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Abstract

A statistical closure of the Navier–Stokes hierarchy which leads to equations for 

the two-point, two-time covariance of the velocity ield for stationary, 

homogeneous isotropic turbulence is presented. It is a generalisation of the 

self-consistent ield method due to Edwards (1964) for the stationary, single-

time velocity covariance. The probability distribution functional P[u, t] is 

obtained, in the form of a series, from the Liouville equation  by means of 

a perturbation expansion about a Gaussian distribution, which is chosen to 

give the exact two-point, two-time covariance. The triple moment is calculated 

in terms of an ensemble-averaged ininitesimal velocity-ield propagator, and 

shown to yield the Edwards result as a special case. The use of a Gaussian zero-

order distribution has been found to justify the introduction of a luctuation-

response relation, which is in accord with modern dynamical theories. In a 

sense this work completes the analogy drawn by Edwards between turbulence 

and Brownian motion. Originally Edwards had shown that the noise input was 

determined by the correlation of the velocity ield with the externally applied 

stirring forces but was unable to determine the system response. Now we 

ind that the system response is determined by the correlation of the velocity 

ield with internal quasi-entropic forces. This analysis is valid to all orders of 

perturbation theory, and allows the recovery of the local energy transfer (LET) 

theory, which had previously been derived by more heuristical methods. The 

∗ In memory of Professor Sir Sam Edwards F.R.S. 1928–2015.
1 SUPA Department of Physics, University of Strathclyde, John Anderson Building, 107 Rottenrow East, Glasgow 

G4 0NG, United Kingdom

Original content from this work may be used under the terms of the Creative 

Commons Attribution 3.0 licence. Any further distribution of this work must maintain 

attribution to the author(s) and the title of the work, journal citation and DOI.

1751-8121/17/375501+35$33.00 © 2017 IOP Publishing Ltd Printed in the UK

J. Phys. A: Math. Theor. 50 (2017) 375501 (35pp) https://doi.org/10.1088/1751-8121/aa8379

https://orcid.org/0000-0003-1009-1252
https://orcid.org/0000-0002-6723-4990
mailto:wdm@ph.ed.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1088/1751-8121/aa8379&domain=pdf&date_stamp=2017-08-22
publisher-id
doi
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
https://doi.org/10.1088/1751-8121/aa8379


2

LET theory is known to be in good agreement with experimental results. It is 

also unique among two-point statistical closures in displaying an acceptable 

(i.e. non-Markovian) relationship between the transfer spectrum and the system 

response, in accordance with experimental results. As a result of the latter 

property, it is compatible with the Kolmogorov (K41) spectral phenomenology.

Keywords: isotropic turbulence, statistical closure problem, fundamental 

problem of turbulence, homogeneous turbulence, renormalized perturbation 

theory

1. Introduction

It is sometimes remarked that the theory of turbulence is mired in controversy. In reality this 

is not so. Controversy implies activity. What we actually have is that perceptions of the sub-

ject appear to be quite static and dominated by a small number of issues which arose in the 

1960s/70s. None of these issues is necessarily of any great signiicance and some have been 

effectively resolved. In this respect, the statistical theory is really just like the rest of funda-

mental research on turbulence. One thinks of topics such as the free decay of the total energy, 

the dissipation anomaly, and the Kolmogorov (K41) theory: all of these are characterised by 

disagreements and unresolved issues. For some remarks on this aspect of turbulence research, 

see the review by Sreenivasan [1].

The reason why there is such a static (and dismissive) perception of the subject is probably 

two-fold. First, there is the exotic nature of the theoretical physics approach, as it is seen by a 

turbulence community which is dominated by engineers and applied mathematicians. Indeed, 

it seems quite unfortunate that those who are best placed to understand the statistical ield 

theoretic approach (e.g. particle theorists, condensed matter theorists) have little knowledge 

of the phenomenology of turbulence or indeed much interest in it. Conversely, those who are 

engaged in practical applications, generally do not have the appropriate background to appre-

ciate renormalization methods or statistical ield theory.

Secondly, there is the absence of consensus. If there were a clear consensus among 

theorists, then those concerned with practical applications might well ind the statistical 

theory more accessible. But the small numbers working on this approach, allied to a rather 

sporadic rate of progress, mean that any sort of consensus is hard to ind. Indeed, to those 

not in the ield, going back to the 1960s there must appear to be disagreements between 

theorists over the reasons why their respective closures failed to yield the Kolmogorov 

energy spectrum (i.e. Kraichnan [2] and Edwards [3]). Moreover, the perturbative for-

malism of Wyld [4], which could offer an attractive pedagogic way into the subject, was 

criticised by Martin, Siggia and Rose [5], in the course of developing their functional for-

malism. It is only recently that this particular issue has been resolved by Berera, Salewski 

and McComb [6].

To add to these uncertainties, we have the fact that Kraichnan introduced a new way of 

representing the triangle condition in wavenumber space. This involved working with the 

triad of wavenumber amplitudes k, p, and q chosen such that their associated wavevec-

tors formed the sides of a triangle. This leads to quite complicated forms for coeficients 

which require rather esoteric trigonometric identies in order to evaluate them. In contrast, 

Edwards followed the existing convention of using wavenumber amplitudes k and j, along 

with µ = cos θ where θ is the angle between the two wavevectors. The beneit of this form-

ulation of the problem is its simplicity, with it being possible to deduce the conservation 
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properties of the approximation to the inertial term by inspection. It is the Edwards for-

mulation which we follow here.

In the hope of clearing up some of this confusion, we present here a new and fundamental 

derivation (in the sense of theoretical physics) of an existing theory which irst saw the light 

of day in 1974 [7]. This is the local energy transfer (or LET) theory which was derived by 

modifying the Edwards single-time theory to conform to the (by that time) established exper-

imental picture of turbulent energy transfer. The result was a theory which was compatible 

with the Kolmogorov (K41) theory2. In 1978, the LET theory was extended heuristically to 

the two-time case, and in the process led to a new, more uniied view of the reasons why the 

Kraichnan and Edwards theories were not compatible with K41.

In the present work we follow in the footsteps of Edwards [3] and take the probability 

distribution functional (pdf) of luctuating velocities to be the solution to the Liouville equa-

tion (expressing conservation of probability) and introduce a model pdf, as a non-interacting 

or quasi-particle representation of the actual pdf, which is constrained to give the same covari-

ance as the exact distribution.

However, our present approach differs from that of Edwards in that we retain the full time-

dependence of the problem. Also, we do not introduce the Fokker–Planck equation, with 

associated self-consistent procedures for determining the system response as a dynamical 

friction. Instead, we argue that the system response can be identiied as the ensemble aver-

age of the Liouville operator against the Gaussian ground-state pdf and can be calculated as 

a generalised luctuation response relation (or FRR). It is perhaps also worth remarking that 

our approach lies somewhere between that of Edwards and the more general, abstract theory 

of Herring [8, 9]. That is, unlike Herring, we take the model zero-order distribution to be 

Gaussian; but, unlike Edwards, we leave the base operator undetermined.

Signiicant new features of the work may be highlighted as follows:

 1. In sections 3.2 and 3.3 we present a new analysis of the failure of Kraichnan’s DIA, using 

recent advances in the theory of turbulent dissipation, and also show that this provides 

a uniied explanation of the failure of both DIA and the Edwards SCF. Previously it had 

been assumed that the diagnosis of the Edwards theory must also apply to DIA as they are 

cognate theories.

 2. In section 4.3 we introduce a more general base operator than that of Edwards to generate 

the zero-order Gaussian distribution. We show that the Edwards base operator is over-

determined by his assumption of the Fokker–Planck form.

 3. In section  4.6, when evaluating the triple moment, we recover the Kraichnan–Wyld–

Edwards (KWE) equations  for the covariances. But this is no mere re-derivation. The 

crucial difference is that we obtain them in conjunction with a response function which 

arises naturally from the functional differentiation and which (unlike previous theories) is 

compatible with K41 phenomenology and does not have a Markovian relationship to the 

energy balance equation.

 4. In section 4.7 we show that the renormalized response function arises from the covariance 

of the velocity ield with the internal quasi-entropic forces, rather as the energy injection 

rate arises from the covariance of the velocity ield with the external stirring forces.

 5. In section 5.1, we provide a formal justiication for using the linear luctuation-response 

relationship, as this holds to all orders in perturbation theory. We note that in the past such 

relationships have been used to interpret theories and even on an ad hoc basis to provide 

a closure approximation.

2 Note that this is a form of shorthand for a more fundamental improvement. We will discuss this aspect further at 

several points.
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 6. In section 6 we make the new point that a mean-ield approximation made by Kraichnan 

in the course of deriving the DIA is justiied by a comparison with the Wyld–Lee for-

malism where this problem does not arise.

The paper is organised into the following sections:

  Section 2: we summarise the basic equations and formulate the closure problem in terms 

of the turbulence pdf, rather than employing the ensemble-based abstract notation which 

is usual in turbulence theory. We also introduce the velocity-ield propagator which is the 

basis of our present approach.

  Section 3: We review statistical closures, with particular emphasis on the Eulerian form-

ulations, and present a uniied diagnosis of the failure of irst-generation theories due 

respectively to Kraichnan, Wyld, Edwards and Herring.

  Section 4: A preliminary treatment which shows how the FRR may be applied to tur-

bulence [10] is ampliied and extended in order to provide a formal derivation of the 

two-time LET theory.

  Section 5: The relationship of this work to other work is discussed, along with a consid-

eration of possible applications.

General background reading can be found in the books by Beran [11], Leslie [12], Monin 

and Yaglom [13], McComb [14], Sagaut and Cambon [15], and the review by McComb [16].

2. Basic equations and notation

We consider the solenoidal Navier–Stokes equation (NSE) for the velocity ield uα(k, t) in 

wavenumber (k) space (see either [14] or [17]) as:
(

∂

∂t
+ νk2

)

uα(k, t) = Mαβγ(k)

∫

d
3juβ(j, t)uγ(k − j, t) + fα(k, t), (2.1)

where ν is the luid kinematic viscosity, and fα(k, t) is an arbitrarily chosen stirring force 

which we have to specify. Note that we follow Edwards and use Greek letters to denote the 

usual Cartesian tensor indices, where these take the values 1, 2 or 3, as appropriate for a three-

dimensional space. There should be no confusion with the conventional use of Greek indices 

in Minkowski four-space. The inertial transfer operator Mαβγ(k) is given by

Mαβγ(k) = (2i)−1 [kβPαγ(k) + kγPαβ(k)] , (2.2)

where i =
√
−1 , while the projector Pαβ(k) is expressed in terms of the Kronecker delta as

Pαβ(k) = δαβ −

kαkβ

k2
. (2.3)

Note that the use of the projector ensures that the velocity ield remains solenoidal.

The covariance of the luctuating velocity ield may be introduced as

Cαβ(k, k′
; t, t′) = 〈uα(k, t)uβ(k

′
, t′)〉, (2.4)

and for isotropic, homogeneous turbulence we may write this as

〈uα(k, t)uβ(−k, t′)〉 = Pαβ(k)δ(k + k′)C(k; t, t′), (2.5)

W D McComb and S R Yoffe J. Phys. A: Math. Theor. 50 (2017) 375501
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where we anticipate the effects of homogeneity in writing the left hand side. As is usual, the 

angle brackets 〈. . .〉 denote the operation of taking an average. We shall discuss this further in 

the next section, in connection with the introduction of the probability distribution functional.

