
A
cc

ep
te

d
 A

rt
ic

le

This article has been accepted for publication and undergone full peer review but has not 
been through the copyediting, typesetting, pagination and proofreading process, which may 
lead to differences between this version and the Version of Record. Please cite this article as 
doi: 10.1111/1365-2745.12635 
This article is protected by copyright. All rights reserved. 

Received Date : 24-Mar-2016 
Revised Date   : 22-Jun-2016 
Accepted Date : 27-Jun-2016 
Article type      : Standard Papers 
Editor               : Gerhard Zotz 
 

Lianas and soil nutrients predict fine-scale distribution of above-

ground biomass in a tropical moist forest 

  

Alicia Ledo1*, Janine B. Illian2,3, Stefan A. Schnitzer4,5, S. Joseph Wright5, James W. Dalling5,6, 
David  F. R. P. Burslem1 

 

(1) University of Aberdeen, School of Biological Sciences, AB24 3UU, Aberdeen, UK  
(2) University of St. Andrews,  Centre for Research into Ecological and Environmental 

Modelling, St Andrews, UK 
(3) Norwegian University of Science and Technology, Department of Mathematical 

Sciences, Trondheim, Norway 
(4) Marquette University, Department of Biological Sciences, PO Box 1881, Milwaukee, 

WI 53201-1881 USA  
(5) Smithsonian Tropical Research Institute, Apartado 0843–03092, Balboa, Republic of 

Panama 
(6) University of Illinois, Department of Plant Biology, University of Illinois at Urbana-

Champaign, 265 Morrill Hall, 505 S Goodwin, Urbana, IL 61801, USA 
 

*corresponding author: alicialedo@gmail.com 

 

Running title: fine-scale biomass distribution  

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/84915067?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Summary 

1. Prediction of carbon dynamics in response to global climate change requires an 

understanding of the processes that govern the distribution of carbon stocks. Above 

ground biomass (AGB) in tropical forests is regulated by variation in soil fertility, 

climate, species composition and topography at regional scales, but the drivers of 

fine-scale variation in tropical forest AGB are poorly understood. The factors that 

control the growth and mortality of individual trees may be obscured by the low 

resolution of studies at regional scales.  

2. In this paper, we evaluate the effects of soil nutrients, topography and liana 

abundance on the fine-scale spatial distribution of AGB and density of trees for a 

lowland tropical moist forest in Panama using additive regression models.  

3. Areas with larger values of AGB were negatively associated with the presence of 

lianas, which may reflect competition with lianas and/or the association of lianas 

with disturbed or open canopy patches within forests. AGB was positively associated 

with soils possessing higher pH and K concentrations, reflecting the importance of 

below-ground resource availability on AGB independently of stem density.  

4. Synthesis: Our results shed new light the factors that influence fine-scale tree AGB 

and carbon stocks in tropical forests: liana abundance is the strongest predictor, 

having a negative impact on tree AGB. The availability of soil nutrients was also 

revealed as an important driver of fine-scale spatial variation in tree AGB.  

 

Keywords: carbon dynamics, above-ground biomass spatial distribution, carbon stocks, 

resource competition, soil nutrients, liana, spatial statistics, INLA approach. 
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1. Introduction 

Tropical forests store 40-50% of total terrestrial carbon (Phillips et al. 2009). Consequently, 

determining carbon dynamics in tropical forests is a major goal of international climate 

policies (Pan et al. 2011; Dickson et al. 2012).  Carbon stocks of live biomass in tropical 

forests reside mainly in the above-ground biomass (AGB) of trees, which therefore make a 

disproportionate contribution to the potential for ecosystem carbon storage and the 

regulation of atmospheric carbon dioxide concentrations (Schimel et al. 2001; Bunker et al. 

2005; Saatchi et al. 2011). To address this issue, there has been a major effort to calculate 

AGB stocks in tropical forests over recent decades (Clark & Kellner 2012), including the 

creation of plot networks (Malhi et al. 2002; Anderson-Teixeira et al. 2014), development of 

remote sensing methods to quantify AGB at continental scales (Asner et al. 2010), 

improvements to equations for estimating individual AGB (Feldpausch et al. 2012; Chave et 

al. 2014), and the development of methods for scaling from local to regional AGB values 

(Marvin et al. 2014).  

