this case, the strong influence

of this parameter on the final structural design is clear.

Overall, the results obtained using a zero starting condition for the actuation prove

the potential of adopting a gradient based co-design approach even for resonant, strongly

nonlinear systems. On the one hand, and similarly to what was observed with a se-

quential optimisation strategy (Sec. 5.2), the occurrence of structural-actuation locking

around peaks of resonance can limit the progress of the optimisation, especially when a

large bandwidth is used. This means that some initial sampling of the structural domain

needs to be performed. On the other hand, however, co-design allows to explore much

larger portions of the design space, even when this implies a drastic change in the sys-
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Chapter 5. Co-design of flexible active structures

Case
Stage Nc fmax l3 fb vX(T )

[Hz] [m] [Hz] [ms−1]

Initial bandwidth
of 4 Hz

0 16 4 0.0550 4.27 10.61
1 24 6 0.0584 4.53 13.44
4 48 12 0.0584 4.53 13.44

Initial bandwidth
of 6 Hz

0 24 6 0.0739 5.73 13.70
3 48 12 0.0739 5.73 13.70

Table 5.4: Results of the combined optimisation using a multi-resolution strategy and
a DSS parametrisation. Two different actuation bandwidth of 4 Hz and 6 Hz has been
chosen to start the process.

tem dynamics (such as those switching from a rigid to a flexible-rigid body dynamics).

The rate of sampling of the structural design space, or conversely the overall number of

co-design solutions to be found, can, thus, be conveniently reduced, facilitating the ex-

ploration of larger portions of the design space as compared to zero order or traditional

sequential optimisation approaches.
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Chapter 6

Optimal manoeuvres with very

flexible wings

In this chapter, optimal control is used to identify rolling manoeuvres with geometrically-

nonlinear wings. Studies in Chap. 4 have already highlighted that an appropriate def-

inition of the optimal control objectives and selection of the parametrisation frequency

bandwidth lead to sufficiently smooth design spaces, even when the structural dynamics

is characterised by large amplitude vibrations and strong geometrical-nonlinearities. The

investigations presented in this chapter will extend these findings to aeroelastic systems,

hence assessing the benefit of using a geometrically-nonlinear description and optimal

control for identifying efficient manoeuvres for very flexible vehicles. An important el-

ement to be considered will be the ability of the method to deal with, and possibly

exploit, the dynamics associated to the large wing deflections.

Numerical studies will focus on rolling manoeuvres and wings of very low stiffness.

These will be partially-supported through a hinge constraint, which allows isolating the

dynamics associated to the wing flexibility. In Sec. 6.1 their equilibrium and rolling

manoeuvrability features are studies as a function of the airframe stiffness. A flight

dynamics description of the hinged wings roll dynamics is also developed using elastified

stability derivatives (Sec. 6.2). This will be shown to capture the relevant dynamics

under slow actuation or for stiff wings. Finally, the wings aeroelastic optimal con-

trol is addressed in Sec. 6.3. To assess the optimal control methodology and underline

the advantages of a nonlinear aeroelastic description, actuation time histories are also

built based on the elastified flight-dynamics description (Sec. 6.3.1). Exploiting the

geometrically-nonlinear aeroelastic description, optimal control will expand the space of

achievable manoeuvres, hence allowing for a quick response while limiting structural vi-

brations (Sec. 6.3.2) or producing large lateral forces with minimal lift losses (Sec. 6.3.3).
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Chapter 6. Optimal manoeuvres with very flexible wings

6.1 Rolling dynamics of very flexible wings

Key aspects of rolling manoeuvrability using very flexible wings are investigated in this

section. To this aim, computer models of hinged HALE wings have first been built in

Sec. 6.1.1. This setting allows to keep pitch and yaw attitudes constant, such that the

wings can be stabilised without horizontal and vertical tailplanes. Using the nonlinear

time-domain aeroelastic description of Chap. 2, their stability is first studied in Sec. 6.1.2,

while the roll response to prescribed aileron deflections is shown as a function of the

wing stiffness in Sec. 6.1.3. This section, in particular, outlines how large bending and

torsional deflections affect the rolling performance.

6.1.1 Equilibrium of the hinged wing

The hinged-wing model is based on the high-aspect-ratio wing configuration first intro-

duced by Patil et al [67]. As proposed later by Murua et al. [45], and with the aim

of investigating the impact of the wing flexibility on its manoeuvrability, its stiffness is

scaled by a factor, σ. The properties of the resulting model are summarised in Tab. 6.1.

The wing is only allowed to rotate about the root chord axis.

Property Value

Wing span 32 m
Chord 1 m
Elastic axis 0.5 m (from leading edge)
Inertial axis 0.5 m (from leading edge)
Mass per unit length 0.75 kg m−1

Moment of inertia 10−1 kg m
Extensional stiffness 107 N m2

Torsional stiffness σ · 104 N m2

Spanwise bending stiffness 2 σ · 104 N m2

Chordwise bending stiffness 5 · 106 N m2

Table 6.1: Hinged wing properties.

For the numerical studies, σ is varied in the range 1÷ 50 and flight conditions corre-

spond to an altitude of 20 km and a speed of 30 m s−1. As shown in Fig. 6.1a, for each

value of σ the pitch attitude, measured as the angle between the wing root chord and the

free stream velocity, has been adjusted so as to support a total weight of 75 kg (731.6 N).

A front view of the wings in steady level fly shows that large bending deflections, com-

parable to the wing span, occur as the wing flexibility is increased (Fig. 6.1b): for σ = 1,

for instance, the tip vertical deflection is almost 50 % of the wing semispan, b/2. As

better shown in Fig. 6.1c, these tilt the aerodynamic force sideways towards the wing

symmetry plane, meaning that higher angles of attack — and thus higher aerodynamic

loads — are required to provide the target lift L = 731.6 N. This effect is, however,
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6.1. Rolling dynamics of very flexible wings

counteracted by large torsional deformations, which increase the wing sections incidence

at the tips. As a result, and in order for the lift to be constant, a non monotonic trend

of the root chord angle of attack is observed as σ is varied (Fig. 6.1a).
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Figure 6.1: Steady-level flight trimmed conditions for different values of the stiffness
parameter σ.

6.1.2 Model verification and stability study

In order to verify the aeroelastic description of Chap. 2, flutter of the flexible wings in

hinged configuration has been investigated. This is done through time-domain analysis:

the aeroelastic modes are excited through a small deflection of the ailerons and the wing

response at different speeds, U∞, is observed. This is varied in the range [20, 32] m s−1

with step increases of 0.1 m s−1. After a convergence study, the wing structure has been

discretised using 24 quadratic beam elements and the UVLM wake length has been fixed

to be 20 chords. The wing panelling, M , is chosen so as to ensure an accurate resolution

of the range of reduced frequencies, k = 1
2
ωc
U∞

, for which flutter was expected as per:

M ≥ NM
k

π

where NM = 20 is the number of vortex rings included in each wavelength L = 2πU∞c .

With these setting, M = 4 was found sufficiently refined to capture unstable modes with
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Chapter 6. Optimal manoeuvres with very flexible wings

reduced frequencies k ≤ 0.63.1 Finally, the time-step is obtained from eq. (2.60), so as

to ensure that the vortex lattice rows are equally spaced.

Initially the flutter speed of the σ = 1 wing at a pitch attitude of 4 deg is computed

in both a clamped and hinged configuration. Flutter was found to occur over a velocity

of 21.4 m s−1 with a frequency of 3.27 Hz, showing a good agreement with Patil et al.

[67], who used a finite-state air-loads model [57]. The hinge constraint did not affect

the flutter speed. In this case, an anti-symmetric aileron deflection was applied, so as to

excite the wing anti-symmetric modes. However, for deflections large enough to induce

relevant changes on the deformed wing shape, flutter could be seen to initiate at a lower

speed on the semi-wing where tip deflections would be higher. The correlation between

wing deflections and structural vibrations is also observed in the studies on roll dynamics

presented in the next section. This effect has been already reported in literature [67, 181]

and is caused by a reduction of the torsional mode frequency, which facilitates aeroelastic

coupling.

The instability identified above for the σ = 1 wing occurs also for σ = 1.1 and σ = 3.

This is, however, associated to a humped mode, i.e. the wings are again aeroelastically

stable at higher flying speeds. This is seen in Tab. 6.2 which reports, for different σ

values, the range of speeds in which limit cycle oscillations could be observed in the wing

response — note that the wings attitude is set as per Fig. 6.1a. Importantly, all wings

are stable at a flying speed of 30 m s−1. However, as it will be shown in Sec. 6.1.3 and

Wing stiffness Speed range

σ = 1 U∞ ∈ [20.2, 21.8] m s−1

σ = 1.1 U∞ ∈ [21.4, 23] m s−1

σ = 1.5 U∞ ∈ [24.5, 25.7] m s−1

σ = 3, 10, 50 U∞ > 32 m s−1

Table 6.2: Flutter speeds for wings of different stiffness, σ, at flying attitude as per
Fig. 6.1a.

6.3, the low frequency structural modes are only lightly damped for the most flexible

wings (e.g., σ ≤ 1.1). These are the vertical bending mode (Fig. 6.2a), which has

frequency of 0.33 Hz (σ = 1) and 0.35 Hz (σ = 1.1) and the in-plane bending/torsional

mode (Fig. 6.2b), with frequencies of 0.92 Hz and 1.10 Hz when going from a σ = 1 to

a σ = 1.1 wing, respectively. The dynamics associated to these modes will be further

discussed in Sec. 6.1.3.

6.1.3 Roll dynamics under fixed control

The rolling performance of hinged flexible wings will be now investigated. The pitch

attitude has been chosen as in Fig. 6.1a, such that all wings produce the same total

1This corresponds to frequencies below 4 Hz at the lowest considered speed of 20 m s−1 and below
7 Hz at the maximum speed of 35 m s−1.
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6.1. Rolling dynamics of very flexible wings

(a) Vertical bending

trim shape

mode shape

(b) In-plane bending/torsion

Figure 6.2: Visualisation of first two natural modes — vertical bending and in-plane
bending/torsion — of a σ = 1.1 wing clamped at its root.

lift, L = 731.6 N. Large ailerons are placed at the wing tips, extending for 25 % of the

wing span and having a chordwise dimension of 25 % c. Rolling is induced applying an

anti-symmetric aileron deflection βL = −βR (Fig. 6.3a) so as to move the left (port) wing

upwards — see the snapshots of the wing response in Fig. 6.3b. The control surfaces

deflections are assumed to be positive when increasing the local lift.

As in the previous section, the wing is modelled through 24 quadratic beam elements,

while the UVLM wake is 20 chords long and the wing lattice is built using M = 4

chordwise panels. This discretisation was found to be adequate for capturing the relevant

dynamics. In these studies, in fact, aeroelastic effects are not associated to high values

(below 0.12) of the reduced frequency k = 1
2
ωc
U∞

— where ω ≈ 7.2 rad s−1 is the frequency

associated to the slowly damped bending/torsional modes observed for σ ≤ 1.1. Also

the wake roll-up was found to have little impact on the aerodynamic loads and has been

therefore neglected for limiting the computational cost associated to the optimisations in

Sec. 6.3 — the time required for each aeroelastic analysis is, in fact, reduced of roughly

the 80 % by freezing the wake. The chordwise panelling implies a single row of vortex

rings modelling the ailerons: this was found adequate to model the dynamics of the

flexible wings [75], but the increase in aerodynamic force produced by the ailerons under

potential-flow assumptions is slightly underestimated.2 For example, for a σ = 50 wing,

the roll rate produced as a result of the ailerons input in Fig. 6.3a is 2.2 % below the

converged values (obtained for M = 12).

