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Abstract

This dissertation studies firms’ strategic interactions in anticipation of random service disruption

following technology failure. In particular it is aimed at understanding how contracting decisions

between a vendor and one or multiple clients affect the firms’ subsequent decisions to ensure

disruption response and recovery are managed as efficiently as possible. This dissertation consists

of three studies that were written as standalone papers seeking to contribute to the literature

on contract design and technology management in operations management. Together, the three

studies justify the importance of structuring the right incentives to mitigate disruption risks.

In the first study we contribute to this literature by means of an analytical model which we

use to examine how a client and vendor should balance investments in response capacity when

both parties’ efforts are critical in resolving disruption and each may have different risk prefer-

ences. Responding to information technology (IT) system failure often requires a collaborative

approach in which both the client and the vendor need to invest in response capacity. By in-

vesting more in response capacity, the client might make the vendor’s response capacity more

effective in the system restoration stage. Yet, in doing so, the client also encourages free-riding

by the vendor. To understand how a client should balance the need to support the vendor

while setting the right incentives for the vendor to invest, we develop an analytical model that

combines the key characteristics of value co-creation (i.e., complementarity between the firms’

investments in response capacity) with standard maintenance contract practices (i.e., penalty

contracts that penalize the vendor for system downtime). We study the difference in the client’s

expected utility between the observable effort case (in case of low system complexity) and the

non-observable effort case (in case of high system complexity). We refer to this difference as

the cost of complexity. This study presents two key findings. Firstly, we show that the cost of

complexity to client is decreasing in the risk aversion of vendor but increasing in her own risk

aversion. Secondly, we find that the effect of risk aversion on the average system downtime is

diametrically opposite depending on whether or not the client’s investment is observable.

In the second study we further examine the context of the first study through a controlled exper-

iment. We examine how differences in risk aversion and access to information on a contracting

partner’s risk preferences interact in affecting contracting and investment decisions between the

client and vendor. We design an experiment in which subjects take the role of the client and

make both contracting and investment decisions in order to control the vendor’s incentives to

invest and jointly minimize disruption costs. We implement an innovative pre-test that mea-

sures subjects’ risk aversion and allows us to manipulate the difference in risk aversion between

the subject and the automated vendor in the main experiment. We show that subjects devi-

ate from theory in predictable ways: subjects appear to follow decision heuristics leading to

over-investment and over-penalization. In addition, we find providing information on vendor

risk aversion can be counter-effective in aiding subject decision making, reinforcing reliance on

inefficient heuristics through ‘cognitive overload’.
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In the third study we model the effect of contract design on a provider’s response capacity

allocation in a setting where multiple clients may be disrupted and available response capacity

is limited. Increasingly large client pools have come to depend on continuous availability and

security of equipment from a single specialist provider. Faulty equipment can be a direct cause

of disruption to the client and in some cases cause life-threatening circumstances to consumers or

patients downstream. At the onset of disruption, the scale of the disruption is typically unknown.

We examine how contracting decisions between a technology provider and multiple clients can

enable efficient allocation of response capacity under incomplete and imperfect information on

the scale of a disruption. We demonstrate that by setting disclosure rewards, the provider

can create a powerful incentive for the clients to put in investigation effort and communicate

truthfully, in order to facilitate response capacity allocation. However, competition for limited

emergency resources may lead clients to deliberately under-report to the provider. Even when

it is feasible to implement the optimal contract terms, miscommunication and delay of response

can turn out to be optimal under decentralized decision making, echoing real world observations

surrounding response to medical equipment failures.
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Chapter 1

General Introduction

1.1 Motivation

The choice of topic for this dissertation was motivated by shifts in the risk landscape many

companies face, driven by increased outsourcing (Apte and Mason 1995, Van Mieghem 1999,

Benjaafar et al. 2007) and servitization1 (Sawhney2004, Cohen et al. 2006, Kastalli and Van Looy

2013). We study disruption risk mitigation through the lens of service contracting, focusing

on joint decision making by client(s) and a vendor in contexts where a client has outsourced

maintenance or operation of advanced technology or equipment to a vendor. The chapters in

this dissertation are motivated by cases involving potential service disruption as a result of

information technology (IT) or medical equipment failure. In these contexts the technology

is often mission critical2 to the client’s day-to-day service operations and the nature of the

technology is such that multi-sourcing or emergency sourcing are not possible in the event of

disruption (Kim et al. 2010).

In recent years, various firms in consulting and insurance, as well as independent international

organizations like the World Economic Forum have produced reports detailing the changing risk

landscape for supply and service chains. In 2009, PriceWaterhouseCoopers (PwC) issued a note

on risk management in response to the alarming number of bankruptcies and general financial

distress in the wake of the financial crisis. The note highlighted the damage supply and service

disruptions do to ‘brand and bottom line’, with data showing share prices dropping up to nine

percentage points and increased volatility for up to two years after a disruption. These damages

come on top of the direct damages as a result from delayed or discontinued operations. PwC state

that priority should be with identifying and nurturing critical vendor relationships and making

a transition from a traditional crisis response attitude to a early identification and corrective

action in the event of disruption (Nally and Pittman 2009). Results from a survey conducted

by Zurich Insurance Group and DHL, the Business Continuity Institute in 2011 highlight the

source and frequency of business interruption. Of over five hundred respondents, 85% indicated

having recorded at least one disruption in the year preceding the survey. As much as 35% of the

recorded disruptions were related to outsourcing (Glendon 2011). A 2013 report by the World

1Defined as the process of adding value to core corporate offering through inclusion of services (Vandermerwe

and Rada 1988)
2Defined as ‘extremely important or necessary for a company, activity, etc. to operate successfully’, in Cam-

bridge Dictionary Online, from http://dictionary.cambridge.org/dictionary/english/mission-critical
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Economic Forum and Accenture echoes this with survey results showing 80% of respondent

firms are concerned about the resilience of their business (Bhatia et al. 2013). The report by

Chacon et al. (2012) highlights the dangers in that lie with the common reliance on crucial

business process inputs like availability of data, and extensive subcontracting as some of the

major vulnerabilities. Dependence on IT systems provided by external parties is mentioned as

a particular issue in contingent business interruption (Galey 2002). Finally (Dubey and Wagle

2007, p. 11) highlight that as technology has come to integrate the tools for multiple business

processes,“complaints frequently involve incidents that are mission critical, thus demanding

immediate attention”.

Academics in operations management (OM) have recognized these issues, resulting in a growing

body of work considering how decisions made in advance of disruptions, including contracting

decisions, help mitigate disruption risks (see e.g. Tang (2006) and Sodhi et al. (2012) and

references therein). Whereas most of these works consider disruptions in traditional supply

chain contexts, attention is increasingly given to service disruptions. In an interview with CIO

Magazine in 2006, Prof. Sheffi at MIT said with reference to recent IT disruptions (Patton

2006):

“We’ve learned that the fates of companies and government agencies are sealed before the disaster

hits. Organizations that get ready perform well; those that don’t prepare don’t do well. (...) There

is something in the DNA of resilient companies that is missing from those that falter and suffer,

[which] goes beyond just redundancy.”

This dissertation contributes to this body of work by addressing a number of themes which we

address in the next section.

1.2 Central Themes

The study of mitigating random disruptions has generated a large body of work in OM. Although

contracting and risk management as a broader field of study is well-developed, the OM papers

that form the core of the supporting literature for this dissertation were mainly published after

the turn of the century. Some of the fundamental concepts can, however, be traced back to

earlier works. Take for instance the paper by Shavell (1984), which illustrates the trade-off

between investment in accident prevention and the expected cost of an accident c(x, h) with the

simple function c(x, h) = x + p(x)h, where x is the level of care taken, p(x) is likelihood of an

accident given the level of care and h is the harm caused by the accident. Since these early

models a stream of work in OM has sought to address how disruptions should be managed in

varying contexts, seeking to make an impact on real decisions.

One part of this stream focuses on demand risks and developing improved inventory management

policies and capacity allocation decisions by means of contracts (see for instance Tomlin (2003),

Bernstein and Federgruen (2005) and references therein). Alongside this stream another stream
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developed, considering management of supply risks and addressing how the impact of disruptions

may be mitigated, particularly in manufacturing settings (e.g. Tang (2006)). Broadly, this

literature can be classified according to how reliability of supply is modeled (Wang et al. 2010).

Random capacity refers to the case in which the realized supply is the minimum of the order

quantity and the realization of a stochastic capacity level, independent of the order quantity.

Hence in this case the realized supply can never be greater than the order quantity. In the

case of random yield the realized supply is a random fraction of the order quantity. Generally,

this fraction is allowed to be greater than one without an explicit capacity limit, meaning

realized supply can in this case be greater than the order quantity. Random disruption can be

interpreted as a special case of random yield in which a supplier’s realized supply is either all (i.e.

a proportion of 1) when the supplier is not disrupted, or nothing (i.e. a proportion of 0) when

the supplier is disrupted. A central tenet of this literature is that contracts ultimately determine

the incentives for firms to address and manage risks and are thus an important instrument to

manage these disruption risks.

This dissertation relates contracting decisions to investments in response capacity and informa-

tion gathering in mitigation of random disruption risks. We consider random disruption through

a service lens: when mission critical technology is down, so is the service process it supports.

Throughout the dissertation we may use ‘technology’ and ‘system’ interchangeably, in all cases

referring to hardware and software facilitating firm level operations and decision making.

Response, interdependence and collaboration

The OM literature generally views mitigating disruption as a combination of two strategies:

steps can be made to lower the likelihood of a disruption occurring (preventive capacity) and

improving the mean-time-to-repair (response capacity) (Jain et al. 2013, Kim and Tomlin 2013).

This dissertation concentrates on the latter, studying how timely and effective response can be

facilitated by the right contract design. Without an accurate and timely response, most major

disruptions cannot be contained even with a lot of slack built into the system. The right alert

and response system can make the difference between a controlled loss of operations and long

term loss of business.

A disruption in a supply or service network is harder to contain if multiple parties are simulta-

neously affected. Tomlin and Wang (2005) incorporate product demand correlations and their

effect on the choice of supply chain design. Fewer works have addressed correlated supply dis-

ruptions, with some papers like Tomlin (2009) explicitly taking supplier yields as independent

random variables. When it comes to major disruptions it is unlikely that this independence

holds up. Particularly as advanced technology increasingly forms the backbone of daily opera-

tions and many firms and organizations may depend on a common technology, one disruption

may have a widespread impact. Accounting for potential correlation between disruptions affects

which mitigation investment strategy is optimal. A paper by Bhattacharya et al. (2012) provides
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another perspective by comparing single-sourcing and multi-sourcing strategies for information

services projects when vendor and client efforts are interdependent and there is a disconnect

between outcomes and the metric used to generate the right incentives. Kim and Tomlin (2013)

study a context in which technological systems risk failure if one or more subsystems fail and

joint failure of multiple subsystem is possible. Results following from their model indicate firms’

tendency to overinvest in response capacity, yet underinvest in prevention, particularly when

joint failure is likely.

Incentives and contingent contracts

When response to disruption depends on the efforts of multiple parties in a supply or service

chain, achieving effective response becomes a matter of aligning incentives. In turn incentives

are determined by the parties’ respective objectives and manipulated through contract design

(Narayanan and Raman 2004). For these contracts to be implementable, the relevant informa-

tion needs to be not just observable, but also verifiable to a court. Verifiable information is

information that “can be certified or authenticated once disclosed” (Bolton and Dewatripont

2005, p. 171). In case “performance cannot be verified by a court, contracts that are contingent

on performance [...] cannot be made, as the courts will be unable to enforce them” (Tirole 1988,

p. 38). For a contingent contract to be implementable, the contingency must be verifiable, yet

the decisions or actions giving rise to that contingency need not be, e.g. capacity investments

may be observable but not verifiable (Cachon and Lariviere 2001). From the perspective of in-

centives, contracts are feasible as long as incentive compatibility and participation (or individual

rationality) constraints are met (Laffont and Martimort 2001). Here, risk preferences are an

important consideration: risk seeking and risk averse decision makers can make very different

decisions under the same contract terms.

Contingent contracts is the class of contracts that include payments or transfers that are condi-

tional on a contingency, i.e. the occurrence of a certain outcome, or a particular set of criteria

being met (Bazerman and Gillespie 1998). As maintenance services have increasingly replaced

traditional sale and implementation of technology as a core business, performance-based con-

tracts (PBCs) have replaced the simpler fixed price and time-and-materials contracts. PBCs are

a special form of contingent contract where a vendor is paid as long as the technology provided is

operational. The implications of PBCs for service provision and quality have been examined in

various settings, including aerospace and defense (Kim et al. 2007), software outsourcing (Dey

et al. 2010), healthcare (Jiang et al. 2012) and advertising (Dellarocas 2012). Whatever the

setting, improved vendor performance is the objective and has been observed empirically (e.g.

in Guajardo et al. (2012)).
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Information, communication and learning

In general, the role of information in contracting problems can be classified into multiple cat-

egories. Knowledge or observability of information about certain variables, events or payoffs

might not be the same for all players, i.e. there may be asymmetric or incomplete information.

The former refers to contexts in which a party “knows or observes something that other players

do not observe” (Watson 2008, p. 290). The latter refers to when “some player do not know the

payoffs of the others” (Fudenberg and Tirole 1991, p. 209). In game theoretical terms, imperfect

information means there is “at least one contingency in which the player on the move does not

know exactly where he is in the tree”, i.e. he does not know the result of a previous event

(Watson 2008, p. 162). Harsanyi (1967) suggested that by modeling ‘moves of nature’ resulting

in a player’s privately observed ‘type’ determining his payoffs, a game of incomplete informa-

tion can be reinterpreted as a game of imperfect information on nature’s moves (Fudenberg and

Tirole 1991, p. 209). Players’ access to information can be affected through communication and

learning, which can affect contract design (Laffont and Martimort 2001).

When it comes to communication, evidence exists that managers exhibit systemic bias in the

disruptions they report (Maggi and Rodriguez-Clare 1995, Schmidt and Raman 2012). Schmidt

and Raman (2012) distinguish between internal and external disruptions and study the dif-

ferences in likelihood to impact shareholder value, which affects the extent to which they are

communicated accurately. Errors in decision making are typically only revealed when something

goes wrong, mostly in case disruption. As it may be beneficial to misreport disruptions in certain

circumstances, communication in the face of disruption becomes a strategic decision. Firms with

information on an impending or realized disruption thus do not always possess full knowledge of

the situation, or may have the incentive to hide or misrepresent information. On the receiving

end, parties might therefore question the possibility of false alarm upon receiving warnings. The

completeness, accuracy and credibility of the information has to be weighed against the need for

expedited response, as it may only be feasible to control disruption damages in a limited time

frame.

Information sharing is one way for firms to learn about potential risks and direct their mitigation

efforts. A relevant stream of work considers information sharing in settings subject to demand

risk. It is commonly assumed that the downstream firm has most insight into what demand

will be like; upstream firms are typically less informed. Several works study how competition

in a supply network affects communication of demand forecasts (see e.g. Ziv (1993), Anand

and Goyal (2009)). Analogously, in light of supply risks, firms may not be equally informed on

exposure to certain risks, the gravity of existing problems, or even possible solutions. Considering

asymmetric information on supply risks, upstream firms (i.e. suppliers, vendors) are typically

considered to be more informed (see e.g. Yang et al. (2009), Tomlin (2009)). In Chapter 4

we employ a different assumption: in a technology management setting clients may be more

informed on the state of the technology and potential reasons for non-performance.
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A different mode of learning can be characterized as ‘learning by doing’. In a setting at risk of

disruption, learning by doing equates to investigating red flags and confirming the nature of the

problem and, if necessary, formulating a response strategy. Tomlin (2009) investigates the effect

of learning in the face of future disruptions along the supply chain, while assuming no delay in

response to the first signs of a disruption. Tomlin (2006) does include a measure of supply chain

response time, but does not allow for improvement over time through experience.

1.3 Summary of Results and Contributions

Chapters 2 through 4 were written as standalone papers and can be read as such. Nonetheless, all

three chapters respectively address one or more of the central themes addressed in the preceding

sections, forming a single dissertation on contract design for collaborative response to service

disruptions.

In Chapter 2 we examine how a client and vendor should balance investments in response

capacity when both parties’ efforts are critical in resolving disruption and each may have different

risk preferences. By means of an analytical model we study the performance of a penalty contract

in aligning incentives for investment in response capacity. We contribute to the literature by

showing how, in this context, differences in risk preferences can result in either under- or over-

investment, depending on which party is the more risk averse party.

In Chapter 3 we build on the findings in Chapter 2 and further examine the performance of a

penalty contract in aligning incentives for investment in response capacity through a series of

controlled experiments. We contribute to the literature by testing how differences in risk prefer-

ences between the stakeholders in a contract interact with stakeholders’ access to intelligence on

a contracting partner’s risk profile and together impact contracting decisions and performance.

