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Abstract 

Premise of the study: Sex lability (i.e. gender diphasy) in plants is classically linked to the larger 

resource needs associated with the female sexual function (i.e. seed production) compared to the 

male function (i.e. pollen production). Sex lability in response to the environment is extensively 

documented in dioecious species, but has been largely overlooked in gynodioecious plants. 

Methods: Here, we tested whether environmental conditions induce sex lability in the 

gynodioecious Geranium sylvaticum. We conducted a transplantation experiment in the field 

where plants with different sex expression were reciprocally transplanted between high light and 

low light habitats. We measured plants’ reproductive output and sex expression over 4 years.  

Key results: Our results show that sex expression was labile over the study period. The light 

level at the destination habitat had a significant effect on sexual expression and reproductive 

output, as plants decreased their reproductive output when transplanted to the low light habitat. 

Transplantation origin did not affect any parameter measured.  

Conclusions: This study shows that sex expression in Geranium sylvaticum is labile and related 

to light availability. Sexually labile plants did not produce more seeds or pollen, and thus, there 

was no apparent fitness gain in sexually labile individuals. Sex lability in gynodioecious plants 

may be more common than previously believed as detection of sex lability necessitates data on 

the same individuals over time which is rare in sexually dimorphic herbaceous plants. 

Key-words: functional gender, Geraniaceae, gynodioecy; light availability; reproductive output; 

sex lability; sexual dimorphism. 

 

 



INTRODUCTION 

Gynodioecy is a relatively common breeding system found in about 7% of angiosperms 

(Silvertown and Charlesworth, 2001). In gynodioecious populations, male sterile (i.e. females) 

plants coexist with male fertile (i.e. hermaphrodite) individuals. The evolution and maintenance 

of such sexual polymorphism has been extensively investigated by evolutionary biologists for 

decades and is one of the most important transitions in plant breeding system evolution (Barrett, 

2008). Understanding the causes and consequences behind female maintenance is challenging, 

because several opposing selective forces may be involved (e.g. Caruso and Case, 2012; Dornier 

and Dufaÿ, 2013).  

Sex determination in gynodioecious species falls into two categories. Male sterility is 

caused either solely by nuclear genes (nuclear gynodioecy, NG, such as in Fragaria virginiana, 

Ashman, 1999) or, most commonly, male sterility is determined both by nuclear and cytoplasmic 

genes (nuclear-cytoplasmic gynodioecy, NCG, such as in Silene vulgaris, McCauley et al., 

2000). How male sterility is determined is important to understand the fitness advantage needed 

for females to coexist with hermaphrodites (Bailey et al., 2003). In NG, females require at least a 

two-fold fitness advantage to invade and coexist within hermaphrodite populations, whereas in 

NCG, a small fitness advantage is enough, because cytoplasmic genes are only transmitted 

through ovules (see e.g. Caruso and Case, 2012).  

Regardless of the nature of the determination of male sterility, plant sexual expression 

can be modified by the environment (Golenberg and West, 2013). Sexual plasticity in response 

to the environment has been extensively documented in dioecious species (reviewed in 

Korpelainen, 1998). Sexual lability (gender diphasy) is the potential to reproduce as one sex in 

one year and as the other in another year. In dioecious plants, changes in sexual expression have 



been linked to the resource needs associated with each sexual function (e.g. Freeman et al., 

1980), as the female function (i.e. seed production) usually requires larger energy investment 

than the male function (i.e. pollen production). In this regard, two main hypotheses have been 

developed to explain why plants change their sexual expression (recently reviewed in Vega-