Fig. 6.4 shows the roll attitude, measured at the hinge axis, and the side force,

FY — normalised with respect to the steady level flight lift, L — achieved during the

manoeuvre for wings of stiffness parameters ranging between σ = 1 and σ = 50. In

first place, the lateral stability of a very stiff (σ = 50) hinged wing with no dihedral

2It is worth remarking that potential flow theory does not model control surfaces accurately [52].
Therefore, even a finer chord-wise panelling would not produce a substantial improvement of the model
fidelity.
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Figure 6.3: Ailerons deflection used for the study of the nominal rolling manoeuvre
performance of flexible wings and snapshots of wing response for σ = 1 and σ = 50.

and sweep is briefly discussed. As observed in both Fig. 6.4a and Fig. 6.4b, this is in

a neutral equilibrium position with respect to rolling: as the ailerons are retreated, the

wing stabilises around a roll angle of 38.6 deg, producing a side force FY = 49 %L.
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Figure 6.4: Roll attitude and lateral force time history for an ailerons antisymmetric
deflection with different values of the stiffness parameter σ.

As the wing becomes more flexible, however, three main effects can be observed. In

first place, the authority of the control surfaces is reduced: the lower σ, in fact, the

smaller are the roll angle and the side force achieved during the manoeuvre (Fig. 6.4).

Due to the large side loads associated to the wing bending, however, while the drop in

roll attitude is as large as 25 % when going from σ = 50 to σ = 1, the loss of maximum

lateral force is just below 13 %. In a second phase, a stabilising moment, which tends

to restore the original roll attitude, arises once the ailerons are retreated. Again, this

effect intensifies when deflections are larger: while the stiffer wing (σ = 50) maintains a

constant side force at the end of the manoeuvre, the decay rate is as high as 23.7 N s−1

for the most flexible one (σ = 1). For σ = 1.1 and σ = 1.0, furthermore, the wing

in-plane bending/torsional mode is excited, leading to slowly damped oscillations of the

time history of the lateral force. In the remaining part of this section, all these effects are

discussed in more detail. In all cases, wake roll-up has been neglected and a prescribed

wake model has been assumed instead. Nonetheless, the error in lateral force prediction
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6.1. Rolling dynamics of very flexible wings

associated to this assumption is very small and never exceeds the 0.2 %.

The reduction in control authority is mainly due to large torsional deformations,

which is essentially a linear aeroelastic effect. Their negative impact is understood by

looking at wing loads during the manoeuvre. Fig. 6.5a compares the aerodynamic loads

3 s into the rolling manoeuvre — when the ailerons are fully deployed and the rolling

rate is steady — along the span of a moderately stiff (σ = 10) and a very flexible (σ = 1)

wing. To allow for a fair comparison, the force components are projected on the body

frame A. The sudden change in lift per unit span produced by the ailerons deflection is

considerably smaller for σ = 1, thus reducing the net rolling moment with respect to the

rigid wing. The effect is caused by adverse torsional deflections. These are observed in

Fig. 6.6a, where the y component of the Cartesian rotation vector at the tips of a σ = 1.1

wing is used to quantify the amount of torsion. Also the center wing load distribution

acts against rolling (Fig. 6.5a): this effect is, however, associated to the wing roll rate.

Large bending deflections have a small impact in reducing the control authority.

This is connected to the fore-shortening effect [71]: as bending increases, the wing tips

get closer to the axis of rotation, thus reducing the ailerons moment arm. Asymmetric

wing deflections, however, amplify this effect. During rolling, in fact, the right wing

(moving downwards) stretches up, as the bending load decreases. On the other hand,

the port wing (which also experiences a small reduction in loads due to the decrease in

effective angle of attack associated to the rigid-body rotation) maintains a larger bending

and, therefore, a stronger fore-shortening effect. The resulting asymmetry is shown in

Fig. 6.6b for a σ = 1.1 wing. Finally, it is worth noticing that in this configuration the

reduction in control authority occurring in the more flexible wings is partially stemmed

by the gravity force. For low values of σ, in fact, the wing center of mass is raised above

the axis of rotation, hence gravity provides a positive contribution to roll — see also

eq. (6.2).
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Figure 6.5: Comparison of loads distribution at different times of the nominal rolling
manoeuvre for wings having a stiffness of σ = 1 and σ = 10.

The stabilising rolling moment observed in Fig. 6.4 once the aileron deflection is

returned to zero is also connected to the bending deformations, which, effectively, give
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Chapter 6. Optimal manoeuvres with very flexible wings
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Figure 6.6: Tip bending deflection (normalised by the semi-wing span) and torsion
during the nominal rolling manoeuvre for a wing of stiffness parameter σ = 1.1.

the wing a dihedral angle. As the axis of rotation is not aligned with the air stream, the

sections of the starboard wing, moving downwards, will have a higher angle of attack than

those of the left wing. This is observed in Fig. 6.5b, where the span-wise aerodynamic

load distribution at time t = 6 s, i.e. when the ailerons are not longer deflected, is shown.

While the stiffer wing shows a symmetric loads distribution, the flexible one has higher

lift on the right side. It is worth underlining that this effect would also be observed

on a rigid wing with dihedral angle, but would disappear if the wings rotate about an

axis parallel to the free air stream velocity. Asymmetric deflections also increases the

magnitude of the stabilising moment. As seen in Fig. 6.6b for σ = 1.1, as the wing rolls

back (t > 4 s), its right side remains more stretched. This, together with the damping

effect produced by the rolling rate, guarantees a higher local angle of attack than on the

left wing.

During the second phase of the manoeuvre, torsional deflections do not produce

significant differences in local angle of attack between left and ring wing (see Fig. 6.6a,

t > 4 s). The time histories of the tip torsion show, however, that for σ = 1.1 in-plane

bending/torsional mode are excited with a frequency of oscillations of around 1.05 Hz.

Vibrations are significantly stronger on the left wing (moving upward). Here, in fact,

bending deflections are larger: the frequency of the torsional mode is, therefore, reduced

[67, 181], and the torsion/bending coupling is facilitated. Contrarily, on the right wing,

vibrations are smaller amplitude and damp faster (Fig. 6.6a and 6.6b). As observed in

Fig. 6.4b, the left wing vibrations have an impact on the manoeuvre, as they cause the

lateral force to oscillate for t > 3 s. For σ = 1.1, the wing has bent quite significantly,

hence the changes in aerodynamic force produced by the local changes of angle of attack

from wing torsions directly translate into variations of the overall lateral force, FY .

Overall, the reduction in control authority observed in very flexible wings can be

mainly attributed to the wing torsion, which is a linear aeroelastic effect. Geometrical

nonlinearities from the wing bending may also have an important impact on the rolling
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6.2. Roll Dynamics using elastified stability derivatives

dynamics. In particular, the effective dihedral associated to large bending of the very

flexible wings produces asymmetric changes of the local angle of attack between left and

right wing. Hence, if the axis of rotation is not aligned with the flow speed, a stabilising

moment is observed even in absence of side-slip. Also, as the wing bends there are

larger bending/torsional couplings, which results in more complex (“instantaneous”)

mode shapes.

6.2 Roll Dynamics using elastified stability derivatives

To assess the importance of geometrically-nonlinear effects in the aeroelastic description,

a simplified model of the flexible-wing dynamics has also been assembled using elastified

stability derivatives [3, 60]. This will be referred to as elastified flight-dynamics model

(EFDM). As the studies presented in Sec. 6.1.3 are based on a hinged wing model, the

EFDM will only address the wing roll dynamics. The approach can be, however, similarly

extended to include other rigid-body degrees of freedom. The theoretical development

of the EFDM model is presented in Sec. 6.2.1, while in Sec. 6.2.2 the wing responses

predicted through this description is assessed against the full aeroelastic solution of

Chap. 2.

6.2.1 Elastified flight-dynamics model

As shown in Fig. 6.7, the attitude between the body attached FoR A is expressed with

respect to the inertial frame G through the angles (Θ,Φ) associated, respectively, to a

pitch and roll rotation. The free stream velocity vector, U∞, is parallel to the X axis of

the G frame and the wing position is identified through the unit vectors ĉ and n̂, which

are, respectively, tangent and perpendicular to its root chord. The wing is hinged so as

to roll about the x axis of body attached FoR A, while its pitch attitude is fixed. Note

that in this set-up the free stream velocity has no side-slip. This would be accounted

for by including yaw rotations, Ψ, to the velocity vector, thus retrieving a description

based upon a triad (Θ,Φ,Ψ) for the rotation between wind and body attached axes

[157]. However, this is not considered here.

For a given free-stream dynamic pressure q∞ = 1/2ρ∞U
2
∞ (where ρ∞ is the air den-

sity), under the hinge kinematic constraint (Θ̇ = 0) and neglecting structural dynamic

effects (η̇ = 0), the wing roll dynamics is dictated by

Ixx(η(p))Φ̈ = Mgx(Θ,Φ,η(p)) +Max(Θ,Φ, Φ̇, βL, βR,η(p)) (6.1)

where Mgx and Max are the x components of the moments produced, respectively, by

gravity and aerodynamic forces and Ixx is the wing inertia about the x axis. In general,

all terms in eq. (6.1) will depend on the wing shape, defined here by the displacements

and rotations, η, along the wing reference axis. The parameters determining these have
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Chapter 6. Optimal manoeuvres with very flexible wings

been collected into the vector p = (Θ,Φ, Φ̇, βL, βR).

Geometrically-nonlinear effects linked to gravity forces also need to be quantified.

While flight-dynamics models do not commonly account for them, these are here included

for improving the accuracy of the EFDM description when large wing deflections occur.

These, in fact, shift upwards the wing center of mass, hence a moment

Mgx(Θ,Φ,η) = g cos Θ [Sz(η) sin Φ− Sy(η) cos Φ] (6.2)

where

Si =

∫ b/2

−b/2
m RAi(s,η(p)) ds (6.3)

is generated about the hinge axis, x. In eq. (6.3), the integration is extended over the

wing span, b, and m is the structural density. RAi(s,η) refers to the components of the

wing position at the curvilinear coordinate s (in the body-attached frame A, Fig. 2.1).

This is computed starting from the positions and rotations of the FEs discretising the

wing, η. Therefore, Sy and Sz are proportional to the position of the wing centre of mass

along the y and z axis of the body frame A, respectively. In particular, Sy 6= 0 only

if wing deflections are not symmetric, while Sz increases as large bending deflections

occur.

The aerodynamic rolling moment Max in eq. (6.1) depends upon the control surfaces

deflections, (βL and βR), the wing roll rate Φ̇ and shape, η. Depending on the wing

design and flight condition, a large wing dihedral may be produced. In this case, since

rolling does not happen about an axis aligned along the free stream velocity, the local

changes of angle of attack at the wing cross-sections will not be symmetric along the

span, thus adding a new contribution to the roll dynamics. Consequently, a further

dependency of Max on the roll attitude, Φ, has to be included.