In Chapter 4 we expand on the bilateral contracting settings studied in Chapter 2 and Chapter

3. We model the effect of contract design on a provider’s response capacity allocation in a setting

where multiple clients may be disrupted, available response capacity is limited and information

on the nature of disruptions is both imperfect and incomplete. We contribute to the literature

by demonstrating disclosure rewards are a powerful incentive for truthful communication to

improve response capacity allocation between multiple clients subject to disruption.
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Chapter 2

Enabling Collaborative Response to

IT Service Disruptions under Risk

Aversion

2.1 Introduction

To protect their place in today’s competitive landscape businesses have come to depend on

mission critical technology that supports their operations. Specifically information technology

(IT) systems have become mission critical as they are increasingly relied upon to maintain and

improve business performance (Fitoussi and Gurbaxani 2012). Maintaining continuity of mis-

sion critical systems has become a major concern (Kim et al. 2010, Kim and Tomlin 2013),

complicated by the fact that IT activities are increasingly outsourced, meaning that risk man-

agement has come to rely heavily on effective contract design (Gopal et al. 2003, Gopal and

Sivaramakrishnan 2008, Chen and Bharadwaj 2009). Moreover, IT downtime can inflict serious

costs through various channels, including delays to or loss of the information flows necessary to

maintain revenue flows.

Examples of costly IT disruptions abound across industries. In the oil and gas industry, explo-

ration activities simultaneously require data coming from sensors close to the action and access

to previously recorded data. Losing such facilities may mean losing as much as $1 million per

hour (Forbes 2013). In the airline industry, a two-hour IT glitch at United Airlines in 2012 re-

sulted in 257 delayed flights and 10 cancelled flights (The Telegraph 2012). In financial services,

a single server failure in early 2014 affected 7,000 Lloyds Banking Group ATMs throughout the

UK (Sky News 2014).

The frequent occurrence of such major disruptions indicates that no matter how hard firms try to

anticipate them, the risk of disruption can never be fully eliminated. For that reason, a number

of recent studies from both practitioners (see e.g. FM Global (2010), CA Technologies (2011))

and academics (e.g Jain et al. (2013) and references therein) have emphasized the importance

of risk mitigation through building sufficient response capacity. Such investments in response

capacity by the vendor are often incentivized by the use of penalty contracts imposed by the

client. Yet, in settings of complex system integration between the client and vendor, the client’s

investments in response capacity might be as important as the vendor’s.
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Consider the case of telecommunications firm Bharti Airtel which outsourced its IT service to

IBM (Martinez-Jerez and Narayanan (2007), cited in Bhattacharya et al. (2014)). To keep up

with network expansion, Bharti Airtel planned to take a new strategic course and let IBM take

responsibility for the hardware and software elements of the IT architecture. At the same time,

Bharti was to maintain the technological responsibilities on the telecom infrastructure. Through

previous acquisitions of telecom operators, Bharti’s IT architecture had become a complicated

system of inherited sub-systems integrated with its telecom infrastructure. As a result, in the

design of the system there were strong interdependencies between the efforts of the client (Bharti

Airtel) and the vendor (IBM).

Such interdependencies between the client and the vendor are also critical in the event of a service

disruption. For instance, a vendor’s efforts to restore the functionality of a complex IT system

are unlikely to be effective unless the client provides sufficient access, information and personnel

to conduct a thorough response in the event of system failure. As such, disruption response needs

to be a collaborative process, in which both the client and the vendor contribute resources to

facilitate system recovery. Importantly, the more complex the interface of technologies between

the client and vendor, the more difficult it becomes to specify and monitor the role of the client

in facilitating system recovery. For example, given the highly complex and integrated nature

of the Bharti Airtel IT systems, it was unclear what would be a sufficient level of the support

provided by Bharti Airtel.

Examples can also be found of outsourcing settings where integration and collaboration are

essential, yet the client’s contribution is more readily observable. Take for instance the case of

Gothaer Systems outsourcing the collection systems of its parent company Gothaer Insurance

Group to SAP (Basten et al. 2014). Similar to Bharti, Gothaer grew its business through a series

of mergers and acquisitions, resulting in a patchwork of IT systems to manage collections which

was due for replacement by a single new system. Whereas Bharti and IBM’s new system required

complex integration between the respective parties IT and telecom systems, Gothaer looked to

replace its systems with a standard insurance solution offered by SAP. As a result, despite the

typical integration difficulties, the lines between Gothaer Systems and SAP technology remained

visible. The sharp contrast between the Bharti and the Gothaer cases echoes a point made by

Susarla et al. (2010), whose empirical work highlights that fewer interdependencies in the client-

vendor technological interface are associated with higher observability of efforts.

The fact that the client has to contribute resources that facilitate the vendor’s response and

at the same time make the vendor liable for that response, typically through penalty contracts

(see Chan et al. (2014) for examples in medical equipment maintenance services) introduces an

interesting trade-off: On the one hand, by contributing more resources the client makes the

vendor’s resources more effective. On the other hand, more resources from the client might give

rise to free-riding and discourage the vendor from investing his own resources. The goal of our

research is to understand how the client should balance these two opposing forces: Supporting

the vendor and at the same time keeping the vendor liable through an appropriate contract.
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Specifically, we develop an analytical model to study the effect of two critical parameters of the

environment in which the parties operate. First, in some settings, the client’s contribution to

the response capacity might be limited to rather tangible resources that can be easily observed

and verified (e.g. as in the Gothaer and SAP case). In other settings, the client’s resource

contribution may require in-depth know-how that cannot be easily assessed or verified (e.g. as

in the Bharti and IBM case). In the former setting, the client’s investment in response capacity

is contractible, while in the latter, it is not. In general, a highly complex and integrated system is

likely to be associated with an environment where the client’s efforts are less observable. On the

contrary, when the vendor and the client’s system are connected through a more standardized

interface, the client’s efforts are more observable. Second, we examine how the relative risk

attitude of the client and the vendor affect investments in the collaborative response process.

Typically, cash flow volatility is more distressing for small- and medium-sized clients and vendors

than for larger ones. However, recent empirical studies show that even large companies can

exhibit risk aversion in contract design (Ning et al. 2014).

Our analysis sheds light on how the interaction effect of these two parameters (observability of

resources and risk attitude) jointly determine the efficiency of the investments in collaborative

response. We capture the latter through two performance metrics: i) The cost of complexity

which we define as the difference in the client’s expected utility between the observable effort

case (low complexity) and the non-observable effort case (high complexity); and ii) the total

expected system uptime.

We make the following three contributions to the literature on mitigating disruption risk in

IT outsourcing (ITO). First, we find that the cost of complexity diminishes as the vendor

becomes more risk averse. This counter-intuitive result occurs because when the client’s effort is

observable, it acts as a risk transfer mechanism to the vendor. As the vendor becomes more risk

averse, this mechanism becomes less effective, and as such, the difference between the observable

and non-observable cases decreases. Second, we show that the exact opposite effect takes place

when the client’s risk aversion increases. Hence, in that case, the cost of complexity increases

because complexity hampers the ability of the client to transfer risk. Finally, we show that

the effect of higher risk aversion on the system uptime is contingent on the level of the system

complexity: Under low complexity (observable effort) it decreases in vendor risk aversion, but is

invariant in client risk aversion. On the contrary, under high complexity (non-observable effort)

it increases in both vendor and client risk aversion. In summary, we note that increasing uptime,

which sounds positive, is actually a signal of inefficiency due to complexity.

2.2 Literature Review

Firms choose to outsource the implementation and maintenance of their IT to augment their

productivity, leverage knowledge outside the firm, and improve core competencies (DiRomauldo
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and Gurbaxani 1998), objectives that are of an increasingly strategic nature (Susarla 2012). Such

outsourcing relationships are typically governed by contracts that fall within three categories:

fixed-price contracts, cost-plus or time and materials contracts, and performance-based contracts

(PBCs) (Chen and Bharadwaj 2009, Dey et al. 2010). Provided the IT is sufficiently critical to

the client’s operations, IT contracts will typically contain provision for and metrics related to

disruption risks. Chen and Bharadwaj examine a sample of ITO contracts in light of contract

provisions along four dimensions, including monitoring provisions. Monitoring provisions may

cover benchmarking of vendor’s performance against prespecified standards to ensure compliance

and adherence to guidelines such as disaster recovery plans in case of failures. These provisions

may cover risks that are potentially outside of the vendor’s control. Vendors and clients share

these risks through a combination of fixed price and performance-based contract terms (e.g.

penalties), while the vendor may be protected by a guaranteed payment (fixed fee) independent

of performance (Fitoussi and Gurbaxani 2012). Susarla and Barua (2011) underscore that

inappropriate contract offers by the client pose serious financial risks to IT vendors. Dey et al.

highlight that the client’s business needs and industry standards should inform the choice of

product performance metric. They note that in case of outsourcing mission critical IT systems,

which we study in this chapter, metrics should cover system downtime.

IT contracts typically require significant integration and coordination of actions (Bapna et al.

2010), resulting in potential agency costs when mitigating system failure risks (Anderson and

Dekker 2005, Wu et al. 2012). In settings where coproduction is necessary and agency costs

are likely to be high, PBCs are the most effective way of aligning the incentives across the

firms (Roels et al. 2010). Empirical evidence of the efficacy of PBC’s has been demonstrated

in the context of product reliability of commercial aircraft engines (Guajardo et al. 2012). The

importance and widespread use of PBCs in IT service outsourcing are discussed extensively in

Bhattacharya et al. (2014) and the references therein. Following this analytical and empirical

support for PBC’s, we focus our analysis on the performance of a simple PBC in the context of

mission critical ITO.

The role of contracts in facilitating joint efforts has been studied in the context of IT contracting,

from software development (Chen and Bharadwaj 2009, Dey et al. 2010, Ceccagnoli et al. 2012)

to cyber infrastructure (August and Tunca 2011, Lee et al. 2013) and IT product improvement

(Bhattacharya et al. 2014). Chan et al. (2014) provide empirical evidence of the importance of

contract design in facilitating joint production of value between the client and vendor in restoring

complex technology. The papers by August and Tunca (2011) and Bhattacharya et al. (2014)

are closest to our study. In the context of joint efforts to minimize disruptions through cyber

attacks, August and Tunca (2011) examine and compare different liability policies. Among their

findings is that imposing partial patching cost liability is preferable to full cost liability from a

welfare optimization perspective. In their model, the vendor and user can invest to prevent dis-

ruption. Instead, we study a context in which the vendor and client invest in response capacity,

which shortens the expected disruption length but does not prevent disruptions from happening.
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Bhattacharya et al. (2014) explore the context of joint product improvement of a client and a

customer support center where a double moral hazard problem arises as improvement efforts by

the latter may hurt their revenues as service requests are lowered, yet client efforts are required

for improvement as well. Their paper studies the efficacy of linear gain-share contracts contin-

gent on realized volume of service requests; we work with a linear penalty contract contingent

on realized downtime of an IT service.

In our model, we focus on investments in response capacity to improve time to repair for a

mission critical IT system. Kim and Tomlin (2013) examine the trade-off between prevention

and mitigation and show that firms in a decentralized setting tend to overinvest in response

capacity. Closer to our work is Jain et al. (2013), who analyze after-sales contracting in a

double moral hazard setting and point out that PBCs expose the service provider to financial

distress, which may lead to suboptimal investment decisions as a result of risk aversion. In their

model, the client’s investment affects the interfailure time and the vendor’s investment affects

the time to repair. Kim et al. (2007) and Kim et al. (2010) also study the role of risk aversion

in the context of investment in response capacity. In contrast to Jain et al. (2013), we are

interested in a setting where both the client and vendor need to dedicate resources to respond to

disruption and their joint resources are complementary in reducing the length of the disruption

(without affecting the interfailure time). To our knowledge, our model is the first to consider the

extent to which risk preferences of the client and vendor as well as the collaborative nature and

observability of investments in system availability should be accounted for in performance-based

ITO contracting.

2.3 Model Assumptions

In this section we describe the characteristics of our model in two subsections. First, we specify

the assumptions regarding the disruption process and the response capacity investments by the

client and vendor. Second, we specify the contract terms and the payoff functions for the client

and vendor along with the sequence of events of the contracting game.

2.3.1 Disruption Process and Response Capacity Decisions

We consider a setting in which a client has outsourced the maintenance of a mission critical

IT system (hereafter ‘the system’) to a vendor. The high degree of asset specificity tied to

customized solutions prevents the client from multi-sourcing or resorting to alternative options

(Chen and Bharadwaj 2009). The system is assumed to be a mission critical system such that

the client’s entire revenue flow stops any time the system is in a state of disruption. Formally,

the client’s average revenues, denoted by R, are proportional to the uptime of the system over

the contracting period (Kim et al. 2010).
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Disruptions to the system arrive following a Poisson process with rate λ. Also, let N be the

associated random variable representing the number of failures per period. The failure rate is

common knowledge, exogenous and state-independent (Kim and Tomlin 2013). The disruption

length Di of each disruption i ∈ [1, N ] follows an exponential distribution that is stochastically

dependent on both parties’ investments through the rate parameter µ, where µ > 1. As in Kim

and Tomlin (2013), we assume 1/µ� 1/λ, such that no disruptions overlap.

A key characteristic of our model is the complementarity between the vendor’s and client’s efforts.

To capture this complementarity, we use the Cobb-Douglas production function (Bhattacharyya

and Lafontaine 1995, Roels et al. 2010). Specifically, we assume that the joint response capacity

is given by µ = µ̄xαyβ, where µ̄ is a scaling factor, x denotes the investment by the client, and

y denotes the investment by the vendor (x, y > 0). In the non-observable case, the investments

made by the client and vendor are assumed to be non-verifiable and, therefore, non-contractible,

which introduces double-sided moral hazard to the problem. In the observable case we assume

that the client’s efforts are contractible. The exponents α and β reflect the client’s and vendor’s

input elasticity to lowering the expected disruption length, respectively. For instance, a higher α

for the client means that her investments are more effective at reducing the expected disruption

length. To make sure neither party’s investment is trivial and the combined investments have

diminishing returns we assume α, β ≥ 0 and α + β ≤ 1 such that there are decreasing returns

on investment in response capacity.

Following this, the expected cumulative downtime (hereafter ‘expected system downtime’) is

equal to:

E

[
N∑
i=1

Di|x, y

]
=
λ

µ
=

λ

µ̄xαyβ
. (2.1)

The cost of investment is assumed to be linear in the level of investment (Corbett et al. 2005,

Roels et al. 2010, Kim and Tomlin 2013). The client’s and vendor’s marginal investment costs

are cc and cv, respectively. Throughout this chapter the indices {c, v} refer to the client and

vendor, respectively. Different investment costs could stem from a difference in aptitude in

responding to system downtime: Putting the right people and technology in place to respond to

disruption is less costly for the party that has more experience in dealing with IT disruptions.

2.3.2 Contract Structure and Sequence of Events

At the outset, the client offers the vendor a take-it-or-leave-it contract. The length of each

disruption is observable and verifiable by both parties, and as such, contracts contingent on

disruption length are enforceable. Let F be the fixed payment and p, the penalty attributed per

unit of expected cumulative disruption time. Then, the transfer payment from the client to the

vendor is T (F, p) = F − p ·
∑N

i=1Di, with an expected value E[T (F, p)|x, y] = F − pλ/(µ̄xαyβ).
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As such, the expected profit functions for the client and the vendor, respectively, are as follows:

E[Πc] = R

(
1− λ

µ̄xαyβ

)
+

pλ

µ̄xαyβ
− ccx− F, (2.2)

E[Πv] = F − pλ

µ̄xαyβ
− cvy. (2.3)

In the non-observable case (NO), the sequence of events is as follows. In the first stage, the

client offers the vendor a contract that outlines the fixed fee, F, and the penalty, p. If the

vendor accepts the contract, the client and vendor simultaneously invest in response capacity in

the second stage. In the final stage, disruptions and payoffs materialize. In the observable case

(O), in addition to the contract payment terms above, the vendor can observe the investment

the client makes in response capacity. Formally, we structure the observable case such that, the

client’s investment is set in the first stage rather than the second stage (as in the non-observable

case) and comes with the contract offer. The sequence of events for both contract structures is

displayed in Figure 4.1 and notation used in the model is summarized in Table 2.1.

Figure 2.1 Sequence of Events

Client 
NO: decides on response capacity.
O: no decision in this phase.

Vendor decides on response capacity 
investment y in both the O and NO case. 

Client 
NO: offers contract T(F,p) to vendor.
O: offers contract T(F,p,x) to vendor. 

Client receives penalty 
payment from vendor after 
disruption costs are realized.

Vendor pays penalty to client.

TimeStage 1 Stage 2 Stage 3

Table 2.1 Summary of notation

R Client’s revenues over an undisrupted contracting period

λ Disruption arrival rate (Poisson)

x Client’s investment in response capacity

y Vendor’s investment in response capacity

µ̄ Production function scale factor (baseline response capacity)

α Elasticity of expected disruption length to the client’s investment

β Elasticity of expected disruption length to the vendor’s investment

F Fixed fee

p Downtime penalty

cc Marginal cost of response capacity investment to the client

cv Marginal cost of response capacity investment to the vendor
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2.4 Analysis

In this section we characterize the optimal contract offered by the client and the equilibrium

investments in response capacity (hereafter ‘investments’) and discuss the implications for the

average system uptime and the client’s expected utility. We begin with the case where both the

client and vendor are risk-neutral. In this setting, we benchmark the equilibrium investment

levels of each case (non-observable and observable) against the first-best investment levels that

optimize the joint payoff of the two firms (Section 2.4.2). We begin by examining the effect of

vendor risk aversion (Section 2.4.3) and move on to examine client risk aversion (Section 2.4.4).

