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A major challenge for our understanding of the
mathematical basis of particle dynamics is the
formulation of N-body and N-vortex dynamics on
Riemann surfaces. In this paper we show how the two
problems are, in fact, closely related when considering
the role played by the intrinsic geometry of the
surface. This enables a straightforward deduction
of the dynamics of point masses, using recently-
derived results for point vortices on general closed
differentiable surfaces M endowed with a metric g.
We find, generally, that Kepler’s laws do not hold.
What is more, even Newton’s first law (the Law
of Inertia) fails on closed surfaces having variable
curvature (e.g. the ellipsoid).

1. Introduction
Every theoretical model relies on what mathematicians
call axioms and physicists call working hypotheses, the
foundations of theory. In geometry, this is what
characterizes for example Euclidean geometry, where
parallel geodesics — straight lines — never cross, and
spherical geometry, where parallel geodesics — great
circles — always cross. In Newtonian mechanics in
Euclidean spaces, a so called Mechanical System is one
that verifies the three Newtonian laws, which we could
consider as the axioms of mechanics [1].
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In this article we show that Newton’s first Law, the Law of inertia, is not universal. In particular,
on compact surfaces without boundaries that are conformal to the sphere, we show that the Law
of Inertia is only valid in special geometries, namely surfaces with constant Gaussian curvature.
We can therefore view Newton’s first law as playing a similar role for a Mechanical System, on a
sphere or on a surface conformal to the sphere, as Euclid’s fifth postulate distinguishing planar
geometry from spherical geometry.

The crucial insight is to regard a surface in its intrinsic geometry, not as one embedded in R3, as
done for example in [10]. This leads to significant differences in the formulation of the dynamics,
as is already known in the case of point vortices [13]. Here, particular attention is given to closed
surfaces of revolution, for example the ellipsoid of revolution and the bean surface, shown in
Figure 1. Such surfaces permit a straightforward, explicit formulation [13].

a) b) c)

Figure 1. a) a sphere, b) an oblate ellipsoid of revolution and c) a bean-shape surface with parameters a= 0.6 and

b= 0.4 (see [13]).

2. The first axiom of Newtonian mechanics revisited
In 1687, Isaac Newton published in his Principia [21] three famous laws which have become
widely regarded as the “axioms of mechanics”. The first law, the Law of Inertia, states:

The vis insita, or innate force of matter, is a power of resisting by which every body, as much as in it lies,
endeavours to preserve its present state, whether it be of rest or of moving uniformly forward in a straight
line.
On a general surface, the analogue of a straight line is a geodesic [11]. It is well known that a
particle on a plane either remains at rest, if its initial velocity is zero, or continues in a straight line
with uniform velocity equal to its initial velocity. On a sphere we have a similar scenario as on the
plane. Either a particle remains at rest or it travels at constant speed around a great circle [6,24].
Both the plane and the sphere are surfaces with constant Gaussian curvature [11]. What happens if
for example we deform the sphere into an ellipsoid of revolution? In this case, as shown in Figure
2 and as explained in §8, a particle initially at rest generally begins to move along a meridian!
It then stops and reverses its direction of motion. The particle oscillates about the equator on an
oblate ellipsoid (shown), and about the closest pole on a prolate ellipsoid.

This oscillatory motion can be understood as follows. The particle is initially at a co-latitude
θo, which divides the surface into two, generally-unequal regions. Since gravity is a central force,
the uniform background mass (which is required on a closed surface as discussed below), acts as
if it were concentrated at two points along the axis of revolution between the poles. The net force
is generally unbalanced and sets the particle in motion. On an oblate ellipsoid, the particle moves
towards the equator where the net force changes sign. The momentum of the particle then carries
it to θ= π − θo before it reverses direction and returns to its initial position. On a prolate ellipsoid,
instead the particle oscillates about the nearest pole.
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Figure 2. Dynamics of a single particle, initially at rest, on an oblate ellipsoid of revolution. a) Time evolution of the co-

latitude θ for two cases starting at θ= θo = 10◦ (black curve), and at θ= θo = 60◦ (blue curve). b) Corresponding time

evolution of the meridional momentum, pθ .

3. Surfaces of revolution
As in [13] we consider a surface of revolutionM (about the vertical z axis) which is a deformation
of a sphere of radius R. The Cartesian coordinates (x, y, z) in R3 of any point on M may be
expressed as functions of two surface coordinates θ and φ, co-latitude and longitude, respectively.
For surfaces of revolution it is sufficient to take

x= ρ(θ) cosϕ; y= ρ(θ) sinϕ; z = ζ(θ),

where ρ(θ) and ξ(θ) are specified functions of θ – which in the plane yz describe the curve
generating the surface. Without loss of generality, we may take 0≤ϕ≤ 2π and 0≤ θ≤ π over
S. Note that:

• for the sphere:
ρ(θ) =R sin θ, ζ(θ) =R cos θ; (3.1)

• for the ellipsoid of revolution:

ρ(θ) =R sin θ, ζ(θ) = bR cos θ, (3.2)

where b is the height-to-width aspect ratio; and
• for the bean surface:

ρ(θ) =R sin θ, ζ(θ) =R (a sin2 θ + b cos θ), (3.3)

where a is an asymmetry parameter.