If we consider the case t = t′, then we may introduce the spectral density function:

C(k, t) ≡ C(k; t, t), (2.6)

and the energy spectrum:

E(k, t) = 4πk2C(k, t). (2.7)

At this stage, Kraichnan introduced his ininitesimal response tensor which related an inin-

itesimal luctuation in the velocity ield to a corresponding luctuation in the stirring forces. 

Instead of doing this, we will introduce an ininitesimal velocity ield propagator as determin-

ing the system response. In its most general form this is deined by the relationship between 

two ininitesimal luctuations of the velocity ield, as:

δuα(k, t) = R̂αβ(k, k′
; t, t′)δuβ(k

′
, t′) for t′ � t, (2.8)

where the hat symbol indicates that the propagator R̂αβ is a random variable. Further, we re-

write equation (2.8) in terms of the functional derivative, in order to introduce the ensemble-

averaged response function, thus:

Rαβ(k; t, t′) =

〈
δuα(k, t)

δuβ(k, t′)

〉
=

〈
R̂αβ(k; t, t′)

〉
= Pαβ(k)R(k; t, t′), t′ � t,

 

(2.9)

where we have in turn invoked homogeneity and then isotropy. The quantity R(k; t, t′) is called 

the response function.

2.1. The stirring forces

In order to deine the ensemble (and, when required, to study stationary turbulence) Edwards 

[3] introduced stirring forces. These are denoted by fα(k, t) and can be added to the right hand 

side of the equation of motion, as we have done here in (2.1). These forces must be chosen to be 

isotropic, homogeneous and (in order to maintain incompressibility) solenoidal. We consider 

random forces with a multivariate normal probability distribution (that is, the pdf for each mode 

k is Gaussian) such that the associated functional integrals are analytically tractable.

It is also usual to assume that the autocorrelation of the forces is instantaneous in time 

and we represent this by choosing the time autocorrelation to be a delta function. In signal 

analysis this case is known as ‘white noise’, but it was introduced into turbulence theory by 

Edwards.

A form of correlation which satisies all these requirements is:

〈fα(k, t) fβ(k
′
, t′)〉 = Pαβ(k)F(k)δ(k + k′)δ(t − t′). (2.10)

Here F(k) is a spectral energy density which is related to the rate at which the force does work 

on the luid. The rate at which the stirring forces do work on the luid can be shown to take 

the form [3, 18]:

〈fα(k, t)uσ(k
′
, t)〉 = Pασ(k)F(k)δ(k + k′). (2.11)

We may also introduce the energy injection spectrum of the stirring forces W(k) as:

W(k) = 4πk2F(k), (2.12)

W D McComb and S R Yoffe J. Phys. A: Math. Theor. 50 (2017) 375501
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with associated rate of doing work εW, where:

εW =

∫

∞

0

W(k)dk. (2.13)

For stationary lows εW must be equal to the dissipation rate ε.

2.2. The probability distribution functional (pdf) and the moment hierarchy

We characterise the system by its probability distribution functional (pdf) which we denote by 

P[u, t], or P for short. It may be deined, in the language of statistical mechanics, as:

P[u, t]  =  the probability that the ‘phase’ of the system lies between u(k, t) and 

u(k, t) + du(k, t).
It is the pdf which is required to evaluate the covariance Cαβ(k, k′; t, t′), and other associated 

statistical quantities. Hence, although the symbol 〈. . .〉 is normally used in turbulence theory 

to indicate an ensemble average, our use of angle brackets in this work will always imply an 

average against the system pdf.

We now consider evaluating moments in the context of the closure problem. In a simpliied 

notation, with 
∫

Du representing the functional integral, we have:
∫

Du P[u, t] = 1, (2.14)

where we begin with the normalization of the distribution. Then,
∫

Du P[u, t] uu = 〈uu〉; (2.15)

∫

Du P[u, t] uuu = 〈uuu〉; (2.16)

∫

Du P[u, t] uuuu = 〈uuuu〉; (2.17)

and so on.

Problems in many-body physics are generally (as in turbulence) mathematically  intractable, 

and rely on an approximate technique, such as mean-ield theory, or self-consistent ield and 

perturbation methods. Often a combination of these approaches is required for success. It is 

universally accepted that the ideal starting point is to ind a model system which is, in some 

sense, close to the actual system; but is, despite that, mathematically tractable.

In the case of Wyld’s perturbative analysis of the NSE [4], only the second of these criteria 

is satisied. The zero-order (or ground-state) model is characterised by the molecular viscosity 

and is therefore very remote from the turbulent system it is modelling. Of course it is an easy 

matter to generate the perturbation series in terms of a book-keeping parameter associated 

with the nonlinear term. The price one then pays is the enormous mathematical complexity of 

the resulting series and the need to ind ways to sum classes of terms to all orders in order to 

achieve renormalization.

The technique pioneered by Edwards satisies both criteria for a base model. But the way 

in which it does this is rather subtle, and relies on underlying symmetry considerations, which 

only emerge when one works through his analysis in some detail. As we are using a similar 

method, based on that of Edwards, it may be helpful to make the symmetry aspects manifest 

from the beginning, and this we now do.

W D McComb and S R Yoffe J. Phys. A: Math. Theor. 50 (2017) 375501
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Let us formally decompose the pdf into symmetric and antisymmetric parts, as denoted by 

subscripts, thus:

P = PS + PA. (2.18)

Then, from elementary symmetry considerations, it follows that equations (2.14)–(2.15) may 

be rewritten as:
∫

Du PS[u, t] = 1,

∫

Du PA[u, t] = 0; (2.19)

∫

Du PS[u, t] uu = 〈uu〉; (2.20)

∫

Du PA[u, t] uuu = 〈uuu〉; (2.21)

∫

Du PS[u, t] uuuu = 〈uuuu〉; (2.22)

and so on.

In other words, the symmetric part of the distribution PS determines the even-order 

moments, whereas the antisymmetric part PA determines the odd-order moments. This decom-

position can be interpreted in terms of the perturbation expansion of the pdf, which we intro-

duce later as (4.5), where PS consists of the even order terms P0, P2, . . . while PA comprises 

the odd-order terms.

2.3. Statement of the statistical closure problem

This material may be found in the literature but it will be convenient to repeat it here, partly 

to deine some notation, but mainly to allow us to make some points about the assessment of 

closure theories which are often overlooked.

We form an equation for the covariance C(k; t, t′) in the usual way. Multiply each term in 

(2.1) by uα(−k, t′) and take the average, to obtain:
(

∂

∂t
+ νk2

)

C (k; t, t′) =
1

2
Mαβγ(k)

∫

d
3j〈uβ(j, t)uγ(k − j, t)uα(−k, t′)〉,

 

(2.23)

where we have used equations  (2.3) and (2.5), cancelled the factor δ(k + k′) across, and 

invoked isotropy, along with the property Tr Pαβ(k) = 2. We can also write this in the com-

pact form:
(

∂

∂t
+ νk2

)

C (k; t, t′) = P(k; t, t′), (2.24)

where P(k; t, t′) is just the right hand side of (2.23). The problem of expressing this in terms 

of the covariance is the well-known statistical closure problem.

Also using (2.1), we can obtain an equation describing the energy balance. On the time-

diagonal, the covariance equation takes the form for isotropic turbulence:
(

∂

∂t
+ 2νk2

)

C(k, t) = Re

[
Mαβγ(k)

∫
d

3j 〈uβ(j, t)uγ(k − j, t)uα(−k, t)〉

]
+ F(k),

 (2.25)

W D McComb and S R Yoffe J. Phys. A: Math. Theor. 50 (2017) 375501
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where F(k) is the energy injection spectral density, as deined in terms of the stirring forces by 

equation (2.11). Again, we can write this in a more compact form as:
(

∂

∂t
+ 2νk2

)

C (k; t, t) = Q(k; t, t) + F(k), (2.26)

where Q(k; t, t) can be determined by comparison with the right hand side of (2.25).

The energy spectrum is related to the spectral density by equation (2.7). Accordingly, if 

we multiply (2.25) across by 4πk2, and rearrange terms, the governing equation of the energy 

spectrum takes the form:

∂E(k, t)

∂t
= W(k) + T(k, t)− 2νk2E(k, t), (2.27)

where the energy transfer spectrum is T(k, t) = 4πk2Q(k; t, t) ≡ 4πk2Q(k, t). This equa-

tion for the energy spectrum is well known, and is nowadays sometimes referred to as the 

Lin equation [15, 17]. More detailed discussions of these equations can be found in chapter 3 

of the book [17].

3. A concise review of statistical closures

The statistical closure problem was irst formulated for turbulent shear lows by Reynolds in 

the 1890s. He showed that the equation for the mean velocity Ū  contains the unknown covari-

ance of two luctuating velocities 〈uu〉: that is, the Reynolds stress. It was later formulated for 

isotropic turbulence by Taylor in the 1930s. In this case the mean velocity is taken to be zero 

and the equation for the correlation of two velocities 〈uu〉 is found to contain the unknown cor-

relation of three velocities 〈uuu〉. The equation for 〈uuu〉 contains the unknown fourth-order 

moment 〈uuuu〉, and so on. The problem is therefore seen as an open hierarchy of statistical 

equations (one-point for Reynolds, two-point for Taylor) which requires some means of clo-

sure. Theories used in engineering applications, such as the eddy-viscosity, mixing-length and 

n-equation models, are all effectively statistical closure approximations for the single-point 

problem. In contrast, the Heisenberg eddy viscosity and the quasi-normality theory are effec-

tively closure approximations for the two-point problem. Further reading on this topic can be 

found in the following books [11, 12, 14, 17].

The irst formal treatment of the closure problem was the quasi-normality hypothesis 

(Proudman and Reid [19], Tatsumi [20]). The basic idea was: solve the next equation in 

the hierarchy for 〈uuu〉 by factorizing 〈uuuu〉 in terms of 〈uu〉 × 〈uu〉. This then gives a 

closed set of equations  for the covariance. However, quasi-normality failed when com-

puted numerically in the 1960s, as it predicted negative spectra: it was not physically 

realizable [21, 22].

The attempt at quasi-normality illustrates an important aspect of all statistical theories of 

turbulence and indeed of all statistical ield theories. In all theories the averages are evaluated 

using the tractable properties of the Gaussian or normal distribution. In particular, even-order 

moments can be factorised into products of pair-correlations. But odd-order moments cannot 

be evaluated that way, because they vanish identically by symmetry. In quasi-normality the 

fourth-order moment is evaluated in terms of pair-correlations, whereas the triple moment is 

calculated from the resulting closed equation by inverting the linear operator of the Navier–

Stokes equation. Some such manoeuvre is needed in any theory if it is to be successful, with 

the degree of success depending on the choice of manoeuvre.

W D McComb and S R Yoffe J. Phys. A: Math. Theor. 50 (2017) 375501
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3.1. The DIA of Kraichnan and the SCF theories of Edwards and Herring

The beginning of the modern age of turbulence theory was signalled by the publication in 

1959 of Kraichnan’s direct interaction approximation (DIA) [23]. This was both a mean-ield 

theory and a new kind of perturbation theory3. At the time its most important feature was 

seen as being its physical realizability. It did not have the catastrophic behaviour of quasi-

normality. Shortly afterwards, Wyld [4] showed that the DIA could be recovered from a con-

ventional renormalized perturbation theory. This work was couched in the language (and used 

the techniques) of quantum ield theory, including the introduction of diagrams analogous to 

Feynmann diagrams. Although of considerable pedagogical interest, it contained some pro-

cedural errors. A discussion of this aspect may be found in section 10.2 of the book [17], but 

these errors do not affect anything we say here.