2.4.1 First-best under Risk Neutrality

The first-best levels of investment can be found by maximizing the joint payoff of the client and

the vendor. Formally:

(DFB) ΠFB = max
x,y≥0

R

(
1− λ

µ̄xαyβ

)
− ccx− cvy. (2.4)

After solving the first order condition and some algebraic manipulation, the first-best investment

levels are:

xFB =

(
αcv
βcc

)β
σ
(
Rαλ

µ̄cc

) 1
σ

and (2.5)

yFB =

(
βcc
αcv

)α
σ
(
Rβλ

µ̄cv

) 1
σ

, (2.6)

where σ = α+ β + 1. Using these findings, it is easy to show that:

xFB

yFB
=
αcv
βcc

. (2.7)

2.4.2 Contracting under Risk Neutrality

In the non-observable case (NO), the client’s investment in response capacity is not observable;

only the contract terms are set in the first stage. In the second stage, once the vendor agrees to

the contract, both parties simultaneously set their levels of investment. The simultaneous and

non-verifiable nature of the investments gives rise to double-sided moral hazard. At the start

of the game, the client takes this into account and offers a contract that solves the following
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optimization problem:

(DNO) max
F,p

R

(
1− λ

µ̄(x∗)α(y∗)β

)
+

pλ

µ̄(x∗)α(y∗)β
− ccx∗ − F,

s.t. F − p λ

µ̄(x∗)α(y∗)β
− cvy∗ ≥ k, (IR)

x∗ = arg max
x≥0

R

(
1− λ

µ̄(x)α(y∗)β

)
+

pλ

µ̄(x)α(y∗)β
− ccx− F, (IC1)

y∗ = arg max
y≥0

F − pλ

µ̄(x∗)α(y)β
− cvy, (IC2)

where x∗ and y∗ denote the equilibrium investments and IR and IC stand for individual ratio-

nality and incentive compatibility, respectively. This formulation is analogous to the problem

statement used in Bhattacharya et al. (2014), adapted to the assumptions in Section 2.3.2 of

this chapter. Proposition 1 characterizes the solution to DNO. All proofs are found in Appendix

2.A.

Proposition 1 (Optimal contract under non-observability and risk neutrality).

(i) In the non-observable case, given the optimal penalty pNO set in Stage 1, the second-stage

equilibrium investments are:

xNO =

(
αλ(R− pNO)

µ̄cc

) 1+β
σ
(
pNOβλ

µ̄cv

)−β
σ

, yNO =

(
αλ(R− pNO)

µ̄cc

)−α
σ
(
pNOβλ

µ̄cv

)α+1
σ

,

where xNO decreases in pNO and yNO increases in pNO. The optimal penalty satisfies the

following optimality condition:

Rλ(βR− (α+ β)pNO)

µ̄σpNO(R− pNO)(xNO)α(yNO)β
−cv(βp

NO(R− pNO) + α((pNO)2 + (2β − 1)pNOR− βR2)

βσ(pNO)2(R− pNO)yNO
= 0

, with 0 < pNO < R and where the optimal fixed fee is set such that the IR constraint is binding.

(ii) Let α = β = 0.5, cc = cv and µ̄ = 1. Given these symmetry conditions, we find pNO = R/2

and xNO = yNO = xFB/
√

2 = yFB/
√

2.

Proposition 1 part (i) shows that xNO and yNO are such that when neither player’s actions are

verifiable, it is never optimal for the client to transfer all the risk to the vendor by setting p = R.

Non-observability, and by extension complexity of system integration, therefore necessitates risk

sharing: The client never fully transfers the potential cost of downtime to the vendor. In

this case, the best the client can do is to use the penalty as a lever to distribute investments

according to the respective marginal return on investments for herself and the vendor. In the

case of symmetry, it is therefore optimal to share the potential cost of downtime equally by

setting pNO = R/2.

Part (ii) shows that given symmetric firms and non-observable investment by the client, both

the vendor and client underinvest with respect to the first-best by a factor 1/
√

2 and produce

a second-best outcome. This result is in line with the general finding in Bhattacharyya and
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Lafontaine (1995) that a linear penalty yields second-best results under double moral hazard.

Next, we examine the case in which the client’s investment in response capacity is observable at

the outset of the contracting game (Stage 1).

In the observable case (O), only the vendor invests in response capacity in the second stage. In

Stage 1, the client offers a contract that specifies the terms F and p as well as her investment

x. The client’s optimization problem in the observable case (DO) can be stated as follows:

(DO) max
x≥0,F,p

R

(
1− λ

µ̄xα(y∗)β

)
+

pλ

µ̄xα(y∗)β
− ccx− F,

s.t. F − p λ

µ̄xα(y∗)β
− cvy∗ ≥ k, (IR)

y∗ = arg max
y≥0

F − pλ

µ̄xαyβ
− cvy, (IC)

where y∗ denotes the equilibrium investment by the vendor in the Stage 2 problem. This problem

formulation differs from DNO in that x is a variable in the upper level of the problem, removing

the need for (IC2). Proposition 2 gives the solution to DO.

Proposition 2 (Optimal contract under observability and risk neutrality). In

the observable case, the client sets the optimal penalty pO = R and fixed fee F such that the

IR constraint is binding and the optimal contract guarantees first-best investment levels, i.e.

yO = yFB and xO = xFB.

Proposition 2 shows that the client can always induce a first-best investment by the vendor

by combining a maximum penalty pO = R with an observable first-best investment by herself.

Thus, if the client’s investment is observable, the underinvestment described in Proposition 1 is

prevented and efficiency is restored.

This result can be understood by noting that when facing a penalty equal to R, the risk-neutral

vendor fully internalizes the potential cost of disruption. As such, the vendor acts as if the

client’s loss of revenue were his own. Although both parties still need to invest, the client’s

observable investment in response capacity reduces the double-sided moral hazard problem to a

one-sided one. Given a first-best investment by the client in Stage 1, the vendor is incentivized

to make a first-best investment in Stage 2. In short, as a result of observability, the client reaps

all the benefits while fully transferring her exposure to the cost of downtime to the vendor.

This finding is similar to the main result in Demski and Sappington (1991). In this model, both

the principal and the agent exert efforts towards improving the profitability of the business.

The contract offered by the principal requires the agent to purchase the principal’s business, if

the agent’s investment is low enough, and the business is likely to underperform. The threat

of buying a potentially loss-making business prevents the agent from shirking, and instead, the

agent invests efficiently. Anticipating this, the principal also invests efficiently and preempts the

transfer of ownership, much like the first-best investment made by the client in our model.
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In general, throughout our analysis the observable case always dominates the non-observable

case from the perspective of the client. That is, the observable case always leads to higher

expected profits for the client as it puts her in a Stackelberg leader position and reduces the

moral hazard issue from double-sided to single-sided. This, however, does not imply that the

first-best efforts are maintained. As we show in the following subsection, when the vendor is

risk-averse, observability may not exclusively lead to efficient investments in response capacity.

2.4.3 Contracting under Vendor Risk Aversion

A critical issue with PBCs is that they expose vendors to increased financial risks by linking

uncertain outcomes to payment terms (Kim et al. 2010, Jain et al. 2013). Such exposure is

particularly important for small- and medium-sized vendors as it can lead to financial distress

and, potentially, bankruptcy. Moreover, risk aversion can also be exhibited by large corporations

(Ning et al. 2014). To understand the implications of these considerations, we now extend our

analysis to allow for vendor risk aversion (VRA); that is, we characterize the optimal contracts

and equilibrium investment levels as functions of the vendor’s level of risk aversion for both the

non-observable and observable cases.

We model risk aversion by capturing the disutility of such volatile returns on the vendor’s pay-

offs: The higher the VRA, the higher the utility loss for the vendor. For tractability reasons we

apply the mean-standard deviation (MSD) framework which has the same directional effects on

incentives as the mean-variance framework (Pratt 1964, Levy and Markowitz 1979, Samuelson

1986, Van Mieghem 2007).

Let SD[·] be the standard deviation operator and define P (p, x, y) ≡ p ·
∑N

i=1[Di|x, y] to reflect

the penalty paid over the cumulative downtime by the vendor and let γv be the vendor’s risk

aversion parameter. The parameter γv (γv > 0) is a measure of the degree of the risk aversion:

The higher γv, the more uncertainty there is with regard to the payoff factors into the utility.

Then, we can define the vendor’s risk aversion utility function as follows, where we use the

subscript vra to refer to the case of vendor risk aversion:

Uvra(y) ≡ F − E[P (p, x, y)]− cvy −
γv
2

SD[P (p, x, y)], (2.8)

where P (p, x, y) contains a compound Poisson random variable.

Lemma 1 (Variance of the compound Poisson process, (Ross 2003)). The variance of

the compound Poisson random variable can be computed: VAR(X(t)) = λE[VAR(D1) +E[D1]2].

Given P (p, x, y), we find SD[P (p, x, y)] = p
√

2λ/µ̄xαyβ.

From Lemma 1 it follows that:

Uvra(y) = F − p λ

µ̄xαyβ
− cvy −

γvp
√

2λ

2µ̄xαyβ
. (2.9)
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Also note that the vendor’s individual rationality constraint becomes Uvra(y) ≥ k. Proposition 3

characterizes the solution to the client’s optimization problem under VRA in the non-observable

case.

Proposition 3 (Optimal contract under non-observability and VRA). Define Φ ≡
(2λ + γv

√
2λ)/(2λ). Note that Φ ≥ 1. Given the optimal penalty pNCvra set in Stage 1, the

second-stage equilibrium investments are:

xNOvra = xNO(pNOvra )Φ
−β
σ , yNOvra = yNO(pNOvra )Φ

1+α
σ ,

where xNO(·) and yNO(·) are the second-stage equilibrium investments in the risk-neutral case

(Proposition 1). The optimal penalty pNOvra satisfies the following optimality condition:

βccx̂− (1 + α)cvŷ

σp̂
+

(1 + β)ccx̂− αcvŷ
σ(R− p̂)

+
Rλ

σµ̄x̂αŷβ

(
β

p̂
− α

R− p̂

)
− (1 + α)γv

√
2λ

2σµ̄x̂αŷβ
− αp̂γv

√
2λ

2(R− p̂)µ̄x̂αŷβ
= 0, (2.10)

where we use p̂ ≡ pNOvra , x̂ ≡ xNOvra , and ŷ ≡ yNOvra as a shorthand. Moreover, under symmetry,

i.e., α = β = 0.5, cc = cv and µ̄ = 1, the penalty, pNOvra , and the vendor’s effort, yNOvra , decrease

in γv, while the client effort’s, xNOvra , increases in γv.

One might expect that a more risk-averse vendor would invest more in response capacity. Yet,

Proposition 3 shows that the opposite is true: As γv increases, the vendor’s investment decreases

while the client’s investment increases. To see why this happens, note that in our model the

investment levels are determined by two effects. The direct effect follows from the vendor’s

incentive to limit exposure to downtime by investing more in response capacity. This effect is

captured through the parameter Φ. The indirect effect follows from the role of the penalty p that

the client sets in the contract. As γv increases and the vendor becomes more risk-averse, the

client has to lower the penalty p and increase the fixed fee F in order to ensure that the vendor’s

participation constraint (IR) is met. At optimality, the vendor’s participation constraint is

binding. Importantly, the indirect effect (of the lower penalty) outweighs the direct effect (of

the vendor’s exposure to downtime), and as a result, a risk-averse vendor underinvests compared

to a risk-neutral vendor, i.e. yNOvra < yNO and yNOvra decreases in γv. This result is consistent

with Jain et al. (2013), who examine the effect of financial distress on the efficiency of linear

contracts. They show that as the vendor’s financial distress threshold is reduced and bankruptcy

becomes more likely, the vendor invests less in response capacity and the performance of the

linear contract deteriorates.

At the same time, the client overinvests with respect to the risk-neutral case xNOvra > xNO and

xNOvra increases in γv > 0. In essence, the client prefers to invest in response capacity herself

rather than incentivize the vendor (through the penalty p) to do so. The latter would require

an even higher fixed fee, which the client would find suboptimal to offer. Next, we examine the

role of observability of the client’s investment when facing a risk-averse vendor.
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Proposition 4 (Optimal contract under observability and VRA). Define η ≡ (2λ +

γv
√

2λ)/(2λ + (1 + 1/β)γv
√
λ(2 + λ)) and note that η ≤ 1. Given the optimal penalty pOvra

and optimal client investment xOvra, the vendor’s second-stage equilibrium investment is yOvra =

yOη
1+α
σ < yO, where yO is the vendor’s investment under risk neutrality (Proposition 2). The

client’s optimal investment and penalty, set in Stage 1, are xOvra = xOη
−β
σ > xO and pOvra =

2βλR/(2βλ + (1 + β)γv
√

2λ), respectively. Moreover, xOvra increases in γv, while pOvra and yOvra

decrease in γv.

Proposition 4 states that, given VRA, observability does not exclusively lead to the efficient

(first-best) investments that we described in the risk-neutral situation examined in Proposition

2. Recall that in Proposition 2, efficiency was achieved in two steps: The client knows her

investment is observable and incentivizes the vendor to also invest efficiently by fully transferring

the risk to him. The latter is effective when facing a risk-neutral vendor but much less so when

facing a risk-averse vendor. In fact, as VRA increases, the penalty pOvra decreases, indicating

that the vendor bears less of the risk. This is optimal for the client because doing otherwise,

i.e. transferring more risk to a risk-averse vendor, would require a prohibitively high fixed fee

to meet the vendor’s participation constraint.

Figure 2.2 illustrates the key results of Propositions 3 and 4. The first plot shows how penalties

in the non-observable and observable cases decrease in VRA. The second plot shows the client’s

and vendor’s investments as VRA increases from γv = 0 to γv = 2 in increments of ∆ = 0.1. In

all figures, the remaining parameters are set to R = 100, µ̄ = 5, λ = 2, k = 0, cc = 1, cv = 1,

α = 0.5, β = 0.5.

So far we have discussed the effect of VRA on the optimal contract and the vendor’s and client’s

equilibrium investments. We now examine the effect of VRA on effect of observability on our

key performance metrics: average system uptime (Corollary 1) and the client’s expected utility

(Corollary 2). To ensure tractability, we present the results for the case of symmetric firms, i.e.

α = β = 0.5 and cc = cv, below.

Corollary 1 (Expected system uptime under VRA). For α = β = 0.5 and cc = cv,

under observability (non-observability), the expected system uptime decreases (increases) in the

vendor’s risk aversion.

Corollary 1 states that the effect of higher VRA on the average system uptime depends critically

on whether the client’s investment in response capacity is observable. This is illustrated in the

top panel of Figure 2.3, in which we plot the expected system uptime for the observable and

non-observable strategies. In the observable case, the expected system uptime decreases in VRA,

while it increases in the non-observable case. First, recall that the average system uptime in our

model increases in the client’s and vendor’s investments in response capacity. Also recall that

higher VRA leads to higher client investment and lower vendor investment in both the observable

(Proposition 4) and non-observable (Proposition 3) cases. In the observable case, however, the
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Figure 2.2 Effect of increasing VRA on the optimal penalty and investments

(i) effect of VRA on the optimal penalty

(ii) effect of VRA on the equilibrium investments

drop in the vendor’s investment outweighs the increase in the client’s investment. As such, the

joint response capacity decreases and the average uptime decreases. In the non-observable case,

the reverse is true and the average uptime increases.

As VRA increases, the client has to decide whether to overcompensate for the vendor’s underin-

vestment or accept a longer system downtime. In the observable case, the vendor bears most of

the cost of downtime through the relatively high penalty. From the client’s perspective, compen-

sating for the vendor’s underinvestment is not worthwhile. Instead, the client trades off longer

downtime (since the vendor is still primarily liable for it) against lower investment in response
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capacity. By contrast, in the non-observable case, the penalty for the vendor is much lower

and, therefore, the client bears an increasing share of the cost of downtime (as VRA increases).

This finding is reflected in an empirical study by Susarla et al. (2010), who demonstrate that

for settings with lower interdependency (hence better observability) of efforts, incentives should

be more high-powered (hence shifting more risk to the vendor). As such, it is in the client’s

interest to overcompensate for the vendor’s underinvestment and increase the joint response

capacity. This is why higher VRA leads to longer uptime in the case of non-observability but

longer downtime in the case of observability. Lastly, note that for high VRA, the penalties for

the observable and non-observable cases converge and the effect of higher VRA on the average

system uptime is marginal.

Corollary 2 (Client’s expected utility under VRA). For α = β = 0.5 and cc = cv,

the difference between the client’s expected utility in the observable and non-observable cases

decreases as VRA increases.