(a) Metric and metric tensor of a surface of revolution
The differential distance ds – also called the metric of M – between two points on S is

ds2 = |dx|2 = dx2 + dy2 + dz2 = [(ρ′)2 + (ζ′)2]dθ2 + ρ2 dϕ2, (3.4)

where primes denote differentiation with respect to θ. From Eqs. (7.5)-(3.3) it follows that

• for the sphere of radius R:

ds2 =R2(dθ2 + sin2 θ dϕ2); (3.5)

• for the ellipsoid of revolution:

ds2 =R2
{(

cos2 θ + b2 sin2 θ
)

dθ2 + sin2 θ dϕ2
}
; (3.6)
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• for the bean surface:

ds2 =R2
{[

cos2 θ + sin2 θ (2a cos θ − b)2
]

dθ2 + sin2 θ dφ2
}
. (3.7)

4. The motion of a test particle in a gravitational field
By analogy with the fluid dynamics problem [13], we start by considering the motion of a test
particle on a surface M with a metric g. We suppose that the density of matter ρ(r, t) is given.
To put things into context, we may think of a satellite of mass m0 in the gravitational field of the
planets in our solar system, with massesm1, ...,mN . We then assumem0�mj , j = 1, ..., N . This
is what Poincaré called the restricted N-body problem [22]. Following Poincaré, we assume that the
presence of the satellite does not affect the motion of the planets. Moreover, for the moment, we
also assume that the planets’ trajectories, r1(t), ..., rN (t), are known. The question then is: how
do we deduce the motion of the satellite on a general surface M?

By analogy with Maxwell’s laws (see Jackson [18]), we start with the fundamental equations
of a mechanical system in the presence of a central force. Let a(r, t) be the acceleration field
surrounding the satellite located at r at time t. Since the force (per unit mass) is irrotational
(curl free) and attractive, a must satisfy essentially the same laws satisfied by an electric field
E, namely:

i) curl(a) = 0, (4.1)

ii) div(a) =−ρ(r, t)
ε

,

iii)
∂a

∂t
+

1

ε
J = 0,

where the minus sign in the second equation reflects the fact that gravity is a force of attraction
[6]. Above, ρ(r, t) is the mass density, ε is a suitable constant analogous to permittivity in
electrostatics, and J is the mass current. The last equation is nothing more than the statement
of mass conservation. The second equation can be re-expressed as

div(a) =−1

ε
ρ(r, t) =−γ ρ(r, t). (4.2)

where the gravitational constant γ satisfies γ = 1/ε.
Considering surfaces that are smooth deformations of the sphere S2 (cf. Figure 1), Eq. (4.1)

allows us to express the acceleration field as the gradient of an unknown function Φ:

a=−grad(Φ),

where Φ plays the role of the satellite gravitational potential. It is determined by substituting the
above into Eq. (4.2), giving

∆gΦ= γρ(r, t) (4.3)

where ∆g is the Laplace-Beltrami operator, generalizing the Laplacian for a surface with metric
g [19].

Remarks

1) Given the density of matter ρ(r, t) – i.e. given the dynamics of the planets – and the metric g of
the surface under consideration, the gravitational potential of the satellite, Φ, is the solution of the
Poisson equation (4.3). A similar equation arises for the streamfunction Ψ of an incompressible
fluid [13] for a given vorticity field ω(r, t), i.e. ∆gΨ = ω, see Appendix A.
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2) The Poisson equation (4.3) is linear. Hence, there exist a fundamental solution G(r, r′), called
the Green function [17], in terms of which the solution of Eq. (4.3) is

Φ(r, t) = γ

∫∫
M
G(r, r′) ρ(r′, t) dr′. (4.4)

For R3, and for surfaces conformal to the plane, G(r, r′) is the solution of

∆gG(r, r′) = δ(r − r′), (4.5)

where δ(r − r′) is the usual Dirac delta distribution. More specifically (see [4,15,19]), for R3, the
punctured sphere S2p, the plane R2, and the hyperbolic surface H2 (of constant negative Gaussian
curvature K) we have that

GR3(r,0) = − 1

4π

1

||r|| , r= (x, y, z)

GS2p(r,0) =
1

2π
ln
[
tan

(√
K

2
r

)]
, r= (ϕ, θ), r=

θ√
K

GR2(r,0) =
1

2π
ln r, r= (x, y), r=

√
x2 + y2

GH2(r,0) =
1

2π
ln
[
tanh

(√
|K|
2

r

)]
, r= (ϕ, θ), r=

θ√
|K|

respectively, where r is the geodesic distance. Notably, for the punctured sphere [4], the Green
function converges to the planar one in the limit K→ 0 (or, equivalently, the radius of the sphere
R= 1/

√
K→∞):

2πGS2p(r, 0) = ln
[
tan

(√
Kr/2

)]
+ ln(

√
K/2) = ln r +

1

12
Kr2 +O(K2r4),

for small K and fixed r, such that K r2� 1.1

Up to this point, we have considered surfaces with their intrinsic geometry and not as
embedded in R3. We have addressed the question: given the surface metric and the distribution of
matter, can we deduce the mass dynamics? However, it is also possible to consider the dynamics
from an extrinsic geometry point of view, i.e. now regarding M as embedded in R3. One way to
do so is to restrict the R3 potential to the plane R2 and pull it back to the sphere, by the inverse of
a stereographic projection from the South Pole (r= tan(θ/2)). In this case, the Green function for
the unit punctured sphere is

G̃S2p(r) =−
1

4π

1

||r|| =−
1

4π
cot(θ/2) .

Such a potential is a potential for the punctured sphere, but it is not the solution of the Poisson
equation (4.5), i.e. it is not the potential associated with the intrinsic geometry of the surface.