One conclusion derived from the analysis of long-term plot data is that AGB stocks in 

intact tropical forests are increasing through time (Phillips et al. 1998; Baker et al. 2004a), 

possibly due to an increase in atmospheric carbon dioxide concentrations (Holtum & Winter 

2010; Coomes, Burslem & Simonson 2014). However, this conclusion is challenged by data 

from well-characterised sites that display a decline in carbon storage due to decelerating 

growth (Feeley et al. 2007; Dong et al. 2012; Clark, Clark & Oberbauer 2013), and 

dendrochronological studies that provide no indication of an increase in tree growth rates 

over the past 100 years (van der Sleen et al. 2014; Groenendijk et al. 2015). The 

inconsistencies in the magnitude and direction of AGB change may reflect a divergence in 
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response across spatial scales and geographical regions (Chave et al. 2008; Wright 2013), 

and it limits our capacity to forecast future changes in AGB in response to climate change 

predictions. The AGB of individual trees is influenced by interactions among neighbours, and 

is therefore subject to the effects of competition, local community structure and resource 

availability. These factors may operate differentially in different regions through 

biogeographic effects determined by variation in local species pools and contrasting abiotic 

environments. 

Despite the discrepancies among current studies of AGB dynamics in tropical forests, 

it is well-established that AGB increases through successional development, and is therefore 

greater in relatively undisturbed primary forests than in secondary forests (Brown & Lugo 

1982; Wright 2013). Hence, AGB increases after disturbance and reaches a maximum value 

that depends on local climate and resource availability in late succession. Among primary 

tropical forests, AGB at the regional scale responds to variation in soil fertility and soil 

physical properties (Laurance et al. 1999; Baker et al. 2004b) , topography (Mascaro et al. 

2011; Réjou-Méchain et al. 2014), climatic factors (Quesada et al. 2012; Lewis et al. 2013), 

interactions between soil and climatic factors (Quesada et al. 2012; Lewis et al. 2013), stand 

level wood density (Baker et al. 2004b) and species composition (Laurance et al. 2004; 

Bunker et al. 2005; Poorter et al. 2015). Species composition and species richness may 

correlate with AGB through indirect effects mediated by these underlying environmental 

drivers or through variation in species’ wood density (Chisholm et al. 2013; Poorter et al. 

2015), although expected relationships, such as a positive relationship between AGB and 

community wood density, are not always observed and differ among regions and forest 

types (Slik et al. 2010; Ruiz-Jaen & Potvin 2011). A third potential explanation is that species 
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richness might increase AGB through the expression of complementary niches among 

coexisting species (Tilman, Isbell & Cowles 2014; Poorter et al. 2015) although this 

hypothesis is also subject to doubt (Huston et al 2000). In addition to all these factors, 

competition with lianas (woody vines) is a key biotic factor known to reduce tropical tree 

growth, survival and recruitment (Schnitzer & Carson 2010; van der Heijden, Powers & 

Schnitzer 2015) and it has recently been detected that an increase in liana abundance 

reduces carbon stocks in tropical forest (Durán & Gianoli 2013; Schnitzer et al. 2014; van der 

Heijden et al. 2015). Moreover, the presence of lianas within the forest is linked with areas 

with more recent or a higher frequency of disturbances (Dalling et al. 2012; Ledo & 

Schnitzer 2014). Lianas are not only direct competitors with trees for resources but also 

indicative of areas with a recent history of disturbance (Schnitzer 2005).  Furthermore, the 

role of disturbance in explaining spatial variation in AGB is often overlooked (but see 

(Quesada et al. 2012)), despite its importance in theoretical models (Chambers et al. 2004), 

possibly because disturbances are difficult to evaluate (Lewis et al. 2013). 

A plausible explanation for discrepancies in the spatial distribution of AGB among 

tropical forests is that different studies have focused on different combinations of 

explanatory factors instead of considering them all simultaneously. A second potential 

explanation could be that the main factors controlling AGB are scale-dependent (Detto & 

Muller-Landau 2013; Poorter et al. 2015): climate and soils have been found to be the most 

important factors controlling AGB in most studies that evaluated the spatial distribution of 

AGB at continental scales of ~6 million ha (Quesada et al. 2012; Lewis et al. 2013), while 

topography has been revealed to be the key factor in many studies dealing with AGB spatial 

distribution at regional scales of ~1500 ha (Mascaro et al. 2011; Detto et al. 2013; Réjou-
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Méchain et al. 2014). In the Amazon basin the interaction of climate, soil properties and 

species composition determines spatial variation in AGB (Baker et al. 2004b; Malhi et al. 

2004; Quesada et al. 2012). African tropical forests have been less well-studied, but current 

evidence suggests that AGB increases in response to the amount of rainfall during the dry 

season and on richer soils (Lewis et al. 2013). In a study in Borneo, AGB was found to vary 

with soil fertility, which had a stronger effect than stem density (Slik et al. 2010). 

Consequently, spatial variation in AGB is explained by a combination of factors, including 

soil and climate. 