The key managerial implication of Corollary 2 is that a lack of observability of the client’s

investment results in both lower expected uptime and utility for the client. As such there is

a cost of complexity, linking complexity of system integration to system performance through

the efficacy of collaborative response. One might reason that a observability of resources by

the client would be particularly effective in the case of highly risk-averse vendors, who are

particularly concerned about the volatility of their payoff. Yet, according to Corollary 2, the

cost of complexity for the client diminishes as the vendor becomes more risk-averse. To see why

this is the case, recall from Proposition 2 that the observability of the client’s investment induces

efficient investments by transferring risk from the client to the vendor. As VRA increases, the

risk premium that the client needs to pay to the vendor (through the up-front fixed fee) becomes

prohibitively expensive and the client instead prefers to bear more of the risk herself. This leads

to underinvestment by the vendor and, in turn, to lower expected profits for the client. The

bottom panel of Figure 2.3 plots the client’s expected profits with respect to VRA (using the

same parameter settings as in Figure 2.2.).

Collectively, our results on the effect of VRA indicate that lack of observability of investment

is not necessarily an impediment to collaboration, particularly when those resources are not ob-

servable to more risk-averse vendors, which are presumably small- and medium-sized businesses.
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Figure 2.3 Effect of increasing VRA on the client’s average system uptime and expected utility

(i) effect of VRA on average system uptime

(ii) effect of VRA on the client’s expected utility

2.4.4 Contracting under Client Risk Aversion

In many settings it is the client rather than the vendor who is risk-averse. In this section, we

study the role of client risk aversion (CRA) on the optimal contract and the investments in

response capacity. In line with the previous section, we account for CRA through the MSD

framework. Specifically, we define the client’s risk aversion utility function as follows, using the

index cra to refer to the case of client risk aversion:
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Ucra(F, p, x) ≡ R
(

1− λ

µ̄xαyβ

)
− ccx+

pλ

µ̄xαyβ
−
γc
√

(R− p)2
√

2λ

2µ̄xαyβ
− F. (2.11)

In the above formulation, note that the client experiences variance due to the uncertain down-

time, which results in loss of revenue R, but this effect is offset by the penalty, p, paid to her by

the vendor. The client thus experiences disutility proportional to effective standard deviation:√
(R− p)2SD [

∑n
i=1Di|x, y] ≡ |R − p| · SD [

∑n
i=1Di|x, y]. The client’s optimization problem

is to maximize the above utility subject to the vendor’s participation constraint and incentive

compatability. In the remainder of this section, to disentangle the effect of CRA, we assume a

risk-neutral vendor (i.e. γv = 0). Proposition 5 and Proposition 6 present our results for the

cases of non-observability and observability, respectively, under CRA.

Proposition 5 (Optimal contract under non-observability and CRA). Define Φ′ ≡
(2λ + γc

√
2λ)/(2λ) and note that Φ′ ≥ 1. Given the optimal penalty pNOcra set in Stage 1, the

second-stage equilibrium investments are:

xNOcra = xNO(pNOcra )Φ′
1+β
σ , yNOcra = yNO(pNOcra )Φ′

−α
σ ,

where xNO(·) and yNO(·) are the second-stage equilibrium investments in the risk-neutral case

(Proposition 1). The optimal penalty satisfies the following optimality condition:

βccx̂− (1 + α)cvŷ

σp̂
+

(1 + β)ccx̂− αcvŷ
σ(R− p̂)

+
Rλ

σµ̄x̂αŷβ

(
β

p̂
− α

R− p̂

)
+

(1 + β)γc
√

2λ

2σµ̄x̂αŷβ
+
β
√

(R− p̂)2γc
√

2λ

2σp̂µ̄x̂αŷβ
= 0, (2.12)

where we use p̂ ≡ pNOcra , x̂ ≡ xNOcra , and ŷ ≡ yNOcra as a shorthand. Moreover, under symmetry,

i.e., α = β = 0.5, cc = cv and µ̄ = 1, the penalty, pNOcra , and the vendor’s effort, yNOcra , increases

in γc, while the client’s effort, xNOcra , decreases in γc.

Proposition 5 illustrates how in the non-observable case, the role of CRA is diametrically opposite

to the role of VRA (discussed in Proposition 3). In particular, the inefficiency in the investment

levels is now expressed by the client underinvesting and the vendor overinvesting relative to

the investments made under risk neutrality. As we see in the top panel of Figure 2.4, as CRA

increases, so does the penalty p. By increasing the penalty, the client can offset her exposure to

variability by creating an incentive for the vendor to increase his investment. As a result, as γc

increases, the client’s investment decreases and the vendor’s increases (bottom panel of Figure

2.4). Next, we examine the effect of CRA in the observable case.

Proposition 6 (Optimal contract under observability and CRA). In the observable

case, the client sets the optimal penalty pOcra = R, which completely offsets the client’s exposure

to variance and induces first-best investments, i.e. yOcra = yFB and xOcra = xFB.

Proposition 6 shows that if the client’s investment is observable, CRA is completely inconse-

quential under vendor risk neutrality; i.e. both firms’ investment levels and expected utilities
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Figure 2.4 Effect of increasing CRA on the optimal penalty and equilibrium investments

(i) effect of CRA on the optimal penalty

(ii) effect of CRA on the equilibrium investments

are identical to the case of observability under risk-neutral firms. Recall from the discussion

following Proposition 2 that by setting pO = R, the client is able to incentivize the vendor to

invest efficiently. Moreover, in this case, by setting pOcra = R, the client is able to offset her

exposure to volatility fully, i.e. reduce her effective standard deviation to zero. As a result, the

investment decisions are invariant in the client’s risk aversion. These findings are also illustrated

in Figure 2.4.
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We now examine the effect of CRA on the average system uptime and the client’s expected

utility. As in Section 4.2, we present the results for the case of symmetric firms, i.e. α = β = 0.5

and cc = cv.

Corollary 3 (Expected uptime and client’s expected utility under CRA). For α =

β = 0.5 and cc = cv, the difference between the expected system uptime in the observable and

non-observable cases decreases as the client’s risk aversion increases. However, the difference

between the client’s expected utilities increases as CRA increases.

The first part of Corollary 3 shows that in the case of non-observability, even though the client’s

investment decreases in her risk aversion, the increase in the vendor’s investment overcompen-

sates for it, and as a result, the joint response capacity increases. This, leads in turn to higher

expected system uptime. Yet, in the observable case, the average system uptime is invariant in

CRA. As a result, the cost of complexity on the expected system uptime decreases. The effect

is illustrated in the top panel of Figure 2.5 and is in line with the result of Corollary 1.

The second part of Corollary 3 stands in sharp contrast to the corresponding result in Corollary

2. In the non-observable case, higher CRA leads to lower expected utility for the client. Again,

in the observable case, the client’s expected profits are invariant in her level of risk aversion.

As such, higher CRA leads to a widening of the performance gap between the observable and

non-observable cases (bottom panel of Figure 2.5). This comparison has an important man-

agerial implication: It is particularly beneficial for a highly risk-averse client to operate in an

environment where investments are observable (i.e. limited complexity of system integration)

but this becomes fairly inconsequential when the vendor is highly risk-averse.

2.5 Robustness Tests

To demonstrate the generalizability of our main findings in previous section, we present a number

results of numerical robustness tests we performed. Firstly, we show that our key directional

results regarding the effect of VRA and CRA remain valid under the case where both the client

and the vendor are risk averse. Secondly, we relax the assumption of symmetry between the

vendor and client in terms of their return on investment in response capacity and show that our

results still hold.

2.5.1 Vendor and Client Risk Aversion

So far we have discussed only the effect of one-sided risk aversion, i.e. either vendor risk aversion

(VRA) or client risk aversion (CRA). In this section we conduct a numerical analysis to examine

the robustness of our main findings when both the client and the vendor are risk-averse. As

before, we use γv for VRA and γc for CRA. When γv > γc we say the vendor is relatively

risk-averse and when γc > γv we say the client is relatively risk-averse.
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Figure 2.5 Effect of increasing CRA on the client’s expected utility and average system uptime

(i) effect of CRA on average system uptime

(ii) effect of CRA on the client’s expected utility

Figure 2.6, shows the effect of VRA for different levels of CRA, for both the observable and non-

observable cases. Conversely, Figure 2.7 shows the effect of CRA for different levels of VRA, for

both the observable and non-observable cases. To facilitate comparison, all graphs are plotted

using the same parameter values that we used in our earlier analyses, that is, α = β = 0.5,

cc = cv = 1, R = 100, µ̄ = 5, λ = 3, k = 0. As such, the curves in Figure 2.6 for which γc = 0 are

the same as in panel (ii) in Figure 2.3. Similarly, the curves in Figure 2.7 for which γv = 0 are

the same as in panel (ii) in Figure 2.4.
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Figure 2.6 The effect of VRA for different levels of CRA

There are two key observations from this analysis. First, for any level of CRA, the directional

effect of VRA in Figure 2.6 remains similar to Figure 2.3. That is, as VRA increases, the client’s

expected utilities for both the observable and non-observable cases decrease, and the difference

between them decreases as well. Similarly, for any level of VRA, the directional effect of CRA

in Figure 2.7 remains similar to the right-hand panel in Figure 2.5. That is, the performance

difference between the observable and non-observable cases decreases in CRA. The effects of

vendor and CRA to the rest of our key variables (e.g., the penalty and the equilibrium efforts)

are similarly consistent with our earlier analysis. We omit this figures for brevity. Altogether,

these results confirm the robustness of our main findings.

Second, when both firms are risk-averse, the client can no longer transfer all the risk to the

vendor but instead she needs to balance the shielding effect of the penalty with regard to her

own risk aversion with the risk premium that she needs to pay to vendor. This leads to having

both parties carrying some of the risk, and a corresponding inefficiency in their investment levels.

Figure 2.7 The effect of CRA for different levels of VRA
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2.5.2 Asymmetric Firms

In the interest of tractability, our analytical results are derived under symmetry between the

client and vendor with regard to their return on investment (α and β, respectively, for the

client and vendor) as well as their cost of investment (cc and cv). In this section, we present a

numerical analysis that shows the robustness of our key findings when we allow for asymmetries

between the two firms. Specifically, Figure 2.8 below illustrates the effect of VRA on the client’s

utility (left-hand panel) and the equilibrium investments (right-hand panel) for β > α (β = 0.5

and α = 0.3). By the same token, Figure 2.9 plots the same metrics for α > β (α = 0.5 and

β = 0.3).

As we would expect, a higher β leads to higher investment levels by the vendor, and higher α

leads to higher investment levels by the client. Otherwise, all the directional effects of VRA on

the client’s expected utility and equilibrium investments for asymmetric firms (α 6= β) remain

the same as in the case of symmetric firms (α = β). The same results hold for asymmetric

investment costs (cc 6= cv), and therefore not presented here for the sake of brevity.

Figure 2.8 Effect of VRA (β > α)

Figure 2.9 Effect of VRA (α > β)

Lastly, we examine the effect of CRA under asymmetric firms. Figure 2.10 and Figure 2.11 below

plot the client’s expected utility (left-hand panel) and the equilibrium investments (right-hand
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panel) for β > α and α > β, respectively. Again, we observe that while the absolute magnitude

of the investment levels depends on α and β, all the directional results of the effect of CRA are

consistent with our earlier analysis (e.g., see Figure 2.5, panel (b)).

Figure 2.10 Effect of CRA (β > α)

Figure 2.11 Effect of CRA (α > β)

(i) (ii)

2.6 Conclusions

Responding to mission critical IT system failures often requires a collaborative approach in

which both the vendor and client need to invest in response capacity. In such a setting, the

client needs to balance two opposing forces. By investing more resources, the client makes the

vendor’s resources more effective when restoring operations during an outage. At the same

time, by providing more resources, the client encourages free-riding by the vendor. To better

understand how a client should balance these forces, we develop a novel model that combines

the key characteristics of value co-creation (i.e. complementarity between the firms’ investments

in response capacity) with standard maintenance contract practices (i.e. penalty contracts that

penalize the vendor for system downtime). We study the difference in the client’s expected
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utility between the observable effort case (low complexity) and the non-observable effort case

(high complexity). We refer to this difference as the cost of complexity. Our analysis has the

following managerial implications.

First, as vendor risk aversion (VRA) increases, the cost of complexity to the client decreases.

When facing a risk-neutral vendor, and the clients’ effort is observable, the client can perfectly

disentangle her investment from the vendor’s. By doing so, the client reduces the double-

sided moral hazard to single-sided moral hazard. For the latter, an appropriately designed

performance-based contract can achieve efficient levels of investments. In essence, the client’s

resources do not only provide support to the vendor, but also act as a risk transfer mechanism.

As VRA increases, it becomes increasingly expensive for the client to transfer risk to the vendor

through such a contract. As such, the client prefers to keep more risk herself and the advantage of

observability becomes less relevant. A key implication of this result is that the cost of complexity

is lower when the client is working with small- and medium-sized vendors, who are likely to be

more risk-averse.

Second, we show that the cost of complexity to the client increases as the client becomes more

risk-averse. In fact, in the observable case, the client’s expected utility is invariant in her level

of risk aversion as all the risk can be effectively transferred to the vendor. In the non-observable

case, however, as client risk aversion (CRA) increases, it becomes more imperative for the client

to transfer risk to the vendor. The only means of doing so is to increase the penalty fee that

the vendor incurs. However, this risk transfer is costly to the client as it requires the client to

pay higher up-front fees to the vendor. This result illustrates that it is highly risk-averse clients

who are set to benefit the most from operating in an environment where their own investment

in response capacity is observable.

Taken together, the previous results also suggest that when the client is highly risk-averse, she has

a lot to gain by making her efforts more observable (e.g., by investing in monitoring mechanisms

or processes and systems that make her efforts more transparent). On the contrary, when the

client is working with a highly risk-averse vendor, investing in increasing her observability of

efforts will not have a substantial impact on her profits. Thus, the relative risk preferences of the

two firms play a critical role in the extent to which asymmetric information affects the efficiency

of the collaborative process.

Third, we show that higher VRA leads to higher system downtime in the observable case, but

lower system downtime in the non-observable case. As VRA increases, the vendor invests less

and the client has to decide whether to overcompensate for the vendor’s weaker efforts or accept

a longer system downtime. In the observable case, the vendor incurs most of the downtime

cost due to the high penalty fees. As such, the client trades off longer downtime against lower

investment in response capacity. By contrast, in the non-observable case, the client cannot

transfer most of the risk to the vendor, and as VRA increases, the cost of downtime to the

client increases as well. This is why, when the client’s investment in response capacity is not
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observable, she prefers to overcompensate for the vendor’s lower efforts by investing even more

herself, and the combined effect is lower expected system downtime. Notably, higher uptime,

which sounds positive, is actually a signal of inefficiency due to higher complexity associated with

the non-observable case. In short, the effect of risk aversion on the average system downtime is

diametrically opposite depending on whether or not the client’s investment is observable.

These three main findings do not come without limitations. In particular, concerns may be

raised surrounding a number of the core assumptions to the model which may not find reflection

in reality. Firstly, we built our model on the assumption of both a one-shot contract and static

investment in response capacity. These are assumptions made elsewhere in the literature. For

example, Kim et al. (2007) give an example of the US Department of Defense offering one-

shot contracts on an annual basis despite the lifetime of technology involved. In addition,

preparedness to respond to disruption is likely to require a sizeable upfront and non-reversible

investment, in turn meaning dynamic adjustments of the investment levels may not be feasible.

Nonetheless, in the context of IT outsourcing subject to both frequent disruption as well as

significant technological advances, both investment and contract terms may be more reactionary

to disruptions. Moreover, we assume whether or not the client’s investment is observable and

verifiable, and hence the system complexity, is given exogenously. If the technology is indeed

critical to the client, then there is reason for the client to decide on the architecture with the

dependence on the vendor’s efforts in disruption response in mind. In other words, ensuring

verifiability of her resource contribution may be a client-side decision that is endogenous to the

contracting game. Broadly, inefficient decisions following from differences in risk aversion are

likely to persist even under dynamic decision making and endogenous verifiability of investments

may only be worthwhile so long as acting on it does not present immediate costs that are higher

than discounted expected cost of future disruptions under limited verifiability of investments.