Moreover, various authors in the literature (cf. Koslov et al. (1991) [20], Borisov et al. (2004) [8]
and Diacu (2012) [10]) use

G̃S2(r) =−k cot θ

for the Green function of a sphere, where k is a constant. In this case, observe that if we hold one
mass fixed at the north pole and consider a second mass at a co-latitude θ, then the force on the
second mass is

F̃ (θ) = γ̃
m1m2

sin2 θ
,

which exhibits a minimum at the equator but increases without bound toward each pole (see
Figure 3). This does not enable one to consider the equilibrium configuration consisting of one
1As the Green function is defined up to a constant, see Appendix A, we have taken the liberty to add ln(

√
K/(4π) to it.



6

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

mass at the north pole and a second mass at the south pole, a configuration for which we recover
with our potential (see remark 3 below) the corresponding force

F (θ) =
γ

4π

m1m2 sin θ

1− cos θ
.

Figure 3. Consider the unit sphere S2 and a mass m1 fixed at the north pole. The force on a second mass m2 at a

co-latitude θ is proportional to 1/ sin2 θ if derived from the potential U(θ) =−γ̃ m1m2 cot θ, whereas it is proportional

to sin θ/(1− cos θ) if derived from the potential U(θ) = γ
4π
m1m2 ln(1− cos θ).

3) For a truly closed surface (i.e. compact and without boundaries or punctures), such as any
surface conformal to the sphere [5,13,19,26], the source term γρ of the Poisson equation∆gΦ= γρ

must satisfy an extra condition, called the Gauss condition:

γ

∫∫
M
ρdr= 0. (4.6)

This implies that the equation for the Green function must be generalized to

∆gG(r, r′) = δ(r − r′) + C, (4.7)

whereC is a compensating factor chosen so that the surface integral of δ(r − r′) + C is identically
zero. C plays the role of a gauge.1 The simplest choice is to take C =−1/A, a constant [5,13,26].
Then, C represents a uniform background distribution of matter which links the local dynamics to
the global geometry of the surface. The fact that this distribution is negative could be interpreted
as an anti-matter distribution (see [6,13,26] for further remarks). Notably, with such a choice for
C, the Green function of a sphere of radius R is

G(r, r′) =
1

4π
ln[2R2(1− cosΘ)]

where Θ is the angular separation between r and r′. Note: 2R2(1− cosΘ) is the chord distance
between these two points. In G above, the radius of the sphere scales out — it contributes an
1It is important to stress that we are making a choice of gauge by choosing C = 1/A. Other choices are possible. For example
: a) for each mass mj , j = 1, ..., N, choose an antipodal negative mass mj+N =−mj , where N is the total number of
bodies in the system (cf. [25]); b) a non constant compensating mass field; c) a combination of a) & b).
To each one of those choices corresponds a different Green function. It would be very interesting to see, with an experiment,
what would be the most natural choice. Our choice is, partially, motivated by the fact that with a compensating mass we
would have to choose not only the the location but also the momentum of the corresponding negative mass.
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unimportant constant. Dynamically, all spheres are equivalent to the unit sphere. The same is not
true for the punctured sphere, as pointed out in remark 2) above.

4) It follows from remark 3) that on a surface M conformal to the sphere, we cannot just consider
a single point-like mass, since in this case the integral (4.6) would not be zero. There are many
options for compensating the mass. Among the simplest is to add an equal but opposite (negative)
mass, as suggested by Shchepetilov [25]. But perhaps the simplest choice of all is to add a uniform
background mass, of negative sign, because this choice alone does not increase the dynamical degrees
of freedom of the system (cf. [13]). Thus, if we consider a point-like distribution of matter, comprised
of N point-like masses, we must also consider a compensating term CN :

ρ(r, t) =

N∑
j=1

mjδ(r − rj(t)) + CN . (4.8)

Here, we choose CN =−(
∑N
j=1mj)/A. Then, inserting Eq. (4.8) into Eq. (4.4), we obtain the

satellite potential Φ from

Φ(r, t) = γ

N∑
j=1

mj G(r, rj(t)) + constant.

where G is the Green function found by solving Eq. (4.7) with C =−1/A.

5. The potential of N bodies on a surface (M, g)
The previous section explained how to deduce the satellite gravitational potential, assuming that
the trajectories of the masses (the sources of the gravitational field) are known. Here we describe
how to deduce the potential of the masses themselves. This relies on the following working
hypothesis: Each mass behaves as a satellite in the gravitational field generated by the other masses.

A similar hypothesis is necessary to formulate the dynamics of point vortices in an incompressible
fluid. Following [13], we define the potential of the kth mass as

Φ(rk, t) = lim
r→rk

(
Φ(r, t)− γmk

2π
ln d(r, rk)

)
where d(r, rk) is the geodesic distance between r and rk. We thus obtain

Φ(rk, t) = γ
( N∑
j=1, j 6=k

mjG(rk, rj) + mkR(rk)
)
, (5.1)

whereR(rk) is the Robin function [5,13,17],

R(rk) = lim
r→rk

(
G(r, rk)−

1

2π
ln d(r, rk)

)
.

It can then be inferred that the gravitational potential U takes the form

U =
1

2

∫∫
M
Φ(r, t)ρ(r, t)dΩr.