The studies of the spatial determinants of AGB in tropical forests reviewed above 

have been conducted at regional scales, whereas the correlates of fine-scale variation in 

AGB within plots are less well-known. The demographic processes that govern AGB, tree 

growth and mortality, are determined by interactions within individual tree 

neighbourhoods. Therefore an improved mechanistic understanding of AGB change can 

emerge only through investigation of the demographic processes and fine-scale spatial 

dependencies that collectively determine their response at the regional scale. Individual 

tree growth and mortality depend on both biotic factors, including competition and 

interactions with pests (Peters 2003; Canham, LePage & Coates 2004), and abiotic factors, 

including resource availability or surrogates of resource availability such as topography 

(Clark et al. 2003; Dong et al. 2012; Uriarte et al. 2012). These factors all act at small spatial 

scales.  
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In this paper we test the hypothesis that the fine-scale distribution of AGB on a 

tropical forest plot is non-random with respect to biotic (stem density of trees, abundance 

of lianas) and abiotic (soil pH, nutrient availability and topography) variables. We aim to 

identify the factors that determine spatial variation in AGB or to determine whether AGB is 

distributed randomly at scales up to 50 ha. To test these hypotheses we fitted a spatially-

explicit model of fine-scale AGB variation to a set of spatial covariates. We account for 

spatial autocorrelation in the AGB measurements by modelling the distribution of stem 

density simultaneously with the AGB distribution in a joint model, and included a shared 

spatial random field that accounted for that spatial correlation. Clearly, AGB depends on the 

spatial distribution of the trees. Using a joint model with two responses  -- tree distribution 

and AGB -- allows us to identify the factors governing either AGB or tree distribution 

separately while taking account of the aggregation of trees in space and the dependence of 

AGB on tree locations through a shared spatial field. With a simple model of AGB alone the 

influence of explanatory variables on biomass storage and tree distribution would have 

been confounded. A joint, multi-response model allows us to identify those factors, 

conditional on tree distribution. Using this model we tested the effects of micro-

topography, soil resource availability and liana abundance (liana stem density) as 

explanatory spatial covariates. To fit the model we use an integrated nested Laplace 

approximation (INLA; [Rue, Martino & Chopin 2009]), which is a computationally efficient 

method for fitting models in a Bayesian context that speeds up parameter estimation 

substantially.  
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2. Materials and methods 

STUDY SITE 

The study site was a 50 ha forest dynamics plot (Lat. 9.1543, Long. -79.8461) in seasonal 

lowland moist forest on Barro Colorado Island (BCI) in central Panama (Condit 1998; Hubbell 

et al. 1999). This plot was first censused in 1980-1982 and it has now been re-censused on 

seven occasions in 1985 and at five year intervals thereafter. At each census, all of the free-

standing trees ≥ 1 cm in diameter at breast height (DBH) are re-measured, and new trees 

above this diameter limit are identified and measured. We used tree data from the sixth BCI 

tree census (2005), since this provided the best match to the single liana census conducted 

in 2007 (Schnitzer, Rutishauser & Aguilar 2008; Schnitzer et al. 2012). The forest on the BCI 

plot is representative of primary semi-deciduous lowland tropical forest in central Panama 

(Condit 1998; Hubbell et al. 1999). The BCI plot holds more than 200,000 stems, comprising 

314 species (Hubbell et al. 1999). The mean basal area of stems ≥ 1 cm DBH is 31 m2 ha-1 

and mean AGB is 281 ± 20 Mg ha-1 (Chave et al. 2003). The plot comprises mostly old-

growth forest, and distinct habitats have been defined within the plot (Harms et al. 2001): 

low plateau (50% of the plot), high plateau (14%), slope (23%), swamp (2%), streamside 

(3%), young forest (4%) and mixed habitats (5%). Mean annual temperature is 27 ◦C and the 

mean annual rainfall of 2600 mm is distributed seasonally, with a strong dry period from 

December to April (Condit et al. 1999). The soil is Kandiudalfic Eutrudox, Isohyperthermic 

(USDA Soil Taxnomy) dominated by kaolinite clay (B. Turner, pers. comm). 
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SPATIAL COVARIATES 

A map of the topography at 1 m x 1 m resolution is available for the BCI plot 

(ctfs.arnarb.harvard.edu/Public/CTFSRPackage/index.php/web). That map was created from 

field measurements on a 20 m x 20 m grid, where elevation was calculated for each quadrat 

as the mean of values at its four corners. Interpolation techniques were used to generate 

the 1 m x 1 m map available in the web. This elevation map was used to create a digital 

elevation model (DEM) using the software QGIS v. 2.8 (Quantum 2013) from which we 

derived elevation, slope, curvature and hill-shade (an index computed by QGIS from 

latitude, elevation and solar angles to reflect relative amount of canopy exposure to direct 

radiation, less exposed habitats such as gullies take higher values than more exposed 

environments).  