In 1964 Edwards published his self-consistent ield (SCF) theory [3], which he also 

described as a random phase approximation, and which was based on the probability distri-

bution functional (pdf) of the luctuating velocities. Employing a technique which has since 

become commonplace in statistical ield theory, he began by introducing a model system with 

a Gaussian pdf and the same velocity covariance as the turbulence system. Then he introduced 

a perturbation expansion in terms of the difference between the model system and the real sys-

tem. A particularly interesting feature of Edwards’s work was the way in which he exploited 

the symmetries of the problem to compensate for the lack of a variational principle, such as 

the minimum free energy, as possessed by microscopic systems in thermal equilibrium. The 

result was a set of equations for the single-time covariance and a renormalized response func-

tion. It should be noted that this result was cognate to the DIA theory of Kraichnan and, like 

it, maintained the properties of the inertial term, such as conservation of energy.

Another attempt at a self-consistent ield theory was made by Herring [8] in 1965. This 

was a more abstract approach than that of Edwards, although it also started from the Edwards 

form of the Liouville equation. In strategy it lay somewhere between the Edwards SCF and the 

Kraichnan DIA, in that it formally renormalised a ‘bare’ operator. Herring’s basic approach 

involved the introduction of single-mode projectors and single-mode distributions. Then the 

perturbation expansion was in terms of the difference between single-mode and coupled 

forms. There are similarities and differences between the two forms of SCF, and they both lead 

to the same form of covariance equation. However, the response function in Herring’s theory 

was the same as the time-independent DIA form and hence differed from that of Edwards: see 

section 4.3 of [14] for a fuller account of this work.

In the following year, Herring was able to extend his SCF theory to the two-time case 

[9], the result being a theory which was closely related to Kraichnan’s DIA, rather then the 

Edwards theory. In 2002 Edwards (with Schwartz) [24] revisited the problem in the more 

general context of noise-driven nonlinear ield equations, but did not succeed in generalising 

his theory to the two-time case in a way comparable to the DIA of Kraichnan and the SCF of 

Herring. In effect, such a generalisation is the subject of the present paper.

3.2. The pioneering closures and the Kolmogorov (K41) theory

Historically, the primary test of a spectral closure approximation lay in the answer to the ques-

tion: does it possess the Kolmogorov ‘-5/3’ spectrum as its asymptotic solution in the limit of 

ininite Reynolds numbers? This consideration dominated thinking in the subject during the 

1960s. But later on in the 1980s, developments in the study of structure functions led to this 

3 It is an example of a renormalized perturbation theory, such as occurs in quantum ield theory or many-body 

problems.
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view being challenged. In particular, the behaviour of power-law exponents with increasing 

order was believed by some to indicate the presence of intermittency effects, which in wave-

number space would change the ‘−5/3’ spectrum to a slightly different value. A discussion of 

this topic will be found in section 3.2.1 of the book [14], and later work based on multifractal 

models is covered in the review by Boffetta, Mazzino and Vulpiani [25].

However, in recent years there as been a growing interest in inite-Reynolds-number cor-

rections, to such an extent that the view that K41 is not a test of closures seems increasingly 

dated. Theoretical treatments have been given by Efinger and Grossmann [26], Barenblatt and 

Chorin [27], Qian [28], Gamard and George [29], and Lundgren [30]. The last-named is par-

ticularly interesting as he used matched asymptotic expansions to show that the  second- and 

third-order exponents were of K41 form, with only inite-Reynolds-number corrections, and 

this was supported by a comparison with the experimental results of Mydlarski and Warhaft 

[31]. Experimental and numerical investigations of inite-Reynolds-number effects have been 

made by Gotoh, Fukayama and Nakano [32], Antonia and Burattini [33], Tchoufag, Sagaut 

and Cambon [34], McComb et al [35], and Antonia et al [36]. In particular, McComb et al 

[35], present results which suggest that systematic error with increasing order of structure 

function is more likely than anomalous exponents, while Antonia et al [36] conclude that a 

failure to take account of the effects of inite Reynolds numbers has resulted in misguided 

assessments of the Kolmogorov theory.

Here we separately discuss the nature of the dificulty for DIA, and then for the Edwards 

SCF, of showing compatibility with K41.

3.2.1. Incompatibility of DIA with K41. Kraichnan had originally concluded [23] that the DIA 

predicted an inertial-range spectrum of the form

E(k) = C′
ε

1/2U1/2k−3/2
, (3.1)

where C′ is a constant, and U stands for the root-mean-square velocity. In 1964, he further 

concluded [2] that:

Recent experimental evidence gives strong support to [the Kolmogorov ‘−5/3’ form] 

and rules out [the ‘−3/2’ form above] as a correct asymptotic law.

The experimental evidence that he cited was the iconic investigation of Grant, Stewart and 

Moillet [37]; and, of course, since that time there has been overwhelming evidence to support 

the K41 form of the energy spectrum: see the survey papers by Sreenivasan [38] and Yeung 

and Zhou [39].

In examining the inertial range behaviour of his theory, Kraichnan followed the example of 

Batchelor [40], and introduced the lux of energy through wavenumber κ, which he denoted 

by the symbol Π, as deined by

Π(κ) =

∫

∞

κ

T(k) dk = −

∫

κ

∞

T(k) dk. (3.2)

Then the condition for an inertial range is given in terms of the maximum value of the lux by:

Πmax = ε. (3.3)

This condition, when it holds for a range of wavenumbers, is known as scale invariance.

A version of Kraichnan’s analysis leading to equation (3.1) can be found translated into the 

simpler Edwards formalism in section 6.1.6 of the book by McComb [14]. This analysis led to 

an asymptotic form of the response function G(k, τ) as

W D McComb and S R Yoffe J. Phys. A: Math. Theor. 50 (2017) 375501
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G(k, τ) =
exp(−νk2

τ) J1(2νkτ)

Ukτ
, (3.4)

where τ = t − t′ and J1 is the irst-order Bessel function of the irst kind. We should note 

the presence of the viscous time-scale (νk2)−1 and the energy-containing range time-scale 

(Uk)−1, but not the inertial-range time-scale (ε1/3k2/3)−1. For large values of k the exponen-

tial factor may be treated as unity, and Kraichnan concluded that the two-time correlation and 

response functions scaled on (Uk)−1; also known as the convective or sweeping time-scale.

This led Kraichnan to the conclusion that a satisfactory closure could not be obtained in the 

Eulerian coordinate system. This seems rather counter-intuitive, as this is the coordinate sys-

tem which is universally employed throughout luid dynamics. His way out of this ‘impasse’ 

was to apply the ideas of DIA in a Lagrangian-history coordinate system. Here we will con-

sider some of the consequences of this conclusion.

In particular, it stimulated interest in the scaling of two-time correlations. This is an impor-

tant subject in its own right. But, in certain quarters, the above analysis did tend to polarise 

matters into ‘convective’ versus ‘Kolmogorov’ scaling. Or indeed, an assumption that Eulerian 

correlations scale on (Uk)−1 in the inertial range, whereas Lagrangian correlations were sup-

posed to scale on (ε1/3k2/3)−1. In reality, the situation is a great deal more complicated than 

that, as a glance at some recent review articles on the subject will show [41–43]. However, we 

will make some speciic points here, as derived from our own earlier work.

In order to do this, it is helpful to put (3.1) into a form which is more immediately compa-

rable with the Kolmogorov spectrum. We may eliminate the dependence on the rms velocity 

U by substituting from the asymptotic form of the Taylor surrogate for the dissipation rate (see 

McComb, Berera, Yoffe and Linkmann [44]),

ε = Cε,∞

U3

L
, (3.5)

where L is the integral length-scale and Cε,∞ is a constant. We can then write (3.1) as

E(k) = C′C−1/3
ε,∞ ε

2/3Lµk−5/3+µ
, (3.6)

where µ = 1/6.

Kraichnan only computed the Eulerian DIA for free decay at low Reynolds numbers (we 

will discuss this later). However, in 1989 McComb, Shanmugasundaram and Hutchinson [45] 

reported calculations for free decay of both DIA and LET for Taylor-Reynolds numbers in 

the range 0.5 � Rλ(tf ) � 1009, where tf is the inal time of the computation. These results do 

not support the asymptotic form of the DIA energy spectrum, as given above by (3.1). It was 

found that (for example) at Rλ(tf ) = 533, the two theories were virtually indistinguishable 

and both gave the Kolmogorov spectrum to within the accuracy of the numerical methods. It 

was shown that this result was not an artefact of the initial conditions, by taking k−3/2 as the 

initial spectrum, whereupon it was found that both theories evolved away from this form to 

once again give k−5/3 as the inal spectrum.

In that investigation, two-time correlations for both theories, as well as propagator (LET) 

and response (DIA) functions, were tested with both types of scaling. It was found that both 

theories behaved in a very similar way. Preliminary conclusions were drawn as follows:

 1. Both scaling methods were partially successful, with convective scaling tending to col-

lapse data at lower wavenumbers, and Kolmogorov scaling being more effective at higher 

wavenumbers.

 2. Overall, Kolmogorov scaling seemed to be the more effective of the two.
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 3. The difference between the two methods increased with increasing Taylor-Reynolds 

number, particularly at shorter lag times.

 4. When a shorter reference time was taken (tf = 0.01 as opposed to tf = 0.06), the position 

was reversed, with convective scaling behaviour becoming more effective, even at large 

wavenumbers.

In considering Kraichan’s approximate analysis of the inertial range behaviour of the DIA, 

we should also note the unphysical nature of the response function (3.4), which is oscillatory 

when a monotonic decline would be expected; and that the condition (3.2) is inconsistent 

with the  −3/2 form, when it actually leads to  −5/3 [46]. We make these points to emphasise 

the fact that Kraichnan’s analysis of the failure of DIA to yield the Kolmogorov spectrum is 

neither deinitive nor prescriptive for other theories. We may obtain a different view of this 

problem by considering the analogous analysis of the Edwards theory [47].

3.2.2. Incompatibility of the Edwards SCF with K41. In a later paper [47], Edwards examined 

the properties of his equations in different situations and with different inputs. A particularly 

interesting and important feature, was his formulation of the ininite Reynolds number limit. 

Batchelor [40] had in 1953 observed that taking a limit of the viscosity shrinking to zero while 

maintaining the dissipation rate constant, must necessarily concentrate the dissipation at ini-

nite wavenmbers. Edwards formalised this idea by introducing the delta function δ(k −∞) 
and balancing it by another at the origin, which acted as an input. Thus for stationary station-

ary turbulence at ininite Reynolds numbers, the transfer spectrum T(k) could be written as:

T(k) = εWδ(k)− εδ(k −∞), (3.7)

where εW is the rate of doing work by the stirring forces, and ε is the dissipation rate. For sta-

tionarity the two rates must be the equal; and Edwards just used the symbol for the dissipation, 

as is usual in the subject4.

Edwards argued that under these circumstances the Kolmogorov spectrum E(k) ∼ ε2/3k−5/3 

should apply at all wavenumbers, and demonstrated that this was the case for his covariance 

equation, with the transfer spectrum taking the form given in (3.7). The problem was that his 

equation for the renormalized response involved an integral which diverged as the wavenum-

ber tended to zero. This is (by analogy) often referred to as an infra-red divergence. Thus, 

despite its other achievements, the Edwards SCF theory did not possess the correct limiting 

behaviour at ininite Reynolds numbers.