Frutis et al., 2014). First, the size-advantage model predicts a change towards achieving more 

fitness through the female function as plants grow larger and accumulate resources above a 

certain threshold that allows reproduction (e.g. Yamashita, 2002). Second, the patchy 

environment hypothesis predicts that changes in sex expression are the result of the abiotic 

conditions experienced in spatially heterogeneous environments (Freeman et al., 1980). Male and 

female functions have different costs (reviewed in Delph, 1999). Seeds are considered more 

costly to produce, but they have a higher probability of contributing offspring to the next 

generation than pollen (Charnov 1982). In dioecious plants, sex change towards the less energy 

demanding sex (i.e. the pollen producer) should be selected in resource-limited habitats whereas 

in more nutrient-rich habitats, the opposite should be true. In gynodioecious plants, estimates of 

reproductive costs in each gender are not as straightforward as hermaphrodites have both sexual 

functions. In this system, even though females usually produce more seeds than hermaphrodites, 

hermaphrodites usually have similar or even larger overall reproductive costs. Hermaphrodites 

may produce similar or smaller number of flowers than females. However, in addition to pollen, 

the hermaphrodite flowers are larger and produce more nectar than those in females (Shykoff et 

al., 2003; Dufaÿ and Billiard, 2012). Overall, this results in similar total reproductive costs in 

both sexes (e.g. Ashman, 1994; van Etten et al., 2008, but see e.g. Delph, 1990; Gibson and 

Diggle, 1997).  



As shown above, environmental resource limitation should theoretically translate into 

male-biased populations in dioecious systems. This has been shown also empirically: 

unfavorable conditions caused by drought, low nutrient levels, low light availability or low 

temperature have been linked to changes towards maleness in dioecious plants (Korpelainen, 

1998). In theory, resource limitation could also affect sex expression in gynodioecious 

populations. Evidence for environmental factors inducing sex change in gynodioecious species is 

relatively limited (Table 1). As far as we know, less than 20 studies have reported sexual 

plasticity and only two of these studies have investigated and linked sexual plasticity to an 

environmental factor (low temperature, see Koelewijn and van Damme, 1996; Horovitz and 

Galil, 1972). The available evidence suggests that females tend to increase in frequency as 

resource availability declines (reviewed in Ashman, 2006). This somehow unexpected pattern 

has been ascribed to the effect of additional factors affecting sex ratios in gynodioecious 

populations through mating and pollination (see Case and Ashman, 2009). 

Light availability can be a limiting resource and thus could in principle affect differently 

female and hermaphrodite plants even though this ecological factor has been largely overlooked. 

Light levels are very low under dense forest canopies and under layers of herbaceous vegetation. 

Assuming higher seed production in females (theoretically needed in order to be maintained 

within the same population with hermaphrodites), but larger or similar overall reproductive costs 

to hermaphrodites, high light availability should promote changes towards maleness in 

gynodioecious plants. We tested this hypothesis using the perennial gynodioecious herb 

Geranium sylvaticum as a model species. Light is likely to be a particularly important ecological 

factor for this species as the plants grow in both high light (meadows and road verges that 

receive full sky light conditions) and low light (under forest canopy) conditions.  



We performed a reciprocal transplantation experiment in the field where we dug out 

individuals differing in their sex expression from low light and high light habitats and 

transplanted them into low light or high light habitats. We monitored the plants for five years and 

measured the reproductive output and their sex expression. We expected G. sylvaticum plants to 

change their sex expression when transplanted into different light habitats.  

 

MATERIAL AND METHODS 

Study species—Geranium sylvaticum (Geraniaceae) is a self-compatible, protandrous perennial 

plant with Eurasian distribution (Hultén and Fries, 1986) found in herb-rich forests, meadows 

and along roads. Most populations are gynodioecious (Asikainen and Mutikainen, 2003), 

containing both female and hermaphrodite individuals. In most populations, plants with an 

intermediate sexual expression can be found. The intermediate plants include individuals with a 

mixture of hermaphrodite and female flowers (e.g. gynomonoecious plants) and individuals 

displaying variability in the number of functional anthers among flowers (one to nine). The 

existence of intermediate phenotypes has been proposed to be the result of a polygenic 

restoration of male fertility in hermaphrodites (Koelewijn and van Damme, 1996; Ehlers et al., 

2005; Dufaÿ et al., 2008). Hermaphrodites have been reported to produce more numerous and 

larger flowers that are visited more frequently by pollinators, but females usually have greater 

seed production than hermaphrodites with some differences between years and populations 

(Asikainen and Mutikainen, 2003).  