Two datasets were obtained for 10 soil chemistry variables. The first was collected in 

2005 (John et al. 2007) and comprises a grid of 300 points collected in a 50 m regular grid 

and including some extra points to capture variation at fines scales. The second dataset was 

also collected in 2005 (JD and SJW, unpublished data) and comprises data from 238 points 

located adjacent to seed traps on the BCI plot (Lebrija-Trejos et al. 2014). The sampling, 

processing and lab analysis were identical in both cases. The soils samples were collected 

from a depth of 0-10 cm and cations and P were extracted using a Mehlich III solution and 

analysed using inductively coupled plasma spectroscopy. pH was measured on a 1 : 3 

mixture of fresh soil and distilled water (John et al. 2007). The two data sets were pooled 

and screened for obvious outliers for each measured element (points with values > ~100% 

of their nearest neighbours), which were systematically removed. The final pooled data-set 
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comprised measurements of pH, Al, B, Ca, Cu, Fe, K, Mn, Mg and P for up to 537 points 

across the 50 ha plot.  

A census of all lianas > 1 cm diameter at ground level was conducted in 2007 

(Schnitzer et al. 2008, 2012) and these data were used to generate maps representing liana 

abundance. Liana abundance was quantified as the sum of total individual liana basal area 

per quadrat, on the same spatial grids that we used in our models (see below). Individual 

liana basal area was calculated using the diameter measured at 1.3 m from the rooting point 

(Schnitzer et al. 2012).  We repeated the analysis using number of liana stems and AGB 

instead of basal area and the results were qualitatively identical but the fit to the data was 

less strong in both cases, so we report the results for the model with liana density measured 

as basal area density below.  

  

CREATING DATA LAYERS 

The AGB of all trees was estimated using the allometric equations recently developed by 

Chave et al. (Chave et al. 2014), which were derived in part from data from Panama and 

Central America, unlike alternative equations in the recent literature (Feldpausch et al. 

2012). We estimated AGB using Model 4 in (Chave et al. 2014), which computes AGB as a 

function of measurements of DBH from the tree census and tree height (H) estimated from 

DBH using allometric equations constructed from trees in central Panama (Appendix 1). 

Previous work has suggested that including a term for tree height improves AGB estimation 

(Feldpausch et al. 2012). Wood density values were measured for trees in Central Panama 

(Wright et al. 2010). Estimated AGB per tree was then summed within sub-plots at spatial 
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resolutions of 10 m x 10 m 20 m x 20 m and 50 m x 50 m to create three discretized maps of 

tree AGB (Fig. 1). The mean number of trees and AGB of stems ≥ 1 cm DBH on the 10 m x 10 

m quadrats is 41.5 trees ± 11.8 standard deviation and 2533 Kg ± 3913 Kg standard 

deviation respectively (Fig. 1). Equivalent values for the 20 m x 20 m and 50 m x 50 m 

quadrats are 165.8 ± 33.0 trees and 10133 ± 754 Kg and 1036.3 ± 121.7 trees and 63333 ± 

18890 Kg respectively (Fig. 1). Liana basal area was summed across all individuals within the 

same grid of plots at each of the three spatial resolutions. We obtained values of the four 

topography variables at the desired spatial resolution by creating three different DEMs at 10 

m x 10 m 20 m x 20 m and 50 m x 50 m using the Triangulated Irregular Network (TIN) 

interpolation method, available in the QGIS. We adopted a geostatistical approach to 

construct the spatial layers for the ten soil chemical variables. We calculated the empirical 

semi-variogram for each variable (Cressie 1993) and then used restricted maximum 

likelihood (REMS) to fit a spherical model semi-variogram to the data. Ordinary kriging was 

then used to extend the soil variables to the spatial resolutions of the grids (10 m x 10 m, 20 

m x 20 m, and 50 m x 50 m) using the fitted semi-variogram. These analyses were conducted 

using the geoR package for R v 1.7-4.1 (Ribeiro & Diggle 2001). 

 

MODEL DESCRIPTION AND FITTING 

The response variables of interest here are total AGB of trees on quadrats of 10 m x 10 m, 

20 m x 20 m and 50 m x 50 m. However, AGB depends on tree position, so to evaluate the 

independent underlying causes of variation in AGB distribution, the effects of the spatial 

distribution of trees have to be removed. The modelling approach we take here accounts for 

the spatial distribution of trees and the inherent autocorrelation of demographic processes 
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at small scales (Jansen, Meer & Bongers 2008), which may in turn produce some spatial 

structure in AGB. Ignoring the processes generating spatial autocorrelation would lead to 

explanatory variables becoming significant even though they are not (Legendre 1993; 

Kissling & Carl 2007).  