For a system of N point masses, m1, ..., mN , located at positions r1, ..., rN , this reduces to

U =
1

2

∫∫
M
Φ(r, t)

N∑
j=1

mj

(
δ(r − rj)−

1

A

)
dΩr,

=
1

2

N∑
j=1

mjΦ(rj , t)−
mtot

2A

∫∫
M
Φ(r, t)dΩr, (5.2)
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where mtot =
∑
j mj is used henceforth to denote the sum of the masses. By direct analogy with

the (excess) energy of a system of point vortices [13], we can now give the explicit form of the
gravitational potential energy.

Proposition 5.1. The gravitational potential energy of a system of N point masses is

U = γ

N∑
k=1

N∑
j<k

mjmkG(rj , rk) +
γ

2

N∑
j=1

m2
jR(rj)−

γ mtot

2A

N∑
j=1

mj

∫∫
M
G(r, rj)dΩr. (5.3)

The proof follows immediately from Eq. (5.1) and Eq. (5.2).

Remarks:

(a) The Robin function represents the self-interaction of a single mass with the global
geometry of the surface. In particular, with the gauge choice made for the compensating
term — i.e. the uniform background mass distribution — the Robin function is directly
related to variations of the Gaussian curvature K over the surface M [26]:

R(r) = 1

2π

∫∫
M
G(r, r′)K(r′)dr′ + c1, (5.4)

where c1 is a constant. For surfaces with constant Gaussian curvature such as the sphere,
it follows that the Robin function is itself a constant [13], and therefore plays no role in
the mass dynamics.

(b) The expression (5.3) — as for the vortex Hamiltonian H (2.14) in [13] — holds for any
closed, differentiable, genus zero surface (i.e. any surface topologically equivalent to a
sphere).

(c) The last term in Eq. (5.3) does not contribute to the dynamics as the integral of Φ over the
whole surface is a constant. We can then simplify the gravitational potential energy to

U = γ

N∑
k=1

N∑
j<k

mjmkG(rj , rk) +
γ

2

N∑
j=1

m2
jR(rj), (5.5)

where the Green function part describes the gravitational interaction between pairs
of masses, while the Robin function part can be viewed as the gravitational potential
describing the interaction of a single mass with its uniform compensating mass
distribution over the surface. As shown in the example of an ellipsoid — see §8 — it
is throughR that a single mass can still move on M . Explicit forms ofR are given in [13].

6. The kinetic energy of a system of N point masses on (M, g)
It follows from the fact that we have a mechanical system whose phase space, mathematically
speaking, is a cotangent bundle over the product manifold MN , i.e. T ∗MN [2], that we can
deduce the mass dynamics as follows.

Proposition 6.1. Given a manifold M with metric g, the kinetic energy K of a mechanical system (i.e. a
system which obeys Newton’s second law) consisting of N point masses m1, ..., mN is

K=

N∑
j=1

1

2mj
‖pj‖2g−1 , (6.1)

where ‖pj‖2g−1 = pTj (g
−1)Tpj , g

−1 is the inverse of the 2× 2 metric tensor g, and pj is the momentum
of the jth mass.

Proof. There is a simple way to prove the proposition above using the Lagrangian formulation
and Legendre transformations [16] . The Lagrangian L of a system of particles of masses
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m1, ...,mN at positions, respectively, r1, ..., rN , moving at velocities v1, ...,vN is

L=K(v1, ...,vN )− U(r1, ...,vN ) =
1

2

N∑
j=1

mj‖vj‖2g − U(r1, ..., rN ),

=
1

2

N∑
j=1

mjvj
T g vj − U(r1, ..., rN ).

The momentum pj is defined by

pj =
∂L
∂vj

=mjvj
T g =⇒ vj

T =
1

mj
pj g

−1 =⇒ vj = (g−1)TpTj .

It follows that the kinetic energy can be expressed as

K=
1

2

N∑
j=1

mjvj
T g vj =

∑
j = 1N

1

2mj
pj (g

−1)T pj
T =

N∑
j=1

1

2mj
p g−1 pT =

N∑
j=1

1

2mj
‖pj‖2g−1 ,

where gT = g since g is a symmetric tensor.�

Example. For the sphere of radius R, where rj = (ϕj , θj), (with ϕj the longitude and θj
the co-latitude), the momentum is pj = (pj ϕ , pj θ). The metric is ds2 =R2[dθ2 + sin2 θ dϕ2],
corresponding to which the metric tensor g and its inverse are given by

g=

(
R2 sin2 θ 0

0 R2

)
and g−1 =

(
1/(R2 sin2 θ) 0

0 1/R2

)
.

It follows from the proposition above that the kinetic energy is

K =

N∑
j=1

1

2mj
(pj ϕ, pj θ)

(
1/ sin2 θj 0

0 1

)(
pj ϕ
pj θ

)
=

N∑
j=1

1

2mj R2

(
p2j ϕ

sin2 θj
+ p2j θ

)
.

It follows from the proposition above that the configuration space of a system of N point masses
is the product space MN whose metric is ds2M =

∑N
j=1mjds

2
j . The corresponding metric tensor

is given by

G =


m1g . . . O

O
. . . O

O . . . mNg


where O is a 2× 2 matrix of zeros. Moreover, the motion of the point masses is described by the
Hamiltonian system

ṙj =−
∂H
∂pj

, ṗj =
∂H
∂rj

, j = 1, ..., N, (6.2)

where

H(Q,P ) =
‖P ‖2G−1

2
+ U(Q), (6.3)

with P = (p1, ...,pN ), Q= (r1, ..., rN ), ‖P ‖2G−1 =P TG−1P and U(Q) = U(r1, . . . , rn) is the
potential in Eq. (5.5).