 

Experimental setup—We selected three sites (Site 1: 61º 46' 38'' N, 25º 49' 48'' E; Site 2: 62º 21' 

10'' N, 24º 54' 23'' E; Site 3: 62º 1' 12'' N, 26º 17' 17'' E) with abundant G. sylvaticum near 

Jyväskylä (Finland) and similar land-use history (Appendix S1, see Supplemental Data with the 



online version of this article). In each site, we selected two habitats differing in the amount of 

light that plants received (referred as High and Low light habitats hereafter). Light intensity in 

the Low habitats was below 30 KLux and between 140 – 150 KLux in the High habitats 

(measured with a HD 9221 Lux meter, Delta OHD, Padova, Italy). Distance between habitats 

within a site was at least 100 meters.  

To evaluate whether plants were able to change their sex expression and the overall 

reproductive performance of the plants according to the light environment, four types of 

reciprocal transplantations were performed. The experimental plants were randomly chosen 

during the peak of flowering in June 2010 and classified as either male-sterile (referred as 

females here after) or male-fertile (referred as hermaphrodites here after) depending on whether 

they produced pollen (see below Plant sexual expression). Females and hermaphrodites from the 

low light habitat were transplanted to the high light habitat (Low to High transplantation) and 

transplanted back to low light habitat (Low to Low transplantation), and female and 

hermaphrodite plants from the high light habitat were transplanted back to high light (High to 

High transplantation) and low light habitat (High to Low transplantation) within each site. We 

aimed to use 20 females and 20 hermaphrodites of similar size in each site and habitat. However, 

it was not always possible to find that many plant pairs especially in the low light habitats, where 

the number of females was low. Altogether, 374 plants were transplanted and permanently 

marked. The number of plants used in each site is shown in Table 2. Unfortunately, due to 

human activities we lost the low light habitat from Site 3 in spring 2014. Therefore, data for 

2014 were only collected from the two remaining experimental sites. 

 



Plant sexual expression— In 2010, plants were classified as either female (i.e. with 0 functional 

stamens) or hermaphrodite (i.e. with ≥ 1 functional stamen) based on the number of functional 

stamens when the experiment was established. During the following years, flowering phenology 

of each individual was monitored throughout the flowering period until 2014. During the 

flowering period, the number of open flowers and the number of functional stamens in each open 

flower was recorded every second to fourth day. The sex expression (SEXP) in each plant was 

calculated every year at the end of each flowering period as the average number of functional 

stamens present in all flowers per plant. For each flower, the number of functional stamens (with 

fully-developed filaments and swollen pollen sacs containing purplish pigmented pollen grains) 

was recorded and values from 0 to 10 given according to the number of functional stamens 

present in each flower (e.g. 0 for a female flower with zero functional stamens; 10 for 

hermaphroditic flower with 10 functional stamens; 4 for an intermediate flower with four 

functional stamens). Therefore, SEXP of a plant ranges from 0 (all flowers produced zero 

functional stamens) to 10 (all flowers produced ten functional stamens), with intermediate plants 

with intermediate values.  

Plants were classified at the end of the four-year study as sexually labile or sexually 

constant according to the constancy of their SEXP across all the study years. A plant was 

considered labile when the difference between the maximum and the minimum SEXP calculated 

through the study period was equal or larger than 1. Sexually constant plants were further 

divided into females and hermaphrodites. Female plants showed always a SEXP < 1 across the 

flowering seasons, whereas plants were classified as hermaphrodites when their SEXP was equal 

or larger than 1 within a flowering season. Intermediate plants were included in the 

hermaphrodite category as they produce pollen. 



 

Plant functional gender—Plant functional gender (G) was calculated for each plant following 

Lloyd’s seminal paper (1980). Functional gender takes into account whether plants obtained their 

fitness through the production of seeds, pollen, or both. Ideally, functional gender should be 

obtained by considering the paternity of the seeds produced, which was not possible in our study.  

