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Abstract: 

This paper reports a new design methodology to improve catalytic activities of catalysts based 

on two-dimensional transition metal dichalcogenides through elemental doping which induces 

structural transformations. Effects of rhenium (Re) doping on structural stability/phase 

transformation and catalytic activity of mono-layered trigonal prismatic (2H) MoS2 were 

investigated using density functional theory as one example. Results show that 2H-Mo1-xRexS2 

transforms into 1T'-Mo1-xRexS2MoS2 as the value of x is larger than 0.4, and the transfer of the 

electron from Re to Mo is identified as the main reason for this structural transformation. The 

1T'-Mo1-xRexS2 shows a good catalytic activity for the hydrogen evolution reaction when 

0.75≤x≤0.94.  
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1. Introduction 

Hydrogen is regarded as one of the most important energy carriers because of its highest energy 

density per unit mass among all elements and renewable characteristics [1]. However, there is 

a huge challenge to find an economical way to continuously generate hydrogen in a large scale. 

Electrochemical hydrogen evolution reaction (HER) has been proposed as a possible way for 

sustainable production of hydrogen [2]. The first step for HER is that hydrogen atoms are bound 

to the catalyst’s surface, and the corresponding Gibbs free energy of hydrogen adsorption is the 

critical parameter to describe the rate of reaction, which should be near to zero for an ideal 

catalyst [3-5]. Platinum (Pt), ruthenium, and iridium are generally regarded as ideal catalysts 

for the HER [6-8]. However, they are expensive with limited resources, which restrict their 

large-scale production for hydrogen generation [9, 10]. Therefore, it is urgent to search for new 

catalysts with cheap and earth-abundant elements for hydrogen production through 

electrochemical HER. 

Layered transition metal dichalcogenides (TMS2) have attracted extensive research interest 

due to their excellent electrical, chemical and optical properties [11, 12]. Among these, mono-

layer molybdenum disulfides (MoS2) have been applied in rechargeable ion batteries, 

transistors and catalysts [13-15]. Its good catalytic activity and stability for HER make it one 

of the promising candidates to replace noble metals including ruthenium, iridium and platinum 

[16].  

In MoS2, the molybdenum atoms have a six-fold coordination environment and are 

hexagonally packed between two atomic layers of trigonal S atoms. There are a variety of 
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polytypic structures for the MoS2 depending on the atomic arrangement of the S atoms. MoS2 

typically has a stable 2H-MoS2 structure at room temperature, in which the Mo atoms are 

located at the lattice positions of a hexagonal close-packed structure with a trigonal symmetry 

[17]. However, the basal plane of the 2H-MoS2 is inert for HER with a large positive Gibbs free 

energy, and the activity sites are located at the edges of the monolayer or defect sites [18]. 

MoS2 can also have a 1T-MoS2 structure when the Mo atoms are located at the octahedral 

center composed of six S atoms [17]. However, the structure of the 1T-MoS2 is metastable. 

Under an external strain, it will transform into 1T'-MoS2 phase [19], in which the Mo atoms are 

located at the disordered octahedrically center composed of six S atoms. The atomic 

configurations of 2H- and 1T'-MoS2 are shown in Fig. 1. Sun et al. [13] studied the origin of 

phase transformation between 2H- and 1T'-MoS2, and showed that electron doping destabilizes 

the crystal structure of the 2H-MoS2, thus causing its structural transformation into the 1T'-

MoS2 phase. The 2H-MoS2 phase is the most common and stable crystal structure of MoS2 with 

a semiconducting character. Whereas transformation from 2H-MoS2 into 1T'-MoS2 can be 

triggered by doping alkali metal atoms (Li, Na and K) [13, 20-22], and the reason is because 

the alkali metal atoms donate their valence electrons to the MoS2. Similarly, some other 

elements such as rhenium (Re) has one more electron than Mo atom, therefore, we believe that 

by substituting Mo with Re (which acts as electron donors), the phase transformation from 2H 

phase to 1T' phase can be triggered and the 1T' phase can also be stabilized at room temperature. 