Remark: There is a difference between a satellite and a passive tracer advected by vortices in
an incompressible fluid. The passive tracer genuinely has zero vorticity, whereas the satellite
has a small, but non-zero, mass. So taking this into account, the satellite potential has a small
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(perturbative) self-interaction through the Robin function:

Φ0(r, t) = γ

N∑
j=1

mjG(r0, rj(t)) + γ m0R(r0).

with m0�mj , j = 1, ..., N . The satellite kinetic energy is K0 = ‖p‖2g−1/(2m0) (by Proposition
6.1), and thus the satellite Hamiltonian is H0(r,p, t) =K0 +m0Φ0(r, t). Mathematically
speaking, the configuration space is the surface M with metric g, and the phase space is the
cotangent bundle T ∗M .

7. Symmetries and reduction
When studying the dynamics of a N masses, the process of reduction makes use of the following
fundamental symmetries:

a) The symmetries of the Hamiltonian. The groups of transformations that leave the
Hamiltonian invariant. Such groups depend on the surface geometry. In the case of the
plane they are the group of translations and the group of rotations, while in the case of
the sphere we only have the group of rotations.

b) The symmetries of the equations. The group of time transformations that leaves the
equations of motion invariant. This group depends both on the degree of separability of
the Hamiltonian and on the Robin function. We define a Hamiltonian as separable when
it can be viewed as the sum of two distinct functions.

(a) Symmetries in common to all surfaces of revolution conformal to S2
Consider the N -body problem on a surface of revolution for which the masses are parametrised
by rj = (ϕj , θj), j = 1, ..., N,. Let ds2 = f(θ)dϕ2 + σ(θ)dθ2 be the surface metric. Then it follows
from Proposition 6.1 that the corresponding kinetic energy is

K=

N∑
j=1

1

2mj

(
p2j ϕ
f(θj)

+
p2j θ
σ(θj)

)
(7.1)

Thus the kinetic energy does not depend upon the longitudes ϕj , j = 1, ..., N, as expected due
to the axial symmetry of the surface geometry. Furthermore, the potential energy, see Eq. (5.5)
and [13], can be decomposed as

U = γ

N∑
j=1

N∑
k>j

mjmkG(|ϕj − ϕk|, θj , θ) + γ

N∑
j=1

m2
jR(θj). (7.2)

Therefore, by Noether’s theorem [2], we have conservation of angular momentum, Pϕ =∑N
j=1 pj ϕ. In addition, for the pair of canonical variables (ϕj , pj ϕ), j = 1, ..., N, the Hamiltonian

equations of motion simplify to

ϕ̇j =
∂K
∂pj ϕ

, ṗj ϕ =− ∂U
∂ϕj

, j = 1, ..., N,

which gives

ϕ̈j =−
∂U
∂ϕj

, j = 1, ..., N.

Using Eq. (7.2), it can be verified that the equations above are invariant with respect to the time-
varying coordinate transformation

ϕ̃j =ϕj + ν t.

All of the above can be then summarized in the following proposition
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Proposition 7.1. For a system of N-bodies on a surface of revolution, the total ϕ component of the
momentum, Pϕ =

∑N
j=1 pj ϕ, is an integral of motion.

Furthermore the equations of motion are invariant under the time-dependent transformation

ϕ̃j =ϕj + ν t ∀ν ∈R. (7.3)

Remarks

• Notice that the time-varying symmetry group (7.3) for surfaces of revolution directly
corresponds to the Galilean group for R2, see Appendix B and [2].
• The group of transformations (7.3) leaves the equations of motion invariant but not the

Hamiltonian. From Eq. (7.1) we have

ϕ̇j =
∂K
∂pj ϕ

=
pj ϕ

mjf(θj)
,

It follows that, under the transformation (7.3), the ϕ component of the momentum
changes to

p̃j ϕ̃ =mjf(θj)( ˙̃ϕj + ν),

which in turn changes the kinetic energy (7.1).
Remark: Observe that in Euclidean spaces such as R2 and R3, the reduction procedure
above can be viewed as introducing a ficticious center of mass on the surface M , though
the real configuration space isMN . On a general surface, we can no longer use the notion
of center of mass, at least not as in Euclidean spaces (since it won’t generally lie on M ).
Nevertheless the above coordinate transformations are legitimate on the configuration
space MN .

(b) The unit sphere S2
Consider a system ofN masses,m1, m2, ...,mN , at the positions r1, r2, ..., rN on the unit sphere
S2. In spherical coordinates rj = (ϕj , θj), j = 1, ..., N , the metric of the configuration space is

ds2 =
N∑
j=1

mj (sin
2 θjdϕ2

j + dθ2j ).

The Green Function for the unit sphere problem [4,13,14,19] is

G(rj , rk) =G(|ϕj − ϕk|, θj , θk) =
1

4π
log(1− djk)

where

djk = cos θj cos θk + sin θj sin θk cos(ϕj − ϕk).

It follows from Eqs. (6.1) and (5.5) that the Hamiltonian is only partially separable and

H =

N∑
j=1

1

mj

(
p2j ϕ

sin2 θj
+ p2j θ

)
+ γ

N∑
j=1

N∑
k>j

mjmkG(|ϕj − ϕk|, θj , θk), (7.4)

where γ is the gravitational constant of the unit sphere and, as for the plane, the Robin function
is a constant [13]. The corresponding equations of motion are

ϕ̇j =
∂H

∂pj ϕ
, θ̇j =

∂H

∂pj θ
, ṗj ϕ =− ∂H

∂ϕj
, ṗj θ =−

∂H

∂θj
. (7.5)

Note, the Hamiltonian is invariant under

• rotations with respect the three axes which gives the conservation of the total angular
momentum L= (Lx, Ly, Lz); those three integrals do not all commute.
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• time translations, which is related to the conservation of the Hamiltonian H (or excess
energy [13]).