The aerodynamic moment in eq. (6.1), Max, is computed for a given set of flight

parameters p∗ — to which corresponds a certain wing shape η(p∗). The moments are

x
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Θ
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ĉ

elastic wing
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Figure 6.7: Definition of frames of references used for the flight-dynamics model

130



6.2. Roll Dynamics using elastified stability derivatives

then linearised around p∗ as

Max = Max(p∗,η(p∗)) + q∞cb
2 CMpi(p

∗, η̃) ∆pi (6.4)

where the stability and control derivatives with respect to the flight parameter pi, with

i = 1, . . . , 5 are obtained here using finite-differences in the full aeroelastic model of

Chap. 2, but other estimates may also be used. Each derivative CMpi depends on the

wing shape, η̃, associated to the perturbed term in eq. (6.4). For stiff airframes, zero

deflections may be assumed, while static aeroelastic effects can be captured by setting

η̃ to be the deformed wing shape at the flight point p∗, i.e. η̃ = η(p∗). To account for

aeroelastic effects linked to the variations of the i-th flight parameter, ∆pi, stability and

control derivatives are evaluated at η̃ = η(p∗i + ∆pi). Following this approach, elastified

derivatives are obtained through finite differences on the full aeroelastic model. In the

next section, the EFDM model will allow for a further insight into the physics of lateral

manoeuvres and to quantify geometrically nonlinear effects.

6.2.2 Elastified stability derivatives

Using the above description, a simplified EFDM of the hinged flexible wings of Sec. 6.1 is

built by linearising the aerodynamic moment around the steady level flight equilibrium

position p∗ = (Θ∗, 0, 0, 0, 0), where Θ∗ is prescribed as shown in Fig. 6.1a. To populate

eq. (6.4), the wing stability derivatives are evaluated around p∗ by finite differences on

the nonlinear aeroelastic model of Chap. 2 while allowing for large deflections.

Fig. 6.8 shows the stability derivatives measured when including (elastified) or not

(rigid) the effect of elastic deformations — hence, with reference to eq. (6.4), when

evaluating the perturbed moment assuming η̃ = η(p∗) and η̃ = η(p∗+∆p), respectively.

Note that these correspond to the same lift but different angles of attack (Fig. 6.1a).

As expected, the most important terms are the control derivative CMβ
and the damping

term CMΦ̇
associated to the roll rate of change Φ̇. The derivative associated to the

roll attitude CMΦ
was, instead, found to be relatively small, yet non-negligible, for very

flexible configurations. This term introduces the restoring moment for wings of low σ

value. The damping coefficient associated to the roll rate, CMΦ̇
, has an almost 50 %

reduction when going from a σ = 50 to a σ = 1 wing, but no major difference is

observed when aeroelastic corrections are included, meaning that this contribution is

mainly connected to the large bending deflections of the wing in steady level flight.

While CMΦ
and CMΦ̇

do not show significant variations when allowing for aeroelastic

corrections, however, the control authority, CMβ
, is drastically reduced as the wing

flexibility increases. As discussed in Sec. 6.1.3 this important effect is mainly driven by

the adverse twist produced by the ailerons (Fig. 6.6a). The small drop of the rigid CMβ

(around 5 % when passing from a σ = 50 to a σ = 1 wing), results, instead, from the

fore-shortening effect. Although in the EFDM the rolling moment generated by gravity
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Chapter 6. Optimal manoeuvres with very flexible wings

is computed exactly via eq. (6.2), the term

CMg =
1

q∞cb2
∂Mgx

∂Φ
(6.5)

has also been included in Fig. 6.8 to show that, despite the wing roll axis not passing

through its center of mass, gravity has little importance in these cases. Also, the elastified

CMg trend overlaps with the rigid one, proving that changes of Ixx, Sy and Sz in eq. (6.1)

and (6.2) are here almost negligible.
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Figure 6.8: Rigid and elastified stability derivatives for wings of different flexibility, σ,
around a level flight equilibrium point.

Substituting the elastified stability derivatives of Fig. 6.8 into eq. (6.1) and (6.4)

leads to the following equation for the hinged wing roll dynamics:

IxxΦ̈− q∞cb2
(
CMΦ̇

Φ̇ + CMΦ
Φ
)

= Mgx(Φ) + q∞cb
2CMβ

β(t) (6.6)

where Mgx is computed according to eq. (6.2). In order to compare the predictions of the

EFDM model against the results obtained through a full aeroelastic analysis (Sec. 6.1.3),

however, the lateral force, FY , is also required. This is obtained as a post-processing

step once eq. (6.6) is solved with respect to Φ. To this aim, the vertical force in the body

frame A is assumed to be proportional to the wing root angle of attack, α. At each roll

attitude, α is given by

α(Φ) = arctan

(
û∞ · n̂(Φ)

û∞ · ĉ

)
(6.7)

where ĉ and n̂ are the unit vectors parallel and normal to the wing root chord (Fig. 6.7)

and û∞ is aligned with the free-stream velocity. All quantities are projected in G

coordinates, hence only n̂ depends on the roll angle as the wing rolls about ĉ. Scaling

and rotating the steady level flight lift, L, allows to express the lateral force in the

inertial frame G as

FY = sin Φ
α(Φ)

α(0)
L (6.8)

where α(0) = Θ∗ is the wing root angle of attack at the beginning of the manoeuvre
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6.2. Roll Dynamics using elastified stability derivatives

(Fig. 6.1a).

In Fig. 6.9 the lateral force, FY , predicted by eq. (6.8) as a function of the roll

attitude, is compared against the one resulting from the rolling manoeuvres presented

in Fig. 6.4 and computed via a full aeroelastic analysis. The differences between a very

flexible (σ = 1) and a very stiff (σ = 50) wing are very small, although eq. (6.8) does not

capture the small hysteresis observed for σ = 1, which are mostly due to changes in wing

inertia due to the large displacements. In this case, in fact, due to the large bending,

the extra aerodynamic load produced by a deflection of the ailerons contributes to the

lateral force even when the wing is close to its steady level flight configuration (Φ→ 0,

Fig. 6.1b). This effect is also observed in the lateral force time histories in Fig. 6.4b

around t = 1 s, and vanishes for large σ as the wing dihedral diminishes.
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Figure 6.9: Total lateral force, expressed as a function of roll attitude through the
analytical relation (6.8) and through a full aeroelastic analysis, for a very flexible (σ = 1)
and a stiff (σ = 50) wing.

The wing response to the antisymmetric ailerons deflection in Fig. 6.3a can now

be approximated using the elastified flight-dynamics equations (6.6) and (6.8). The

comparison against the nonlinear aeroelastic solution of Sec. 6.1.3 is shown in Fig. 6.10

for σ = 1.1 and σ = 50. As expected, when geometrically-nonlinear effects are negligible

(σ = 50), both models are in excellent agreement. As these become important, however,

some differences can be observed, mostly during the second phase of the manoeuvre (t >

4 s). Fig. 6.11 shows the contribution to the total moment for σ = 1.1 from each term in

eq. (6.6). During the initial phase of the manoeuvre (ailerons fully deflected, t < 4 s), the

most significant ones are the ailerons input and the roll rate damping. The good match

against the nonlinear aeroelastic response shows that the impact of the adverse torsional

deformations — produced by the deflection of the control surfaces (Fig. 6.6a) — is well

capture through the elastification of the CMβ
derivative. Importantly, this also proves

that this effect remains predominantly linear despite the large changes in wing shape

occurring during the manoeuvre (Fig. 6.6b). Also the roll rate damping is well estimated.

As the aeroelastic correction only accounts for instantaneous geometry changes, it is clear

that the nominal manoeuvre for this configuration is slow enough for aeroelastic effects
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Chapter 6. Optimal manoeuvres with very flexible wings

to remain quasi-stationary.
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Figure 6.11: Decomposition into the terms appearing in eq. (6.6) of the total rolling
moment for σ = 1 under the aileron deflection defined in Fig. 6.3a.

For t > 4 s the restoring moment associated to the roll attitude becomes predominant,

while the impact of gravity is rather limited (Fig. 6.11). In the EFDM description,

however, this is over-predicted, leading to a growing error in the roll response (Fig. 6.10a).

The elastification of the CMΦ
derivative, therefore, does not fully capture the geometrical

nonlinearities associated to this phase of the manoeuvre, namely the asymmetries in

wing bending deflections and the resulting changes of local angle of attack (Sec. 6.1.3).

Regarding this, it is worth recalling that the aeroelastic correction has little effect on

CMΦ
(Fig. 6.8), as it only accounts for the static effects. The small inconsistency between

the EFDM and the full aeroelastic prediction, therefore, indicates that the coupling

between rigid and flexible dynamics — only captured by the latter model — becomes

more important in this phase.

Overall, the EFDM is seen to give a good approximation for the rolling dynamics

even for very flexible wings. The main drawback of this simplified description is clearly

that no structural dynamics is captured; for instance, the oscillations of lateral force
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6.3. Optimal control of flexible wings

linked to the wing torsional/bending dynamics are lost (Fig. 6.10b). When seeking

optimal manoeuvres on very flexible wings, this will imply severe constraints on actuation

bandwidth that may limit performance, as will be seen in the next section.

6.3 Optimal control of flexible wings

Results in Sec. 6.1.3 have shown that, even for rather simple aileron commands, the

response of very flexible wings can be quite involved. The task of scheduling aileron

deflections becomes, therefore, more elaborate, especially when the aim is to identify

manoeuvres for best performance under a given metric. In this section they will be

obtained from the solution of an optimal control problem. In Sec. 6.3.1, time histories

of aileron commands obtained through this approach will be compared against those

identified using the simplified elastified flight-dynamics description. This comparison will

assess the single-shooting based framework and the relative importance of geometrically-

nonlinear effects and structural dynamics when designing manoeuvres with very flexible

wings.

When using the single-shooting approach, the best-performing rolling manoeuvres

will be obtained as a solution to the optimal control problem (3.15). For the studies

presented in this section, in particular, the control input is provided by the left and right

wing aileron deflections, hence u(t) = {βL(t), βR(t)}. Defining a rolling manoeuvre for

a flying wing typically requires a trade-off between competing performance objectives,

hence leading to an inherently multi-objective problem. In order to recast this into a

problem of the form (3.15), the cost function, I, is scalarised and expressed as a weighted

sum of multiple objectives, Ij ,

I =
∑
j

wjIj (6.9)

In all the study proposed, the objective to roll the wing until a target lateral force FT

— equal to the 40 % of the steady level flight lift, L — is produced. Two variations

of this manoeuvre are considered. Firstly, the focus is in rolling the wing as fast as

possible while minimising wing vibrations and control effort. This formulation, which

requires dividing the manoeuvre into segments, is used in for assessing the single-shooting

framework in Sec. 6.3.1 and discussed in more detail in Sec. 6.3.2. A second study will

instead investigate strategies to compromise large gains in lateral force with a moderate

lift loss (Sec. 6.3.3). In both cases, the deriving optimisation problem is inherently

multi-objective, as a trade-off between conflicting requirements is necessary (namely

short transient vs. low vibrations and large lateral force vs. low lift loss). This aspect

is expressed in the optimisation problem by defining the cost function I as a weighted

sum of multiple objectives, eq. (6.9). The impact of the wing flexibility on the optimal

actuation is also investigated by defining the manoeuvre for wings of different stiffness

parameters σ.
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Chapter 6. Optimal manoeuvres with very flexible wings

All wings are again assumed to fly at a speed of 30 m s−1 and their pitch attitude

is adjusted so as to produce the same lift, L, in steady level flight (Fig. 6.1a). In all

the optimisation studies the ailerons are initially set to zero angle and, unless otherwise

stated, this has been parametrised using 2 control points per second, thus achieving

a maximum nominal excitation frequency fmax = 1 Hz. For the most flexible wings

(σ ≤ 1.1) this resolution is enough to capture the first bending (around 0.3 Hz) and in-

plane bending plus torsional mode (around 1 Hz). Realistic travel limits and a maximum

rate of deflection are ensured by enforcing:

|β∗(t)| ≤ βmax

|β̇∗(t)| ≤ β̇max
for t ε [0, T ] (6.10)

Maximum travel limit and rate of deflection are set to be βmax = 10 deg and β̇max =

15 deg s−1, respectively. Similarly to what has been done in Sec. 4.2, a path constraint

|Φ(t)| ≤ 90 deg (6.11)

has also been enforced on the wing roll attitude: this avoids unrealistic roll angles and

indirectly speeds-up the optimisation convergence by reducing the design space size.