This was necessarily true also of the DIA, as they are cognate forms. It is a trivial matter to 

show that the Edwards criterion can be integrated to give (3.3). So, in that respect at least, the 

two approaches are mathematically equivalent. A fuller discussion can be found in section 4.3 

of [17].

As we have seen, Kraichnan and Edwards analysed the failure of their respective theories 

in different ways. In Kraichnan’s case this led to a much more elaborate approach than the 

simpler Edwards view, which merely required some physical basis for introducing a counter-

term to the response equation in order to cancel the infra-red divergence. In contrast, Kraichnan 

examined the behaviour of the DIA in terms of its ability to distinguish between convection and 

energy transfer and on the basis of much approximate analysis concluded that theories should 

be invariant under random Galilean transformations. He also concluded that Eulerian two-time 

theories could not satisfy this requirement, although single-time theories could [12, 14].

4 We have recently argued elsewhere [17, 35, 44] that there is merit in using different symbols for the rate of 

 dissipation, rate of inertial transfer, rate of doing work and rate of decay.
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As mentioned earlier, Kraichnan’s response to this dificulty was to develop Lagrangian-

history theories, and in this he was followed by others, especially Kaneda and Kida [48–51]. 

As such theories are random Galilean invariant, the implication is that they are compati-

ble with the Kolmogorov spectrum. It should be emphasised that all turbulence theories are 

Galilean invariant in the ordinary sense. The concept of random Galilean invariance conlates 

the exact symmetry of Galilean invariance with the deinition of the statistical ensemble, and 

affects the operation of the ensemble average. For further discussion, see chapter 5 of [17], 

and also the paper by Frederiksen and Davies [52].

3.3. The original derivation of the LET theory

In 1974 it was shown by McComb [7] that the relationship between the response function and 

the energy balance equation  in the Edwards SCF theory was incompatible with the known 

phenomenology of turbulence. As we know, SCF and DIA are cognate theories, so this con-

clusion also applied to the DIA. We shall discuss these matters in more detail presently. But 

for the moment we note that the physically correct use of the energy balance equation to deine 

the response function led to the local energy transfer or LET theory. This was later extended 

in a rather heuristic way to the two-time case [53].

In order to understand the signiicance of this result, and how it led on to the LET theory, 

it is helpful to recall the form taken by the spectral energy balance (or Lin equation) in the 

presence of an energy input, as given by equation (2.27). For the stationary case, we have:

0 = W(k) + T(k)− 2νk2E(k). (3.8)

Our immediate purpose is to understand the Edwards theory in terms of this phenomenology, 

and that essentially amounts to writing down the Edwards expression for T(k). This is given 

in appendix, and from (A.3) applied to the stationary case this is:

T(k) = 4π

∫

d
3j k2L (k, j)D(k, j, |k − j|)C (|k − j|) [C ( j)− C(k)] , (3.9)

where D(k, j, |k − j|) is given by (A.5). Note that, due to the antisymmetry of the integrand 

under interchange of k and j, the transfer spectrum satisies
∫

dk T(k) = 0, (3.10)

as required for conservation of energy.

The Edwards closure approximation was originally derived as follows [3]. Drawing an 

analogy with the Fokker–Planck equation, Edwards introduced diffusion and dynamical fric-

tion terms, s(k) and r(k) respectively, as:

s(k) = 4π

∫

d
3j k2L (k, j)D(k, j, |k − j|)C (|k − j|)C ( j) ; (3.11)

and

r(k) =

∫

d
3j k−2L (k, j)D(k, j, |k − j|)C (|k − j|) . (3.12)

Our deinition of the dynamical friction differs from that of Edwards, only insofar as it permits 

us to write the transfer spectrum in terms of the energy spectrum E(k), rather than the covari-

ance, thus:
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T(k) = s(k)− 2r(k)k2E(k). (3.13)

The interpretation of this result is crucial to an understanding of the Edwards approach 

(and, by extension, those of Kraichnan and Herring). We see that the transfer spectrum has 

been divided into two parts. The irst part s(k) transfers energy into mode k by coupling to all 

other modes. Whereas, the second part involves a coeficient r(k), which arises from a sum 

over modes, which multiplies E(k) and which acts like an effective viscosity. Edwards inter-

preted it as such, and wrote an expression for the inverse lifetime ω(k) of mode k as

ω(k) = νk2 + r(k)k2
. (3.14)

A physical interpretation was given by Edwards [47]. For this we will ind it helpful to 

restore the time derivative on the left hand side, as in equation (A.3). We can think of this as 

being a slow variation near the steady state, and write the spectral energy balance as:

∂E(k, t)

∂t
= W(k) + s(k)− 2r(k)k2E(k)− 2νk2E(k), (3.15)

where we have substituted from (3.13) for the transfer spectrum. It may be interpreted as 

follows:

The rate of change of energy in mode k = The direct injection of energy into mode 

k + the transfer into mode k from all other modes  −  the transfer out of mode k to other 

modes  −  the direct dissipation of energy in mode k due to molecular viscosity.

A key point is that the loss of energy from mode k is proportional to the amount of energy 

contained in that mode.

It was pointed out by Herring [8], that there were many ways of choosing s(k) and r(k) such 

that the appropriate constraints were satisied. Yet this particular decomposition must have 

seemed very natural at the time, because this is precisely the form that transport equations take 

in statistical physics. One has, for instance, the Fermi master equation, the Chapman–

Kolmogorov equation and the Boltzmann equation. Indeed, Edwards drew a speciic analogy 

between the above result and the Peierls–Boltzmann equation for phonon transport in solids, 

which also involves triadic mode interactions [47]. However, also at that time, the irst meas-

urements of the turbulence energy balance were just beginning to be published and it is only 

with hindsight that one can see that these interpretations of closures were incompatible with 

the phenomenology of turbulence. In a pioneering paper in 1963, Uberoi [54] obtained T(k), 
for grid turbulence, from the Lin equation, by measuring the local (in wavenumber) dissipa-

tion and decay rates. The resulting transfer spectrum was found to behave like a sink of energy 

at low wavenumbers and as a source of energy at high wavenumbers. This behaviour has since 

received abundant conirmation from direct numerical simulations.

The preceding interpretation of the single-time Edwards theory also applies to DIA in two-

time form. Although it is easier to understand these matters in the simpler formulation due to 

Edwards, nevertheless the DIA was also explicitly interpreted in purely Markovian terms by 

Kraichnan [23]. We may quote the relevant passage as follows:

The net low is the resultant of these absorption and emission terms. It will be noticed 

that in contrast to the absorption term, the emission terms are proportional to E(k). This 

indicates that the energy exchange acts to maintain equilibrium. If the spectrum level 

were suddenly raised to much higher than the equilibrium value in a narrow neighbour-

hood of k, the emission terms would be greatly increased while the absorption term 

W D McComb and S R Yoffe J. Phys. A: Math. Theor. 50 (2017) 375501



15

would be little affected, thus energy would be drained from the neighbourhood and 

equilibrium re-established. The structure of the emission and absorption terms is such 

that we may expect the energy low to be from strongly to weakly excited modes, in 

accord with general statistical mechanical principles.

This argument is essentially a more elaborate version of that due to Edwards, and pre-

sents what is very much a Markovian picture of turbulence energy transfer. But in later years, 

numerical experiments based on high-resolution direct numerical simulations, did not bear 

that picture out. In particular, we note the investigation by Kuczaj et al [55].

We can sum up the situation regarding the failure of the pioneering closures as follows. 

Their form of T(k) is only valid for Markov processes (with some examples listed above), so 

it is incompatible with the nature of turbulence which is non-Markovian. It is also incompat-

ible with the phenomenology of turbulence, where the entire T(k) acts as input (or output), 

depending on the value of k [7]. This is in fact the basic law in both the DIA and the SCF 

theories: the fault lies not in the covariance equations but in the relationship of the response 

function to them.

The LET theory was introduced with the hypothesis that ω(k) is determined by T(k) and 

can be deined by a local energy balance [7]. It was extended to the two-time case [53]; and, 

less heuristically, in subsequent papers by McComb and co-workers [56–59]. Essentially, the 

two-time LET theory comprises the DIA covariance equations plus the generalized luctua-

tion-response relation. It may be compared to Herring’s SCF [9] which comprises the DIA 

response equation, single-time covariance equation and the generalized luctuation-response 

equation. It may also be compared directly to DIA in terms of response equations. However, 

before doing that, we will go back to the simplest case, and show how LET arose in relation 

to the Edwards SCF.

It was anticipated by McComb [7], that a correct assignment of the system response in 

terms of T(k) (i.e. ‘correct’ in the sense of agreeing with the turbulence phenomenology of 

energy transfer) could lead to a response function which was compatible with K41. This was 

found to be the case and, citing the form given in [60], we may write for the turbulence viscos-

ity νT(k):

νT(k) = k−2

∫

j�k

d
3j

L(k, j)C(|k − j|)[C(k)− C( j)]

C(k)[ω(k) + ω( j) + ω(|k − j|)]
, (3.16)

where ω(k) = νT(k)k
2. The lower limit on the integral with respect to j arises when we con-

sider the lux through mode k. It was used in [7] to justify wavenumber expansions leading 

to differential forms but is not needed here and can be dropped. The interesting point here is 

made by rewriting this in terms of the Edwards dynamical friction r(k). From equation (3.12), 

with the substitution of (A.5) for the memory function D(k, j, |k − j|), we may rewrite (3.16) 

as:

νT(k) = r(k)− k−2

∫

d
3j

L(k, j)C(|k − j|)C( j)

C(k)[ω(k) + ω( j) + ω(|k − j|)]
. (3.17)

It was shown [7] that the second term cancelled the divergence in r(k). The question now 

arises: how does one extend this idea to the two-time covariance? 

The irst step in doing this was based on the introduction of a velocity ield propagator 

[53]; but, although this led to the LET governing equation for the turbulence response func-

tion R(k; t, t′), the concept was in itself unsatisfactory, and was later replaced by a propagator 

acting directly on velocity-ield covariance [56], thus:
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C(k; t, t′) = R(k; t, t′)C(k; t, t). (3.18)

This also takes the form of the luctuation-response relationship, and this interpretation was 

further developed by McComb and Kiyani [58, 59].

Just as we did for the stationary LET and Edwards SCF theories, it is of interest to compare 

the DIA and LET response equations. We may write the DIA response equation in its usual 

form [23]:
(

∂

∂t
+ ν0k2

)

G(k; t, t′)

+

∫

d
3j L(k, j)

∫ t

t′
ds G(k; s, t′)G( j; t, s)C(|k − j|; t, s) = δ(t − t′),

 

(3.19)

where G is the DIA response function. This may be compared with the LET response equa-

tion, which takes the form [59]:
(

∂

∂t
+ ν0k2

)

R (k; t, t′)

+

∫

d
3j L (k, j)

∫ t

t′
dsR ( j; t, s)R (k; s, t′)C (|k − j| ; t, s)

=

∫

d
3j L (k, j)

∫ t′

0

ds
C (|k − j| ; t, s)

C (k; t′, t′)

× {R (k; t′, s)C ( j; t, s)− R ( j; t, s)C (k; t′, s)} .