Therefore, we calculated functional gender as 1 minus the total number of seeds divided by the 

sum of seeds and stamens produced. Plants with a G = 0 reproduced exclusively as females, 

plants with G = 1 reproduced exclusively as males, whereas intermediate G values indicate 

reproduction via seed and pollen production.  

  

Reproductive measurements—Floral shoots were collected at the end of each fruiting season and 

the number of flowers and fruits were counted in each plant to estimate total flower and fruit 

production. To estimate the total seed production per plant, the number of seeds produced in each 

fruit was scored by counting the number of seed scars each fruit (G. sylvaticum fruits produce up 

to 5 seeds per fruit). Total stamen production per plant was calculated as the average number of 

functional stamens observed per open flower multiplied by the total number of flowers produced 

and it is used as a proxy for fitness through the male function.  

 

Soil nutrient analysis—Soil samples were collected in summer 2013 using a 6 cm in diameter 

soil core. The top 15-20 cm soil horizon was sampled in five randomly selected positions for 

each site and light habitat. The samples were air dried for one week at room temperature, 

weighed, and sieved through a 2 mm sieve. Soil organic matter (OM), pH, total nitrogen, 

potassium and phosphorus were analyzed by Suomen Ympäristöpalvelu Laboratorio—a 



laboratory certified by FINAS (Finnish Accreditation Service). Methods employed were SFS-EN 

13037 (solid to liquid ratio of 1:5 v/v) for soil pH, SFS-EN 13039 (loss upon ignition at 550°C 

for 4 h, for organic matter content), SFS-EN 13654-1 (Kjeldahl method) for total nitrogen, and 

EPA3051 (microwave-assisted HNO3 extraction) for total potassium and phosphorus. 

 

Statistical analyses—All statistical analyses were conducted in R (R Core Team, 2014). 

Differences in soil nutrient parameters were explored with ANOVA after fitting linear mixed-

effect models (lmer) to the data using light habitat origin as the fixed factor and experimental site 

as the random component.  

To infer between year variation in the proportion of flowering plant, generalized linear 

mixed-effects models were fitted to the data. In the model, we included year, light habitat origin 

(High, Low), light habitat destination (High, Low) and their interactions and plant gender (Female, 

Hermaphrodite, Labile) as fixed factors. Experimental site (1, 2, 3) and individual plants were 

included as random factors. 

Generalized linear mixed-effects models (glmer) with binomial error structure were used 

to explore differences in whether or not plants showed sex lability between the light treatments. In 

the model, we included light habitat origin (High, Low), light habitat destination (High, Low) and 

their interaction as fixed factors and experimental site (1, 2, 3) as a random factor. A generalized 

linear mixed-effects model (glmer) with binomial error structure was used to explore differences 

in whether plants flowered after transplantation. In this model, we included plant sexual expression 

(continuous, 0 to 10), gender (Female, Hermaphrodite, Labile), light habitat origin (High/Low), 

light habitat destination (High/Low) and their interactions as fixed factors and experimental site 

(1, 2, 3) as a random factor. The models were fitted by Laplace approximation. Similarly, a 



generalized linear mixed-effects model with a negative binomial error structure was used to 

explore the differences in the accumulated number of seeds produced during the experimental 

period, using the same fixed and random components as above. For the differences in the 

accumulated number of functional stamens produced, a linear mixed-effect model was fitted after 

log-transformation of the data.  

Finally, we analyzed whether light affected the functional gender of the plants with linear 

mixed-effects models (lmer) including light habitat origin (High/Low), light habitat destination 

(High/Low) and their interactions as fixed factors and experimental site (1, 2, 3) as a random factor. 

After fitting an adequate model, model residuals were always visually inspected. Means ± 1SE are 

indicated throughout the text. 

 

RESULTS 

Soil nutrient analysis—Soil OM content and total N contents were higher in low light habitats 

(F1,26 = 13.94, P < 0.01; and F1,26 = 4.12, P = 0.05; for OM and N% respectively, Table 2) whilst 

soil pH and total P contents were slightly higher in high light habitats (F1,26 = 5.60, P = 0.03; and 

F1,28 = 5.24, P = 0.03; for pH and P% respectively, Table 2). Both habitats had a similar K 

content in the soil (F1,26 < 0.01, P = 0.95; Table 2). 