6.3.1 Assessment of the optimal control approach

In this first study, aileron commands are constrained to be antisymmetric (βL = −βR)

and the optimal control description is achieved decomposing the rolling manoeuvre into

two segments. During the initial, transient, stage (t < Ts), the control is asked to move

the system from one equilibrium point (steady level flight) to another (wing at constant

roll attitude): the aim is to achieve this as quickly as possible, hence no penalty is

imposed on the amount of actuation required. In the second segment (t ≥ Ts), the main

objective is to stabilise the wing maintaining the lateral force constant. During this

phase a penalty is associated to the control surfaces rate of deflection, β̇. Importantly,

this aims to guarantee not only a cheap actuation strategy, but also that the control

leads the system towards a steady state (wing rolled with β̇ = 0). Using a quadratic

norm to measure the gap between the instantaneous lateral aerodynamic force, FY , and

the target force, FT , the cost function, I, is therefore defined as:

I =

∫ Ts

0
wTE(t)2dt+

∫ T

Ts

(
wSE(t)2 + wp ˙β(t)

2
)
dt , E(t) = FY (t)− FT (6.12)

The weights in eq. (6.12) depend on the type of control being sought, namely how

fast the response should be, how important it is to reduce vibrations during the second

stage and which level of actuation can be accepted. These aspects will be discussed in

Sec. 6.3.2. For this initial study, these are set to be wT = 10−4 N−2s−1, wS = 103wT , and
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6.3. Optimal control of flexible wings

wP = 5× 10−2 deg−2s, which were chosen after a preliminary investigation to ensure that

the integral terms in eq. (6.12) have comparable magnitude. In particular, a relatively

large weight is associated to the lateral force gap, E, to reduce the oscillations of this

force durign the second segment of the manoeuvre. The manoeuvre is simulated for a

total time T = 15 s, while the time-step is set according to eq. (2.60). The time allowed

for the transient stage, Ts, could be potentially defined as a result of the optimisation

itself. However, this was not necessary here. From eq. (6.12), in fact, it is expected

that during the initial part of the manoeuvre the control will aim to roll the wing at the

maximum rate, hence Ts could be estimated from the wings responses to a prescribed

control input in Sec. 6.1.3. In particular, this was fixed to be Ts = 5 s and Ts = 4 s for

σ = 1.1 and a σ = 50, hence being inversely proportional to the wings control surfaces

authority.

A reference input can be easily derived by inspection using the simplified flight-

dynamics description introduced in Sec. 6.2.1 and 6.2.2. At the beginning of the ma-

noeuvre, ailerons are deflected at their maximum rate and to their maximum amplitude

(no penalty is enforced on the actuation), so as to roll the wing as fast as possible. The

roll attitude required to produce the target lateral force, FT , can be obtained through

eq. (6.8): once this is known, the time for which the ailerons are fully deflected can be

tuned. Finally, solving eq. (6.1) for steady-state conditions provides the aileron inputs

required to stabilise the wing roll — note that these are kept constant to minimise the

penalty term in eq. (6.12). The time histories provided by this approach for σ = 1.1 and

σ = 50 are shown in Fig. 6.12a. Note that the σ = 1.1 control input has been derived

also for maximum nominal actuation frequencies, fmax, below 1 Hz. This parameter, in

fact, determines the maximum rates β̇ and β̈ on the controls (Sec. 3.3) and, thus, allows

to regulate how strongly the wing structural dynamics is excited.

The nonlinear aeroelastic responses to the input in Fig. 6.12a is presented in Fig. 6.12b

and 6.12c in terms of wing roll attitude and lateral force produced. These results show

that, overall, the key features of the wings dynamics are always captured. The ailerons

have more authority on the rigid wing, hence less actuation time is required. For σ = 1.1

the full deflection is required for a longer time and a nonzero angle is necessary at the

steady state to cancel the stabilising rolling moment produced by the wing dihedral

(Sec. 6.1.3). The control input generated for σ = 50 is appropriate to reach and main-

tain the target lateral force FT , as the EFDM description approximates well the dyna-

mics of stiff wings. Despite the aeroelastic corrections, on the other hand, on a very

flexible wing (σ = 1.1) the ailerons do not stabilise the wing around the correct roll at-

titude (Fig. 6.12b) and the lateral force is 12 % larger then required at the steady state

(Fig. 6.12c). This reflects the findings of Sec. 6.2.2, which showed how the EFDM model

loses fidelity in the second part of the manoeuvres, when the geometrical nonlinearities

linked to the asymmetries between left and right wing deflections become relevant.

Importantly, when the nominal excitation frequency is above 0.5 Hz, the lateral force
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Figure 6.12: Reference anti-symmetric actuations and aeroelastic response for wings
different stiffness. The control inputs have been derived for different maximum excitation
frequency, fmax, based on the EFDM description.

FY also has a slowly damped oscillatory behaviour, which reflects the presence of wing

vibrations. As observed in Fig. 6.13, where the time histories of the wing tips hori-

zontal position and torsional angle are shown, these are caused by the in-plane bend-

ing/torsional mode becoming excited. As the EFDM includes no information on the

wing vibrations and the actual frequencies vary as the wing bends, rate limits should

be introduced in the definition of maneouvres with this simplified descriptions. This

requires bounding both β̇ and β̈ to reduce the frequency content of the control input, as

shown in Fig. 6.12a.

Finally, the reference actuations provided by the EFDM description are compared to

those obtained through eq. (6.12) in Fig. 6.14. The corresponding nonlinear aeroelastic

responses are included in Fig. 6.15. For the very stiff wing (σ = 50), the aileron input

obtained via single shooting correlates very well with the reference case and, therefore,

the aeroelastic responses are also in excellent agreement. The only difference arises at

t ≈ 3.5 s (see Fig. 6.14), when the single-shooting solution changes sign. While this

control diminishes the time required for the wing to settle around its steady-state roll

attitude, the reduction of the cost function in eq. (6.12) is minimal (below 0.1 %) and, in

fact, no relevant impact on the lateral dynamics is observed (see Fig. 6.15). As expected,
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Figure 6.13: Details of the σ = 1.1 wing full aeroelastic response to the ailerons input
in Fig. 6.14.

“elastification” of the stability derivatives is an adequate, and computationally cheap,

approximation for the dynamics of stiff wings.

As no feedback regulator is employed in this model, in order to avoid structural

vibrations the maximum actuation frequency of the σ = 1.1 reference input needed to

be reduced from 1 Hz to 0.5 Hz (refer to both Fig. 6.12 and Fig. 6.13), thus cutting the

maximum β̇ and β̈ rates of 50 % and 75 %, respectively. This, however, was not required

for the control input derived via a full aeroelastic solution, which, therefore, reaches

the target lateral force, FT , considerably faster — the time required to produce 95 %FT

is, for instance, reduced of 16.4 %. Lateral force and roll attitude are also stabilised

with great accuracy (Fig. 6.15): in this case, in fact, the wing structural dynamics is

well captured and during the optimisation the aileron input frequency content can be

adjusted accordingly (Fig. 6.14). As a result, the bending and torsional oscillations

arising on the left (moving upward) wing are reduced without having to impose rate

limits (Fig. 6.13). Interestingly, as the ailerons movement is constrained to be anti-

symmetric, a small level of vibration is generated on the right wing. This, however,

can be further damped allowing the control surfaces to move independently, as done in

Sec. 6.3.3.

Overall, optimisation on the full aeroelastic description managed to overcome the

limitations of the elastified flight-dynamics model. In first place, this is higher fidelity

and accounts for geometrical changes occurring during the manoeuvre: while negligible

for stiff wings — where, in fact, the EFDM approximation is excellent — these have been

shown to be relevant for very flexible ones. Most importantly, building the open-loop

control upon a full aeroelastic description allows to consider more aggressive, and better

performing, actuation input. The EFDM model, in fact, can not account for the wing

elastic dynamics and how this interacts with the rigid dynamics. As a result, for σ = 1.1

the ailerons input based on this description can lead to wing vibrations, strong enough

to be observed in the FY time history. When using a purely flight-dynamics description,

therefore, the actuation frequency must be bounded in the frequency domain, so as not
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Figure 6.14: Optimal anti-symmetric actuations βL = −βR for wings of different stiffness
obtained via single-shooting (using a full aeroelastic model) against the reference cases
(based on the EFDM description).
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Figure 6.15: Wings response, computed through a full aeroelastic analysis, to the ailerons
input in Fig. 6.14.

to excite lowly damped structural modes. This limitation becomes even more strict as

the original wing shape is altered during manoeuvring and the natural frequencies of its

structural modes change. While structural vibrations could also be addressed through

feedback control, from a MDO perspective it is clear that even this solution is not likely

to be optimal, as manoeuvre identification and vibrations control should be addressed

contemporary [123]. Instead, optimal control based on a nonlinear aeroelastic description

can explore scenarios in which structural vibrations may occur during manoeuvring,

which is a realistic hypothesis for novel, lighter and lighter, airframes [182].

6.3.2 Trade-off between fast and smooth wing response

In the previous section, a segmented formulation has been chosen for defining the cost

associated to the rolling manoeuvre, eq. (6.12). During the second segment, the actuation

is penalised (wP 6= 0) and a larger weight, wS = 103wT , is associated to the lateral force

error E = FY − FT (segmentation). This cost function ultimately reflects a trade-off
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between having a fast response during the first stage of the manoeuvre and an accurate

lateral force tracking in the second phase. This concept is further investigated now for a

very flexible wing (σ = 1.1). To this aim, the optimal time histories of aileron commands

have been computed when, respectively, removing the actuation penalty — i.e. setting

wP = 0 while keeping wS = 103wT in eq. (6.12) — and dropping the segmentation

hypothesis — i.e. assuming wS = wT as wP 6= 0. The resulting aileron input, and

the associated wing responses, are compared to those obtained employing a segmented

formulation with penalty in Fig. 6.16.

When equal weights are applied to the transient and final stages of the manoeuvre

(no segmentation, wS = wT ), the most aggressive control is generated. The ailerons,

in fact, are deflected to their maximum for a longer period (Fig. 6.16a), leading to a

faster increase of the lateral force, FY (Fig. 6.16b). On the other hand, however, FY

overshoots and oscillates around the target lateral force value, FT , as the wing vibrates

during the second segment of the manoeuvre. The zoom-in in Fig. 6.16b, in particular,

highlights the small-scale effects associated to the structural dynamics from the large-

scale flight mechanics response: while small amplitude, oscillations are not-negligible.