 

(3.20)

If we compare (3.20) with the DIA response equation (3.19), the additional terms on the right 

hand side of (3.20) give rise to those terms in the single-time theory which cancel the infra-red 

divergence and so ensure compatibility with the Kolmogorov K41 spectrum. However, a more 

signiicant aspect is that these additional terms mean that, for the two-time LET, the relation-

ship between the transfer spectrum and the response equation is in agreement with the turbu-

lence phenomenology as established by experiment and direct numerical simulation.

Is worth noting that the luctuation-response relation can be used directly to calculate the 

LET theory instead of the above response equation. With this simpliication LET is much 

easier to calculate than DIA. So, despite the extra complication, the two-time LET bears the 

same relationship to DIA as its single-time, stationary version does to the Edwards theory.

3.4. Numerical computation of the Eulerian closures

The numerical study of renormalized closure approximations was begun in 1964 by Kraichnan 

[61], who used DIA to calculate the free decay of turbulence from a Gaussian initial state 

with an arbitrarily chosen energy spectrum. Three such initial spectra were considered, and 

in all cases the qualitative behaviour was impressive, with the nonlinear coupling transfer-

ring energy to higher wavenumbers than those initially excited, and the development of the 

transfer spectrum from zero to a form in agreement with experiment. The development of self-

preservation and self-similarity were both observed during the decay. Quantitative agreement 

with experiment was as good as the agreement between experiments, and overall the results 

were very satisfactory. As the values of Taylor–Reynolds number were less than 40, the ques-

tion of K41 behaviour did not arise. Nevertheless, this was a truly historic investigation of a 

theory which was derived from general principles, and which did not possess any adjustable 

parameters.
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A similar but more general investigation was carried out by Herring and Kraichnan [62], 

who considered not only DIA, but also Herring’s SCF; a model derived from the Edwards 

SCF and denoted by EDW; along with Kraichnan’s test-ield model (or TFM), which was a 

single-time theory derived from the DIA and containing one adjustable parameter5. There are 

two features of this investigation which are particularly worthy of note.

First, there was the emphasis on the skewness as providing the most sensitive criterion for 

deciding between theories. Secondly, there was their comparison with the results from the irst 

DNS of isotropic turbulence, which had just been performed by Orszag and Patterson [63]. As 

well as this, there were comparisons with results from laboratory experiments up to Taylor-

Reynolds numbers of about 50.

In general, all the theories performed well in producing qualitatively correct forms of the 

evolving spectra. For quantities like the dissipation spectrum, all theories lay within the scatter 

of the experiments. In the case of the skewness, there was a possibility of comparision with 

the numerical simulation for values of the Taylor–Reynolds number of around 18. All theories 

behaved much like the simulation but took a range of asymptotic values, from TFM′ (which 

was TFM with a different value of the adjustable parameter) and reached a value just above 

that of the simulation, to EDW which lay well below the simulation. The skewness factor can 

also be seen as a measure of the effectiveness of theories at transferring energy through wave-

number. Calculation of transfer spectra and transport power revealed the EDW transferred the 

least energy, DIA and SCF were intermediate, and TFM and TFM′ were the most eficient.

In 1984, some twenty years after Kraichnan’s irst numerical computation of the DIA [61], 

a similar calculation was carried out for the LET, in comparison with DIA, and employing 

identical methods to those of Kraichnan. At low to moderate Reynolds numbers, the DIA and 

the LET theories were found to be very similar. Comparison of the newer DIA results with 

the earlier computation by Kraichnan revealed very similar behaviour, but with slight system-

atic differences which were attributed to the use of the different formulations: (k, j,µ), due 

to Edwards, and (k, j, l), due to Kraichnan6. At very high Reynolds numbers, the LET results 

were found to agree well with experiment and also with the Lagrangian-history theories [64]. 

Indeed, surprisingly, the purely Eulerian LET theory was found to agree rather closely with 

the strain-based Lagrangian-history direct interaction approximation, and further comparisons 

showed that this agreement extended to low Reynolds numbers as well.

These results were for free decay, from a variety of arbitrarily chosen initial spectra, at 

evolved Taylor–Reynolds numbers up to Rλ = 533. Subsequent investigations followed the 

same format but explored other aspects. In 1989 [45], the concentration was on the two-time 

correlation and response functions over the range 0.5 � Rλ � 1009. It was found that convec-

tive scaling was less important than inertial-range scaling, and this led on to a critical analysis 

of the concept of random Galilean invariance. We have previously referred to these results in 

section 3.2.1.

In 1992, as well as introducing the luctuation-response relationship as the deining step of 

the LET theory, and providing a new simpliied derivation (along with making some minor 

corrections to the equations), the work was extended to the case of passive scalar convection 

[56]. Results were obtained for free decay for 5 � Rλ � 1060 and for Prandtl numbers of 0.1, 

0.5 and 1.0. In both velocity and scalar spectra, Kolmogorov-type power laws were found at 

the higher Reynolds numbers. In the same year, Shanmugasundaram [65] published the results 

of an investigation into the processes of energy transfer in LET. He found that energy transfer 

5 They also calculated an abridged form of Kraichnan’s Lagrangian theory at somewhat higher Reynolds numbers, 

but we will not discuss that here.
6 For a detailed discussion of these formulations, see section 3.5 of [17].
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was overwhelmingly local in character. At higher Reynolds numbers there were some indica-

tions of reverse nonlocal transfers, but these did not make a signiicant contribution to the 

transfer spectrum T(k). A particularly interesting result was obtained from the computation of 

Kraichnan’s energy transfer locality function [66]. This was found to agree well with results 

from DNS and from previous computations by Kraichnan of his test ield model  closure. The 

author concluded by saying:

…our picture of the modal interactions and the consequent energy transfers is not 

very far from the classical picture …and is a clear demonstration of the ability of the 

LET theory not only to predict the spectra correctly but also to resolve the underlying  

physical mechanisms.

In a later investigation which was reported in 2003, there were two new features. First, 

there was a detailed comparison of free decay results with an in-house direct numerical simu-

lation of the Navier–Stokes equations with, as far as possible, the same initial conditions. 

Secondly, there was a preliminary attempt to apply the DIA and LET closures to stationary 

turbulence. This raised problems regarding the computation of time-history integrals over 

a long transient period, and for this reason the results were seen as being rather tentative in 

nature. In short, for free decay both closures were found to agree with the simulation within 

experimental error, as found in earlier investigations. In the forced case, agreement was not 

so good, except for high-wavenumber spectra and quantities derived from this region such as 

the Taylor microscale. This alone would suggest that the form of the low-wavenumber forcing 

needs further attention.

In 2004 Kiyani and McComb [58] reported some technical improvements to the LET, 

mainly to do with the introduction of time-ordering to the luctuation-response relation. 

The following year, McComb and Kiyani [59] assumed exponential time-dependences and 

formally veriied that there was no infra-red divergence. They also derived a single-time 

Markovianised form of the LET. This latter theory still has to be computed for a standard test 

problem, such as free decay from a given initial spectrum.

4. A formal derivation of the LET as a self-consistent ield theory

Essentially we now develop our approach in parallel with an account of the Edwards method 

for an invariant exact pdf, which we wish to extend to the non-invariant case.

4.1. The Liouville equation for the exact pdf

As is well known, the Liouville equation expresses conservation of probability in the form

dP

dt
≡

(

∂

∂t
+ L

)

P = 0, (4.1)

where P is the pdf of the system, and the evaluation of the total time-derivative depends on the 

nature of the system. It is most familiar in the context of statistical mechanics where it is usu-

ally applied to the N-body Hamiltonian system, the Liouvillian operator L  being evaluated 

with the aid of Hamilton’s equations.

It was shown by Edwards [3] that the analogous equation describing the evolution of the 

probability density functional P[u, t] of the velocity ield for stirred luid motion could be 

written as
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[

∂

∂t
+ V(t) + L(t)

]

P[u, t] = 0, (4.2)

where L = V + L, for this system, and all the operators are deined by their action on P. 

Thus:

V(t)P[u, t] =

∫

d
3p

δ

δuρ(p, t)

[
∫

d
3q Mρβγ(p)uβ(q, t)uγ(p − q, t) P[u, t]

]

,

 

(4.3)

and

L(t)P[u, t] = −

∫

d
3p

δ

δuρ(p, t)

[(

νp2uρ(p, t) + Pρσ(p)F( p)
δ

δuσ(−p, t)

)

P[u, t]

]

.

 (4.4)

It is important to note that the Liouville equation is linear in the pdf.

In addition to the original treatment by Edwards [3], derivations can be found in the books 

by Leslie [12] and by McComb [14] where, with some changes of notation, it appears as 

equation (6.71). It can also be derived by consideration of the characteristic (or generating) 

functional: see the book by Beran [11]. For sake of completeness, we note that Beran [67] has 

also demonstrated that the method of Edwards can be used to recover the familiar result for 

the N-body Hamiltonian system.

At this stage, as we recognize that P[u, t] is non-Gaussian, with non-zero skewness and a 

latness factor that differs from the Gaussian value of 3, we have to calculate the effects of 

the nonlinear coupling which should lead to corrections to the zero-order, or base, Gaussian 

model distribution. We do this iteratively in the next section.

4.2. Perturbation expansion of the Liouville equation

Historically, the concept of perturbation theory has been associated with a small perturbation. 

However, with the growth of statistical ield theory from the 1970s onwards, the term has 

been more generally associated with an iterative calculation based on an expansion parameter, 

which is used to group terms of the same order, and which is subsequently put equal to one. In 

particular, this has been the standard usage in turbulence theory for many years.

In order to follow the general strategy of Edwards, we expand the exact pdf about a 

Gaussian model distribution P0[u] in a perturbation series, thus:

P[u, t] = P0[u] + ǫP1[u, t] + ǫ2P2[u, t] + O
(

ǫ3
)

, (4.5)

where ε is a book-keeping parameter which is later set equal to one7. As P0 is an invariant 

distribution, the time-dependence of the pdf enters through the higher-order terms. Since the 

model distribution is both normalised, and chosen to recover the exact covariance, the higher-

order coeficients are constrained, as follows,

∫

Du

(
∑

i

P2i[u, t]

)

= 0, (4.6)

and

7 The use of this type of ordering parameter, which is treated as if small during the calculation and set to one at the 

end, is discussed in the books by Leslie [12] and McComb [14].
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∫

Du

(
∑

i

P2i[u, t] uµ(k, t)uν(−k, t′)

)

= 0, (4.7)

for integer i = 1, 2, 3, . . .∞. We recall that the odd orders cannot contribute to these integrals 

since they are antisymmetric in u.

We introduce the zero-order operator associated with the model which is the basis of our 

perturbation theory through the relationship

L0P0[u] = 0. (4.8)

We shall refer to the zero-order operator and distribution as the base operator and the base 

distribution respectively. Further details of their forms are given in the next section.

The operator L0 is now introduced into the Liouville equation, as given by equation (4.2), 

by simultaneously adding and subtracting L0P. With some rearrangement it becomes:
[

∂

∂t
+ L0 + V +

(

L − L0

)

]

P[u, t] = 0. (4.9)

For later convenience, we will rewrite this equation as:
[

Lt,0 + V +
(

L − L0

)]

P[u, t]. = 0, (4.10)

where

Lt,0 =
∂

∂t
+ L0. (4.11)

It should be noted that we can also write

Lt,0P0[u] = 0. (4.12)

This follows from the invariance of the zero-order distribution and the deinition of the L0 

operator, as given by (4.8).