 

Plant sex lability—Out of the 326 plants that flowered more than once, 161 changed their sex 

expression during the experiment based on our definition of sex lability. Only the light level at 

the transplantation destination significantly affected plant lability (χ2
1 = 3.72, P = 0.05; χ2

1 = 

0.25, P = 0.62; and χ2
1 = 0.02, P = 0.89 for the effect of transplantation destination, origin, and 

the interaction between these two factors respectively). Overall, 55.5% of plants showed lability 



when transplanted to High light habitats against 42.5% of plants transplanted to Low light 

habitats.  

 

Plant sex expression and functional gender across years— There was some variation between 

years in flowering, but we did not detect differences related to sex lability (Fig. 1; Appendix S2, 

see Supplemental Data with the online version of this article). On average, experimental plants 

flowered during 3.3 ± 0.1 seasons out of the 5 years the experiment lasted. The experimental 

plants showed variation in their sex expression also between years (Appendix S2; Fig. 2A, B). 

While 27.3% and 23.3% of the plants were constant females and hermaphrodites throughout the 

study period, 49.4% of the plants were labile. In addition, plants also showed variation in 

functional gender between years (Appendix S2; Fig. 3A, 3B). For all years, there was a binomial 

distribution of functional gender: plants’ reproductive contribution was either through the female 

or the male function, with few individuals with similar female/male contributions (Fig. 3A). 

None of the light factors included in the model significantly affected functional gender (χ2
1 = 

0.10, P = 0.75; and χ2
1 = 0.88, P = 0.35 for the effect of light at origin and destination 

respectively, all P > 0.33 for the interactions; Appendix S2).  

 

Total reproductive output—There was variation among years in all reproductive parameters 

investigated as well as several significant interactions between year and light at the 

transplantation origin and destination (Appendix S2). Overall, the accumulated total flower 

production during the experimental period was not related to sex lability, plant sex expression or 

light at the transplantation origin (Table 3). However, transplantation destination greatly 

influenced flower production (Table 3), with plants transplanted to the low light habitats 



producing 44% less flowers than plants transplanted to high light habitats (184.7 ± 11.8 vs. 81.8 

± 4.6 for High and Low light respectively; Fig. 4). Total seed production was also unrelated to 

sex lability, sex expression and the transplantation origin (Table 3) but again transplantation 

destination significantly affected the number of flower produced, which was 46% lower in plants 

transplanted to low light habitats (Fig. 5). Finally, the light levels at the transplantation origin or 

destination did not influence the total number of stamens produced during the study (Table 3). 

Constant females produced on average 3.4 ± 1.9 stamens while constant hermaphrodites and 

labiles produced 1428.8 ± 161.5 and 1038.2 ± 90.4 stamens respectively. The difference in the 

total number of stamens produced by hermaphrodites and labiles was not statistically significant 

(Tukey’s P = 0.56).  

 

DISCUSSION 

In this long-term transplantation experiment, 49% of the plants changed their sex expression 

during the course of the study according to our classification of lability. Light availability at the 

destination habitat strongly influenced most reproductive parameters investigated, including the 

sex expression of the plants. Opposite to that, the habitat of origin of the plants did not have a 

significant effect on most parameters investigated.  

 

Effects of plant gender and light availability on sex lability—According to our literature review 

sex lability has been examined in 21 gynodioecious species and about half of them appear able to 

change their sexual expression (Table 1). In the present study, almost half of the plants that 

reflowered at some point during the study period changed their sex expression as thus were 

classified as labile. Previous studies have reported either female plants (Widén and Widén 1999), 



or hermaphrodites (Koelewijn and van Damme 1996) to be more prone to show lability. 

However, these previous studies relied on classifying plants as either females or hermaphrodites 

by their sex expression in a given year, which in labile species is problematic. Male sterility in 

these systems as well as in G. sylvaticum is thought to be under cytonuclear control (Asikainen 

2004). Therefore, male fertility factors are required to restore the male function. Consequently, 

the only explanation why some female plants are able to produce pollen at some point must be 

that these plants were in fact partial male steriles (PMS) that did not produce pollen when sexed. 