This behaviour occurs as the optimiser minimises the only relevant contribution to the

cost associated to the manoeuvre, namely the error accumulated during the transient

stage (t < TS = 5 s). This reduction can be observed in Fig. 6.17a, where the kernel of

the cost integral in eq. (6.12)

k(t) =

wT (FY (t)− FT )2 t ≤ Ts
wT (FY (t)− FT )2 + wP ˙β(t)

2
t > Ts

(6.13)

is compared against the one associated to aileron input and wing response obtained

through a segmented formulation. From the same figure it can be observed that, as a

low weight is associated to the error E = FY −FT , the small amplitude oscillations of FY

for t > 5 s do not produce relevant increases to the integral kernel. At the optimiser level,
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Figure 6.16: Impact of segmentation in defining the optimal actuation on a very flexible
wing (σ = 1.1).
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Figure 6.17: Integral kernel of eq. (6.12) for optimal manoeuvres computed with and
without segmentation of the cost function. The kernel is evaluated for different values
of the weight wS , associated to the lateral force error during the second stage of the
manoeuvre.

therefore, no advantage is seen in damping the wing vibrations. As shown in Fig. 6.17b,

on the other hand, a non-negligible error would be produced if a segmented formulation

was used, hence explaining why a segmented formulation allows to maintain the lateral

force, FT .

So far it has been shown that, if the weight associated to the lateral force error

accumulated during the second phase of the manoeuvre (wS) is large enough, wing

vibrations are controlled whether the actuation is penalised or not (Fig. 6.16b). However,

the control surfaces time histories in Fig. 6.16a show that only when a penalty is also

enforced on the actuation the system also tends to a steady state. In this case, in fact,

not only FY but also the aileron commands reach a constant value, settling around

βL = −βR = 2.6 deg. Otherwise, undamped, small amplitude, oscillations appear. This,

in particular, reveals that multiple solutions exist and that the penalty term enforced on

the rate of actuation allows to select, amongst them, the one compatible with a steady

state.

6.3.3 Unconventional manoeuvres - combining lateral and vertical dy-

namics

The versatility of the optimal control approach allows us to investigate also unconven-

tional actuation strategies and gain a better understanding of the limit performance of

very flexible wings. In order to illustrate this, the rolling manoeuvre is reformulated

for exploring the trade-off between achieving a target lateral force and limiting the lift

loss associated to rolling. This could also be obtained by increasing the flying speed or

the vehicle pitch attitude, but here ailerons, and asymmetric wing deflections, will be
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6.3. Optimal control of flexible wings

exploited to produce additional lift. This leads to the following cost function

I =

∫ T

0

[
wY (FY (t)− FT )2 + wZ (FZ(t)− L)2

]
dt (6.14)

where the objective is to minimise the gap in lateral and vertical force. Their relative

importance is weighted through wY = 10−4 N−2s−1 and wZ = 0.5wY ; no other term (e.g.

actuation penalty and/or segmentation) has been added in order to keep the problem

simple. The manoeuvre is initially defined and analysed for a wing of intermediate

stiffness (σ = 1.5): in a first case, anti-symmetric aileron deflections are enforced, while

in second one these are allowed to move independently. The optimal ailerons input

obtained, and the corresponding time histories of lateral and vertical aerodynamic forces,

are shown in Fig. 6.18.
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Figure 6.18: Optimal aileron inputs, and wing response, associated to the lift-constrained
rolling manoeuvre of a σ = 1.5 wing for anti-symmetric and independent actuation.

During the initial part of the manoeuvre (t < 2.5 s), the cost in eq. (6.14) is dominated

by the lateral force error, FY −FT : even when ailerons are allowed to move independently,

therefore, these are deflected in opposite directions and to their maximum amplitude,

so as to produce the largest achievable rolling moment (Fig. 6.18a). As a steady state

is approached, however, two considerably different configurations are reached. When

control surfaces deflections are enforced to be anti-symmetric, their amplitude at the

end of the manoeuvre is uniquely determined: in fact, for a given roll attitude, there

exist only one amplitude βL = −βR capable of stabilising the wing — i.e. to counteract

the rolling moment associated to the wing dihedral (Sec. 6.1.3). As a result, the trade-

off in eq. (6.14) is achieved by reducing the roll angle — and the lateral force, FY —

so as to increase the lift force (Fig. 6.18b): at the steady state these are FY = 93 %L

and FZ = 88 %L. It is worth noticing that these values directly depend on the relative

weights between wY and wZ .

If the control surfaces can be moved independently, instead, once the wing has been

rolled (and, hence, the error term associated to the lateral force minimised), both ailerons

are deflected downwards, so as to increase the local aerodynamic force. As a result, a
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larger wing dihedral is produced. This is shown in Fig. 6.19b by comparing the wing

deformed reference line at the end of the manoeuvre — and the corresponding aerody-

namic load distribution — to the one obtained with anti-symmetric aileron deflections.

In this configuration, the lateral loads associated to the wing curvature can be exploited

efficiently. The left wing, which is almost aligned with the horizontal direction, provides

a major contribution to the total vertical force, while the right wing — whose tip has

an angle of 56 deg with respect to the horizontal line — mainly generates lateral force.

As a result, from t ≈ 6 s the full target lateral force FT is achieved without any lift loss.

It is worth remarking that the, due to their large surface area, ailerons not only

increase the wing curvature, but they also provide an important contribution to the

total aerodynamic force (Fig. 6.19b) and maintain the wing attitude. At the end of the

manoeuvre, in fact, left and right control surfaces have a different deflection (Fig. 6.18a),

so as to counteract the stabilising moment associated to the wing dihedral. While the

key feature of this manoeuvre is that the wing shape is morphed, the deflections time

histories are also optimised: from Fig. 6.18a, for instance, it can be observed that the

right aileron is deflected to the maximum amplitude for a shorter time than the left

one, as a large change of incidence is required to reach its final position (at an angle of

approximately 5 deg).

The impact of the wing stiffness on the lift-constrained manoeuvre is finally inves-

tigated. To this aim, the performance, measured in terms of steady state lateral and

vertical force, of wings of different stiffness is compared in Tab. 6.3 for cases where

the control surfaces can be moved independently or anti-symmetrically. When enforc-

Wing stiffness Anti-symmetric Independent
FY /FT FZ/L FY /FT FZ/L

σ = 1.1 0.93 0.88 0.93 0.90
σ = 1.5 0.93 0.86 1.00 1.00
σ = 50 0.90 0.85 1.00 1.00

Table 6.3: Steady state performance of wings of different stiffness σ when allowing, or
not, the control surfaces to move independently. Note that FT = 0.4L.

ing anti-symmetric commands, performance directly improves with the wing flexibility.

Here, a flexible wing (σ = 1.1) shows increases above 3 % of both lateral and vertical

force with respect to the stiff wing (σ = 50). Flexible wings can, in fact, exploit the

aerodynamic side loads associated to the large curvature (as shown in Fig. 6.1c) to limit

the lift losses associated to roll while still producing high lateral forces.

For σ = 1.5, it has already been shown that the target lateral and vertical forces

can be fully maintained with independent aileron commands. In this case, in fact, the

control can adjust not only the steady state roll attitude, but also the wing shape and the

aileron deflections. A similar result is obtained also when the wing is stiffer (σ = 50):

as shown by the loads distribution in Fig. 6.19c, however, in this case the wing has
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Figure 6.19: Front view of the aerodynamic loads acting on a wings of different stiffness
parameter, σ, at the end of a rolling manoeuvre performed using both anti-symmetric
and independent aileron commands.

no dihedral, hence only the (large) ailerons are used to compensate for the lift losses.

Results in Tab. 6.3 for σ = 1.1 underline, however, the existence of a critical value

of stiffness below which, regardless of the actuation strategy adopted (independent vs.

anti-symmetric deflections) the wing rolling performance is bounded and both lateral

and vertical forces are largely below the respective target values.

This phenomenon is associated to the fact that the control surfaces can not be de-

flected enough to compensate the deficit in vertical and lateral force without producing

an excessively large dihedral. To assess this, the roll attitude and steady-state forces

produced for σ = 1.1 (tip displacement in steady flight over 40%) have been sampled in

Fig. 6.20a for different amplitudes of the deflections on left and right ailerons, βL and

βR. In order to provide a term of comparison, the same has been done in Fig. 6.20b for

σ = 1.5 (level-flight tip displacement just below 30%). In both figures, points A corre-

sponds to aileron deflections obtained at the steady state by solving the optimal control

problem in eq. (6.14). It is worth noticing that the space has been conveniently sampled

in terms of βL+βR and βL−βR: the first term, in fact, is proportional the amount of lift

produced by the ailerons, while the second is linked to the lateral dynamics. This can

be more clearly observed in Fig. 6.21, where the σ = 1.1 wing deformed configuration,

and the associated aerodynamic loads, corresponding to the points A, B, C and D of

Fig. 6.20a have been compared to each other.

In both Fig. 6.20a and 6.20b the contour lines of the lateral force, FY , are roughly

parallel to the βL − βR isolines, as roll attitude and lateral force are correlated. For the

σ = 1.1 wing, however, also the lines of constant vertical force, FZ , are aligned along

the same direction. Starting from point A, therefore, a change in roll attitude (i.e. of

βL−βR) always leads to a decrease in either lateral (point B) or vertical (point C) force

(see also Fig. 6.21a and 6.21b). On the other hand, increasing the overall load acting

on the wing by deflecting the ailerons further down is also counter-productive (point D)

and an even larger effective dihedral is produced, such that the small lift gain on the

right wing is cancelled by the reduction of vertical force on the left wing (Fig. 6.21c).

Due to its similitude to ailerons reversal, this aeroelastic effect is here referred to as
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Figure 6.20: Visualisation of the roll attitude and isolines of the lateral and vertical
forces produced at the steady state by a σ = 1.1 and a σ = 1.5 wing for different aileron
deflections (βL, βR). Points A, B, C and D correspond to representative configurations.
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Figure 6.21: Comparison of the aerodynamic loads and wing deformed configuration of
representative points of the space (βL, βR) shown in Fig. 6.20a.

bending reversal : in the first case, in fact, a deflection of the control surfaces produces

unfavourable bending, while in the second one adverse twist. Bending-induced static

instabilities have also been reported, with respect to the forward-flight speed, on very

flexible flying wings [69].

As it has been seen, for very low wing flexibility deflecting the control surfaces pro-

duces an excessively large effective dihedral. Furthermore, lift increases are limited

by the adverse twist occurring along the wing span. A slightly higher wing stiffness

(σ = 1.5), instead, allows to exploit the ailerons for compensating the lift gap: in

Fig. 6.20b, in fact, the vertical force, FZ , always increases with βL + βR and, as ex-

pected, the steady-state aileron commands predicted via single shooting (see also the

time histories in Fig. 6.18a) correspond to the intersection between the FY = FT and

FZ = L lines (point A in Fig. 6.20b). Therefore, there is a minimum level of bending

stiffness which is necessary to avoid bending reversal and achieve a given steady-state

rolling manoeuvre on a very flexible vehicle.
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Conclusions

This chapter will outline the main contributions of this dissertation. A critical summary

of this work is first reported in Sec. 7.1, while its key contributions are discussed in

Sec. 7.2. With respect to other works in nonlinear aeroelasticity, this research has been

highly exploratory, as it required a detour through optimisation and optimal control

theory. Its multidisciplinary nature can be viewed not only as its main point of strength,

but also as a potential source of weakness. While, in fact, this work may stimulate several

research questions, a large room for improving framework and methodology is left for

future researchers. Some recommendations on this point are, therefore, listed in Sec. 7.3.