MoS2 and its associated composites have been investigated as catalyst materials for 

electrochemical HER [19, 23, 24]. The effectiveness of HER is strongly dependent on the 
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structure of host materials. The basal plane of 2H-MoS2 is inert for HER [25, 26], whereas the 

basal plane of 1T'-MoS2 is catalytically active for HER [25, 26]. Currently, various methods, 

such as amorphization [27, 28], doping [29-32], and defect generation [33, 34] in the 2H-MoS2 

have been extensively explored to improve the electrochemical HER. For example, Tsai et al. 

[32] studied the structure and catalytic activity via transition metal doping of S-edge of 2H-

MoS2, and they reported that doing with a reactive metal led to a weaker H binding, and doping 

with a less reactive metal led to a strong H binding. Chhetri et al. [35] studied the Re-doping of 

nano-particulate MoS2 with fullerene-like structures, and obtained a higher current density than 

that made from the pristine few-layer 2H-MoS2. Deng et al. [29] demonstrated that Pt-doped 

layered MoS2 nanosheets showed a significantly enhanced HER activity compared with that 

from non-doped MoS2. Doing the edge sites of MoS2 with transition-metals (Fe, Co, Ni and Cu) 

also enhanced its efficiency for HER [31]. However, these metal doping did not modify the 2H 

structure of MoS2 monolayer, and the catalytic active sites are still located at the edge of MoS2 

monolayer.  It is a more effect way to improve the electrochemical HER through formation 

and stabilization of the 1T'-MoS2 to trigger the catalytic active sites in the basal plane of MoS2 

monolayer.  

Based on the above discussions, it is critical to use fundamental theories and rational designs 

to induce the phase transformation from 2H-MoS2 to 1T'-MoS2 in order to enhance the 

electrochemical HER. In this paper, we propose a new design methodology to dope the MoS2 

using the element such as Re in order to induce the phase transformation from 2H- to 1T'-MoS2 

and also stabilize 1T'-MoS2 at room temperature. The structural transformation and HER 
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catalytic activity of monolayer MoS2 upon Re-doping were investigated using a density 

functional theory (DFT), and we concluded that after Re doping, the 1T'- Mo1-xRexS2 has 

superior catalytic activities of HER. 

 

2. Computational details 

Stability of Re-doped MoS2 and hydrogen adsorption free energy were investigated using 

plane-wave simulations performed in the Vienna ab initio simulation package (VASP) [36, 37]. 

The projector augmented wave [38] method was used to describe electron-ion interaction, and 

the electron exchange-correlation was described by generalized gradient approximation (GGA) 

with the Perdew-Burke-Ernzerhof (PBE) function [39]. An energy cutoff of 520 eV was used 

for the plane-wave basis sets. As shown in Fig. 1, super-cells of MoS2 monolayer (1×2, 2×2 

and 4×4) were used to investigate the stability of the 2H- and 1T'-Mo1-xRexS2 with x equals to 

0.00, 0.0625, 0.25, 0.50, 0.75, 0.9375 and 1.00, respectively. A larger supercell with 8×8 was 

used to investigate the adsorption behavior of H atom. Brillouin zone was integrated using the 

Monkhorst-Pack [40] scheme with 9×5×1 and 2×2×1 k-points for the simulations of structural 

stability and hydrogen adsorption, respectively. All atom positions and geometric structures 

were freely relaxed using the conjugate gradient approximation (CG) until the force on each 

atom is less than 0.02 eV/Å. In order to avoid the periodic image interactions between the 

adjacent layers, the distance between surface of adjacent layers was kept as 30 Å. 

The energy difference (ΔE ) between the 2H- and 1T'-MoS2 as a function of the Re doping 

concentrations was used to characterize the stability of 2H- and 1T'- phases. 
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2H 1T'Δ =E E E                             (1) 

where 2HE  and
 1T'E  are the total energy of 2H- and 1T'- phases per MoS2 molecule. 