PMS have been reported in G. sylvaticum and other gynodioecious species (Koelewijn and van 

Damme, 1996). PMS individuals may possess a mixture of hermaphrodite and female flowers or 

display variability in the number of functional anthers among flowers (Varga and Kytöviita, 

2014).  

Light and other abiotic and biotic factors affect sex expression in dioecious species 

(Korpelainen, 1998). Among these factors, temperature has been observed to alter the expression 

of recessive male sterility in Brassica oleracea (Nieuwhof 1968) and Hirschfeldia incana 

(Horovitz and Galil 1972). Until now, temperature is the only factor linked to sex lability in 

gynodioecious plants: Koelewijn and Van Damme (1996) found that temperature influenced the 

sex expression of PMS Plantago coronopus, but pure females and hermaphrodites were stable in 

their sex expression. In the present experiment, light and nutrient availability were markedly 

different in the two habitats and it is sensible to assume there might have also been differences in 

water availability and temperature, although not measured. We observed that sex lability was 

related to habitat: plants transplanted in and to high light habitats were more labile in sexual 

expression than plants transplanted in and to low light habitats. This finding suggests that sex 

lability is related to resource acquisition. 



 What could be the reasons for the observed instability in sex expression in this species? 

Firstly, the mechanism resulting in male sterility may inherently not be stable through time and 

be a consequence of the restorer genetics behind male sterility, as previously discussed in the 

case of P. coronopus (Koelewijn and van Damme, 1996). Until the genetical mechanisms behind 

male sterility in G. sylvaticum are fully elucidated, this point cannot be solved. Secondly, higher 

plasticity may be a result of evolutionary selection. This assumes that there is a fitness benefit in 

lability and that lability can be inherited. In the present work, labile plants did not produce more 

seeds or more stamens than non-labile plants, so the fitness gain was not through increased 

female or male function. Lastly, lability could be related to plant aging and accumulating more 

resources (i.e. size-advantage model, Yamashita, 2002). However, from our data no clear pattern 

emerges as plants showed some variation between years in their sex expression and even 

functional gender. Even though this was a relatively long-term experiment, G. sylvaticum is a 

long-lived perennial. Important fitness consequences could take place later on during its life 

cycle. Taken all evidence together, the reasons and mechanisms behind sex lability in this 

species remain elusive and warrant further experiments.  

 

Effect of plant sex expression and light availability on reproductive output—Our long term 

results indicate that a similar proportion of plants re-flowered each year regardless of their sex 

expression. Environment induced plasticity in reproductive output in response to light has been 

previously investigated in the greenhouse using the close species G. maculatum (Van Etten et al., 

2008) and in the field during seed maturation in G. sylvaticum (Varga et al., 2015). In both 

studies, seed production was limited by light availability and both sexes showed a similar 

reduction. This result can be explained by the lack of sexual dimorphism in physiological traits 



(Van Etten et al., 2008). The current study corroborates these previous findings as flower and 

seed production were constrained by light availability and plants transplanted to the high light 

habitats produced 54% and 56% more flowers and seeds than plants transplanted to the low light 

habitats, regardless of their sexual expression.  

In most gynodioecious species, females are usually reported to produce more flowers and 

more seeds than hermaphrodites (Shykoff et al., 2003), including G. sylvaticum (e.g. Asikainen 

and Mutikainen, 2003; Ramula and Mutikainen, 2003). Larger seed production has been 

proposed to be the main reason explaining female maintenance in this gynodioecious system (see 

e.g. Asikainen and Mutikainen, 2003). In contrast to our original hypothesis and the previous 

reports, the accumulated number of seeds produced by the two sexes did not differ significantly 

in the present three populations over five years. Taken all available evidence together, female 

maintenance cannot be simply explained by larger reproductive output in females (i.e. number of 

seeds). Moreover, females do not seem to produce larger seeds of better quality (germination) 

than hermaphrodites (Asikainen and Mutikainen, 2003; Varga, 2014) and previous research has 

shown that pre-dispersal seed predation exert a similar selective pressure on both genders 