7.1 Summary

A methodology to identify optimal manoeuvres with very flexible wings has been pro-

posed. To model their flight-dynamics a nonlinear aeroelastic description has been re-

quired. This has been obtained coupling a geometrically-exact beam model of the wing

with an unsteady vortex lattice description of its low-speed aerodynamics. To robus-

tify the time-integration process while containing its computational cost, a loosely cou-

pled scheme, in which the aerodynamic loads are based on an explicit prediction of the

structural displacements, rotations and velocities, is used for the aeroelastic solution.

Embedding this into an optimal control framework allows to obtain the control inputs

time-histories required to perform a desired manoeuvre from an optimisation problem.

This has been solved upon parametrisation of the control input and using a gradient-

based algorithm.

In the first part of the work, this implementation has been assessed for the control

of a very flexible actuated pendulum in vacuum and used to explore the co-design of

open-loop control and structural properties of this system. Due to the little amount of

literature available on the topic, exploratory studies aimed to identify key aspects of

the methodology. These addressed the impact on the process outcome of geometrically-

nonlinearities, the problem definition (i.e. the level of control authority) and the time-
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frequency resolution of the control action parametrisation. This latter, in particular,

was found to be the most relevant factor driving the design for both optimal control and

co-design.

This assessment has been carried out comparing optimal control actions of different

bandwidth, parametrised with both local (B-splines) and global (DSS) set of basis func-

tions. A transition region, in which the different reconstruction properties of splines and

DSS leads to a gap in the final achievable performance, was identified. Elsewhere a good

consistency across parametrisations has been found, particularly for low-medium levels

of actuation (and, thus, moderate nonlinear effects) while increasing the authority of the

control leads to multiple local peaks of resonance. A multi-resolution strategy has also

been proposed to speed-up the optimisation convergence in these non-smooth regions.

The effect of an increasing rigid-flexible body dynamics coupling and large amplitude

deflections have also been investigated. Overall, optimal control has been demonstrated

to capture and exploit the structural resonances, regardless of the level of nonlinear-

ity shown by the system — note, for instance, that as the pendulum undergoes large

deflections, its bending mode natural frequency decays.

In the co-design studies, the pendulum flexibility was allowed to vary while defining

the actuation law itself. We have shown that locking between structure and control

around the same resonance/excitation frequency prevents the exploration of large por-

tions of the design space during sequential design or when high bandwidth actuations

are employed. Lower bandwidth control actions, instead, allow exploring larger por-

tions of the design space, driving the structural design in regions where the control can

exploit the coupled rigid-flexible dynamics. While the portability of the approach to

more complex structural systems — e.g. whose dynamics is driven by more modes of

vibration — still requires a further assessment, these results have demonstrated the po-

tential of gradient based co-design in vibrations control and structural dynamics, even

for highly nonlinear problems.

Finally, the methodology has been used to identify optimal rolling manoeuvres for

a set of representative HALE aircraft wings in hinged configuration. The key features

of their rolling dynamics have been first investigated as a function of their structural

stiffness. When their flexibility is very high, adverse twist deformations — which are

a linear aeroelastic effect — appear as the ailerons deflect, thus reducing the control

authority. In addition to that, the wing dihedral associated to bending, as well as

the asymmetric displacements between starboard and port wing, produce geometrical

nonlinearities that diminish the damping associated to the roll rate while increasing

the wing stability. In all the studies the wings are aeroelastically stable but relevant

structural vibrations occur during manoeuvring. In particular, these were always found

to be asymmetric, with higher intensity on the wing with larger bending.

Using the single-shooting method, the trade-off between a number of performance

indices associated to the wing roll dynamics can be investigated. This has been made
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possible by identifying the manoeuvre in a multi-objective optimisation problem. Di-

viding these into segments allows to compromise a fast wing response with a low level

of subsequent structural vibrations (although not necessarily during the initial transient

dynamics, where they can contribute to increase performance). Independent ailerons

deflections and geometrical nonlinearities, instead, could be exploited to define uncon-

ventional manoeuvre objectives, hence leading to lateral force gains while limiting the

lift losses. Importantly, these investigations also pointed out specific handling quality

limitations of very flexible wings, such as bending reversal, which could otherwise be

identified only through an extensive sampling of different actuation scheduling strategies.

Overall, through relatively simple examples, it has been shown that optimal control,

based upon a nonlinear description of the flexible vehicle dynamics, can deal with the

complexity of these systems and also exploit very specific features of their dynamics.

Studies on the control of slender structures assessed the robustness of the approach,

which could successfully exploit geometrically-nonlinear effects (inertial coupling and

resonance under large amplitude vibrations) to improve performance. Under limited

structural dynamics, co-design can also enhance the active system and explore efficiently

the design space.

The numerical investigations on rolling manoeuvres, on the other hand, underlined

the advantages of a nonlinear aeroelastic description. As opposed to conventional flight-

dynamics models, scheduling is not required to account for geometrical changes, which

can instead be exploited to enhance performance. Optimal control, furthermore, also

addresses structural vibrations. Aggressive control strategies can, thus, be accounted

for from the earliest stages of the design process, even when feedback laws are not

available. This may benefit the design of novel solar powered aircraft by allowing for

smaller control surfaces or lighter airframes while still guaranteeing manoeuvrability. In

conclusion, the approach provides a valuable alternative not only for exploring novel

actuation strategies, but also to assess and quantify the limit performance of light and

very flexible wings.

7.2 Key contributions

1. A Python-based environment for optimal aeroelastic control

As introduced in Chap. 1, the SHARPy framework is based on a previous Matlab imple-

mentation, SHARP, which the author contributed to transfer to a Python environment

and augmented with new features. The main contributions involved:

• the geometrically-exact structural solution, with improvements of the time inte-

gration scheme and the addition of methods for enforcing kinematic constraints;

• the flight-dynamics solution, where the GEBM and UVLM solvers have been cou-

pled allowing for arbitrary kinematics. The aeroelastic coupling scheme imple-
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mentation has been, furthermore, generalised to allow for an easy switch between

different schemes (e.g. from loose to strong coupling);

• the generalisation of the interface defining the aeroelastic problem (e.g. to the

wing flying conditions and the allowed kinematics, the position and behaviour of

its control surfaces and the time-integration/coupling options);

• the inclusion of several methods for post-processing, which were required, for in-

stance, to evaluate cost and constraints during the optimisation;

In order to perform the optimal control and co-design studies presented in this work,

furthermore, the following additions to the code (mainly included in the PyOpt package)

were also required:

• specific libraries for optimal control, which mainly included methods for control

vector parametrisation and constraints enforcement.

• the inclusion of efficient — within the limits of a finite-differences-based approach —

parallelised tools for optimisation which could exploit HPC.

The version of SHARPy including these updates is available open-source on GitHub

at the URL: https://github.com/SalvatoreMaraniello/SHARPy.

2. A methodology for optimising the dynamic performance of flexible

structures under large deflections

Focusing on the vibrational dynamics of slender structures in vacuum, optimal control

allowed to capture, and exploit, the vibrational dynamics under large, geometrically

nonlinear deflection. The studies presented outlined that:

• The most relevant parameter impacting the quality of the actuation input is its

time/frequency resolution, measured with respect to the reference natural frequen-

cies of the structure. Importantly, while under large deflections these vary, optimal

control allowed to capture this effect.

• While these problems are inherently characterised by multiple minima, an adequate

characterisation of objective and constraints allows to remove/reduce the path

dependency of the results, i.e. to obtain a smoother design space suitable to

gradient-based optimisation. For instance, it has been observed in Chap. 4 that

consistency across parametrisation can be increased by regulating the actuation

effort.

• Under these circumstances, gradient-based approaches provide an effective way to

drive the optimisation as large design spaces, i.e. with the vibration dynamics

ranging from small linear displacements to large oscillations with coupled rigid-

flexible body dynamics, can be explored.
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3. Guidelines for the co-design of systems under structural dynamics

Studies on optimal dynamic performance for structures in vacuum were extended for

analysing the advantages of a combined structural/control optimisation, so as to high-

light under which circumstances this approach may benefit the design of system charac-

terised by nonlinear vibrations. It was observed that:

• Co-design attempts starting from a previously computed optimal control solution

do not result in relevant changes to structure size and control law. Once tuned on

the same resonance/excitation frequency, structure and control lock in the initial

design. The approach, in summary, becomes equivalent to sequential design, thus

inheriting its limitations.

• High bandwidth actuations can drive the structural design towards local minima

(associated to the nearest peaks of resonance in the problems considered), thus

defeating the purpose of co-design.

• Under low bandwidth control input requirements, instead, the co-design will drive

the structural natural frequencies in the region of authority of the control, despite

large geometrical nonlinearities. This, in particular, suggests that when the system

performance do not depend on resonance conditions, co-design may explore wider

portion of the design space.

Overall, in systems undergoing structural vibrations, co-design should be used to explore

the design space locally. When structural dynamics is limited, instead, larger changes in

structural design/actuation may be allowed. To the knowledge of the author, this has

not been attempted before.

4. A computationally-tractable optimal control approach to identify

manoeuvres with very flexible wings

The understanding gained applying optimal vibrations control and co-design to very

flexible slender beams has been finally exploited in the definition of rolling manoeuvres

for very flexible hinged wings. The quest for a smooth design space or, alternatively,

for an adequate problem definition translated into specifying multiple objectives for

the optimal control. Overall, defining this around a nonlinear description of the wing

aeroelastic behaviour allows to exploit the richness of this formulation and remove, this

way, some of the conservatism associated to standard approaches used for identifying

vehicle manoeuvres. Numerical studies evidenced that:

• More aggressive control strategies can be explored even at an early development

stage, when feedback laws for controlling the structural dynamics may not be

available. If possible, and regardless how much large deflections change the nat-

ural frequencies of the wing, the optimal input will, in fact, address vibrations.

Importantly, this implies that:
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– better flight-performance may be obtained;

– if aggressive actuation input are used, solar-powered HALE aircraft may em-

ploy smaller control surfaces without losing manoeuvrability.

• As the manoeuvres is defined only through the specification of a final state to reach,

and while path constraints are imposed, the trajectory is not prescribed, hence

unconventional actuation strategies are possible. This is important when dealing

with systems whose dynamics, both due to large geometrical changes and rigid-

flexible dynamics coupling, departs from that of conventional, stiffer airframes.

From these points it also emerges that optimal control can be an useful tool for explor-

ing the limit performance of new generation wings exhibiting large deflections. Further-

more, optimal actuations can define an upper-bound for the expected performance of

feedback control laws, especially when time-domain aeroelastic effects are outside the

linear regime.

5. A detailed analysis of geometrically nonlinear aeroelastic effects as-

sociated to rolling of very flexible wings

Studies on rolling manoeuvring with very flexible wings underlined some key dynamical

features of these systems. The stiffness reduction has been observed to be linked to

both linear (adverse twist) and nonlinear (large asymmetric bending deflections) aeroe-

lastic effects, which overall decrease the wing authority and augment its stability. For

the manoeuvres considered the aerodynamics was quasi-steady, hence the roll dynamics

could be described accordingly also through a flight-dynamics description accounting

for static aeroelastic corrections. Aside from neglecting the structural dynamics, how-

ever, this formulation also depends on the wing deformed configuration at trim, hence

extensive scheduling of the stability derivatives would be required to cover the full flight-

envelope.

The trim-dependency of the flight-dynamics approximation also makes it inadequate

when large geometrical changes occur within a single manoeuvre: this has been shown

in Chap. 6, were the full nonlinear aeroelastic description has been required for defining

lift-constrained rolling manoeuvres. In this case, the dynamics under optimal actua-

tion highlighted the presence of static instabilities (bending reversal) associated to very

flexible wings. This nonlinear effect is analogous to ailerons reversal, hence deflecting

the control surfaces produces unfavourable bending, rather than torsional, deflections.