Since the operator V stems from the non-linear term and is antisymmetric in u, we assign 

order ε to it. The operator L − L0 generates a correction to the latness factor of the pdf and is 

taken to be of order ǫ2. These two terms represent the coupling of the model (i.e. Gaussian) 

system to the exact Navier–Stokes system.

The perturbation expansion of the pdf is then substituted for P[u, t], such that
[

Lt,0 + ǫV + ǫ2
(

L − L0

)](

P0[u] + ǫP1[u, t] + ǫ2P2[u, t] + · · ·

)

= 0 . (4.13)

Collecting terms with the same order of ε, we ind

ǫ0
: Lt,0P0 = 0, (4.14)

ǫ1
: Lt,0P1 + VP0 = 0, (4.15)

ǫ2
: Lt,0P2 + VP1 +

(

L − L0

)

P0 = 0, (4.16)

and so on, to all orders. However, we shall only work to order ǫ2. Recall that equation (4.14) at 

O
(

ǫ0
)

 is satisied trivially, because both the partial time derivative and the operator L0 vanish 

independently when acting on P0.

Formally we may obtain the irst- and second-order coeficients from (4.15) and (4.16) as:

P1[u, t] = −L
−1

t,0 VP0, (4.17)
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P2[u, t] = −L
−1

t,0 VP1 − L
−1

t,0 (L − L0)P0,

= L
−1

t,0 VL
−1

t,0 VP0 − L
−1

t,0 (L − L0)P0,

= L
−1

t,0 VL
−1

t,0 VP0 − L
−1

t,0 LP0,

 

(4.18)

where in the last line we invoke L0P0 = 0. From this we may write the exact pdf as an expan-

sion, thus:

P[u, t] = P0[u] + Θ1[u, t]P0[u] + Θ2[u, t]P0[u] + . . .

= (1 +Θ1[u, t] + Θ2[u, t] . . . )P0[u],
 (4.19)

where the coeficients are given by:

Θ1[u, t] = −L
−1

t,0 V , (4.20)

Θ2[u, t] = L
−1

t,0 VL
−1

t,0 V − L
−1

t,0 L, (4.21)

and so on, to all orders in powers of ε.

4.3. The model system

Following Edwards [3], we now deine our model system in terms of a Gaussian distribution 

P0[u], which is chosen such that it is normalised to unity and recovers the exact covariance. 

That is:
∫

Du P0[u] = 1, (4.22)

and
∫

Du P0[u] uµ(k, t)uν(k
′
, t′) = 〈uµ(k, t)uν(k

′
, t′)〉 = δ(k + k′)Cµν(k; t, t′),

 

(4.23)

respectively.

This is the introduction of the two-time covariance. However, in order to explain the 

Edwards model, we revert temporarily to the single-time case. For the sake of simplicitly, we 

employ the reduced notation of Herring [8], as used extensively by Leslie [12] and others. In 

this notation we represent the velocity ield by Xi, where the index is a combined wave-vector 

and cartesian tensor index (i.e. our k and α). Accordingly, we introduce the Edwards–Fokker–

Planck operator as the sum of single-mode operators, in the form:

LEFP = −ωi

∂

∂Xi

(

Xi + φi

∂

∂Xi

)

, (4.24)

where ωi  is a renormalized eddy decay rate and φi is the covariance of the velocity ield, such 

that

φi =

∫

∞

−∞

X2
i P(Xi)dXi, (4.25)

and P is the exact distribution. Then it is readily veriied that the model equation:

LEFPP(F) = 0 (4.26)

has the Gaussian solution
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P(F) =
e−X2

i /2φi

(2πφi)
1

2

. (4.27)

However, it is important to note, and is also readily veriied, that a more general form of the 

operator L0, which is given by

L0 = H(Xi)

[

Xi + φi

∂

∂Xi

]

, (4.28)

where H(Xi) is an arbitrarily chosen well behaved function, also yields the same Gaussian 

solution for the zero-order equation:

L0P0 = 0. (4.29)

Hence at this stage the operator L0 is not fully determined. Edwards [3] was guided by an anal-

ogy with the theory of Brownian motion and in effect made the choice

H(Xi) = −ωi

∂

∂Xi

, (4.30)

in order to generate a base operator which could be inverted in terms of an eigenfunction 

expansion of Hermite polynomials. In this process, the {ωi} appeared as eigenvalues.

4.4. Evaluation of the coefficients P0, P1, P2,

The practical problem now is how to actually perform the operations needed to evaluate the 

coeficients as given by equations (4.17) and (4.18); or, alternatively from equations (4.20) 

and (4.21). In short, we need to be able to invert the operator Lt,0 .

We should remind ourselves at this point that Edwards worked with the invariant exact 

distribution P[u], so that he was able to set ∂/∂t = 0 in the Liouville equation (4.2). Hence, 

for the case studied by Edwards, we have

Lt,0 = L0 ≡ LEFP. (4.31)

Thus, in the Edwards theory, the irst-order coeficient given by (4.17) becomes

P1 = −L−1

EFPVP0. (4.32)

As mentioned earlier, this inversion was performed using an expansion in Hermite polyno-

mials: for details see [3, 14] or [12]. At lowest nontrivial order the resulting equation for the 

covariance was

ωiφi = −4
∑

j,m

MijmMjmiφm(φj − φi)

ωi + ωj + ωk

. (4.33)

This result may be found as equation (7.60) in the book by Leslie [12]. The operator Mijm  is 

just a compact form of the usual inertial transfer operator as deined by equation (2.2). Note 

that Leslie followed Herring [8] in including a negative damping term ω′

i  to sustain the turbu-

lence, but we do not need that here. The calculation can be carried on to higher orders, with 

increasing numbers of eigenvalues {ωi} appearing in the denominator. Further details can be 

found in the references cited above.

We shall close this brief discussion with a quotation from Leslie (see page 121 of the book 

[12]). Arguing that Kraichnan’s DIA was more general than the Edwards theory, because it 

allowed other time dependences than just the exponential form, he stated the following:
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It should be possible to derive alternatives to the Fokker–Planck operator which also 

permit other time-dependences while retaining the Gaussian form for the basis function 

PF.

So far as we know, the present work is the irst attempt to do this.

Now in order to explain our present approach, we return to equation  (4.15) for P1. 

Substituting for Lt,0 ,
(

∂

∂t
+ L0

)

P1 = −VP0, (4.34)

and re-arranging gives

∂

∂t
P1 = −VP0 − L0P1,

= −VP0 − L0Θ1[u, t]P0.

 
(4.35)

If we choose to neglect the second term on the right hand side, then our starting point for the 

iterative calculation is the assumption

L
−1

t,0 ≡

∫ t

0

ds. (4.36)

That is, inversion of Lt,0  is taken to be just a time integral. Evidently the second line of (4.35) 

suggests that this step can be analysed in terms of the commutator of the operators L0 and Θ1, 

with the freedom to choose the functional H[u] being exploited to ensure that this commutator 

is no lower in order than ǫ2. Also, for the iteration to be carried on to higher orders, we would 

need the additional condition

L0ΘnP0 = 0, (4.37)

for all values of n. However, we will not pursue that here, but instead will explore the conse-

quences of our basic assumption for the calculation at lowest nontrivial order.

With the preceding assumptions, equation (4.15) allows us to calculate the leading order 

contribution to odd moments of the velocity ield. It can be rewritten as

∂

∂t
P1 = −VP0, (4.38)

which is then integrated to give a form for the irst-order coeficient P1, thus:

P1[u, t] = −

∫ t

0

ds

∫

d
3p

δ

δuρ(p, s)

(
∫

d
3q Mρβγ(p)uβ(q, s)uγ(p − q, s) P0[u]

)

.

 (4.39)

Similarly we may calculate the second-order coeficient P2 from equation (4.16) as

P2[u, t] = −

∫ t

0

ds V(s)P1[u, s]−

∫ t

0

L(s)P0[u] (4.40)

where we have used the condition L0P0 = 0.

Therefore our second-order approximation to the full pdf P[u, t] is non-Gaussian, with 

the irst-order antisymmetric coeficient P1[u, t] expressed in terms of an operator acting on 

the Gaussian zero-order distribution. In turn, the second-order symmetric coeficent P2[u, t] 
is expressed in terms of operators acting on P1 and P0; and, as we have seen earlier, can be 

further reduced to operators acting on the zero-order distribution only.
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4.5. Evaluation of the triple moment

We now confront the full closure problem in the form of the two-time covariance equation, 

given in this work as (2.23). Replacing the angle brackets by expectation values obtained by 

averaging against the exact pdf P[u, t], we have:

( ∂

∂t
+ νk2

)

∫

Du uα(k, t)uσ(−k, t′) P[u, t] =

∫

d
3j Mαβγ(k)

×

∫

Du uσ(−k, t′)uβ(j, t)uγ(k− j, t) P[u, t] .

 (4.41)

Then, substituting the perturbation expansion for P[u, t] into both sides leads to an approxi-

mate equation at lowest non-trivial order, thus:

( ∂

∂t
+ νk2

)

∫

Du uα(k, t)uσ(−k, t′) P0[u] =

∫

d
3j Mαβγ(k)

×

∫

Du uσ(−k, t′)uβ(j, t)uγ(k − j, t) P1[u, t],

 (4.42)
which, from the self-consistency of the model and the symmetry of the odd-order coeficients, 

holds to order ǫ2. It is at this point that the Edwards method uses symmetry to compensate for 

the lack of a variational principle, such as the Bogoliubov principle in the theory of critical 

phenomena (e.g. see section 7.5 of the book [68]).

Where convenient, we can restore the angle-bracket notation in modiied form as:

( ∂

∂t
+ νk2

)

〈

uα(k, t)uσ(−k, t′)
〉

0
=

∫

d
3j Mαβγ(k)

〈

uσ(−k, t′)uβ(j, t)uγ(k − j, t)
〉

1
.

 

(4.43)

Here 〈· · · 〉0 indicates that the average has been taken against P0; and similarly 〈· · · 〉1 is the 

average against P1.

The left hand side of (4.43) yields the covariance tensor. Taking the trace of both sides, and 

invoking isotropy, leads to the form

( ∂

∂t
+ νk2

)

C(k; t, t′) = P(k; t, t′),

which we had previously as (2.24), but where now8

P(k; t, t′) =
1

2

∫

d
3j Mαβγ(k)

∫

Du uα(−k, t′)uβ(j, t)uγ(k − j, t) P1[u, t] .

 

(4.44)

We recall that repeated tensor indices are summed.

Substituting the expression for P1[u, t] as given by equation (4.39) yields

P(k; t, t′) = −
1

2
Mαβγ(k)

∫

Du

∫

d
3j uβ(j, t)uγ(k − j, t)uα(−k, t′)

×

∫ t

0

ds

∫

d
3p

δ

δuρ(p, s)

[

Mρµν(p)

∫

d
3q uµ(q, s)uν(p − q, s)P0[u]

]

=
1

2
Mαβγ(k)

∫

Du

∫

d
3j

∫

d
3p

δ

δuρ(p, s)

[

uβ(j, t)uγ(k − j, t)uα(−k, t′)
]

×

∫ t

0

ds Mρµν(p)

∫

d
3q uµ(q, s)uν(p − q, s)P0[u],

 

(4.45)

8 There should be no confusion between the symbol P(k; t, t′) and the use of P to represent the pdf.
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where, in going to the last line, we performed an integration by parts with respect to the veloc-

ity ield, and dropped the resulting boundary terms as they are zero, such that the derivative 

now acts on velocity components involved in the triple moment.