To conclude, our work shows that improving the efficiency of a collaborative response requires a

clear understanding of two key parameters: the nature of the investments in response capacity

that are required (whether or not the client’s investment can be disentangled from the vendor’s);

and the risk attitudes of each firm. Our analysis highlights that the implications of these two

parameters cannot be considered in isolation and instead must be jointly considered.
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2.A Proofs

Proof of Proposition 1. Part (i) We first state the expected profit functions for the client and

the vendor:

E[Πc] = R

(
1− λ

µ̄xαyβ

)
+

pλ

µ̄xαyβ
− ccx− F, E[Πv] = F − pλ

µ̄xαyβ
− cvy. (2.13)

We find the solution to this problem through backward induction, starting with a solution to

the Nash subgame in stage 2. The firms’ best response functions are:

x(y) =

(
αλ(R− p)
µ̄ccyβ

) 1
α+1

, y(x) =

(
pβλ

µ̄cvxα

) 1
β+1

. (2.14)

From the second-order derivatives on the expected profit function for both the client we can

verify both independently have a unique solution for any decision of the other player, as long as

0 < p < R:

∂2E[Πv]

∂y2
=
−(1 + β)βpλ

µ̄y2+βxα
< 0,

∂2E[Πc]

∂x2
=
−α(1 + α)(R− p)λ

µ̄x2+αyβ
< 0. (2.15)

Simultaneously solving the FOCs gives the second stage equilibrium investments, yN and xNO:

yNO =

(
αλ(R− p)

µ̄cc

)−α
σ
(
pβλ

µ̄cv

)α+1
σ

, xNO =

(
αλ(R− p)

µ̄cc

)β+1
σ
(
pβλ

µ̄cv

)−β
σ

, (2.16)

where σ = 1 + α+ β. From the above we can see that xNO decreases in p and yNO increases in

p.

At optimality, the vendor’s individual rationality constraint is always binding, so the client sets

the fixed fee FNO = pNOλ
µ̄(yNO)β(xNO)α

+cvy
NO+k. Subsituting FNO, xNO and yNO into the client’s

expected profit function gives an updated objective function for the stage one problem:

E[Πc] = R

(
1− λ

µ̄(xNO)α(yNO)β

)
− ccxNO − cvyNO. (2.17)

Taking the derivative with respect to p gives the optimality condition for pNO

Rλ(βR− (α+ β)pNO)

µ̄σpNO(R− pNO)(xNO)α(yNO)β
−cv(βp

NO(R− pNO) + α((pNO)2 + (2β − 1)pNOR− βR2)

βσ(pNO)2(R− pNO)yNO
= 0.

(2.18)
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This optimality condition does not have a closed-form solution, however, numerical analysis

shows that there exists a unique p that maximizes the client’s expected profit. We omit the

results of this analysis for the sake of brevity.

Part (ii) Let α = β = 0.5, cv = cc = c and µ̄ = 1. First note that the total investment cost

is minimized for p = R/2. By part (i), the equilibrium investments xNO and yNO are unique

and given cv = cc = c, the total investment cost at optimality is CNO(p) ≡ c(xNO(p) + yNO(p))

with:

∂CNO

∂p
=

cvR(R− 2p)
(
pλ
cµ̄

)3/4

4
√

2p2(p−R)
(

(R−p)λ
cµ̄

)1/4
, (2.19)

∂2CNO

∂p2
=
cvR(12p2 − 12pR+ 5R2)

(
pλ
cµ̄

)3/4

16
√

2p3(p−R)2
(

(R−p)λ
cµ̄

)1/4
> 0. (2.20)

The first order derivative given by Equation 2.19 is zero at p = R/2. As the second order

derivative in Equation 2.20 is positive everywhere, CNO is strictly convex and cost is minimized

for p = R/2.

Next we show the product of the investments is maximized for p = R/2. LetHNO ≡ xNO(p)yNO(p).

Then,

∂HNO

∂p
=

(2p−R)
√
xNOyNO

4p(p−R)
, (2.21)

∂2HNO

∂p2
= −(2p2 − 2pR+ 3R2/2)

√
xNOyNO

8p2(p−R)2
< 0. (2.22)

The first order derivative given by Equation 2.21 is zero at p = R/2. As the second order

derivative in Equation 2.22 is negative everywhere, HNO is strictly concave and it is maximized

for p = R/2. By maximizing HNO, the expected uptime 1 − λ/(µ̄
√
xNOyNO) is maximized.

Setting p = R/2 thus simultaneously maximizes HNO and minimizes CNO, which means E[Πc]

in Equation 2.17 is maximized. Under symmetry we have xFB = yFB =
(
Rλ
2c

) 1
2 , thus xNO =

xFB/
√

2 < xFB and equivalently yNO = yFB/
√

2 < yFB. �

Proof of Proposition 2. The expected profit for the vendor in case of a linear penalty contract

is:

E[Πv] = F − pλ

µ̄xαyβ
− cvy. (2.23)

We first solve the FOC for y, which gives the vendor’s best response function:

y(x) =

(
pβλ

µ̄cvxα

) 1
1+β

. (2.24)

Showing that the second order derivative for the vendor expected profit function is negative

indicates the solution for y in this stage is unique given p > 0 and x > 0:

∂2E[Πv]

∂y2
=
−(1 + β)βpλ

µ̄y2+βxα
< 0. (2.25)
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At optimality the vendor’s IR constraint is always binding, the client sets the fixed fee FO =
pOλ

µ̄(yO)β(xO)α
+ cvy

O + k. Substituting FO and y(x) into the client’s expected profit function and

taking the partial derivative with respect to x produces:

∂E[Πc]

∂x
=

αλ(βp+R)

(1 + β)µ̄x1+a

(
cvµ̄x

α

βpλ

) β
1+β

− cc. (2.26)

Note that for p = R, we can solve for x to find:

xO =

(
cvα

βcc

)β
σ
(
αλR

ccµ̄

) 1
σ

, (2.27)

retrieving the first best investment by the client, i.e. xO = xFB. Here again σ = 1 + α + β.

Given that the best response function Equation 3.7 is the same as found when solving DFB, the

first best investment level is retrieved for yO as well, such that

yO =

(
βcc
αcv

)α
σ
(
Rβλ

µ̄cv

) 1
σ

. (2.28)

Given that the client can extract all rents by adjusting the fixed fee in the contract and knowing

that the first best investments yield the best possible system profit, it follows that setting p = R

is indeed optimal. Moreover, we find that as all parameters are non-negative, p ≤ R and

0 < β < 1 it holds that:

∂2Πc

∂p2
=

cv(β(p− 2R)−R)

(1 + β)2p3
(
cvµ̄xα

βpλ

) 1
1+β

< 0, (2.29)

∂2Πc

∂x2
=
−ασλ(βp+R)

(
cvµ̄xα

βpλ

) β
1+β

(1 + β)2µ̄x2+α
< 0, (2.30)

∂2Πc

∂p∂x
=

αcv(p−R)

(1 + β)2p2x
(
cvµ̄xα

βpλ

) 1
1+β

< 0. (2.31)

The determinant of the Hessian matrix is:∣∣∣∣∣ ∂2Πc
∂p2

∂2Πc
∂p∂x

∂2Πc
∂p∂x

∂2Πc
∂x2

∣∣∣∣∣ = −ασc
2
v(β(p− 2R)−R)(βp+R)

β(1 + β)4p4x2
(
cvµ̄xα

βpλ

) 2
1+β

− α2c2
v(p−R)2

(1 + β)4p4x2
(
cvµ̄xα

βpλ

) 2
1+β

. (2.32)

As p ≤ R, both terms on the RHS are positive. Then, as 0 < α, β ≤ 1 and (β(p−2R)−R)(βp+

R) = R2 +β2(2R2 + 2pR− p2) > (p−R)2, the second term on the RHS is smaller than the first

term, such that the determinant is positive. Together with the fact that ∂2Πc
∂p2

is negative, this

means the Hessian matrix is negative-definite, which proves joint concavity in x and p. �

Proof of Lemma 1. The following is based on elements of Chapter 5 in (Ross 2003) and adapted

to the assumptions in our model. A stochastic process {N(t), t ≥ 0} is called a counting process

if N(t) represents the total number of events that occur by time t. Particularly, the counting

process must satisfy:



2.A Proofs 38

1. N(t) ≤ 0

2. N(t) is integer valued

3. If s < t, then N(s) ≤ N(t)

4. for s < t, N(t)−N(s) equals the number of events in the interval (s, t].

The Poisson process is a special case of a counting process which adheres to the following

properties. A counting process {N(t), t ≥ 0} is Poisson with rate λ, λ > 0, if:

1. N(0) = 0

2. The increments of the process are independent, i.e. the number of events in an interval is

independent of the interval.

3. The number of events in the interval is distributed with mean λt.

This means, ∀s, t ≥ 0, it holds that P{N(t + s) − N(s) = n} = e−λt (λt)n

n! , where n = 0, 1, . . ..

In words, the interarrival time is found to be distributed i.i.d. with an exponential distribution.

To find the characteristics of the Compound Poisson process that is central to the model in this

chapter, we need a number of additional assumptions. The stochastic process {X(t), t ≥ 0} is a

Compound Poisson process if:

X(t) =

N(t)∑
i=1

Yi, t ≥ 0, (2.33)

where {N(t), t ≥ 0} is a Poisson process and {Yi, i ≥ 1} is a family of i.i.d. random variables

also independent of the Poisson process. Specifically, X(t) is here called the Compound Poisson

random variable, which has moments like any other random variable. The mean and variance

of a Compound Poisson random variable are:

E[X(t)] = λtE[Yi] = E[N ]E[Yi], (2.34)

VAR(X(t)) = λtE[(Yi)
2

= λtE[VAR[Yi] + E[Yi]
2], (2.35)

which holds for any i as all Yi are i.i.d. To find Equation 2.35, we require computation of

variance by conditioning. We know VAR(X) = E[X2]− (E[X])2. Then, note:

E[VAR(X|Y )] = E[E[X2|Y ]− (E[X|Y ])2]

= E[E[X2|Y ]]− E[(E[X|Y ])2]

= E[X2]− E[(E[X|Y ])2], (2.36)

where the second equality holds as, by definition, E[X] =
∑

y E[X|Y = y]P{Y = y}. Moreover,

we need:

VAR(E[X|Y ]) = E[(E[X|Y ])2]− (E[E[X|Y ]])2

= E[(E[X|Y ])2]− (E[X])2, (2.37)



2.A Proofs 39

such that:

E[VAR(X|Y )] + VAR(E[X|Y ]) = E[X2]− (E[X])2 = VAR(X). (2.38)

Now for the Compound Poisson random variable S =
∑N

i=1Xi, where Xi ∼ F (µ, σ2) and the

length of the interval is normalized to 1, we have E[S|N = n] = nµ and:

VAR(S|N = n) = VAR

(
N∑
i=1

Xi|N = N

)

= VAR

(
n∑
i=1

Xi|N = n

)
= VAR(nXi)

= nσ2. (2.39)

Combining the results above we can compute:

VAR(S) = E[VAR(S|N)] + VAR(E[S|N ])

= E[Nσ2] + VAR(Nµ)

= σ2E[N ] + µ2VAR(N). (2.40)

In the context of after-sales disruptions we can model the arrival rate of failures using a Poisson

process, with E[N ] = λ. The length of each individual disruption can be modelled using an ex-

ponential disruption, with E[X] = µ−1 and VAR(X) = µ−2. Combining the two characteristics

we find a Compound Poisson random variable S, which, given Equation 2.40, has the following

variance:

VAR(S) = λ(µ−2 + µ−2) =
2λ

µ2
. (2.41)

�

Proof of Proposition 3. We first state the expected utility for the client and vendor:

E[Uc] = R

(
1− λ

µ̄xαyβ

)
− ccx+

pλ

µ̄xαyβ
−F, E[Uv] = F − pλ

µ̄xαyβ
− cvy−

pγv
√

2λ

2µ̄xayb
. (2.42)

Next we find the best response functions given the penalty set in stage one:

x(y|p) =

(
αλ(R− p)
µ̄ccyβ

) 1
1+α

, y(x|p) =

(
βp(2λ+ γv

√
2λ)

2µ̄cvxα

) 1
1+β

. (2.43)

Substituting x(y|p) into y(x|p), we find the vendor’s optimal investment as a function of p:

yNOvra (p) ≡

 βp(2λ+ γv
√

2λ)

2µ̄cv

(
αλ(R−p)
µ̄ccyβ

) α
1+α


1

1+β

= yNO(p)Φ
1+α
σ , (2.44)

where Φ ≡ 2λ+γv
√

2λ
2λ and the finding for yNO in Proposition 1. Similarly we can find: xNOvra (p) =

xNO(p)Φ
−β
σ .
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At optimality, the IR constraint of the vendor is binding and accounts for the the second stage

equilibrium investments, i.e. FNOvra =
pNOvra(2λ+γv

√
2λ)

2µ̄(xNOvra )α(yNOvra )β
+ cvy

NO
vra + k. Substituting FNOvra , yNOvra and

xNOvra into the client’s expected utility function gives the client’s objective function for the stage

one problem:

E[Uc] = R

(
1− λ

µ̄(xNOvra )α(yNOvra )β

)
− ccxNOvra − cvyNOvra −

γvp
√

2λ

2µ̄(xNOvra )α(yNOvra )β
. (2.45)

Solving the FOC, using shorthand p̂ ≡ pNOvra , x̂ ≡ xNOvra and ŷ ≡ yNOvra , and finally simplifying

gives the optimality condition for pNvra:

βccx̂− (1 + α)cvŷ

σp̂
+

(1 + β)ccx̂− αcvŷ
σ(R− p̂)

+
Rλ

σµ̄x̂αŷβ

(
β

p̂
− α

R− p̂

)
− (1 + α)γv

√
2λ

2σµ̄x̂αŷβ
− αp̂γv

√
2λ

2(R− p̂)µ̄x̂αŷβ
= 0. (2.46)

As before, this optimality condition does not have a closed-form solution, however, numerical

analysis again shows that there exists a unique p̂ that maximizes the client’s expected profit.

First we show that pNOvra (γv) decreases in γv for α = β = 0.5 and for γv near zero. Let F (γv, p̂)

be the LHS of Equation 2.46. By the implicit function theorem (IFT):

dpNOvra (0)

dγv
= −

∂F (0,p̂)
∂γv

∂F (0,p̂)
∂p

< 0. (2.47)

To see this holds, first note that ∂xNOvra
∂γv

< 0 and ∂yNOvra
∂γv

> 0, such that the partial derivative in

γv of the first two terms of F (γv, p̂) is negative. Next, taking the partial derivative in γv of the

remaining three terms gives:

−
√

2β2R2λ+ p̂R((1 + α)2γv
√
λ+
√

2λ(σ + α+ α2 − β2))− p̂2((1 + α)γv
√
λ+
√

2λσ)

σ2p̂(R− p̂)µ̄(
√

2γv + 2
√
λ)x̂αŷβ

. (2.48)

For α = β = 0.5 and γv = 0 we find the numerator of this derivative is R2+10p̂R−8p̂2λ

2
√

2
> 0 as

p̂ < R, which means that Equation 2.48 is negative. Moreover, from the concavity in p of the

risk neutral client’s objective function we know ∂F (0,p̂)
∂p < 0. From Equation 2.47 it then follows

that pNOvra is decreasing in γv for α = β and γv near zero.

We now show that pNOvra also decreases in γv for γv > 0. From Equation 2.48 it can be shown

that, given α = β, the derivative is negative for any γv. This means the numerator on the RHS

of Equation 2.47 is never zero and, therefore, dpNOvra
dγv

does not have a stationary point. Without

a stationary point on the derivative of pNOvra in γv, p
NO
vra cannot be decreasing-increasing in γv.

Taken together, pNOvra monotonically decreases in γv. Finally, as vendor risk aversion increases

and the client lowers the penalty to the vendor, the vendor exerts less effort (both the cost of

downtime to him and disutility from γv decrease), while the client exerts more effort. �

Proof of Proposition 4. The first order condition for the vendor is:

∂E[Uv]
∂y

=
βpλ

µ̄xαy1+β
+
βpγv

√
2λ

2µ̄xαy1+β
− cv = 0. (2.49)
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Solving this equation for y gives the vendor’s best response function to the x and p:

y(x|p) =

βp
(

2λ+ γv
√

2λ
)

2µ̄cvxα


1

1+β

. (2.50)

This best response function gives a unique solution for y as:

∂2E[Uc]
∂y2

= −pβ(1 + β)(2λ+ γv
√

2λ)

2µ̄xαy2+β
< 0. (2.51)

At optimality, the vendor’s IR constraint is binding, such that FO = pλ
µ̄xαyβ

+ cvy + pγv
√

2λ
2µ̄xayb

+ k,

where we can let k = 0 without loss of generality. Similar to Proposition 2, we maximize for

both x and p, by simultaneously solving ∂E[Uc]
∂x = 0 and ∂E[Uc]

∂p = 0. We proceed by finding the

FOC in p:
∂E[Uc]
∂p

= −2β(p−R)λ+ (1 + b)pγv
√

2λ

xαyβ(1 + β)pµ̄
= 0. (2.52)

Solving this equation gives:

pOvra =
2βRλ

2βλ+ (1 + β)γv
√

2λ
, (2.53)

which is decreasing in γv at a decreasing rate. To confirm that this penalty pOvra indeed maximizes

client utility, we find:

∂2E[Uc]
∂p2

=
βg(p)

21/(1+β)(1 + β)2p2µ̄yβ/(1+β)
< 0, (2.54)

where g(p) = 2βp+ (1 + β)pγ
√

2λ− (1 + 2β)2Rλ. Observe that g(p) is increasing in p and that

g(p) = 0 for p̄ = 2(Rλ+2βRλ)

2βλ+(1+β)γv
√

2λ
. Clearly, p̄ > pOvra, therefore g(pOvra) < 0 and ∂2E[Uc]

∂p2

∣∣
p=pOvra

< 0.