This, in particular, shows that the proposed approach can be an efficient tool to explore

controllability and manoeuvrability of novel wings with unconventional dynamics.

152



7.3. Recommendations for future work

7.3 Recommendations for future work

This conclusive section will discuss some of the points which, in the author’s opinion,

could further improve the methodology and the current framework. This list is not

meant to be complete but will hopefully provide valuable points for inspiring future

research on the topic.

Upscaling the optimal control framework

The current formulation has dealt with constrained vehicle kinematics and a limited

number of actuators. For larger problems, the development of a more computationally

efficient sensitivity analysis would be required. An adjoint model, in particular, may

reduce the computational cost of problems with a large number of design variables (i.e.

high-frequency control vector parametrisations or large co-design problems). However,

this implementation would require also developing a framework for algorithmic differen-

tiation and a lagged adjoint solver, as the coupling terms of the aeroelastic system are

not currently available [183]. For such method to be computationally-efficient, however,

the number of constraints needs to be reduced. This is especially true for bound and

path constraints, which in this framework have been implemented through grid enforce-

ment. Differentiable condensation techniques are available in literature [105, 169], but

their robustness may require a careful assessment — which could, however, be carried

out using the current framework.

Before considering very fine time-discretisations, furthermore, the employment of

gradient smoothing techniques [171], similarly to what is done in shape optimisation

[184], should be considered for avoiding spurious high-frequency oscillations. Finally, for

very large optimisation problems, the framework should be interfaced with a large-scale

optimisation algorithm, such as SNOPT [149] or IPOPT [150].

Co-design of complex flexible structures

Studies on co-design of very flexible structures in vacuum demonstrated the potential

gains of co-design and its limitations. As seen in Chap. 5, resonance dynamics can lead to

unfavourable interactions between control input and structural design, thus limiting the

effectiveness of co-design under high bandwidth actuations. In this case, an integrated

design should be applied only locally. Contrarily, the process was shown to be effective

when resonance is limited. These investigations, however, focused on systems with con-

strained kinematic and limited size control/structural design variables. An assessment

on the effectiveness of co-design for structural systems exhibiting a larger number of

degrees of freedom and several natural modes, in which the control/structural dynamics

interaction may be particularly involved, is, therefore, required. Further developments

may lead to large scale aeroelastic co-design studies.
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Co-design of aeroelastic systems

As outlined in Chap. 1, few attempts of structure/actuator/control aeroservoelastic op-

timization of flying vehicles are found in literature [134, 135]. In both the works from

Haghighat et al. [134] and Jackson and Livne [135], in particular, reduced-order models

and linearised formulations have been used. These do not apply to the modelling of very

flexible systems, such as HALE aircraft and HAWT blades, where co-design could lead

to considerable design improvements. Using a full aeroelastic description, however, the

co-design of these systems could also be considered.

Results for slender structures under vibrational dynamics showed that the improve-

ments of the active system performance can be quite limited if structural design and

control input lock around specific frequencies of vibrations. This unfavourable condi-

tion may be reverted — or, at least, limited — when dealing with aeroelastic systems:

in these cases, in fact, reducing vibrations typically improves the systems performance

and locking may, therefore, not occur. While for this reason co-design may be found to

be more effective, other phenomena associated to the presence of local minima in the

extended control/structural space could occur.

Design with feedback control systems

Studies included in this work did not consider dynamics under disturbances, hence the

implementation of feedback control laws for regulating the wing structural dynamics

was not required. When arising, in fact, structural vibrations would be addressed by the

optimal control (e.g. through segmentation of the cost function, Sec. 6.3.2).

To provide more realist design conditions, optimal manoeuvre could be defined us-

ing aeroelastic models with embedded feedback control. Such studies could highlight

how the open-loop control input interacts with the stabilisation action of the feedback

control. For example, in Sec. 6.3.1 it was observed that during the transient dynamics

optimal control adjusts so as to excite as little as possible the wing vibrational modes.

Similarly, it can be inferred that optimal control could facilitate/compensate the feed-

back control action, so as to better stabilise the system. These studies could also assume

dynamics under disturbance. Finally, regarding the open-loop and feedback control as

independent systems to be optimised, defining optimal actuations and feedback regula-

tor gains/sensors placement simultaneously may lead to considerable enhancements of

the active aeroelastic wing dynamic performance.
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Appendix A

Numerical methods for quadratic

programming

Sequential quadratic programming algorithms approximate the cost function of the non-

linear optimisation problem introduced in (3.41) through a series of quadratic expansion,

as shown in eq. (3.48). To complement the discussion in Sec. 3.5.2, therefore, this ap-

pendix will focus on the solution of quadratic problems of the form:

min. 1
2x

THx+ xTg

w.r.t. x

s.t. aTk x = bk , k ∈ E
aTk x ≥ bk , k ∈ I

(A.1)

These problems can always be solved, or shown to be infeasible, in a finite number

of computations [138]. Methods for the solution of problem (A.1) can, in particular, be

classified according to the properties of the Hessian matrix H [145]. In the following,

this will be assumed to be positive semi-definite, meaning that the resulting QP problem

is convex. In this case, a local solution — if any exists — will also be a global minimiser;

based on eq. (3.45), however, its uniqueness can only be guaranteed for strictly convex

problems, hence if H is positive definite.

A.1 Primal active set strategy

At first, the case in which I is an empty set will be discussed. Under this assumption,

the KKT conditions (3.44) translate into the following system(
H −AT

A 0

){
x

λ

}
=

{
−g
b

}
(A.2)
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where the A matrix is defined such that its k-th row is equal to ak, i.e. AT = [ak], k ∈ E .

While a solution to the equality-constrained problem can be found directly through

eq. (A.2), as a preparation for the most general inequality constrains problem, it is

convenient to express this in incremental form. Setting xj+1 = xj + ∆x and λj+1 =

λj + ∆λ, where j is an iteration counter, eq. (A.2) becomes:(
H −AT

A 0

){
∆x

∆λ

}
=

{
Hxj + g

Axj − b

}
(A.3)

The left hand side matrix is also referred to as KKT matrix. If this is invertible, the

solution of eq. (A.3) will also be associated to a global minimiser, x∗, of problem (A.1)

as eq. (3.45) is also satisfied [138].

When inequality constraints are present, the KKT condition in eq. (A.3) can still

be exploited. In this case, however, the A matrix will need to include all the active

constraints at the optimum, i.e. AT = [ak] for k ∈ A(x∗). The solution process revolves,

therefore, around determining the active set A. An iterative strategy can be used to

address this point: a working set, Wj , will be used to approximate the active set A, at

the j-th iteration. This allows to formulate the incremental problem

min. 1
2∆xTH∆x+ ∆xT (Hxj + g)

w.r.t. ∆x

s.t. aTk ∆x = 0 , k ∈ Wj

(A.4)

which can be solved for ∆x through eq. (A.3). Importantly, the increment ∆x will be

feasible with respect to all the constraints belonging to the current working set Wj . As

those not belonging toWj may be violated, however, ∆x is scaled through the parameter

[146]

αj = min

{
1, min
k/∈Wj ,aTk ∆xk<0

bk − aTk xj
aTk ∆xk

}
(A.5)

If αj < 1, at the following design point j+1, xj+1 = xj+αj∆x, a new constraint will be

activated. This is therefore included in the working set and a new solution to problem

(A.4) is found.

This loop is repeated until x converges, i.e. until a null increment ∆x is obtained

from problem (A.4). Based on the KKT conditions in eq. (3.44), however, for x to be

a minimiser the Lagrangian multipliers obtained from eq. (A.3) have to be negative. If

this does not hold, the constraint associated to the most negative Lagrangian multiplier

is dropped from the working set, and a new solution to problem (A.4) is found [138].

The approach described, also referred to as primal active set method [138, 145], is

summarised by algorithm (2). It involves two loops: an external one, in which a check

of the Lagrangian multipliers verifies the feasibility of the solution, and an internal one,

in which the cost is minimised along feasible directions. Other strategies for the solution
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of the QP problems [138, 144–146] lead, instead, to the analysis of its dual form, which

is discussed in the next section.

Algorithm 2 Active set method

Requires:
arrays defining problem (A.1)

Initialisation:
assume a working set W
solve KKT system (A.2) for x and λ

while ∃ k ∈ W | λk < 0 : . check condition (3.44d)
remove k from working set: W − {k} → W
while ∆x 6= 0 and ∆λ 6= 0: . check convergence sub-problem

solve KKT system, eq. (A.3)
compute scaling parameter α, eq. (A.5)
if α < 1:

select activated constraint: k /∈ W | bk−a
T
k x

aTk ∆xk
= α

add k to working set: W + {k} → W
update: x+ ∆x→ x

return x

A.2 Least-squares method of Lawson and Henson

Starting from the KKT condition in eq. (3.44), it can be derived that problem (3.41),

which will be referred to as primal, is equivalent to the dual problem [146]

max. L(x,λ)

w.r.t. x,λ

s.t. ∇xL(x,λ) = 0

λ ≥ 0

(A.6)

and that at its solution point L(x∗,λ∗) = I(x∗). The concept of duality can be used

to explain Lawson and Henson’s method for the QP which is developed in the SLSQP

algorithm.

The dual form of the QP problem (A.1), in particular, is derived from eq. (A.6) using

the equality constraint

∇xL(x,λ) = 0 ⇒ x = H−1
(
ATλ− g

)
(A.7)

to eliminate the dependency on the design vector x. This leads to

min. 1
2λ

T
(
AH−1AT

)
λ− λT

(
b+AH−1g

)
w.r.t. λ

s.t. λk ≥ 0 , k ∈ I
(A.8)
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in which the matrix inversion is possible only if H is positive definite, thus limiting the

applicability of these methods to strictly convex QP problems [146].

In the constraint least-squares method of Lawson and Henson [147], problem (A.1)

is defined in a least-squares form, i.e. using the cost function |Ex− f |2. This is possible

whenever the Hessian can be factorised through a symmetric indefinite factorisation [174]

H = LDLT (A.9)

where L and D being lower triangular and a diagonal matrix — note that if the H

is positive definite, a Cholesky factorisation is retrieved (D = I). The equivalence

with the cost function defined in problem (A.1) is obtained setting E = D1/2LT and

f = D−1/2L−1g [174]. In the method proposed by Lawson and Henson [147], the primal

problem (A.1) is recast into the dual form (A.8), which is solved through the active set

approach described in algorithm (2) [174]. As it will be now explained, however, this

process is made more effective by exploiting the special form of the dual problem (A.8).