In addition, due to the partial separability of the Hamiltonian, as stated in Proposition 7.1 we
have the group of symmetries (7.3)

ϕ̃j =ϕj + ν t, j = 1, ..., N,

i.e. time-dependent transformations which leave equations (7.5) invariant.

The symmetry of the sphere also leads to a simple Cartesian-coordinate formulation of the
equations of motion. In Cartesian coordinates centred at the origin of the sphere, each position
vector is a unit vector: |rj |= 1, j = 1, 2, ..., N . Using rj = (sin θj cosϕj , sin θj sinϕj , cos θj) in
(7.5), we find after some manipulation,

ṙk = uk

u̇k =
(
M̃ − m̃k − |uk|2

)
rk + γ

∑
j 6=k

m̃j
rj − rk

1− rj · rk

where m̃k =mk/4π and M̃ =
∑n
k=1 m̃k. One can verify that the identity d(rk · uk)/dt= ṙk ·

uk + rk · u̇k = 0 is satisfied, as required.
The conserved total (kinetic plus potential) energy E is obtained from

E/4π=
1

2

n∑
k=1

m̃k|uk|2 + γ

n∑
k=2

k−1∑
j=1

m̃jm̃k ln(1− rj · rk)

The two body problem. In the case of two masses, the corresponding system of equations (7.5)
has eight degrees of freedom (four Hamiltonian degrees of freedom). Using conservation of Lx
and Ly , together with the freedom in choosing the orientation of the z-axis (which amounts
to choosing Lx =Ly = 0), the further conservation of Lz and the time transformation (7.3)
reduce the original system to a system having four degrees of freedom. Furthermore using the
conservation of Hamiltonian H itself, we can further reduce this to three. To assure integrability
[2], we need one additional integral of motion.

Following the analysis of Manuele Santoprete [23], Rodrigo Schaefer proved the following
theorem [24]:

Theorem 7.1. Consider the Kepler problem on the unit sphere S2. One body of mass m2 is held fixed at
the north pole and the dynamics of the second body, of mass m1 and position r= (ϕ, θ), is described by the
Hamiltonian equations

ϕ̇=
∂H

∂pϕ
, θ̇=

∂H

∂pθ
, ṗϕ =−∂H

∂ϕ
= 0, ṗθ =−

∂H

∂θ
,

where θ represents also the geodesic distance between the two bodies and

H(θ, pϕ, pθ) =
p2ϕ

2m1 sin
2 θ

+
p2θ
2m1

+ γm1m2 log[1− cos(θ)]

The only integrals which are quadratic in the momentum components, i.e. integrals of the type

I = a(ϕ, θ)p2θ + 2b(ϕ, θ)pϕpθ + c(ϕ, θ)p2ϕ + g(ϕ, θ),

are

I = 2m1 C1H + C2p
2
ϕ + C2, ∀C1, C2 ∈R.

Remarks:
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• The extra integrals encountered in the theorem above are linear combinations of known
integrals (plus a constant), and therefore they do not provide us with a truly new
extra integral, as in the corresponding planar problem, see Appendix B, where the
corresponding theorem (Theorem B.1) provides us with the components of the Laplace-
Runge-Lenz vector.
• In the theorem above the dynamics is viewed from within the sphere’s intrinsic

geometry, while in Santoprete [23] the dynamics is viewed as a sphere embedded in R3.
Consequently the potential Φ is different from the intrinsic one, as discussed above in §4.

8. Dynamics of one mass
For illustration, let us consider a single mass on a ellipsoid of revolution M , with R= 1. As
discussed in §3, the metric of M is ds2 = (cos2 θ + b2 sin2 θ)dθ2 + sin2 θ dϕ2, corresponding to
which the metric tensor g and its inverse are given by

g=

(
sin2 θ 0

0 (cos2 θ + b2 sin2 θ)

)
and g−1 =

(
1/ sin2 θ 0

0 1/(cos2 θ + b2 sin2 θ)

)
.

It follows from Proposition 6.1 that the configuration space of a system of one point mass M has
the metric ds2M =mds2. The corresponding metric tensor is given by G =mg. As in Eq. (6.2), the
motion of one point mass is described by the Hamiltonian system

ṙ=−∂H
∂p

, ṗ=
∂H
∂q

, (8.1)

where r= (ϕ, θ) and p= (pϕ, pθ), together with

H(q,p) =
‖p‖2G−1

2
+ U(r),

where

‖p‖2G−1 = pTG−1p=
p2ϕ

2m sin2 θ
+

p2θ
2m (cos2 θ + b2 sin2 θ)

and

U(r) = γ m2

2
R(r)

from Eq. (5.5). Here γ is the gravitational constant for the ellipsoid andR(r) is the Robin function
[17], a pure function of θ for a surface of revolution [13].