(Varga, 2014). Having ruled out most of the explanations given to explain female maintenance in 

gynodioecious plants in general, the possibility of inbreeding depression avoidance in females 

appears as a likely candidate to explain the existence of females in G. sylvaticum. However, 

limited evidence suggests that inbreeding depression is minor in this species, at least in the 

seedling stage (Varga et al., 2013). Because the magnitude of inbreeding depression can differ 

during plant life cycle (Husband and Schemske, 1996), and inbreeding depression can be 

affected by different environmental stresses (see e.g. Heschel et al., 2005), we cannot completely 

rule out this possibility without targeted long-term experiments.  



 

CONCLUSIONS 

Sexes in G. sylvaticum showed lability in their sex expression related to the amount of light they 

received in their transplantation destination. Sex lability in gynodioecious plants may be more 

common than previously believed as detection of sex lability necessitates data on the same 

individuals over time which is rare in sexually dimorphic herbaceous plants. Commonly reported 

in dioecious species, we could also link sex lability to environmental factors in the present 

system, namely light and nutrient levels even though other unmeasured factors could have also 

contributed. The binomial distribution of the functional gender supports the view of gynodioecy 

as a pathway to dioecy in this species.  
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TABLES 1 

Table 1. Studies in which sex lability in gynodioecious species has been observed or mentioned. The number of plants observed and 2 
the proportion of individuals showing sex lability are given in brackets. NA: Data not available.  3 

4 

Species Family Lability Contrast Type of experiment, duration Reference 
Hirschfeldia incama Brassicaceae Yes (NA, NA) NA Greenhouse Horovitz and Galil, 1972 
Pachycerous pringlei Cactaceae No (168, 0%) - Field, 2 years  Molina Freaner et al., 2003 
Gypsophila repens Caryophyllaceae No (800, 0%) - Field, 2 years López-Villavicencio et al., 2003 
Moehringia laterifolia Caryophyllaceae No (NA, 0%) - Greenhouse Sugawara 1993 
Schiedea adamantis Caryophyllaceae No (267, 2%) - Field, 7 years  Sakai et al., 1997 
Silene acaulis Caryophyllaceae Yes (296, 8%) 

No (15, 0%) 
NA 

- 
Field/greenhouse, 2 years 

Field, 2 non consecutive years  
Klaas and Olson, 2006 
Philipp et al., 2009 

Geranium sylvaticum Geraniaceae Yes (326, 49%) F > H Field, 4 years  This study 
Glechoma hederacea Lamiaceae Yes (23, 9%) F > H Greenhouse, 2 years Widen and Widén, 1999 
Glechoma longituba Lamiaceae No (429, 0%) - Field, 3 years Zhang et al., 2008 
Thymus vulgaris Lamiaceae No (NA, 0%) - Field and greenhouse Dommée and Assouad, 1978 
Sidalcea malviflora Malvaceae No (NA, 0%) - Pers. obs. Graff, 1999 
Fuchsia microphylla Onagraceae Yes (18, 6%) ns Greenhouse Arroyo and Raven, 1975 
Fuchsia thymifolia Onagraceae Yes (55, 4%) ns Greenhouse  Arroyo and Raven, 1975 
Plantago coronopus Plantaginaceae  Yes (172, 6%) 

Yes (148, 13%) 
ns 

H > F 
Field, 2 years  

Growth chamber 
Koelewijn and van Damme, 1996 
Koelewijn and van Damme, 1996 

Ochradenus baccatus Resedaceae No (150, 0%) - Field, 2 years Wolfe and Shmida, 1995 
Prunus mahaleb Rosaceae No (52, 0%) - Field, 4 years Jordano, 1993 
Rhodiola rosea Rosaceae No (NA, 0%) - Field, 2 years  Molau 1993 
Lycium californicum Solanaceae No (52, 0%) - Field, 3 years Miller and Venable, 2002 
Lycium exsertum Solanaceae No (94, 0%) - Field, 5 years Miller and Venable, 2002 
Lycium fremontii Solanaceae No (130, 0%) - Field, 5 years Miller and Venable, 2002 
Daphne laureola Thymelaeaceae No (1737, 0%) - Field, 5 years Alonso and Herrera, 2001 
Thymelaea hirsuta Thymelaeaceae Yes (671, 16%) - Field, 6 years Ramadan et al., 1994 
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Table 2. Number of Geranium sylvaticum plants transplanted and soil fertility parameters analyzed in 2013 for the Low and High 