With this result we can now solve the client’s FOC with p = pOvra to find the equilibrium

investment by the client, xOvra:

xOvra =

(
αRλ

µ̄

) 1+β
σ
(
βRλη

cvµ̄

)−β
σ

= xO
(

1

η

)β
σ

, (2.55)

where η ≡ 2λ+γv
√

2λ

2λ+(1+1/β)γv
√

2λ
. The result for xCvra is unique as ∂

∂x
x
αβ
1+β

x1+α
< 0, therefore ∂2E[Uc]

∂x2

∣∣
p=pOvra

<

0. As η < 1, xOvra > xO. Finally, we find:

yOvra = y(xOvra, p
O
vra) =

(
βcc
αcv

)α
σ
(
Rβλ

µ̄cv

) 1
σ

η
1+α
σ = yOη

1+α
σ , (2.56)

where we can see that as η < 1, yOvra < yO. �

Proof of Corollary 1. From the proof of Propositions 1 and 3, the product of equilibrium

investments under symmetry is: xNOvra (p)yNOvra (p) = Φ
1
σ (xNO(p)yNO(p)). Taking the derivative of

this function in γv gives (xNO(p)yNO(p))(Φ
1
σ )′ + Φ

1
σ (xNO(p)yNO(p))′. Note that xNO and yNO

only depend on γv through p. The first term of the derivative is non-negative for any γv > 0

as (xNOyNO) ≥ 0 and (Φ
1
σ )′ = 1

σ
√

2λ

(
2λ+γv

√
2λ

2λ

) 1
σ
−1

> 0. For γv near zero, pNOvra is close to

R/2 and therefore (xNO(p)yNO(p))′ = 0. As such, the second term of the derivative is zero and
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the sum of the two terms is positive. Also note that the lowest value for the derivative occurs

when γv goes to infinity. For high γv, from Proposition 3, (pNOvra )′ goes to zero and therefore,

(xNO(p)yNO(p))′ = 0. Moreover, for high γv, (Φ
1
σ )′ goes to zero. Therefore, the total derivative

of xNOvra (p)yNOvra (p) with respect to γv goes to zero. Taken together, this means xNOvra (p)yNOvra (p)

increases in γv.

We now show that xOvray
O
vra decreases in γv. Proposition 4 shows that xOvra = xO

(
1
η

)β
σ

and

yOvra = yOη
1+α
σ , such that when α = β = 0.5 and cc = cv = c, the total response capacity in the

observable case and under vendor risk aversion is:

µOvra(γv) = µ̄(xOvray
O
vra)

1/2 = µ̄(xOyO)1/2η1/4. (2.57)

As η < 1 and decreasing in γv, we find that in the observable case and under vendor risk

aversion, total response capacity is decreasing in γv. Thus, as γv increases, joint investment in

the non-observable case increases, whereas the joint investment in the observable case decreases.

Therefore, expected uptime decreases in vendor risk aversion when the client’s investment is

observable and expected uptime increases in vendor risk aversion when it is not. �

Proof of Corollary 2. Let α = β = 0.5 and cc = cv = c. From Corollary 1 we know that

as vendor risk aversion increases, the difference in the joint capacity between the observable

and non-observable case decreases in γv. From the client’s expected utility functions in the

observable and non-observable case we can see that what remains to be shown in order for the

difference of those functions to decrease in γv is that the difference in the sum of the investments

also decreases, i.e. ∂
∂γv

(
(xOvra + yOvra)− (xNOvra + yNOvra )

)
< 0. First, we find:

∂

∂γv
(xOvra + yOvra) =

−2
√

2λ

2(
√

2γv + 2
√
λ)
(

1− γv/((3/2)γv +
√

2λ/2)
) 1

4
(√

2(3/2)γv +
√
λ
)2

< 0.

(2.58)

Next, we show that ∂
∂γv

(xNOvra + yNOvra ) > 0. Let x′ ≡ ∂xNOvra
∂γv

and let y′ ≡ ∂yNOvra
∂γv

. Assume the

opposite is true, i.e. 0 < x′ < −y′. From Proposition 3 we know 0 < y < x for γv > 0.

Then we have 0 < x′y < −y′x ⇒ xy′ + x′y < 0, which is false as by Corollary 1 we have

(xy)′ = xy′ + x′y > 0. We thus have ∂
∂γv

(xOvra + yOvra) < 0 and ∂
∂γv

(xNOvra + yNOvra ) > 0, which

means ∂
∂γv

(
(xOvra + yOvra)− (xNOvra + yNOvra )

)
< 0. �

Proof of Proposition 5. We first state the expected utility for the client and vendor:

E[Uc] = R

(
1− λ

µ̄xαyβ

)
− ccx+

pλ

µ̄xαyβ
−
γc
√

(R− p)2
√

2λ

2µ̄xayb
−F, E[Uv] = F − pλ

µ̄xαyβ
− cvy.

(2.59)

Given these expected utility functions, the best response functions for the client and vendor are:

x(y|p) =

(
(R− p)α(2λ+ γc

√
2λ)

2µ̄cxyβ

) 1
1+α

, y(x|p) =

(
βpλ

µ̄cvxα

) 1
1+β

. (2.60)
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Cross-substituting the best response functions, solving for x and y and defining Φ′ =
(

2λ+γc
√

2λ
2λ

)
,

we find:

xNOcra = xNO(p)Φ′
1+β
σ , yNOcra = yNO(p)

(
Φ′
)−α
σ . (2.61)

At optimality, the IR constraint of the vendor is binding and accounts for the the second stage

equilibrium investments, i.e. FNOcra = pNOcra λ
µ̄(xNOcra )α(yNOcra )β

+ cvy
NO
cra + k. Substituting FNOcra , xNOcra and

xNOcra into the client’s expected profit function gives the client’s objective function for the stage

one problem:

E[Uc] = R

(
1− λ

µ̄(xNOcra )α(yNOcra )β

)
− ccxNOcra − cvyNOcra −

γc
√

(R− p)2
√

2λ

2µ̄(xNOcra )α(yNOcra )β
(2.62)

. Using shorthand p̂ ≡ pNOcra , x̂ ≡ xNOcra and ŷ ≡ yNOcra , pNOcra the FOC gives the optimality condition

for pNOcra :

βccx̂− (1 + α)cvŷ

σp̂
+

(1 + β)ccx̂− αcvŷ
σ(R− p̂)

+
Rλ

σµ̄x̂αŷβ

(
β

p̂
− α

R− p̂

)
+

(1 + β)γc
√

2λ

2σµ̄x̂αŷβ
+
β
√

(R− p̂)2γc
√

2λ

2σp̂µ̄x̂αŷβ
= 0. (2.63)

As before, this optimality condition does not have a closed-form solution, however, numerical

analysis shows that there exists a unique p̂ that maximizes the client’s expected profit. We now

show that pNOcra (γc) decreases in γc for α = β and γc near zero. Let F (γc, p̂) be the LHS of

Equation 2.63. By the IFT:

∂pNOcra (0)

∂γc
= −

∂F (0,p̂)
∂γc

∂F (0,p̂)
∂p

> 0. (2.64)

To see this holds, first note that ∂xNOcra
∂γv

> 0 and ∂yNOcra
∂γv

< 0, such that the partial derivative in γc

of the first two terms in Equation 2.63 is positive. Next, taking the partial derivative in γc of

the remaining three terms gives:

− 1

ϑ

(√
2αβ

√
(p̂−R)2(R2 − p̂R)λ−

√
2α2
√

(p̂−R)2p̂Rλ
)

+
1

ϑ

(
(1 + β)(p̂−R)2(p̂+ βR)γc

√
λ−
√

2σ(p̂−R)2(p̂+ βR)λ
)
. (2.65)

For α = β = 0.5 and γv = 0 we find the numerator of this derivative is R3λ√
2
< 0, which

implies Equation 2.65 is positive. From the concavity in p of the risk neutral client’s objective

function we know ∂F (0,p̂)
∂p < 0. It follows that pNOcra is increasing in γv for α = β = 0.5 and

γv → 0. Moreover, for α = β = 0.5 and p̂ < R, the numerator Equation 2.65 becomes

−R−p̂
2
√

2
(3R2(4γc + λ) + 6p̂R(2γc + λ) − 8p2(3γc + λ)) < 0. This means the numerator on the

RHS of Equation 2.47 is never zero and implies that pNOcra monotonically increases in γc when

α = β = 0.5. Finally, as client risk aversion increases and the client increases the penalty, risk is

transferred from the client to the vendor. As a result, the vendor exerts more effort, while the

client exerts less effort. �

Proof of Proposition 6. As the vendor is risk neutral, the vendor’s best response function y(x|p)

is the same as in Proposition 2, i.e. y(x|p) =
(

βpλ
µ̄cvxα

) 1
1+β

. Similar to prior proofs, the client can
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guarantee the vendor’s IR constraint by setting FOcra = pλ
µ̄(xOcra)α(yOcra)β

+ cvy
O
cra + k. Substituting

these functions in to the client’s expected profit function we can see that if the client sets p = R,

she effectively cancels out her disutility term. Following this we solve the client’s FOC in x and

rewrite to retrieve the equilibrium investment by the client:

xOcra =

(
αcv
βcc

)β
σ
(
αRλ

µ̄cc

) 1
σ

= xO. (2.66)

Substituting the optimal penalty and client’s equilibrium investment into the vendor’s best

response function and simplifying, gives:

yOcra =

(
βcc
αcv

)α
σ
(
βRλ

µ̄cv

) 1
σ

= yO. (2.67)

The solutions for xOcra and yOcra are the same as the first-best investments found in the observable

case and under risk neutrality are as such not a function of γc. �

Proof of Corollary 3. The proof follows the same steps as the proof of Corollary 1. In this case,

the product xNOcra y
NO
cra increases in γc, because the penalty now increases in client risk aversion,

∂pNOcra
∂γc

> 0, and at the same time, pNOcra >
R
2 , and therefore, ∂(xNOyNO)

∂pNOcra
< 0. Thus, as γc increases,

inefficiency in the non-observable case increases, whereas the first-best result is maintained with

observability. As a result, the difference between the client’s expected utility with and without

observability increases under client risk aversion. �
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Chapter 3

Risk Preferences and Joint

Disruption Risk Mitigation: An

Experimental Study

3.1 Introduction

In the past two decades manufacturers across different sectors have undergone a shift towards

including maintenance services in their vendor offering. This shift followed demand from clients

looking to outsource care of high-tech equipment supporting their business operations (Sawhney

et al. 2004). The contract type generally used in this setting is the performance-based contract

(PBC). Whether the vendor takes responsibility for part or all of the potential downtime under

such contracts, collaboration between the client and vendor is necessary to achieve system per-

formance over time Chan et al. (2016). The primary reason for this is that the client has access

to equipment and the vendor has the knowledge of the technical details of the equipment. Re-

solving disruption requires both parties to dedicate response capacity (Kim and Tomlin 2013).

Achieving effective collaboration in service environments may be difficult because of moral haz-

ard and asymmetric information (Roels et al. 2010). In this chapter, we test whether it is also

hindered by behavioral factors. Specifically, we investigate to what extent differences in the risk

preferences of the two parties and the information available to the client on these differences

impact their joint ability to mitigate downtime risk.

A well-known example of a PBC is Roll-Royce offering ‘Power by the Hour’ contracts to clients,

linking compensation to availability in hours flown of their engines (Kim et al. 2007). The

concept has found its way across to other industries, with companies like Hitachi and Caterpillar

offering similar contracts (Visnjic et al. 2013). One context in which collaboration is increasingly

critical is that of IT in the financial sector. In February 2015 Deutsche Bank signed a 10-year,

multi-billion dollar deal with Hewlett Packard to secure maintenance and modernization of the

bank’s IT system as well as data storage. Deutsche Bank meanwhile will retain responsibility for

application development and data security. Partnering in this fashion, banks hope to obtain scale

and access to new technologies. Maintaining uptime is a core concern throughout the industry

(Shotter et al. 2015). Key in these examples is that the collaboration efforts are exerted over

an extended horizon and that stakeholders’ objectives and incentives overlap, but may not be
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entirely aligned. With this study, we aim to understand how clients outsourcing mission critical

technology balance positive incentives (complementary investment by the client) with negative

incentives (penalties to the vendor per unit of downtime) to ensure effective response to service

disruptions.

While existing experimental research primarily focuses on the direct link between partners’ de-

cisions and performance, we focus on the element of collaboration that creates feedback between

decisions and leads to both direct and indirect effects on performance. We consider a simple

setting with a single client (she) and a single vendor (he) in which both parties contract to invest

in mitigating the cost of IT system (‘the system’) downtime over the contracting horizon. We

examine the effect of differences in risk aversion on the contracting and investment decisions.

Moreover, we study how this effect is moderated by the decision maker’s access to information

on the risk aversion of the other party. To test for these effects we ran controlled experiments

with subjects acting as the client and deciding on a performance-based contract parameter and

her own investment level to influence the vendor’s investment decision and optimize system

performance.

The work in this chapter distinguishes itself from the existing experimental contracting literature

by making two main contributions. First, we introduce a two-stage approach by measuring all

subjects on a multi-dimensional risk aversion scale. Using this measurement we calibrated a

sequence of computerized vendors, each with a different level of risk aversion, allowing us to

manipulate the difference in risk aversion between the subject and the automated vendor in the

main experiment. Second, we investigate how differences in risk preferences between the client

and the vendor interact with the provision of cognitive feedback on the vendor’s risk profile,

which provides insight on whether and when it may be beneficial to provide information and

could lead to actionable corrections to real life client contracting decisions when collaboration

is essential.

3.2 Literature Review

This literature review covers three streams of work. We start our literature review by describing

key works on disruption risk and maintenance service contracting in operations management

(OM). Next we present an overview of the relevant experimental papers studying contracting

problems within OM. Finally we take a closer look at how risk aversion has been measured and

featured in experimental settings, mostly within behavioral economics and psychology.

3.2.1 Maintenance Service Contracting

In concert with the incidence of high-profile disruptions, the growth of maintenance service

outsourcing has generated a stream of literature concerned with contract design for business
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continuity. This stream of work considers misaligned incentives as an important factor driving

downtime frequency and length. Performance-based contracts (PBCs) are known to remedy

moral hazard issues, although in double moral hazard situations, first-best (FB) results may

not be attained (see e.g. Bhattacharyya and Lafontaine (1995) and Roels et al. (2010)). Most

papers in this stream of work consider the implications of PBCs in different contexts. Kim

et al. (2007) consider model a setting in aerospace and defence with one principal facing uptime

targets and outsourcing after sales services to multiple suppliers. They find the optimal balance

between performance-based and cost-sharing elements in the contract offered by the principal,

specifically for a context in which the suppliers’ actions are unobservable and channel members

are risk averse. Kim et al. (2010) reconsider the power of PBCs in the light of managing

mission critical system uptime where the supplier can exert effort to minimize downtime after a

disruption. They find the efficacy of the contract is dependent on characteristics of the failure

process and how these are accounted for in the contract, demonstrating implementing PBCs may

be costly when disruptions are very infrequent. Kim and Tomlin (2013) continue the line of work

to show that decentralized decision making may lead to overinvestment in response capacity and

underinvestment in prevention, as the former allows free-riding on other firms’ investments in

case of joint failure.

Jain et al. (2013) are to our knowledge the first to consider joint decisions between a vendor and

client in a maintenance service setting, where both decisions are unobservable and affect system

availability. They highlight the link between PBCs and induced financial distress, showing that in

their context non-linear PBCs are best in overcoming both double moral hazard and vendor risk

aversion. Two recent papers in this stream of work re-evaluate the differences between traditional

resource based contracts and PBCs, considering trade-offs between spare parts inventory and

investment in product reliability. Although inefficiencies arise in case of both contracts, PBCs

provide better incentives for suppliers to invest in product reliability (Kim et al. 2015), but are

also useful as a quality signaling mechanism to suppliers (Bakshi et al. 2015).

Theory thus suggests designing the appropriate performance-based contract should help to align

incentives and improve maintenance services, aside from drawbacks under some conditions. The

role of contract design in performance of maintenance services has also been observed empirically

in aviation (Guajardo et al. 2012) and health care equipment (Chan et al. 2016). At the same

time it is widely acknowledged that, although theoretically superior, complex contracts can be

prohibitively difficult to implement (Kalkanci et al. 2011). We add to the maintenance service

contracting literature by explicitly testing human decision making performance in the context

of maintenance service contracting by means of a controlled experiment.