We consider the data as a marked spatial point pattern where the locations of the 

trees form the “points” and AGB for each tree are the marks, and we model the marks along 

with the spatial point pattern in a joint model. This implies that we have two response 

variables, the spatial pattern (tree distribution) and the marks (AGB). We use a marked log 

Gaussian Cox point process model (Rue & Held 2005). Log Gaussian Cox processes are 

special cases of latent Gaussian models, which assume that the observations are 

independent given one or more latent fields. The latent fields explain the spatial 

dependence structure in the data by explicitly accounting for spatial autocorrelation 

through covariates and a spatially smooth random field (also referred to as a spatially 

structured effect), which accounts for the spatial autocorrelation in the data unexplained by 

the covariates (Illian et al. 2012). While AGB was the response variable of interest, we 

account for spatial autocorrelation in the AGB measurements by modelling the tree pattern 

simultaneously through the joint modelling approach. The random field was assumed to be 

a Gauss Markov Random field (GMRF, (Rue & Held 2005)). The GMRF has a local 

dependence structure, which speeds up computation and makes model fitting practically 

feasible. In our model the same GMRF is shared between the two response variables (the 

marks and spatial point pattern). To fit the model we use integrated nested Laplace 

approximation (INLA, (Rue et al. 2009)), which is a computationally efficient way of fitting 

models in a Bayesian context that speeds up parameter estimation substantially, and thus 
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also enhances the feasibility of fitting of complex spatial models such as the marked point 

process we use here (Rue et al. 2009). 

The data-set comprised a regular grid with p rows and q columns. Since we have two 

response variables we have two latent fields,  and , that share a common random field (. ). Conditional on the latent field  the number of points yij in grid cell sij (i= 1, …, p; j = 1, 

…, q) is assumed to be Poisson distributed, i.e. | ∼ ( exp	( )) and conditional 

on the latent field  the value of the response variable AGB, , in that cell is assumed to be 

Gamma distributed. 

1) The latent field ηij is given as: 

= + ∑ + ( ) +          [1]   

and   

2) the latent  field υij is given as: = + ∑ + ( ) +         [2] 

where  and  are intercept terms,  are parameters reflecting linear effects of 

explanatory covariates 	  in grid (the corresponding grid size in each case), ( ) is the 

spatially structured effect GMRF in grid cell  , modelled using a two-dimensional random 

walk. The  are unstructured, independent and identically distributed random variables 

(iid), i.e. error terms, following a normal distribution. Total AGB (ν) was included as Kg per 

grid cell and tree density (η) as number of trees per quadrat. All the covariates were centred 

before being included in the model.  
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The proposed model was fitted using INLA through the R library R-INLA [47], which 

implies that inference was implemented in a Bayesian context. Hence, we needed to choose 

appropriate prior values in order to obtain the posterior distribution of the parameters that 

describe the model. We assigned Gaussian priors to the random terms in equations 1 and 2. 

For the spatial field, ( ) we used a gamma prior for the precision and scale parameters, 

with distribution (0.1, 0.001) (see [68] for more details). We chose a conservative value for 

the prior to ensure that the significant covariates were ecologically meaningful.  

A stepwise approach to model selection was implemented as follows. We first fitted 

the model including all the covariates as linear terms (fixed effects), plus the spatial and 

error terms (random effects), at the three different grid sizes. However, because some of 

the covariates were correlated (Appendix 2), we then fitted models including each covariate 

separately, along with the spatial and error terms for both the spatial distribution of trees 

and AGB. We repeated the same set of models and included each covariate along with the 

quadratic value of the covariate, to look for quadratic effects. We selected the covariates 

that were significant at the 97.5 % level in those individual models (the model including one 

covariate at a time, or a covariate with a quadratic term, Appendix 4). We fitted several 

models including systematically all different combinations of those relevant covariates. We 

calculated the Deviance Information Criterion (DIC) for each fitted model. We then followed 

a stepwise modelling approach: we initially included one covariate at a time and checked 

whether it was significant or not. Subsequently, we included different combinations of the 

covariates that were significant either for AGB or tree density and kept all significant 

variables in the model (Appendix 4). We started including combinations of pairs of 

significant covariates that were not correlated (Pearson’s coefficient < 0.2). Then, we 
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incremented one by one the number of covariates until all of the significant ones were 

included. In those combinations, we avoided variables that were correlated. In the resulting 

models, some of the covariates that were significant when included alone resulted in no 

significant variables when combined with others (Appendix 4). If different models had the 

same number of significant covariates, we chose the best model based on the DIC values, 

and will refer to this model as the final model from now on. We considered a model to be 

better than another model when their DIC values differed by 5 or more, as smaller 

differences are insufficient to distinguish among alternative models (Zuur et al. 2009). We 

made sure that the covariates included in the final models were uncorrelated (Pearson’s 

coefficient < 0.2). The R code adopted for these analyses can be found in Appendix 3. 