The Gibbs free energy of hydrogen adsorption ( HΔG ) is a key parameter to describe the 

activity of the materials, and is calculated using equation (2). 

H H ZPE HΔ Δ Δ ΔG E E T S                        (2) 

where ZPEΔE  is the difference in zero-point energy of hydrogen in the adsorbed state and the 

gas phase; HΔS  is the entropy difference between the adsorbed state and the gas phase of 

hydrogen; HΔE  is the hydrogen chemisorption energy, which is defined using equation (3). 

H 2 2 2

1
Δ (MoS H) (MoS ) (H )

2
E E E E                  (3) 

where 2(MoS H)E   and 2(MoS )E  are the total energy values of MoS2 with and without 

adsorption of the H atom, and 2(H )E  is the total energy of a molecule hydrogen under the gas 

phase.  

The calculated frequencies of H2 gas are 4345 cm-1, 58 cm-1, and 42 cm-1. The contribution 

from the configurational entropy in the adsorbed state is small thus is neglected in this study. 

The entropy of hydrogen adsorption can then be written as: 
2H H

1

2
 S S  where 

2HS  is the 

entropy of hydrogen molecule in the gas phase at standard conditions (300 K, 1 bar) [41]. Using 

the above values, the Gibbs free energy in equation (2) can then be rewritten as: 

H HΔ Δ 0.24G E  . 

 

3. Results and discussion 
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The lattice parameters of the 2H-MoS2 were calculated to be a=b=3.19 Å, which are in a 

good agreement with reported theoretical values of 3.18-3.20 Å [42-44] and experimental value 

of 3.16 Å [45]. The lattice parameters of 1T'-MoS2 were calculated to be a=b=3.18 Å. 

As shown in Fig. 1, the phase transformation from 2H to 1T'-MoS2 involves: (1) metal 

atoms form metal-dimer; and (2) partial S atoms move from one pyramidal position to one 

hexagonal center position of pristine 2H-MoS2. Correspondingly the geometrical structure is 

transformed from a perfect trigonal prismatic one into a disorder octahedral one. The total 

energies of pristine 2H- and 1T'-MoS2 were calculated, and the results showed that the energy 

of 2H phase is 0.55 eV lower than that of 1T' phase per unit cell (which consists of one Mo 

atom and two S atoms). These results are well consistent with the previously reported values of 

0.54 and 0.55 eV [13, 14] and the reported energy of 1T'-MoS2 which is 0.26 eV lower than 

1T-MoS2 per unit cell [13]. Our results also indicate that the 2H phase is the more stable one 

for MoS2.  

By substituting Mo with Re, the pure MoS2 changes into an alloy of Mo1-xRexS2. The 

calculated values of energy differences (ΔE ) between 2H and 1T'-Mo1-xRexS2 phases as a 

function of Re-doping concentration are shown in Fig. 2. Clearly the 2H phase is more stable 

than 1T' phase at lower Re-doping concentrations. The 2H→1T' phase transformation occurs 

by gradually increasing the Re-doping concentration. The calculated results show that the 

critical value for the 2H→1T'-phase transformation is x≈0.4. The stability of the 1T' Mo1-xRexS2 

is also enhanced by increasing the Re content. 
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Occupancy of d-orbitals by electrons in Mo1-xRexS2 plays an important role on the stability 

of 2H- and 1T'-phase [13, 46]. The energy of the 4d orbitals of Mo ions will be affected by the 

changes of their surrounding ions. The d-orbitals of 2H-MoS2 can be split into three parts: (1) 

electron-filled dz2 state, (2) empty dx2-y2 and dxy states, (3) empty dxz and dyz states [12, 47]. 