It may be helpful at this point to recall that Fourier coeficients of the velocity belonging to 

different wavevectors are independent variables. Accordingly, functional derivatives evaluated 

at the same time give rise to delta functions, in the usual way. This is not the case for non-

simultaneous functional derivatives, as the Fourier coeficients are correlated in time. In that 

case we can replace the non-simultaneous functional derivatives in terms of the ininitesimal 

velocity-ield propagator, as deined by equation (2.8). Then, using the model distribution to 

perform the average, and acting on each of the three velocity components in turn, we ind

P(k; t, t′) =
1

2
Mαβγ(k)

∫ t

0

ds

∫

d
3j

∫

d
3p

∫

d
3q Mρµν(p)

×
[〈

uµ(q, s)uν(p − q, s)R̂βρ(j, p; t, s)uγ(k − j, t)uα(−k, t′)
〉

0

+
〈

uµ(q, s)uν(p − q, s)uβ(j, t)R̂γρ(k − j, p; t, s)uα(−k, t′)
〉

0

+
〈

uµ(q, s)uν(p − q, s)uβ(j, t)uγ(k − j, t)R̂αρ(−k, p; t′, s)
〉

0

]

=
1

2
Mαβγ(k)

∫ t

0

ds

∫
d

3j [Iαβγ + Jαβγ + Kαβγ ] .

 

(4.46)

Following Kraichnan, we assume that the instantaneous ininitesimal response function 

can be averaged independently of the velocity ield. This was described as a weak dependence 

principle: see page 507 of the article by Kraichnan [23] or page 371 of the book by Beran [11]. 

In effect it is also a mean-ield approximation (see the books by Leslie [12] or McComb [14]), 

and allows us to factor the averages as
〈

uµuν R̂βρuγuα

〉
0
= 〈uµuνuγuα〉0

〈
R̂βρ

〉
0

. (4.47)

Since the model distribution is Gaussian, we can then factor the fourth-order moment into 

products of covariances in the usual way. Recalling that the correlation tensor takes the iso-

tropic form

〈uα(k, t)uβ(k
′
, t′)〉

0
= Cαβ(k; t, t′)δ(k + k′) = C(k; t, t′)Pαβ(k)δ(k + k′),

as given by equation (2.5), we note that pairings of the velocities such as q and p − q vio-

late the triangle condition, since they give rise to δ(p) which forces the vertex operator 

M(p) = M(0) = 0.

We irst evaluate Iαβγ:

Iαβγ =

∫

d
3p

∫

d
3q Mρµν(p)

×
〈

uµ(q, s)uν(p − q, s)uγ(k − j, t)uα(−k, t′)
〉

0

〈
R̂βρ(j, p; t, s)

〉
0

=

∫
d

3p

∫
d

3q Mρµν(p)

×
[〈

uµ(q, s)uγ(k − j, t)
〉

0

〈
uν(p − q, s)uα(−k, t′)

〉
0

〈
R̂βρ(j, p; t, s)

〉
0

+
〈

uµ(q, s)uα(−k, t′)
〉

0

〈
uν(p − q, s)uγ(k − j, t)

〉
0

〈
R̂βρ(j, p; t, s)

〉
0

]

= 2Mρµν(j) Cαµ(−k; t′, s)Cγν(k − j; t, s)
〈

R̂βρ(j, j; t, s)
〉

0
,

 

(4.48)
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where in the last line the factor 2 comes from the symmetry Mρµν(j) = Mρνµ(j).
The terms Jαβγ and Kαβγ are evaluated in a similar way to give

Jαβγ = 2Mρµν(k − j) Cαµ(−k; t′, s)Cβν(j; t, s)
〈

R̂γρ(k − j, k − j; t, s)
〉

0
,

 

(4.49)

Kαβγ = 2Mρµν(−k) Cγν(k − j; t, s)Cβµ(j; t, s)
〈

R̂αρ(−k,−k; t′, s)
〉

0
.

 
(4.50)

These results, along with equation (4.46), complete our calculation of P(k; t, t′).

4.6. The equations for the covariance

We substitute from equation  (2.9) for the ensemble-averaged ininitesimal propagator into 

(4.46), along with equations (4.48)–(4.50), and invoke isotropy to write

P(k; t, t′) =
1

2

∫ t

0

ds

∫
d

3j 2Mαβγ(k)

×

[

Mραν(j)Pβρ(j)Pγν(k − j) C(k; t′, s)C(|k − j|; t, s)R( j; t, s)

+ Mραν(k − j)Pβν(j)Pγρ(k − j) C(k; t′, s)C( j; t, s)R(|k − j; t, s)

+ Mαµν(−k)Pβµ(j)Pγν(k − j) C( j; t, s)C(|k − j|; t, s)R(k; t′, s)

]

= −
1

2

∫ t

0

ds

∫

d
3j
[

L(k, j)C(k; t′, s)C(|k − j|; t, s)R( j; t, s)

+ L(k, k − j)C(k; t′, s)C( j; t, s)R(|k − j|; t, s)

− A(k, j, k − j)C(|k − j|; t, s)C( j; t, s)R(k; t′, s)
]

,

 (4.51)

where the coeficients

A(k, j, k − j) = 2Mαβγ(k)Mαµν(−k)Pβµ(j)Pγν(k − j) (4.52)

L(k, j) = −2Mαβγ(k)Mβαν(j)Pγν(k − j) (4.53)

are well known (e.g. see [14] or [17]) and satisfy the relationship

A(k, j, k − j) = L(k, j) + L(k, k − j) . (4.54)

Using this relationship to replace A(k, j, k − j), along with the change of dummy variables 

j → k − j for the two terms which now contain L(k, k − j), we arrive at the two-time covari-

ance equation,

(

∂

∂t
+ νk2

)

C(k; t, t′) =

∫

d
3j L(k, j)

[

∫ t′

0

ds R(k; t′, s)C( j; t, s)C(|k− j|; t, s)

−

∫ t

0

ds R( j; t, s)C(k; t′, s)C(|k− j|; t, s)

]

.

 

(4.55)
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We may also derive an equivalent equation for C(k; t, t), thus:
(

∂

∂t
+ 2νk2

)

C(k; t, t) = 2

∫

d
3j L(k, j)

[
∫ t

0

ds R(k; t, s)C( j; t, s)C(|k− j|; t, s)

−

∫ t

0

ds R( j; t, s)C(k; s, t)C(|k− j|; t, s)

]

.

 

(4.56)

Equations (4.55) for C(k; t, t′) and (4.56) for C(k; t, t) are identical in form to the Kraichnan–

Wyld–Edwards covariance equations [17]; but with one crucial difference. Here the response 

of the system is not determined by the variation of the velocity ield due to an ininitesimal 

change in the stirring force. Instead the response function arises quite naturally when we carry 

out the functional differentiation with respect to changes in the velocity ield. Note that we have 

not added an input term to (4.56), but this can be done at any stage, just as in equation (2.25).

We should note in passing that our formulation of these covariance equations is different 

from that used by Kraichnan [23] and was originally due to Edwards [3] who introduced the 

L(k, j) coeficients. Also, it is a simple matter to recover the Edwards theory from (4.56) and 

this may be found in appendix.

4.7. Equation for the response function

From equation (2.9) we have the deinition of the response function. We adopt a simpliied, 

temporary notation in which only the time arguments appear explicitly and re-write this as:

R(t, t′) =

〈
δu(t)

δu(t′)

〉

0

, for t > t′; (4.57)

which may be further written as

R(t, t′) =

∫
Du

δu(t)

δu(t′)
P0[u] = −

∫
Du u(t)

δP0[u]

δu(t′)
, (4.58)

the last step following by partial integration and the assumption that the boundary terms van-

ish as P0 → 0 as u → ∞. Restoring full notation, our expression for the response function is 

therefore:

R(k; t, t′) = −

∫
Du(k, t)uα(k, t)×

δP0[u]

δuα(k, t′)
, (4.59)

and evaluation of this only requires our explicit form for P0.

It is worth noting that there are some points of resemblance between this response function 

and the analogous form g(k; t, t′) in Herring’s time-dependent self-consistent ield theory. This 

latter is deined by

g(k; t, t′) = −

∫
Duα(k, t)u(k, t)U(k; t, t′)×

δP[u(k, t′)]

δuα(k, t)
, (4.60)

where U(k; t, t′) satisies the integral equation

U(k; t, t′) = 1 −

∫ t

t′
ds

∫
∞

0

ds′L(s, s′)U(k; s′, t′) (4.61)

for t > t′ and zero otherwise, and L(t, t′) is a particular form of Liouvillian which arises in 

Herring’s theory [9].
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Let us assume a general (exponential) form for the base distribution, thus:

P0[u] = N e
−S[u]

, (4.62)

where N  is the normalization and S has to be speciied. If this were a problem in micro-

scopic physics at equilibrium, then S would be the thermodynamic entropy (divided by the 

Boltzmann constant). However it has been argued by Edwards and McComb [69], that the 

entropy is available as a concept in the statistical theory of turbulence, provided it is deined in 

terms of the information. Accordingly, we may then introduce a ‘force like’ object f̃ , which it 

is natural to refer to as a quasi-entropic force, thus:

f̃ (t′) =
δS[u(t′)]

δu(t′)
. (4.63)

Hence from (4.59) we may express the response function in terms of f̃  as

R(t, t′) =
〈

u(t)f̃ (t′)
〉

0
. (4.64)

It may be noted that the tilde distinguishes f̃  from the stirring force f. Edwards showed that 

〈uf 〉 was the rate of doing work by the stirring forces on the velocity ield, whereas the new 

quantity 
〈

uf̃
〉

0
 determines the two-time response.

Carnevale et al [70] showed that an expression of this form leads to a linear relationship 

if the initial distribution is Gaussian. In our case, P0[u] is the zero-order distribution which is 

Gaussian for all times t′ � t. Accordingly, putting

S = u2(t′)/2C(t′, t′), (4.65)

we have

f̃ (t′) =
u(t′)

C(t′t′)
, (4.66)

and hence

R(t, t′) =
〈u(t)u(t′)〉

0

C(t′, t′)
=

C(t, t′)

C(t′, t′)
. (4.67)

Then, multiplying across, and with wavenumber labels restored, our inal result is:

R(k; t, t′)C(k; t′, t′) = C(k; t, t′). (4.68)

This is the general form of the luctuation-response relation and, taken with the Kraichnan–

Wyld–Edwards equations for C(k; t, t′) and C(k; t, t), as derived earlier, constitutes the LET 

theory, as previously obtained by more ad hoc methods: see [59] and references therein.

5. Discussion

Three topics seem to merit further discussion. First there is the question of the relevance of 

a luctuation-response relation to turbulence, a subject which has received a certain amount 

of attention over the years. Then there is the question of how the local energy transfer (LET) 

theory relates to the earlier Eulerian theories. This might be subsumed under the heading: how 

relevant is the infra-red divergence? And lastly there is the rather open question of practical 

applications. We will discuss these three topics in turn.
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5.1. Fluctuation-response relations (FRR)

If we apply the luctuation-response relation (4.68) to a microscopic system in thermal equi-

librium (e.g. Brownian motion), then it is a simple matter to show that it can be reduced to 

the well known luctuation-dissipation theorem. We refer the interested reader to the classic 

review by Kubo [71] for further information on its relevance to microscopic problems. Here 

we concentrate on the relevance of this kind of approach to luid turbulence. It is for this 

 reason that we follow the recent trend and refer to it in this way as the luctuation-response 

relation (FRR), in order to keep in mind that we are referring to the more general form.