We derived a set of nested models from the final model to determine the relative 

importance of the significant factors. For each nested model we included only one of the 

significant covariates as a fixed effect, along with the spatial and error terms. This approach 

assumes that the final model provides full explanatory power for the fixed variables and 

that the null model (including only the random effects) has zero explanatory power. We 

quantified this through changes in DIC among the final, null and nested models, where the 

difference in DIC between each nested model and the null model was expressed as a 

percentage of the difference in DIC between the final and null models.   
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3. Results 

The final models (including all the significant covariates and the best models in terms of the 

DIC, Appendix 4) displayed different combinations of significant spatial covariates at the 

three spatial scales considered in these analyses (Fig. 2). The error field did not show any 

spatial structure for those models (Appendix 5), indicating that spatial autocorrelation had 

been captured by the covariates and the spatial field. The variables that were significant 

predictors of AGB at the 97.5% level were different to those that explained tree distribution 

for the three different grid sizes (Fig. 2).  

Fifty eight models were compared at the largest spatial scale of 50 m x 50 m 

(Appendix 4a). There were strong effects of liana stem density (negative) and soil pH 

(positive) on values of AGB (Fig. 2). Only one variable explained tree distribution: areas with 

lower soil P concentrations supported a higher density of tree stems. Including a term for 

liana stem density had the largest impact in terms of percentage reduction in the DIC 

relative to the null model (Fig. 2). The variables identified as significant either for tree 

density or AGB were not correlated. As can be seen in Appendix 4, including hill-shade 

instead of P also resulted in a significant model with the same number of variables. 

However, we chose the best model based on the DIC and the model including P had lower 

DIC (Appendix 4), i.e. it had more explanatory power. Yet, we could note here that hill-shade 

was correlated with soil nutrients (Appendix 2). 

We compared seventy six models at a spatial scale of 20 m x 20 m (Appendix 4b). An 

increase in the density of liana stems had a negative effect on values of AGB. An increase in 

soil K concentration contributed to higher values of AGB (Fig. 2). A quadratic effect of lianas 

was also significant (Fig. 2), indicating the existence of a maximal value of liana abundance 
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which reduces tree AGB accumulation at this scale of study. Soil concentrations of P and Fe 

were significantly positively and negatively correlated with tree density, respectively (Fig. 2, 

Appendix 4b). The soil nutrients Fe and P were not correlated in our dataset (Pearson 

correlation = 0.05; Appendix 2). Note that a second model including Mn2 instead of Fe was 

also significant, but its DIC was higher. In addition, the effect of Mn was not significant, and 

Mn and K are positively correlated (Pearson correlation = 0.4; Appendix 2). Slope was 

identified as significant in some models (Appendix 2), but these were associated with 

models with higher DIC. As for analyses conducted at a scale of 50 m x 50 m, slope is highly 

correlated with soil nutrients (Appendix 2). 

We compared sixty six models at the smallest scale of 10 m x 10 m (Appendix 4c). 

None of the covariates were significant in explaining the spatial distribution of AGB in trees 

(Fig. 2). Quadrats with a higher density of tree stems were associated with slopes and 

gullies, and had less acidic soils (as reflected in a quadratic relationship with pH). Including 

the terms for soil pH (quadratic term) had the greatest relative impact in terms of reducing 

values of DIC (Fig. 2).  

 

4. Discussion 

Our study demonstrates that fine-scale distribution of AGB was non-random with respect to 

biotic and abiotic variables on the BCI forest dynamics plot. Liana abundance (basal area of 

liana stems) is the strongest predictor of tree AGB at the fine scale represented by a grain of 

100-m2, 400-m2 and 2500-m2 quadrats within a single 50 ha plot. The availability of soil 

nutrients was also revealed as an important driver of spatial variation in AGB. Micro-
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topographic variation across the plot was not a significant factor explaining differences on 

AGB when accounting for soil nutrients and liana density, although topography explained 

the distribution of stem density independently of AGB (Fig. 2). Uncovering these patterns 

was dependent on the spatially-explicit modelling of fine-scale AGB variation while 

accounting for auto-correlation associated with spatial structure in stem density. In other 

words, we accounted for the dependence of tree density and AGB in the shared spatial 

random field, which allows us to identify the particular factors that affect each of those 

variables individually. 