Since Re has one more valence electron than Mo, the electron will occupy the empty d-orbitals 

after Re-doping. The 2H-MoS2 shows a semiconducting character with the Fermi energy level 

located above the valence band maximum. The electron states near the Fermi level are mainly 

composed of dz2, dx2-y2 and dxy, which are in good agreements with the previous reports [48-

50].  

Fig. 3 shows the partial density of states for Mo1-xRexS2 with x = 0.0, 0.25, 0.50 and 1.0, 

respectively. With the Re-doping, the Fermi energy shifts to the conduction band for 

Mo0.75Re0.25S2. The electronic states of Re and Mo atoms in the conduction bands are partially 

overlapped, and the electrons occupy the dz2, dx2-y2 and dxy orbitals of 2H-MoS2 and 2H-

Mo0.75Re0.25S2. With the increase of Re content, the electrons will occupy the dxy, dyz and dzx 

orbitals of Mo atom as shown in Fig. 3(c). Correspondingly the Mo0.5Re0.5S2 transforms from 

2H-phase to 1T'-phase. In addition, the electrons will accumulate at the neighboring S atoms, 

which results in loss of charges from the Mo-S bonds and also weakens the Mo-S bonds. These 

will facilitate that the S atom migrates from the apex of the triangular prism to the apex of the 

octahedron, thus causing the transformation from the 2H-phase to 1T'-phase. With the 

increasing of the Re content, more electrons will occupy the dxy, dyz and dzx orbitals, and result 

in a much more stable 1T'-ReS2. Result also show that the 1T'-ReS2 has a metallic characteristic. 
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The HER process using the MoS2 involves two principal steps: (1) Volmer step in which 

the hydrogen atoms are bound onto the catalyst (*); (2) Heyrovsky or Tafel step, in which 

molecular hydrogen is released to the active site of catalyst (*) [10, 51]. The Volmer step is the 

rate-determining step of HER on MoS2, which has been proven experimentally [52]. The 

previous studies using DFT analysis showed that the activity sites of MoS2 are mainly located 

at the Mo-edge, whereas the basal plane of 2H-MoS2 is inert for HER [18]. We have calculated 

the HG values of the H atom adsorption on the Mo1-xRexS2, and the data are related to the 

HER activity of the catalyst. Results of the stable sites of H atom adsorption on Mo1-xRexS2 are 

shown in Fig. 4. Clearly the H atoms prefer to be adsorbed at the top of S atom. The HG  

value is 2.11 eV for the H atoms adsorbed on the 2H-MoS2, which is consistent with the 

previous reported values [53, 54]. 

The values of free energies for H atoms adsorbed on the Mo1-xRexS2 as a function of Re-

doping concentration are shown in Fig. 5. The values of HG  decrease with the increase of 

Re content. Results also indicate that the binding of H atom on Mo0.9375Re0.0625S2, 

Mo0.75Re0.25S2 and Mo0.5Re0.5S2 is weak with highly positive free energies of 2.13, 1.58 and 

1.35 eV, respectively. However, the binding of H atom on the 1T'-ReS2 is very strong with a 

free energy of -3.34 eV, which could prevent the release of hydrogen. The free energies are 

0.08 eV and 0.13 eV for Mo0.25Re0.75S2 and Mo0.0625Re0.9375S2, respectively, which are quite 

low values, indicating that Mo1-xRexS2 with 0.75≤x≤0.94 is good to be used as catalysts. 

The local electron densities of states of Mo1-xRexS2 with and without H atom adsorption are 

summarized in Fig. 6, in which S-p and S-p' represent the p states of S before and after hydrogen 
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adsorption, and H-s represents the s state of H. Here the Fermi energy is set to be zero. For 2H-

MoS2 and 2H-Mo0.9375Re0.0625S2, the s states of H atom locate below the Fermi energy level, 

which indicates that the H atom does not donate its electron to the S atom. A weak bonding of 