For a given working set, W ⊆ I, in fact, the KKT system associated to the dual

form (A.8) is (
H̃ ĨT

Ĩ 0

){
λ

w

}
=

{
−g̃
0

}
(A.10)

where H̃ = AH−1AT , g̃ = b + AH−1g. The vector w has values equal to the the

active inequality constrains of the primal problem, i.e. ĨTw = Ax+ b. Importantly, the

rectangular matrix associated to the active constraints gradient, Ĩ(W), is such that

Ĩ(W)λ = λW = 0 (A.11)

where λW contains only the Lagrangian multipliers of the constraints included in the

working set, W. This is a null vector. The incremental form of the KKT equation is

also reported for completeness:(
H̃ ĨT

Ĩ 0

){
∆λ

∆w

}
=

{
Hλj + g̃

λj

}
(A.12)

With reference to the general active set algorithm (2), the following simplifications

are, therefore, possible. During the internal loop, the solution of the KKT system in

eq. (A.12) can be limited to the degrees of freedom associated to non-active constraints

as, from eq. (A.11), the Lagrangian multipliers of the active constraints are known to be

zero. Furthermore, this solution does not require solving for w, as {ĨT∆w}k = 0, ∀k /∈
W, thus reducing the size of the matrix to be inverted. The efficiency of the process

is improved further using a QR decomposition of the system and, as constraints are

activated or removed, updating directly the factorising matrices [147]. Finally, during

the external loop, the check of the w elements signs can be done by evaluating the
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residual: ĨTw = H̃λ̃+ g̃, which can be non-zero only for k ∈ W.

The process described leads to algorithm (3). Note that the main structure is iden-

tical to algorithm (2), but the KKT system solutions and the convergence/feasibility

checks are changed. Once the Lagrangian vector is found, the design x is retrieved

through eq. (A.7). While this requires inverting the Hessian matrix, in a SQP im-

plementation this operation is not required, as the inverse of the Hessian is typically

obtained directly through the BFGS approximation (App. B.2).

Algorithm 3 QP solution of Lawson and Henson [147]

Requires:
arrays defining problem (A.1)

Initialisation:
compute H̃ and g̃ . from primal (A.1) to dual (A.8) problem
assume all constraint active, W = I
λ = 0

while ∃ k ∈ W | {H̃λ̃+ g̃}k < 0 : . check condition (3.44d)
remove k from working set: W − {k} → W
update QR factorisation (sub-system k /∈ W)
while ∆λ 6= 0 : . check convergence sub-problem

solve KKT system for k /∈ W, eq. (A.12)
compute scaling parameter α, eq. (A.5)
if α < 1:

select activated constraint: k /∈ W | −λ/∆λk = α
add k to working set: W + {k} → W
update QR factorisation (sub-system k /∈ W)

update: λ+ ∆λ→ λ
Retrieve x using eq. (A.7) . speed up if H−1 is available
return x
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Appendix B

Details of the SLSQP algorithm

In this appendix, details of the SLSQP implementation (algorithm 1, [111]) introduced

in Sec. 3.5 are discussed. These are the criterion of the line search `1 test function used

to determine the step-length between the design points of two consecutive iterations

of the optimisation process (Sec. B.1), and the BFGS method for approximating the

system Hessian (Sec. B.2). The narration follows closely the textbooks from Nocedal

and Wright [138] and Sun and Yuan [146], to which the reader is remanded for further

details on the topic.

B.1 `1 test function

The descending direction determined through the QP approximation of problem (3.41),

will generally violate the nonlinear constraints of the original problem [108, 138]. In line

search methods, in particular, the search direction determined by the QP solution is

not modified but the step size can be reduced: in any case, however, exploring infeasible

points of the design space may be unavoidable. This, on the other hand, is not necessarily

an issue as a faster path to the optimal design point may be achieved [138].

In order to determine whether a step reduction is required, merit functions can be

used. These are generally built combining a term measuring the cost reduction with a

penalty term, whose value increases as constraints are violated. The SLSQP algorithm,

in particular, adopts an `1 penalty function of the form [138, 146]:

m(α,µ) = I(x) +

(∑
k∈E

µk |ck(x)|+
∑
k∈I

µk max {0,−ck(x)}

)
(B.1)

where µ is an array of penalty factors. In the original algorithm of proposed by Han

[142], the coefficients of µ are all assumed to be equal. Under this assumption, in fact,

it can be proven that the series of design points produced by the SQP algorithm would

accumulate around a KKT point of problem (3.41) [142, 146]. Better scaling and a faster

convergence are, however, obtained allowing the coefficients µk to vary. In particular,
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Powell related their magnitude to the corresponding Lagrangian multipliers, which are

available from the QP sub-problem solution. More details on the method can be found

in the original paper by Powell [143] or in Sun and Yuan textbook [146]. Here it is worth

remarking that, while this test function leads to a computationally faster algorithm, its

robustness is reduced because cycling can occur [146].

The merit function m(xn+α∆x,µ) is minimised with respect to the normalised step

α ∈ (0, 1] using a modified version of Brent’s method [177], which is obtained combining

a Golden section search with successive quadratic minimisations [111]. In order to keep

the number of analysis down, a mild criterion is used for convergence and α is accepted

as long as the decrease in merit function m is large enough. This is verified through the

Armijo-like condition [138]

m(xn + α∆x,µ) ≤ m(x,µ) + η
∂m

∂α
(x,µ) α , η ∈ (0, 1) (B.2)

where ∂m
∂α is the directional derivative of m along the direction ∆x, which can be cheaply

computed starting from the gradients of cost and constraints, g and A, at point xn.

B.2 Approximation of Hessian matrix

Finally, the Broyden, Fletcher, Goldfarb and Shanno (BFGS) approximation, used for

estimating the Hessian ∇2
xxL(xn) appearing in the quadratic sub-problem (3.48), is

discussed. This approach is used in a wide range of optimisation algorithms, based on

both line search and trust region methods, as it can achieve super-linear convergence

using a model of L(x) which solely uses informations about its gradient.

The starting point for deriving this approximation is the assumption that Lagrangian

L is quadratic with respect to the design vector x, i.e.

L(xn + ∆x,λ) = L(xn,λn) + ∇TL(xn,λn)∆x+
1

2
∆xTBn ∆x (B.3)

where the approximation of the Hessian, Bn ≈ ∇2
xxL(xn,λn), has been introduced.

Enforcing that this approximation estimates exactly the gradient at the points xn and

xn+1 = xn + ∆x implies that Bn has to verify the secant equation [138]

Bn∆x = Y (B.4)

where Y = ∇L(xn+1,λn) −∇L(xn,λn). It can be shown that such a matrix exists

only if the curvature condition,

∆xTY > 0 (B.5)

is true [146]. If this does not hold, Y can be modified according to Powell correction

[143, 146], which is based on geometrical considerations.
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Other conditions can be imposed to define Bn. Therefore, this is assumed to be

symmetric and, based on the optimality condition in eq. (3.45), positive definite. Note,

however, that this condition does not necessary apply to the Hessian of the Lagrangian

unless the problem is unconstrained [138]; while this makes the BFGS update less effec-

tive for constrained problems, the technique still performs adequately in practice. These

relations, however, are still not sufficient for uniquely defining Bn. Therefore, this must

be obtained from an optimisation problem that selects, amongst all the possible choices

for Bn, the one which minimises the difference with respect to the Hessian at the previ-

ous time-step (Davidon-Fletcher-Powell scheme [138]). Another option consists, instead,

in solving this problem for the inverse of B, R = B−1. This idea originated from uncon-

strained optimisation theory, where the B matrix coincides with the KKT matrix to be

inverted — see eq. (3.47), and leads to the following problem

min. ‖Rn −Rn−1‖
w.r.t. Rn

s.t. Rn = RTn
RnY = ∆x

(B.6)

where ‖ · ‖ indicated the Frobenius norm [138]. The solution to problem (B.6) provides

the BFGS update formula:

Rn+1 = Rn +
(
I − ρ∆xY T

)
Rn
(
I − ρY ∆xT

)
+ ρ∆x∆xT (B.7)

where ρ = (Y T∆x)−1 and Y is corrected according to Powell formula if the curvature

condition, eq. (B.5), is not verified [143, 174]. Note that this problem does not explicitly

required R to be positive-definite; however, it can be shown that this property is verified

as long as the first term of the series, R0, does it [138]. No preferred criterion exists,

however, for approximating R0; a common, computationally cheap, strategy — also

adopted in this numerical implementation, consists in initialising it as an identity matrix

[111, 138, 174]. An advantage of the BFGS method is that it allows to only store and

update the LDL factorisation of R [185].

An analogous update formula can be obtained for the Hessian approximation B =

R−1. In the SLSQP algorithm, however, this is not necessary as only R is required for

setting up the dual problem (A.8) and converting, through eq. (A.7), the dual solution

into updates of the design vector, ∆x.
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Gradient convergence test

The gradient of the cost and constraints functions of the optimal control problems pro-

posed in Chap. 4, 5 and 6 are all computed by forward finite-differences:

∇̃Ii =
I(x+ ∆x ei)

∆x
, i = 1 . . . Nx (C.1)

where ∇̃I is numerical gradient of the generic function I, ∆x the FD step-size and ei the

i-th unit vector in the Nx-dimensional space where the design parameters vector, x, is de-

fined. The choice of the step-size is not trivial as eq. (C.1) is subjected to both truncation

(∆x too large) and subtractive cancellation (∆x too small) errors [170]. If a closed-form

expression of I is available, the optimal choice of ∆x will typically only depend on the

machine precision, which drives the cancellation error [186]. Determining the state of

the aeroelastic system described in Chap. 2 however, requires solving a Newton-Raphson

iteration at each time-step of the numerical integration process (Sec. 2.1.7). Therefore,

the accuracy of eq. (C.1) also depends on the relative tolerance used to establish the

convergence of this process.

As a reference value is not available, the accuracy of the FD-computed gradient ∇̃I

is estimated through the second-order Taylor reminder [187]:

T =
∣∣∣I(x+ hδx)− I(x)− h δx · ∇̃I(x)

∣∣∣ = O(h2) (C.2)

which is obtained from the first order Taylor expansion of I around point x in the

direction δx; h measures the size of the perturbation. If the FD-gradient is accurate, in

particular, the Taylor reminder T should be of order O(h2), eq. (C.2). The FD step-size

∆x used for evaluating the gradient can, therefore, be optimised so as to minimise T .

This approach has been used to adjust the step-size ∆x used to compute the gradients

associated to the optimisation studies in Chap. 4 and 5. To this aim, the residual T
associated to the cost function of problem (4.8) has been considered. Its convergence with

respect to the perturbation size h has been studied for pendula of different flexibilities

and for both DSS and B-spline parametrisation. Typical trends are shown in Fig. C.1
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for the case of a stiff pendulum l3 = 0.1 m actuated using both a DSS (Fig. C.1a) and

a B-splines (Fig. C.1b) parametrised torque — in both cases, the maximum excitation

frequency is set to 2 Hz. The FD gradient ∇̃I has been computed according to eq. (C.1)

assuming different normalised step-sizes, ∆x, and for each a different T = T (h) trend is

obtained.
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Figure C.1: Second-order Taylor reminder, T , as a function of the perturbation size, h.
The FD gradient is computed for different steps, ∆x.

A observed in the region h > 10−3 of both Fig. C.1a and Fig. C.1b, the steepest

convergence rates are obtained when ∆x ≈ 10−4 ÷ 10−6. This is, in fact, the case

in which the order of magnitude of ∆x approaches the tolerance used for determining

the convergence of the Newton-Raphson iteration, and the truncation error is of the

same magnitude of the cancellation error. As h tends to zero, all curves flatten as

the evaluation of T according to eq. (C.2) becomes inaccurate. The Taylor reminder,

in particular, becomes of the order of the tolerance used during the Newton-Raphson

iteration.

It is finally worth noticing that, as nonlinearities are introduced by the structural

solution (the UVLM is otherwise linear, 2), the convergence of the Taylor residual for the

problems considered in Chap. 6 follows very similar trends to the one shown in Fig. C.1.

Even in this case, optimal FD step-size were found to be of the order of the tolerance

used in the time-marching scheme.
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