 

EFFECTS OF LIANAS ON AGB STOCKS 

Our study shows that higher liana stem density is related to lower tree AGB. This result 

agrees and extends the findings in (Durán & Gianoli 2013) who found a negative correlation 

between carbon stored in large trees and the presence of lianas at plot level. Our methods 

accounted for additional variation through additional explanatory factors including tree 

density, topography, and soil nutrients and demonstrates a greater importance of liana 

abundance over these alternative explanatory variables (Fig. 2). Two underlying ecological 

mechanisms could explain the lower AGB of trees in patches with greater liana abundance: 

(i) competition from lianas reduces tree growth, survivorship and biomass accumulation 

and/or (ii) lianas are indicators of patches with more frequent or more recent disturbance, 

where large trees are absent or less abundant.  
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Recent research at our study site supports the plausibility of both mechanisms, but 

strongly supports the capacity of lianas to reduce forest-level AGB. A liana removal 

experiment in the Gigante Peninsula, adjacent to BCI, found that liana infestation reduced 

net biomass accumulation by 76% (van der Heijden et al. 2015) due to decreased tree 

growth (explaining 48% of forest level biomass accumulation reduction) and increased tree 

mortality (explaining 41% forest level biomass accumulation reduction). Indeed evidence of 

lianas reducing tree growth has been observed in American (van der Heijden & Phillips 2009; 

Ingwell et al. 2010) and Asian (Wright et al. 2015) tropical forests, and long-term 

experimental research suggests that lianas reduce the rate of carbon accumulation in forest 

gaps (Schnitzer et al. 2014). Lianas also delay tree recruitment in some gaps by suppressing 

tree regeneration and regrowth of canopy trees and thus keeping the canopy gaps open for 

longer (Schnitzer, Dalling & Carson 2000; Schnitzer & Carson 2010; Tymen et al. 2016). 

These results are consistent with the hypothesis that lianas reduce AGB accumulation in 

trees through direct competition.  

Additionally, a positive relationship between liana abundance and soil fertility has 

been found in some other tropical forests (Schnitzer & Bongers 2002; Tymen et al. 2016), 

although this result is not consistent (Dalling et al. 2012; Ledo & Schnitzer 2014). Tymen et 

al. (2016) suggested that the higher nutrient concentration in soils of liana-infested forests 

may be the result of a release of nutrients from vegetation after a forest blow-down. The 

presence, abundance and distribution of lianas across the BCI plot are linked to patches with 

more frequent disturbance (Dalling et al. 2012; Ledo & Schnitzer 2014), which is also 

consistent with the relationship observed in our data because areas in which disturbances 
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are more frequent are less likely to support the large trees that often dominate AGB (Slik et 

al. 2013).  

While our results cannot distinguish between these explanations for the negative 

association between AGB in trees and liana abundance, experimental work at a nearby site 

indicates that lianas reduce forest-level AGB (van der Heijden & Phillips 2009; van der 

Heijden et al. 2015), in contrast, the role of lianas as indicators of prior disturbance remains 

uncertain. Moreover, our results allow us to discount the likelihood that the pattern is due 

entirely to the separation of lianas from large trees in recently disturbed patches, because 

an additional prediction of that mechanism would be a positive association between liana 

and tree abundance through intense recruitment of individuals of both life-forms in recently 

disturbed areas, unless lianas inhibit recruitment into the 1 cm DBH size class represented in 

the plot inventory. The explanation for the observed pattern may be a combination of both 

underlying mechanisms, but certainly a negative effect of lianas on tree growth and survival.   

 

EFFECT OF SOIL NUTRIENTS ON AGB STOCKS 

Spatial distribution of AGB at a continental scale responds to climate and soil fertility 

(Quesada et al. 2012; Lewis et al. 2013). Climate was not considered in our study because at 

the scale of analysis (50 ha) little variation in rainfall or temperature would be expected. 

Nevertheless, richer soils enhanced AGB accumulation at the fine scales of our analysis 

(Fig.1), which suggests that a positive relationship between measures of soil chemical 

fertility and AGB in trees extends from local to continental scales. This pattern supports a 

strong body of research suggesting that nutrient availability may limit AGB accumulation in 

tropical forests (Asner et al. 2004, Wright et al. 2011, Wright 2013). We found that AGB 
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storage is linked to variation in soil pH, with more AGB stored in vegetation growing on less 

acidic soils. We also observed that areas with higher values of soil K concentration support 

greater AGB (Fig. 2).  This pattern is consistent with the findings of a long-term fertilization 

experiment on the Gigante Peninsula close to our study site, which has demonstrated that K 

addition increased stand-level biomass and production of fine root biomass, enhanced 

seedling tissue nutrient concentrations, reduced seedling root allocation and improved 

stomatal control and photosynthesis (Wright et al. 2011; Pasquini & Santiago. 2012; 

Santiago et al. 2012; Wurzburger & Wright 2015). In the same experiment, P addition 

increased fine litter production and photosynthetic rates (Wright et al. 2011; Pasquini et al. 