It should be mentioned that we originally introduced the relationship (4.68) as a propagator 

relationship, with some heuristic justiication coming from a consideration of Wyld’s analy-

sis [4]. However, one can interpret theories in terms of such a relationship. For instance, as 

pointed out by Frederiksen and Davies [72], both Herrings’s SCF theory and the LET theory 

can by related to Kraichnan’s DIA, by means of the luctuation-response relation. In the case 

of Herring’s SCF, the single-time covariance and response function are calculated from the 

DIA, and the FRR is used to calculate the two-time covariance. Whereas, for LET, the DIA 

covariance equations9 are used to calculate C(k; t, t′) and C(k; t′, t′), and the FRR is then used 

to ix R(k; t, t′).
This is not the same as simply assuming the validity of the luctuation-response relation. 

Although that too has a history, as in the past it has proved popular in atmospheric turbu-

lence and climate research. The seminal work of Leith [73] and Bell [74], was inspired by 

Kraichnan’s demonstration that the FRR could be applied to classical nonlinear systems pro-

vided that they were in thermal equilibrium [75]. A recent discussion of the use of the FRR in 

climate modelling can be found in the article by Zidikheri and Frederiksen [76], along with 

many references.

However, from our present point of view, we note that the subject of luctuation-response 

relations has also received much attention from the point of view of dynamical systems theory 

over the last two decades. A signiicant development has been a generalisation of Kraichnan’s 

result [75] to macroscopic systems that are both chaotic and mixing [70]. Under these circum-

stances the system response can be expressed in terms of its invariant probability measure 

at the initial time. Further, Carnevale et  al [70] have shown that if this invariant measure 

is Gaussian, then the linear result equivalent to equation (4.68) is recovered. The interested 

reader is also referred to the paper by Boffetta et al [77] and references therein.

Our present work can be compared with that of Carnevale et  al [70]. For instance, our 

 equation (4.59) is essentially of the same form as their equation (5). The main difference is that 

they average over trajectories against an initial distribution, whereas we average over our model 

(or zero-order) pdf which is valid for all times. Bearing in mind that the coeficients in the expan-

sion of the exact pdf in our case are evaluated perturbatively against the zero-order distribution, 

it is clear that in this context the FRR applies at all times and to all orders of perturbation theory.

As ours is a continuum (statistical ield theoretic) problem, which is why our analysis is in 

terms of functionals, we do not have any concerns about the differentiability of distributions. 

In contrast, when averaging over trajectories, Carnevale et al [70] invoke the role of noise in 

smoothing the probability distribution of trajectories (see also Boffetta et al [77] for a further 

discussion of this point). Interestingly, the Edwards theory [3] had a similar step, in that the 

pdf of the velocities was obtained by averaging against the distribution of the stirring forces. 

But arguably this is only necessary to facilitate the many-body theoretical derivation of the 

Liouville equation [3], rather than to impose any additional smoothness. However, irrespective 

9 Now referred to by us as the Kraichnan–Wyld–Edwards or KWE covariance equations.
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of such considerations, when Carnevale et al [70] consider their initial invariant distribution 

to be Gaussian, the result is the linear relationship which is their equation (21), while our use 

of the Gaussian zero-order distribution ensures that our equation (4.68) takes the same form.

5.2. How relevant is the infra-red divergence?

The analysis by Edwards of the failure of his SCF theory to yield the K41 spectrum, as dis-

cussed in section 3.2.2, is both elegant and rigorous. It is also of its time, and is mainly of 

historical signiicance. Yet the associated idea of the infra-red divergence as an index of prob-

lems with statistical closures has taken root, and is still often quoted. This can lead to misun-

derstandings and we will address that aspect here.

First we should clear one possible source of confusion out of the way. In later work 

on the application of renormalization group methods to stirred luid motion, references to 

infra-red and ultra-violet divergences started to occur. It should be understood that these 

divergencs have nothing to do with the ininite Reynolds number limit of Edwards, but are 

entirely to do with the arbitrarily chosen stirring forces. For instance, where Edwards chose 

an input term involving the delta function δ(k) in order to give the Kolmogorov spectrum, 

later workers chose the power law k−3 for the same purpose; and obviously this latter form 

could lead to both types of divergence. A general discussion of this topic has been given 

elsewhere [78].

The analysis by Edwards showed that his covariance equation was well behaved at the pos-

sible points of divergence, due to cancellations of pairs of individually divergent terms. It was 

the lack of such cancellations that was the problem with his response equation. This analysis 

was so transparent and easy to follow, that there was a tendency to use it for pedagogic reasons 

when analysing other theories. This was particularly true of the book by Leslie [12], which is 

still inluential in this subject.

However, it needs to be clearly understood that in applying the Edwards analysis to a fully 

two-time theory such as DIA or LET, approximations have to be made. In particular, the 

assumption of exponential time-dependences; and the further assumption of the same decay 

time for both correlation and response functions, are both incorrect. This too was discussed by 

Leslie. It is therefore the case that, although the concept of the infra-red divergence in the limit 

of ininite Reynolds numbers can offer some guidance and possible insight, it is not in itself a 

prescriptive test for the more general theories.

Having said that, we should nevertheless note that the assumption of speciic 

 time-depend ences can still tell us something about the structure of theories like DIA and LET, 

even if this may be seen as heuristic in a mathematical sense. The reason for this is that a one-

to-one correspondence is maintained between terms in the two formulations. This fact was 

exploited in the original derivation of the two-time form of the LET theory [53].

Also, while on this topic, we may mention that some aspects of the work by Edwards and 

McComb [69] foreshadowed the later local energy transfer theory [7]. In particular they noted 

that the avoidance of the infra-red divergence in the covariance equation relied on cancella-

tions of pairs of terms making up T(k). Hence at j = 0 and |k − j| = 0 these terms can not be 

treated as independent modes.

5.3. Potential for practical applications

In view of the great importance of turbulent low in engineering applications, it is suprising 

that the two-point statistical closures have been so little exploited for practical applications. 
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To our knowledge, there have only been two exceptions to this. First there is the activity 

on climate and atmospheric modelling by Frederiksen and co-workers (see [79] for a recent 

account), who have used DIA, Herring’s SCF and LET theories over several decades for this 

purpose. This work also includes sub-grid modelling.

Secondly, there is the eddy-damped quasi-normal Markovian (EDQNM) theory. This arose 

from Orszag’s analysis of the failure of the original quasi-normality hypothesis and relects 

a later and better understanding of turbulence phenomenology. The EDQNM theory is really 

a model (compare Kraichnan’s test ield model [80]), in that it makes a particular assump-

tion which requires the itting of an adjustable constant. In stationary form it reduces to the 

Edwards SCF theory. Because it is a single-time theory, it is relatively easy to compute and 

has been widely applied to practical problems (e.g. [81–84]). For a recent discussion see the 

book by Sagaut and Cambon [15].

In contrast, the LET theory, consisting as it does of the KWE equations (4.55) and (4.56), 

plus the luctuation-relaxation relation (4.68), is a fully two-time theory and has no adjust-

able parameters. Although rather more complicated than the EDQNM theory, and more 

demanding to compute, it nevertheless could be applied to non-isotropic and even inhomo-

geneous problems. Even if presenting too formidable a computational challenge, it could 

provide a basis for single-point modelling, which might offer a useful extension to existing 

approaches.

6. Conclusion

The LET theory consists of the two covariance equations: (4.55), for t �= t′; and (4.56), for 

t = t′; along with an equation  for the response function. This can take the form of either 

the velocity propagator relation as given by equation (3.18); or the relation derived from it 

as equation (3.20), which may be compared with the DIA form as given by (3.19). The two 

forms of LET are equivalent. On the one hand, the relationship (3.20) has pedagogic value 

in showing clearly the relationship between LET and DIA, and in particular showing that the 

LET possesses the non-Markovian structure which is implied by experimental results. While, 

on the other hand, the propagator relationship (3.18) is much easier to compute, and in fact its 

use makes the LET easier to compute than the DIA.

Originally, the use of the propagator relation (3.18) was hypothesised from a consideration 

of the Wyld–Lee formalism (see Berera et al [6]). It has now been derived and identiied for-

mally as a luctuation-response relation. In deriving this, we have made three approximations, 

which we list as follows:

 1. We have truncated the perturbation expansion to give us a theory which is second-order 

in the interaction strength. That is we neglect terms of fourth-order and above. This step 

is taken by all approaches in this class of theory.

 2. We have replaced the instantaneous velocity-ield propagator by its mean value, as 

evaluated against the ground state Gaussian distribution. This is identical to the step taken 

by Kraichnan in deriving the DIA, and was justiied by him on the grounds of a weak 

 depend ence principle. It may be argued that it was really justiied by the fact that it leads 

to the same result as in the Wyld–Lee formalism [6], where this problem does not arise. 

The same argument goes through for LET as well, and it has the additional justiication 

that it leads to an appropriately non-Markovian relationship between the transfer spec-

trum and the system response.

 3. We have assumed that the base operator can be inverted as a simple time integral. Again, 

we rely on justiication by results.
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The LET theory has been computed for the test problems of isotropic turbulence (includ-

ing for diffusion of a passive scalar) with good results, both qualitative and quantitative (see 

section 3.4 of the present paper). It is arguable that it now has a formal derivation which 

puts it on the same footing as the other two-time theories, particularly Kraichnan’s DIA 

and Herring’s SCF. In view of the fact that it has the unique characteristic of a relationship 

between the transfer spectrum and the system response which is qualitatively in accord with 

experiment, one might hope that this will stimulate interest in this class of approach to the 

turbulence problem.
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Appendix. Recovering the Edwards SCF theory

Edwards derived his closure approximation by inverting the Fokker–Planck form of L0 in 

terms of an eigenfunction expansion, with the inverse modal lifetimes appearing as eigenval-

ues. However, instead of this, it is a simple matter to recover the Edwards SCF theory directly 

from equation (4.56).

Our starting point for this, is the recognition by Kraichnan in 1964 [85] that the DIA and 

Edwards covariance equations  were equivalent if one assumed the same exponential time 

dependence for the covariance and the response function. That is,

C(k; t − t′) = C(k) exp[ω(k)|t − t′|], (A.1)

and

R(k; t − t′) = exp[ω(k)(t − t′)], for t′ < t;

= 0, for t′ > t,
 (A.2)

where ω(k) is the inverse lifetime for correlation and response of mode k. Its prescription 

is the second part of the Edwards closure approximation. Later, Kraichnan showed that the 

Edwards theory could be extended to statistically non-stationary states [86], while Herring 

and Kraichnan [62] demonstrated that the generalized Edwards covariance equation could be 

obtained from (4.56), with C(k, t) ≡ C(k; t, t), as:
(

∂

∂t
+ 2νk2

)

C (k, t) = 2

∫

d
3j L (k, j)D(k, j, |k− j| ; t)

× [C ( j, t)C (|k− j| , t)− C (k, t)C (|k− j| , t)] ,
 

(A.3)

where they introduced a memory function D, given by

D(k, j, |k − j| ; t) =

∫ t

0

ds R (k; t, s)R ( j; t, s)R (|k − j| ; t, s) . (A.4)
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For the stationary case, this could be written [85]:

D(k, j, |k − j|) =
1

ω(k) + ω( j) + ω(|k − j|)
. (A.5)
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