Then from Eq. (8.1), a single mass on an ellipsoid evolves according to

ϕ̇=
∂H
∂pϕ

=
pϕ

m sin2 θ
, θ̇=

∂H
∂pθ

=
pθ

m(cos2 θ + b2 sin2 θ)
,

ṗϕ =−∂H
∂ϕ

= 0, ṗθ =−
∂H
∂θ

=
p2θ (b

2 − 1) sin 2θ

2m(cos2 θ + b2 sin2 θ)2
+
p2ϕ cos θ

m sin3 θ
− γ m2

2

dR
dθ

,

An explicit form for dR/dθ may be found by combining Eqs. (4.18) and (5.10) in [13], giving

dR
dθ

==− 1

2π sin θ

(
cos θ − q(θ)µ(θ)

µ(0)

)
where q(θ) =

√
cos2 θ + b2 sin2 θ and

µ(θ) =
q cos θ

2
+


b2

2
√
1−b2 ln

(
q+
√
1−b2 cos θ
b

)
: b < 1

b2

2
√
b2−1 sin−1

(√
b2−1 cos θ

b

)
: b > 1

(8.2)

Note 4πµ(0) gives the total surface area A of the ellipsoid.
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As shown in Figure 2 (for b= 0.5), a mass initially at rest starts moving along a meridian (ϕ=

constant). This is caused by the interaction with the uniform negative mass spread over its surface,
as expressed through the Robin function.

In particular, if the mass is initially at rest pϕ(0) = pθ(0) = 0, and located at ϕ(0) =ϕ0, θ(0) 6=
{0, π2 , π}, then the motion is purely along a meridian. This in fact occurs on any surface of
revolution — see [6] and [13] for more details.

9. The two body problem and Kepler’s laws
From the intrinsic geometry point of view, we observe that in the plane, R2, the two body potential
becomes

U(r1, r2) = γ m1m2GR2(r1, r2) =
γ m1m2

2π
ln ||r1 − r2||.

where r1 = (x1, y1) and r2 = (x2, y2) [13,17]. As proved in Appendix B the two body problem
is integrable. Nevertheless, as discussed in [2,24], Kepler’s laws are no longer valid in such a
geometry, as the two body problem admits a unique elliptic orbit, the circular one. On the other
hand we have that all orbits are limited. Therefore Kepler’s laws are no longer valid on the
plane when viewed from the intrinsic geometry point of view — as opposed to planar motion
embedded in R3.

Conclusions
We have shown how to formulate the dynamics of point masses on closed surfaces. A key aspect
of the analysis is to properly account for the mathematical requirement that the mass integrated
over the surface must vanish. This leads to significant differences from previous formulations,
developed for punctured surfaces (not truly closed). For example, on a sphere, the radius of the
sphere scales out of the gravitational potential, but on a punctured sphere it does not. This has a
profound influence on the resulting equations of motion.

An interesting feature of our formulation of point mass dynamics on closed surfaces is that
Newton’s famous Law of Inertia does not hold generally (on any surface with variable Gaussian
curvature). This means that a particle at rest can begin to move. This is caused by the interaction
with the geometry, specifically with the uniform (negative) mass spread uniformly over the
surface. Moreover, Kepler’s laws, originally formulated for three-dimensional space, generally
do not hold on closed surfaces. They do not hold even for two-dimensional motion on the plane,
even though they do hold for planar motion in three-dimensional space.

Finally, and perhaps unexpectedly, variations of Gaussian curvature on closed surfaces
generate dynamics. This may be viewed as the classical analogue of the Equivalence Principle
of General Relativity, where the curvature of space-time is equivalent to a force field.
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A. Hodge decomposition
We begin by discussing the Hodge decomposition theorem for vector fields in R2 and R3.
We closely follow Baird [3] and Chorin and Marsden [9]. Any well-behaved (at least twice
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differentiable) vector field v on R2 or R3 can be decomposed in three components: transverse v1
(rotational and non-divergent), radial v2 (irrotational and divergent), and Laplacian v3 (irrotational
and non-divergent), i.e.

v = v1 + v2 + v3,

with

div(v1) = 0, div(v2) =Λ div(v3) = 0, (A 1)

curl(v1) =Σ, curl(v2) = 0, curl(v3) = 0. (A 2)

In R2, using Cartesian coordinates, equations div(v1) = 0 and curl(v2) = 0 permit one to
introduce, respectively, the functions Ψ and Φ such that the components v1 and v2 of the vector
field can be written as

v1 = J∇Ψ, v2 =−∇Φ, (A 3)

where J is the usual co-symplectic matrix J =

(
0 −1
1 0

)
and ∇= ( ∂∂x ,

∂
∂y )

T is the usual

gradient.
To determine Ψ and Φ we then substitute Eqs. (A 3) into the equations curl(v1) =Σ and

div(v2) =Λ to obtain

∆Ψ =Σ, ∆Φ=−Λ.

Remarks

1) Observe that vector fields belonging to the third class, i.e. verifying

div(v3) = 0 and curl(v3) = 0,

can be expressed as v3 =−∇Φh where Φh is a harmonic function, i.e. satisfying∆Φh = 0.
2) The solution of the Poisson equation ∆Φ=−Λ is not unique since we can always add

a solution of the corresponding harmonic equation ∆Φh = 0. To restrict the class of
harmonic functions to constant functions, extra conditions are necessary. For vector fields
in R2 the extra condition is to require that far from any sources, the velocity field tends to
zero (v(r)−→ 0 as |r| →∞). In general, each surface has its own set of extra conditions
but these are not known in general.