3.2.2 Experiments in Operations Management

There is a growing body of work validating and extending the analytical work within OM in

experimental settings. A paper by Schweitzer and Cachon (2000) forms one of the cornerstones
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to the experimental literature around contracting and supply decisions. In their experiment,

subjects are asked to make inventory orders in a newsvendor setting across profit and demand

conditions. They find subjects deviate from theoretically optimal decisions and find their ob-

servations are best explained with ex-post inventory error reduction, anchoring and insufficient

adjustment bias. Their work inspired a line of work dedicated to examining behavior in a

newsvendor decision making context, finding evidence for system neglect in making demand

forecasts (Kremer et al. 2011) and the efficacy and complementarity of task decomposition

and decision support systems in order decisions (Lee and Siemsen 2013). Beyond the classic

newsvendor context, decisions are equally found to generally be sub-optimal to some degree

in other decision making contexts. This can be the result of bounded rationality, biases and

heuristics and social preferences (see e.g. Katok and Wu (2009)). Because of the nature of our

experiments (human vs. computer only) we do not make inferences about social preferences

(Katok and Wu 2009, Kalkanci et al. 2011). With the help of information and learning across

interactions, decision makers’ performance can improve (see e.g. Bolton and Katok (2008)).

Using data from surgery decisions, KC et al. (2013) find that decisions makers tend to learn

from their own successes and others’ failures, in line with predictions from attribution theory.

Katok and Wu (2009) are the first to consider decision making biases in comparing experimental

results on supply chain coordination under different risk sharing contract types. The main

finding in their paper is that theoretical improvements of supply chain performance from a sub-

optimal contract to an optimal contract do not come out as strong in the laboratory setting.

Additionally they find mathematically equivalent contracts actually yield different outcomes in

an experimental setting. The authors attribute this finding to loss aversion, but note that the

effect dissipates with subjects’ experience. The design of our study is such that we can directly

examine the effect of risk aversion on contracting decisions as well as how this effect is moderated

by subjects’ learning and access to relevant information.

Overall the experimental evidence in OM supports the general finding that individual decisions

by subject typically show deviations from the theoretically predicted decisions, which can be

explained by a combination of well-known biases. Across repetitions and on aggregate levels,

subjects do, however, perform closer to theoretical results. With this chapter we contribute

to the growing body of experimental papers in OM by examining deviations from theoretically

optimal decision adjustments under shifts in contracting conditions and available feedback on

these shifts.

3.2.3 Risk Aversion in Experiments

Friedman and Sunder state that “many models assume that economic agents can be classified by

their attitudes toward risk”, where risk aversion are typically regarded as an intrinsic trait to the

economic agent. (Friedman and Sunder 1994, Ch. 4.2). Broadly, the experimental literature is

split between three approaches to examine the role of uncertainty and risk aversion in decision-
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making. A first approach considers assumptions on risk aversion ex-post in fitting models to

experimental data. A second approach controls risk aversion directly through design of the

experiment, for instance by designing the payoff structure to induce risk neutral behavior. A

third approach assigns experimental subjects to treatments conditional on pre-tested measures

of risk aversion. In this case, risk aversion is generally considered in an ordinal sense within

the experimental sample. This chapter takes this third approach to calibrate computerized

vendors with different levels of risk aversion based on the subjects’ risk preferences, allowing us

to directly examine the effect of (differences between) players’ risk aversion on joint disruption

mitigation.

A multitude of approaches to measure subjects’ risk aversion exists, though generally all ap-

proaches fall into either an implied quantitative category or a self-reported qualitative category.

Examples of methods in the first category often involve a sequence of choices from a menu of

lotteries, referred to as the Multiple Price List (‘MPL’) method (Charness et al. 2013). Tying

decisions made to real payoffs to the subjects makes this method incentive compatible over meth-

ods that depend on self-rating. A well-known version of the MPL method is the one developed

by Holt et al. (2002), referred to as the Holt-Laury (‘HL’) measure. The original HL measure

has ten pairs of two-outcome gambles, with the probabilities of the better (worse) outcomes in

each gamble increasing (decreasing) from the first to the last pair, while possible outcomes are

kept constant across pairs. One of the gambles in each pair has a wider spread of outcomes,

such that there should be one point at which a subject is willing to switch from the safer to the

more daring gamble. This switching point implies the subject’s risk aversion level and can be

quantified using a simple utility function of the form u(x) = x1−r, where is x is wealth and r

the coefficient of constant relative risk aversion (CCRA) (Charness et al. 2013).

An early method in the second category was developed by Jackson et al. (1972), who built a

multitrait-multimethod measure of risk-taking behavior encompassing financial risk, as well as

physical, social and ethical risk. A more recent example in the same category is the Domain

Specific Risk Taking (‘DOSPERT’) scale developed by Weber et al. (2002) and later fine-tuned

in Blais and Weber (2006). The DOSPERT scale employs self-reported 7-point scale items

on perception of risk as well as propensity to undertake risky action. Similar to the method in

Jackson et al. (1972), the DOSPERT scale covers different dimensions of risk taking: investment,

gambling, health and safety, recreation, ethics and social. They find these factors are not

consistently correlated, highlighting the need to account for the decision context. Closest to our

work among the papers that employ DOSPERT is the work by Bapna et al. (2010), who use the

DOSPERT to study the effect of risk aversion on bidding strategies in auctions.

Specifically concerning financial risk aversion the literature commonly assumes subject risk aver-

sion to be both stationary and scale-free, following a utility function characterized by constant

absolute risk aversion (CARA) as in Pratt (1964). Still, evidence deviating from these assump-

tions exists. Thaler et al. (1997) show that myopic decision makers gravitate towards lower

risk taking over time. Holt et al. (2002) find that the effect of risk aversion is actually scale-
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dependent, but only when real money is at stake. Moreover, subjects are found to display

differences in risk aversion across different elicitation methods (see Anderson and Mellor (2009)

and references therein).

Another factor that is found to interact with risk aversion is the information available in the

decision making context. Roth and Malouf (1979) show knowledge of other subjects’ (poten-

tial) payoff affects outcomes of bargaining over respective probabilities of each subject winning

his/her payoff. Ang and Schwarz (1985) study sequences of trades under different information

regimes. They compare trades in an experimental market comprised of risk averse investors and

one comprised of less risk averse investors. The information regimes are distinct by whether a

subset of traders has (im)perfect information on future market states and whether this is com-

mon knowledge to all traders. Interestingly, less risk averse traders appear less affected by false

information regimes, i.e. where there is a false suspicion of superior information being present

among some traders. Thaler et al. (1997) also relate information provision to risky financial de-

cisions. They induced myopia by designing treatments on the basis of decision and performance

information provision frequency across an investment horizon. Those subjects endowed with

more flexibility to adjust decisions and more information on performance generally performed

worse.

The role of risk aversion in experimental settings has been studied extensively outside of OM.

Although risk aversion can be measured with a number of well-documented measures, subjects

may display different preferences depending the measure and decision making context. Our study

adds to this literature by combining multiple risk aversion measures, confirming consistency

across the measures and calibrating experimental conditions in our main experiment on the

basis of one of these measures.

3.3 Theoretical Model

This chapter builds on a simplified version of the model in Chapter 2. In this chapter we studied

outsourcing of mission critical system maintenance by a client to a specialized vendor through

a contracting game. This game is set in a Principal-Agent framework in which the combined

investments in response capacity by the principal and agent affect the expected cumulative

downtime. In this section, we first describe the optimal solutions to the model and then turn

to the simulation technique used to integrate the model into the software we developed for our

experiment.

3.3.1 Optimal Decisions

Cumulative downtime
∑N

i=1Di follows a compound Poisson process, where disruption frequency

follows a Poisson distribution with rate λ and disruption length follows an exponential distribu-
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tion with rate µ. To capture joint investment and its complementarity, we define µ as a function

of the respective investments by the client x and the vendor y using a Cobb-Douglas production

function: µ = µ̄xαyβ, where we assume µ̄, α, β > 0. The parameter µ̄ is a scale parameter that

reflects the baseline capacity for both firms to combine resources to respond to disruptions; α

and β respectively reflect the client’s and vendor’s return on investment in response capacity in

terms of reducing the expected disruption length. This gives the expected cumulative downtime:

E

[
N∑
i=1

Di|x, y

]
=

λ

µ̄xαyβ
. (3.1)

For simplicity, a number of assumption are made: 1) the client earns a return at a rate R over

the contracting horizon as long as the system is up; 2) the cost of investment is linear in the

size of the investment, i.e. ccx for the client and cvy for the vendor; 3) the contract the client

can offer to the vendor is restricted to a simple linear penalty contract, where p is the penalty

per unit of downtime and F is a fixed fee. The sequence of events is such that the client moves

first and decides on her level of investment in response capacity and the penalty, offering a

take-it-or-leave-it contract to the vendor. The vendor observes the client’s decisions and upon

accepting the contract, decides on his level of investment. Given the decisions made, cumulative

downtime materializes and determines payoffs for the client and vendor. This can be cast as the

client’s optimization problem, assuming risk neutrality (N ) for both the client and vendor:

(N ) max
x≥0,F,p

R

(
1− λ

µ̄xα(y∗)β

)
+

pλ

µ̄xα(y∗)β
− ccx− F,

s.t. F − p λ

µ̄xα(y∗)β
− cvy∗ ≥ k, (IR)

y∗ = arg max
y≥0

F − pλ

µ̄xαyβ
− cvy, (IC)

where the first constraint (IR) is the individual rationality constraint setting the minimum

expected payoff for the vendor to accept the contract and the second constraint (IC) ensures

the vendor maximizes his objective function.

To depart from the risk neutrality assumption, in Chapter 2 we applied a mean-standard devi-

ation framework in which the client and vendor may experience disutility in proportion to the

standard deviation of their respective payoffs. Let γv be the vendor’s level of risk aversion and

γc the client’s level of risk aversion. The client’s optimization problem when both parties are

risk averse to some degree (A) becomes:

(A) max
x≥0,F,p

R

(
1− λ

µ̄xαyβ

)
− ccx+

pλ

µ̄xαyβ
−
γc
√

(R− p)2
√

2λ

2µ̄xαyβ
− F,

s.t. F − p λ

µ̄xα(y∗)β
− cvy∗ −

γvp
√

2λ

2µ̄xα(y∗)β
≥ k, (IR)

y∗ = arg max
y≥0

F − pλ

µ̄xαyβ
− cvy −

γvp
√

2λ

2µ̄xαyβ
. (IC)

For the purpose of our experiments, we model and automate the response of the vendor as

triggered by contracting and investment decisions of the client, whose role is played by the
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subjects in our experiments. Given the order of events, the best response by vendor is fully

characterized by the solution to the first order condition of the vendor:

y(x, p) =

βp
(

2λ+ γv
√

2λ
)

2µ̄cvxα


1

1+β

. (3.2)

When both the client and vendor are risk neutral, i.e. in case of problem N , we can find closed

form solutions for the optimal penalty and investment decision by the client. This is the result

of Proposition 2 in Chapter 2, an adjusted version of which we reproduce below in Proposition

7. An abridged version of the proof can be found in Appendix 3.A of this chapter.

Proposition 7 (Optimal decisions under risk neutrality). The client solves N by setting

the optimal penalty pN = R and fixed fee F such that the IR constraint is binding. Under this

contract it is optimal for both client and vendor to set their respective investments equal to the

first-best (FB) investment levels, i.e. yN = yFB and xN = xFB, where:

xFB =

(
αcv
βcc

) β
1+α+β

(
Rαλ

µ̄cc

) 1
1+α+β

and yFB =

(
βcc
αcv

) α
1+α+β

(
Rβλ

µ̄cv

) 1
1+α+β

.

All model parameters except for γc and γv were set to the same values for each subject and

across treatments. To keep the computation example in the instructions as simple as possible,

while maintaining reasonable expected outputs given the context, we set R = 100, λ = 2, µ =

5, α = β = 1/2 and cv = cc = 1. This gives the optimal benchmark penalty pN = 100 and

benchmark investments under risk neutrality: xN = yN = 2
√

5 ≈ 4.47.

Closed-form solutions to A cannot be found in all instances, particularly when neither the client

nor the vendor can be assumed to be perfectly risk neutral, which are of interest to us in this

study. Using Wolfram Mathematica we numerically find the optimal penalty and investment

decisions for the client for combinations {γc, γv} in case neither γc nor γv are equal to zero. An

overview of all possible optimal decisions and associated expected client profit figures, conditional

on the respective risk aversion of the client and vendor are given in Table 3.B.1 in Appendix 3.B.

These benchmarks form the basis for the directional predictions in the first of our hypotheses

in the next section. In the rest of the chapter we follow the convention of identifying subjects

with a positive γc as ‘risk averse’ and identifying subjects with a negative γc as ‘risk seeking’.

Moreover we consider a vendor to be ‘more risk averse’ than the subject when γv − γc > 0.

3.3.2 Simulating Random Disruptions

To simulate the failure process conditional on decisions made by the subjects in our experiment

we use the Inverse Transform Method (ITM) (Sigman 2010). Let F (x), x ∈ R be any continuous

cumulative distribution function and note that F : R→ [0, 1] is non-negative and non-decreasing.

Furthermore let F−1(y) be the inverse function such that F−1(y) = min{x : F (x) = y}, y ∈ [0, 1],

which gives F−1(F (x)) = x. ITM uses a uniform random variable U ∼ unif(0, 1) to generate a
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random variable X ∼ F , given that by setting X = F−1(U) it must hold that P (X ≤ x) = F (x).

For this to work, a closed form expression for the inverse function of F is necessary to map the

randomly generated values of the uniform distribution to values of X with the right distribution.

The theoretical model behind our experiment builds on an exponential distribution for disruption

length and a Poisson distribution for the number of disruptions within the contracting horizon.

Fortunately both are easy to simulate using the ITM. In case of the exponential distribution,

F (x) = 1 − e−µx, x ≤ 0 with µ as the rate parameter and F−1(y) = −(1/µ)Ln(1 − y). Using

values generated by U as the input gives X = −(1/µ)Ln(U) as 1−U is also uniformly distributed

on [0, 1]. Specific to our model, the vendor’s and client’s investment decisions affect the rate

parameter as µ = µ̄xαyβ. Every round in the experiment, the software takes the subject’s

investment decision x̂ and penalty decision p̂, generates the best-response by the vendor ŷ and

then uses x̂, p̂, parameters α, β and a random vector drawn from a uniform distribution to

generate a vector of random disruption lengths.

Now we still need to simulate the number of disruptions in each round. To do so, let {N(t) :

t ≤ 0} be the counting process of a Poisson process at rate λ, where the number of events in

each period follows a Poisson distribution with rate λ. The disruption interarrival times Xi are

i.i.d. with an exponential distribution also with rate λ, such that the time between the first and

nth disruption equals tn = X1 +X2 + . . .+Xn. To include the count of the first disruption, let

Y = N(1)+1 = min{n ≤ 1 : X1+. . .+Xn > 1}. Again using ITM to sample from an exponential

distribution we find, Y = min{n ≤ 1 : −(1/λ)Ln(U1) + . . . − (1/λ)Ln(Un) > 1} = min{n ≤ 1 :

U1 · U2 . . . · Un < e−λ}. Multiplying sample values from an exponential distribution until the

product is less than e−λ gives Y , which by subtracting 1 gives the number of disruptions in any

given period. Repeating this generates a vector of random disruption frequencies per round we

can use in the experiment. Finally we sum across the first n random disruption lengths in each

round to find the simulated cumulative downtime.

3.4 Hypotheses and Metrics

The aim of this study is to improve understanding of the interaction between risk aversion and

information impacting service contracting between a client and vendor in a service chain setting.

Specifically we’re interested in the impact within the context of coproduction in services. In the

following we justify the hypothesis and relevant metrics for our study.

3.4.1 Hypotheses

We have two sets of hypotheses for this study, respectively related to differences in risk aversion

between the client and vendor and the client’s access to information about the vendor. The

first set of hypotheses is in line with an established body of work in economics recognizing the
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role of risk aversion as a driver behind contracting decisions (see e.g. (Laffont and Martimort

2009, p. 166)), which has recently seen empirical support from work in OM, for instance in

the context of biopharmaceutical alliances (Taneri and De Meyer 2016). In this study we are

interested in the differences in risk aversion on maintenance service contracting decisions. We

define Hypotheses 1(a) and (b) based on findings in Chapter 2. From Table 3.B.1 in Appendix

3.B we can observe that given the level of subject risk aversion (γc), it is optimal to increase the

investment and simultaneously decrease the penalty when facing a vendor with a higher level

of risk aversion (γv goes from γc + 0 to γc + 0.5 or from γc + 0.5 to γc + 1). Therefore under

increasing vendor risk aversion, we define our first hypothesis as follows.

Hypothesis 1. (Theoretical Adjustments under Increasing Vendor Risk Aversion)

(a) Subjects facing a vendor with a higher level of risk aversion will invest proportionally more

toward the joint output and (b) Subjects facing a vendor with a higher level of risk aversion will

set a lower penalty.