H atom on the Mo1-xRexS2 (with x=0 and 0.25) can be found with the adsorption free energies 

of 2.13 and 1.58 eV, respectively. With the increase of Re content, the adsorption free energy 

of H on Mo1-xRexS2 decreases as shown in Fig. 5. The s state of H atom locates above the Fermi 

energy for Mo0.0625Re0.9375S2, indicating that H can donate its electron to S 3p state. The 

hybridization of S 3p and H 1s states results in splitting of H 1s state into bonding and anti-

bonding states, which has enhanced the interactions between S and H atoms. These cause the 

anti-bonding states shifted to an energy value much higher above the Fermi level. The peak of 

H anti-bonding appears at an energy which is 0.27 eV above the Fermi level of the 1T'-ReS2, 

therefore, there is a strong adsorption of H atom on the 1T'-ReS2 with a free energy of -3.37 eV. 

Although the Mo-edge of the 2H-MoS2 shows a good catalytic activity, the poor charge 

transfer of 2H-MoS2 significantly limits the kinetics of HER due to its inherent semiconductor 

nature, which was verified experimentally [55]. Re-doping induces transformation from 2H-

Mo1-xRexS2 into 1T'-Mo1-xRexS2, and Mo1-xRexS2 shows a good catalytic activity for the HER 

when 0.75≤x≤0.94. Therefore, our study provides a fundamental understanding of the Re-

doping induced high catalytic activity of MoS2, and thus verify a new design methodology to 

improve the catalytic activity of two-dimensional transition metal dichalcogenides based 

catalysts. 
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   Apart from Re-doping, doping with other elements such as alkali metals intercalation and a 

high dose electron beam irradiation [56] can all induce the 2H→1T' structural transformation, 

which could be used to improve the catalytic activity of two-dimensional transition metal 

dichalcogenides. Therefore, we believe our results provide a general design methodology to 

improve the catalytic activity of two-dimensional transition metal dichalcogenides based 

catalysts through elemental doping which induces phase transformation.  

 

4. Conclusion 

In conclusion, we investigated the phase transformation from 2H to 1T'-phase and stability 

of MoS2 upon Re-doping using spin-polarized DFT calculations. Mo1-xRexS2 transforms from 

2H- to 1T'-phase when x is larger than 0.4. The calculated Gibbs free energy of H adsorption 

on Mo1-xRexS2 decreases with increasing Re content in the Mo1-xRexS2. Mo1-xRexS2 shows a 

good catalytic activity for the HER as 0.75≤x≤0.94 with Gibbs free energy values of 0.08 and 

0.13 eV. This study provides a fundamental design methodology to improve the catalytic 

activity of two-dimensional transition metal dichalcogenides based catalysts. 
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Lists of figures captions: 

Figure 1 Top view atomistic configuration of (a) 2H- and (b) 1T'-MoS2 doping with Re. Red, 

green dash line and black solid line represents the 1×2, 2×2 and 4×4 supper cells, respectively. 

Figure 2 Energy difference per Mo1-xRexS2 molecular between the 2H- and 1T'-phase as a 

function of Re-doping content. 

Figure 3 Density of states of (a) 2H-MoS2, (b) 2H-Mo0.75Re0.25S2, (c) 1T'-Mo0.50Re0.50S2 and 

(d) 1T'-ReS2. The Fermi energy level was set to zero. 

Figure 4 The catalytic activity site of hydrogen adsorption on the (a) 2H- and (b) 1T'-Mo1-

xRexS2, the S, Mo, Re and H atom are represented by yellow, purple, silver and green balls, 

respectively. 

Figure 5 The Gibbs free energy with hydrogen adsorption on the stable structure of the Mo1-

xRexS2 as a function of Re doping content. 

Figure 6 Density of states of hydrogen adsorbed on the (a) 2H-MoS2, (b) 2H-Mo0.50Re0.50S2,  

(c) 1T'-Mo0.0625Re0.9375S2 and (d) 1T'- ReS2. S-p and S-p' represent the p state of S before and 

after hydrogen adsorption, H-s represents the s state of H. The Fermi energy was set to zero. 
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