2015). These studies suggest that soil K and P concentrations have a fundamental role in 

regulating forest productivity, and our analyses suggest that they also contribute to 

variation in ecosystem-level AGB. On the other hand, Lewis et al. (2013) found a negative 

correlation between AGB and soil fertility measured as the sum of base cations among 

African tropical forests. Nevertheless, at the large scales of their analysis soil fertility is 

correlated with climate gradients, and it is therefore difficult to decouple the confounding 

effects of these factors on AGB storage. Lewis et al. (2013) concluded that more information 

on African forest is necessary to coherent understand factors contributing to AGB storage. 

The emergence of soil pH as a key predictor of spatial variation in AGB follows from 

the association between soil acidity and numerous measures of soil chemical and biological 

fertility (Ashman & Puri 2013), including many factors that were not measured in the study, 

such us microbial activity and the availability of toxic elements. Soil pH may also be an 

indicator of exchangeable cation concentrations, as a decline in pH may cause an increase 

cation solubility and losses through leaching (Turner et al. 2013). It is also important to bear 
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in mind that most of the soil nutrient concentrations were inter-correlated, including pH 

(Appendix 2), which indicates that the availability of multiple nutrients would increase or 

decrease in parallel with variation in soil pH (Ashman & Puri 2013). Soil fertility also varies 

with topographic variation (Appendix 2, Chadwick & Asner 2016).These correlations point to 

an underlying gradient in multiple soil chemical properties that governs the spatial 

distribution of AGB.  

Our findings suggest that spatial variation in AGB may be linked to soil resource 

availability independently of patterns in stem density, which is indicative of soils driving 

differences in tree size class distributions and/or species composition (John et al. 2007). 

Other studies have determined that tree species distributions on the BCI plot are related to 

soil resource availability  (Baldeck et al. 2013), which may contribute to differences in AGB 

(Poorter et al. 2015). We conclude that soil chemical and/or biological fertility acting at the 

individual tree scale contributes to spatial variation in AGB. This association may arise from 

spatial variation in factors such as species distributions, traits such as wood density that 

contribute to AGB, and/or a disproportionate development of larger trees in the most fertile 

sites.  
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FIGURE CAPTION 

FIGURE 1: Values of AGB (above) and stem density (below) in the different grids (a) 10 m x 

10 m (b) 20 m x 20 m and (c) 50 m x 50 m in the BCI plot. 

 

FIGURE 2: Significant variables (at 97.5 %) explaining AGB spatial distribution (above) and 

tree density (below) in the best model for grids of 50 m x 50 m, 20 m x 20 m and 10 m x 10 

m on the BCI Forest Dynamics Plot. Positive associations are represented as positive values 

and negative associations as negative values in the histograms. The length of the bars 

indicate the explanatory power of the covariate, defined as the percentage change in DIC 

between the null model with random effects alone (0% DIC) and alternative models which 

include one significant covariate as a fixed effect (indicated along the x axis) along with the 

random spatial field and errors. The DIC of the final model is represented as 100%. Factors 

have been ordered from the most relevant (left to right) in terms of explanatory power for 

each grid size. 
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SUPPLEMENTARY MATERIAL 

Appendix 1: Fitted parameters of the DBH:H allometric equations for the Panamanian trees 

including all the individuals (General) and for each species with more than 60 individuals in 

the dataset used. We fitted a 3-parameter Weibull distribution function (Equation = W), 

H=a*(1-exp(-b DBHk)). When the 3 parameter Weibull function did not converge, we fitted a 

Michaelis-Menten distribution function (Equation = M-M), H=(a*DBH)/(b+DBH). N is the 

number of individuals used to fit the function.  

 

Appendix 2: Linear Pearson’s correlations among covariates (topography, soils nutrients and 

number of liana stems) at different grid sizes (a) 50 m x 50 m (b) 20 m x 20 m, (c) 10 m x 10 

m. 

 

Appendix 3: R code for the analyses.  

 

Appendix 4: DIC and log-likelihood (Loglik) values of the fitted models, including different 

combinations of covariates as fixed effects and the spatial field and error term as random 

effects at grid sizes (a) 50 m x 50 m (b) 20 m x 20 m, (c) 10 m x 10 m. Bold characters 

indicate that this covariate was significant at 97.5%. The best model is shaded in grey. 

 

Appendix 5: Residuals from the fitted best models at each grid size for both responses: tree 

distribution (above) and AGB (below). 
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