3) There is more general version of the Hodge decomposition theorem that can be used
for any simply connected domain D of R2, as well as for simply-connected surfaces
such as the sphere, surfaces conformal to the sphere, and the hyperbolic plane. This
generalised theorem is called the “one form decomposition theorem” (see [7,12,24,28]).
Given a surface M with metric g, we can always associate a one form field to a given
vector field by using the metric tensor. In fact if a is a vector field onM the corresponding
one form field is σ= g(a, ·) — or equivalently σ= aT g in local coordinates.

4) Let v=u be the velocity field of a fluid particle — also called a passive tracer. A fluid is
said to be incompressible if

div(u) = 0.

Given the vorticity field defined as ω= curl(u), incompressible fluids belong to the
first class of vector fields above. For the class of surfaces we are considering, using
the coordinates of the area form (see [4,13]), the first equation allows us to re-write
the velocity field as u= J∇Ψ, where Ψ is a suitably regular function, called the
streamfunction, to be determined. Substituting the equation above into curl(u) = ω, we
obtain ∆gΨ = ω, which is the equation that defines Ψ for a given metric g and a given
vorticity field ω. For more details see [4,13].
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5) Let v= a be the acceleration field of a test particle of mass mo. The corresponding force
field F =moa is a central force field if

curl(a) = 0

and div(a) =±γρ, where γ is a constant, and ρ is the density of the sources generating
the central force. The plus or minus sign in div(a) =±γρ refers to the fact that we can
have either a repulsive or attractive force. It follows that we can re-write a=−∇Ψ where
Ψ is solution of ∆gΨ =∓γρ.

B. The planar problem: symmetries and extra integrals
Consider a system of N masses, m1, m2, ...,mN with corresponding positions r1, r2, ..., rN
on the plane R2. We consider Cartesian coordiantes, rj = (xj , yj), j = 1, ..., N . The metric of the
configuration space is then simply

ds2 =
N∑
j=1

mj (dx
2
j + dy2j ).

The Green Function for the planar problem [4,13] is

G(rj , rk) =G(‖rj − rk‖) =
1

4π
log ‖rj − rk‖2

It follows from Eqs. (6.1) and (5.5) that the Hamiltonian is separable and

H =

N∑
j=1

1

mj
(p2j x + p2j y) + γ

N∑
j=1

N∑
k>j

mjmkG(‖rj − rk‖),

since in this case the Robin function is a constant [13,17].
Note, the Hamiltonian is invariant under

• rotations with respect the axis perpendicular to the plane, which implies conservation of
total angular momentum L;
• translations with respect to the x and y axis, which implies conservation of the total linear

momentum P = (Px, Py), where Px =
∑N
j=1 pj, x, Py =

∑N
j=1 pj, y ;

• time translations, which implies conservation of the Hamiltonian H (excess energy).

Due to the separability of the Hamiltonian — i.e.H =K(P ) + U(Q) with Q= (r1, ..., rN ) and
P = (p1, ...,pN ) — the Hamiltonian equations (6.2) simplify to

ṙj =
∂K
∂pj

, ṗj =−
∂U
∂rj

, (A 1)

and the first-order system of equations above is equivalent to the second-order system

r̈j =−
∂U
∂rj

, j = 1, ..., N. (A 2)

It follows that the equations of motion have an additional symmetry property: they are invariant
with respect to the time-varying coordinate transformations — the Galilean group [2] —

x̃j = xj + vxt, ỹj = yj + vyt, j = 1, ..., N.

(a) The two body problem and the Laplace-Runge-Lenz vector
In the case of two masses, the corresponding system of equations (A 1) has eight degrees
of freedom (four Hamiltonian degrees of freedom). Using conservation of linear momentum
P = (Px, Py) and the Galilean group above, the original system reduces to a system of four
degrees of freedom. Furthermore using the invariance under rotations and fixing the angular
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momentum L to a specific value, we further reduce this to two degrees of freedom. Finally, using
the conservation of the Hamiltonian H , the system is reduced to a single degree of freedom. The
two body problem in the plane is therefore integrable.

Remark. Following the analysis of Manuele Santoprete [23], Rodrigo Schaefer proved the
following theorem [7,24]:

Theorem B.1. Consider the Kepler problem on the plane R2. One body of mass m2 is held fixed at the
origin of a chosen reference system and the dynamics of the second body, has, respectively, mass m1 and
position r= (r, ϕ), where r and ϕ are the usual polar coordinates. The Kepler problem is described by the
Hamiltonian equations

ϕ̇=
∂H

∂pϕ
, ṙ=

∂H

∂pr
, ṗϕ =−∂H

∂ϕ
= 0, ṗr =−

∂H

∂r
,

where r represents also the geodesic distance between the two bodies and

H(r, pϕ, pr) =
p2ϕ

2m1r2
+

p2r
2m1

+ γm1m2 log(r)

The only integrals which are quadratic in the momentum variables, i.e. integrals of the type

I = a(r, φ)p2r + 2b(r, ϕ)pϕpr + c(r, ϕ)p2ϕ + χ(r, ϕ),

are
I1 = sinϕprpϕ +

cosϕ

r
p2ϕ − γm1m2 cosϕ, (A 3)

I1 = − cosϕprpϕ +
sinϕ

r
p2ϕ − γm1m2 sinϕ. (A 4)

Remarks

• In the literature, the vector I = (I1, I2) is also called the Laplace-Runge-Lenz vector [16].
• [7,24] proved that three of the four integrals H , pϕ, I1 and I2 are independent integrals

and in involution. Therefore the components of the Laplace-Runge-Lenz vector provide
us with an extra integral in the case of planar dynamics.
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