light availability experimental habitats. Statistically significant differences between habitats are indicated by different subscripts 

within each column.  

Light availability Transplanted plants pH OM % Total N % Total P % Total K % 

Low 129 5.11 ± 0.09a 11.6 ± 0.84a 0.36 ± 0.03a 0.06 ± 0.01a 0.10 ± 0.02 

High 235 5.36 ± 0.07b 9.3 ± 0.47b 0.32 ± 0.02b 0.07 ± 0.01b 0.10 ± 0.02 

OM = organic matter, N = nitrogen, P = phosphorus, K = potassium.  
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Table 3. Statistical results for the effects of sex expression, plant gender, light availability at the transplantation origin and destination 

and their interactions on several reproductive traits in Geranium sylvaticum. Significant results are shown in bold.  

  Reflowering Total flower 

production 

Total seed 

production 

Total stamen 

production 

 df χ P χ P χ P χ P 

Sex expression  1 2.35 0.13 3.15 0.08 3.58 0.06 146.39 <0.01 

Plant gender (Gen)  2 0.56 0.76 1.75 0.42 2.22 0.33 152.96 <0.01 

Transplantation origin (Ori) 1 1.40 0.24 0.93 0.34 0.17 0.69 0.24 0.62 

Transplantation destination (Des) 1 0.84 0.36 13.11 <0.01 5.61 0.02 0.08 0.78 

Gen × Ori 2 3.90 0.14 1.98 0.37 4.29 0.12 1.23 0.54 

Gen × Des 2 1.20 0.55 1.62 0.45 3.01 0.22 3.29 0.19 

Ori × Des 1 0.02 0.90 0.86 0.35 0.71 0.40 0.01 0.93 

Gen × Ori × Des 2 0.88 0.64 1.09 0.58 2.84 0.24 0.02 0.99 
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FIGURE CAPTIONS 

Fig. 1. Proportion of Geranium sylvaticum individuals flowering each year according to their sex 

expression.  

 

Fig. 2. A) Frequency of Geranium sylvaticum plants according to their sexual expression in each 

study year and B) Sex expression in the individual plants over the study years. Sex expression 

refers to the average number of functional stamens per plant. In B) constant females are shown 

by the horizontal line at 0 whereas constant hermaphrodites are shown by the horizontal line at 

10. Each individual trajectory represents sex lability over time by one plant. See Material and 

methods for details.  
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Fig. 3. A) Frequency of Geranium sylvaticum plants according to their functional gender in each 

year and B) Functional gender variation in the individual plants over the study years. For any 

given year, 0 indicates plants that reproduced only by seeds (i.e. females); 1 indicates plants that 

reproduced only by pollen (i.e. males); whereas intermediate values indicate plants that 

reproduced both via seeds and pollen. In B) constant females are shown by the horizontal line at 

0. See Material and methods for details.   
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Fig. 4. Total number of flowers produced during the experimental period (2010 – 2014) in 

female (white bars), hermaphrodite (black bars) and labile (grey bars) Geranium sylvaticum 

experimental plants transplanted to High or Low light habitats. Letters above the bars denotes 

significant differences between transplantation destinations at P < 0.05. 

 

Fig. 5. Total number of seeds produced during the experimental period (2010 – 2014) in female 

(white bars), hermaphrodite (black bars) and labile (grey bars) Geranium sylvaticum individuals 

transplanted to High or Low light habitats. Letters above the bars denotes significant differences 

between transplantation destinations at P < 0.05. 
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