The second set of hypotheses examines the role of information about the risk aversion of the

vendor on the decision process of the client. Decision makers generally have difficulty making

unaided decisions in complex environments characterized by uncertainty and systematic changes

in the decision context (Balzer et al. 1989, Sterman 1989). Providing feedback on performance

outcomes seems an obvious remedy. However, evidence points towards cognitive feedback being

the better alternative, particularly in the form of task information and to some extent functional

validity information (Balzer et al. 1989). Task information helps the decision maker to under-

stand the decision environment by making relations (e.g. trade-offs) in the decision environment

more explicit. Functional validity information provides support to improve calibrating decisions

to the environment. Both help to improve performance through better knowledge (matching de-

cisions to the context) and control (making consistent decisions). Various papers in OM relate to

these findings. Sengupta and Abdel-Hamid (1993) show subjects managing simulated software

development projects adjust better to the dynamic context given cognitive feedback, rather than

outcome feedback. Bolton and Katok (2008) find that providing performance feedback is not

sufficient on its own to improve newsvendor decisions making performance. A paper by Lurie

and Swaminathan (2009) find that more frequent feedback may be degrading to decision maker

performance if the feedback information comes from a noisy source. Their results show more

frequent feedback made decision makers more focused on recent feedback and less selective in

their information acquisition.

Feedback characteristics as well as the decision environment thus affect how decision makers

use information, which may both improve and degrade performance. Particularly of interest to

this study is the finding by Ang and Schwarz (1985) that there is a relation between subjects’

risk aversion and the role of feedback on decision makers’ performance. In the context of our

study, under-appreciating differences in risk aversion may result in inefficient decisions. When

given the right information on the vendor’s risk aversion, we therefore hypothesize clients may



3.5 Experimental Design 58

do better tailoring their investment and contracting decisions to the context. Additionally, we

hypothesize this information is more helpful, the larger the differences in risk aversion.

Hypothesis 2. (Feedback on Vendor Risk Aversion) (a) With information on the risk

aversion level of the vendor, subjects make more efficient decisions. (b) Information has a

stronger impact on improved decision making for larger differences in risk aversion between the

subject and the vendor.

3.4.2 Metrics for the Analysis

In light of Hypotheses 1(a) and (b) we directly analyze subjects’ penalty and investment decisions

across rounds and treatments. We analyze subject behavior in light of Hypotheses 2(a) and (b)

by means of a number of additional, computed, metrics:

1) Deviation from first-best profit : Similar to Bolton and Katok (2008), we are interested in

the financial impact of decisions subjects make across treatments. To ensure we can compare

performance across treatments, we normalize the metric by subtracting observed expected profits

in each round from the first best profit level. We track expected profit rather than realized

profit to focus on what subjects perceive when they submit choice and avoid letting random

disturbances to profit affect the comparisons.

2) Expected uptime: Subjects see both expected profit and expected uptime in their game

window, prior to submitting round decisions. It is possible that subjects choose to optimize

uptime at the expense of expected profit rather than following the objective to optimize total

profit over time. Therefore we are also interested in analyzing between- and within-subject

differences in optimal uptime.

3.5 Experimental Design

The experiments conducted for this study consisted of two parts: Part I and Part II. In Part

I subjects completed a pre-test consisting of a three-part assessment of their risk aversion. In

Part II subjects played a contracting game taking the role of the client and interacting with a

sequence of computerized vendors. To address our first research hypothesis, all subjects were

exposed to a within-subject (‘vendor risk aversion’) treatment sequentially exposing each subject

to three vendors with different levels risk aversion. In particular, we focus on the case where

the vendor is more risk averse than the client. Each vendor’s risk preference was pegged to the

subject’s risk preference as measured in Part I. Each subject faced one vendor with an equal

risk preference, i.e. γc = γv; and two more risk aversion vendors, such that γc = γv + 0.5 and

γc = γv + 1. We denote these differences by ∆ ∈ {0, 0.5, 1}. Using this approach, differences in

risk preference were controlled regardless of the respective actual subject risk aversion. To our

knowledge, this method of configuring treatments on the basis of subject risk aversion has not be
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applied elsewhere in the behavioral operations management literature. A note should be made

that Bapna et al. (2010) deliberately test for the risk profiles of the subjects in their experimental

study in a post-game test, so as to prevent affecting subjects’ behavior. However, in our case

this would prevent us from studying decision adjustments while manipulating differences in risk

aversion.

To address our second research hypothesis subjects were randomly allocated to one of two

between-subject (‘information’) treatments. In the ‘informed’ treatment, subjects were informed

that, between the subject and the vendor, the vendor was more risk averse and, in case of the

second (third) vendor in the sequence, whether the second (third) vendor was more or less

risk averse that the previous vendor(s). This additional type of information can be classified

as cognitive feedback (Sengupta and Abdel-Hamid 1993). This information was given to the

subjects through pop-up windows. A sample of these message prompts can be seen in Appendix

3.D. Subjects in the ‘non-informed’ treatment saw prompts without this information. Further

details on the design of pre-test and the main part of the experiment are given in the following.

3.5.1 Part I: Measuring Subject Risk Aversion

The assessment in Part I consisted of a quantitative measurement of risk aversion as developed by

Holt et al. (2002) (HL) as well as an adaptation of the HL measure appropriate for our theoretical

model (‘HLa’), in that order. Part I additionally consisted of a qualitative measurement of risk

aversion as developed by Blais and Weber (2006) (DOSPERT). We used the HLa measure to

compute each subject’s level of risk aversion, γc. The HL and DOSPERT measures were used

to compute three additional risk preference measures used to validate the HLa measure, which

we report in Section 3.5.4 below.

The HLa measure works by letting subjects make a series of choices between the outcome of a

gamble and a deterministic outcome, respectively presented in two columns in the experiment

window. Let the uncertain outcomes in the gamble be b (low outcome) and b (high outcome),

each with a 50% probability and let c = {c1, c2, ...cn} be a vector of certain outcomes. For each

decision, the subject evaluated whether she prefers b = (b + b)/2 or ci. In our experiments we

ordered c in decreasing value, such that b = (b+b)/2 < ci for i ∈ [1,m) and b = (b+b)/2 > ci for

i ∈ [m,n]. We set b = 2.95, b = 8.95 and c = {8, 7.5, ... , 3.5}. Rational (risk neutral) subjects

should therefore prefer the safe outcome for the first m− 1 decisions and ‘switch’ to the gamble

for the remaining n−m decisions. However, subjects may choose differently: switching at m̃ < m

indicates a degree of risk seeking and switching at m̃ > m indicates a degree of risk aversion.

Assuming a mean-standard deviation framework, each subject will have some indifference point

at which she evaluates b − γcσ = ĉ, where cm̃−1 < ĉ < cm̃ and σ is the standard deviation of

the gamble. To arrive at an approximate value for γc for each subject, we therefore evaluated

(b− cm̃−1)/σ and (b− cm̃)/σ and took the average of the two values.
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Part I was the same for all subjects, regardless of allocation to treatments. The HL measure and

the HLa measure were presented on separate windows. In both cases subjects were forced to

complete all choices. However, subjects were allowed to make multiple switches between gambles

in the HL case and multiple switches between certain outcomes and gambles in the HLa case.

As such switches are inconsistent from a utility point of view, this allowed removal of subjects

from the experiment data should such inconsistencies have occured. In the remainder of Part I,

subjects completed the DOSPERT in blocks of questions spread over six consecutive windows

with the same interface. After each set of ten questions, subjects proceeded by clicking the ‘save

and continue’ button. After submitting the final ten answers, the subject proceeded to Part II

upon entering a correct password. The password was announced once all subjects finished Part

I, so as to coordinate subjects’ start times for Part II and limit disturbance by subjects who

completed the experiment before others.

3.5.2 Part II: The Contracting Game

In Part II, subjects took the role of the client and interacted with the three automated vendors

in a random order. We denote the order in which the subject interacted with the vendor

by permutations of {1, 2, 3}, where 1 stands for the vendor with γc = γv; 2 stands for the

vendor with γc = γv + 0.5; and 3 stands for the vendor with γc = γv + 1. Randomizing the

order counterbalances the within-subject treatment. Subjects interacted with each of the three

vendors for five warm-up rounds and thirty ‘live’ rounds. No explicit time constraints were

imposed. The vendors were programmed to act in line with model in Section 4.3 and thereby

focuses the experiment on identification of the effects of risk aversion as well as decision biases

(Katok and Wu 2009, Bapna et al. 2010, Kalkanci et al. 2011). In each round, subjects were

asked to decide on an investment in response capacity as well as a downtime penalty set to the

vendor, affecting payoffs as described in Section 4.3. Subjects were instructed to decide on the

two variables in each round in order to maximize their total profit.

Subjects were presented with a new user interface for Part II of the experiment. This interface

was split into two panels. The left-hand panel functioned as a ‘what-if’ decision support tool for

subjects to test decisions before submitting them. The right-hand panel showed a performance

log. Respectively, the information presented in the two panels can be classified as feedforward

and outcome feedback (Sengupta and Abdel-Hamid 1993). The user interface in Part II remained

the same across treatments, except for the fields ‘vendor risk profile’ and ‘investment sequence’,

which were empty for non-informed subjects. The computation of expected and realized results

varied across treatments, though this was automated and not observable to the subjects. At

the end of each round, the decisions and realized profits and other performance indicators

were recorded in the performance log and remained visible as feedback for the duration of the

treatment. Upon completing the final round of the contracting game the software asked all

subjects to fill out an exit survey with on demographic and study-related information.
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In total 34 participants took part in the experiment, across four sessions and each subject

participating in only one session. Because of the uncertainty in the participant recruiting process

some experimental conditions were allocated to more than others, resulting in an unbalanced

design after data collection. Therefore, to achieve a balanced design across the levels for both

factors, 24 participants were subsampled at random from the data to form our final data set

for analysis.1 The treatments and sample sizes are summarized in Table 3.1. We developed the

software used for the experiment in Visual Basic. We ran trial experiments to test Part I and II

for comprehension and possible software errors on 60 participants before the main experiments.

Images of the user interface for both parts of the experiment can be found in Appendix 3.D.

Table 3.1 Experimental Design and Sample Sizes

Vendor Order

Info (123) (132) (213) (231) (312) (321) Total

Informed 2∗ 2∗ 2∗ 2 2 2 12

Non-informed 2∗ 2∗ 2 2 2 2∗ 12

Total 4 4 4 4 4 4 24

Notes. ∗ Randomly re-sampled experimental conditions.

3.5.3 Experimental Protocol

Each subject participated in a single session that covered Part I and Part II and took up to

90 minutes. At the start of each session all subjects were asked to read a detailed instruction

sheet. Subsequently, the experiment and software were again explained verbally by the experi-

menter, and subjects’ questions were answered. All subjects completed Part I and Part II using

software pre-installed on identical computers in a computer laboratory. The experiments were

planned to coincide with the university’s class-free time, to control for convenience sampling.

All treatments were represented across different testing days. Upon arrival at the venue for

the experiment, subjects were randomly allocated to a computer terminal. The software was

set-up to trigger a particular experimental condition when given a number from a list randomly

assigned across the terminals. This ensured the experiment was single-blind and prevented sub-

jects from choosing seats close to familiar other subjects or gaining information on their assigned

experimental condition. Finally, measures were taken to prevent participants from being able

to observe information provided and decisions made at other terminals. Subjects were paid S$5

for participating in the game and an additional performance-based payment conditional on their

achieved profit. To prevent wealth effects, payments were made on the basis of accumulated

profits converted from a fictitious in-game currency to Singapore Dollars at a pre-determined

conversion rate (Friedman and Sunder 1994, p. 49).

1The main analysis was repeated for the full sample and two additional stratified subsamples. These results

are presented in Section 3.7.
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3.5.4 Validity of the Risk Preference Measure

As described in Section 3.5.1 of this chapter we used the adjusted Holt-Laury measure (HLa) in

Part I of the experiment to compute each subject’s risk preference, γc, and assign each subject

to treatments on the basis of each subject’s γc. To validate the HLa measure, we included two

other tests for risk aversion in Part I. We included the original HL measure following the scoring

procedure in Charness et al. (2013) as well as the DOSPERT measure as developed in Blais and

Weber (2006). A valid HLa measure should produce risk preference score that are in line with

the scores produced by the other two measures insofar as that there is a significant correlation

between the measures and the correlation has the correct sign. As additional confirmation of

validity, we report the median split agreement. We ran the validation tests after the two trial

experiments before running our final experiments. Here we present the validation results on the

final sample data. Note that for these tests n = 23 after listwise deletion because of missing

values on DOSPERT data for one subject. Missing data on the DOSPERT section of the pre-

test does not impact the game data and has therefore no impact on the analysis outside of this

section. Furthermore we note that no inconsistent switches on the HL and HLa occurred in

the sample. Figure 3.1 shows the distribution of HLa values, which shows a concentration of

subjects around the risk neutral mark, with some subjects displaying a risk averse preferences

(positive γc) and some displaying more risk seeking preferences (negative γc).

Figure 3.1 HLa Distribution
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The original Holt-Laury measure produces a measure of constant relative risk aversion (the r-

value) for each subject. Our HLa measure instead produces a measure of constant absolute risk

aversion, hence the assumptions underlying each measure are different. Moreover, recall that

as subjects choose between a set of guaranteed outcomes and a set of gambles in case of the

HLa measure, rather than between two sets of gambles in the original HL measure. This also
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means subjects may find it easier to indicate truthful preferences in the HLa case. Nevertheless

we would expect those subjects identified as risk averse (seeking) in one measure to equally be

identified as such by the other measure.

The DOSPERT scale can be used to produce various alternative risk preference measures. Taking

a simplified version of the approach in Blais and Weber (2006), we can regress each subject’s

score across all thirty questions pertaining to the likelihood of undertaking a certain action on

the subject’s score across the same questions pertaining to the perception of riskiness. This

gives a β coefficient for each subject, where a negative β indicates a risk averse preference (i.e.

generally unwilling to undertake actions perceived as risky) and positive β indicates a risk seeking

preference. We would thus expect subjects with a positive γc to give answers on the DOSPERT

scale that yield a negative β. An alternative approach used in Bapna et al. (2010) restricts the

focus to the subset of DOSPERT items related to financial risk taking and perception. Following

this approach, we calculate each subject’s risk taking and perception scores and multiply the

risk taking score by 1 if the risk perception score is above the sample mean risk perception score

and -1 otherwise. We denote the resulting score with s. As such subjects high (low) and positive

(negative) s across the financial items are considered strongly (weakly) risk averse (seeking). We

would therefore expect that subjects with a high γc generally have a high s also and vice versa.

Figure 3.2 shows the distributions of the alternative measures described above (r, β, and s).

Considering the differences in measurement and computation of each of the measures, naturally

the distributions have no close resemblance. For each of the measures we do see that both the

risk averse and risk seeking domain are represented in the sample (where in the case of s this is

by construction). For r, like with γc, we observe a concentration around the risk neutral mark;

for β we observe that subjects are generally more risk averse.

Figure 3.2 Alternative Risk Preference Distributions
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Figure 3.D.2 shows the scatterplots between γc and the other three risk preference measures. The

scatterplots overlayed with a simple linear regression line (thick black lines) and 95% confidence

bands as well as the median values for each of the measures (thin black lines). From the regression

lines we can cautiously confirm our expectations with regards to the agreement between γc and
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the other three risk preference measures. More formally, however, only between γc and r we find

a statistically significant relation (p < 0.05) with the correct sign.

The median split agreement gives a weaker notion of agreement between the measures. Between

γc and r and γc and s, the median split agreement is equal to the number of observations in

sample that are on or above (below) the median on both measures. Between γc and β, the

median split agreement is equal to the number of observations in the sample that are on or

above (below) the median of the former measure and on or below (above) the median on the

latter measure. We find 22 out of 23 observations are consistent between γc and r, 16 out of

23 observations are consistent between γc and β and 14 out of 23 observations are consistent

between γc and s. Overall we can thus conclude that there is a reasonable correspondence

between the HLa measure and the other measures and γc is a good proxy for subject level risk

preference.

Figure 3.3 Risk Preference Scatterplots
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3.6 Results

In this section we first analyze the results with respect to Hypotheses 1(a) and (b), before turning

to analyzing the results with respect to Hypotheses 2(a) and (b). The analysis in each section

is done by means of the metrics highlighted before in Section 3.4.2. The optimal benchmarks

in the table in Appendix 3.B are used as a reference values for the observed decisions in this

section. We refer to these results as ‘benchmarks’ for brevity.

3.6.1 Hypothesis 1 Results: Theoretical Predictions

Following Section 3.4, we study subject (client) decisions on a within-subject basis to determine

the effect of the differences in risk aversion between the subject and automated vendor on subject

investment and penalty decisions. For this part of the analysis, we pool together the informed

and non-informed subjects. We exclude data from the warm-up rounds to ensure we capture
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only decisions the subjects were compensated for during live rounds. We analyze both mean

and median decisions to prevent extreme decisions from causing misleading results.

Figure 3.1 shows the median investment and penalty decisions computed across thirty rounds

for all subjects conditional on ∆ being equal to 0, 0.5 or 1. Note that here we do not consider

the order in which the subjects interacts with different vendors. Recall that when both parties

are risk neutral, the theoretically optimal client investment is approximately 4.7 and the optimal

penalty is 100. Also recall that each subject’s risk aversion forms the reference point for the

difference in risk aversion.

The lower two panels in the plot indicate that, as predicted, subjects set lower penalties when

the vendor is comparatively more risk averse. This observation holds for both mean and median

penalties set. A note should be made that when ∆ = 0, the mean penalty is noticeably lower

than the median penalty, meaning some subjects set comparatively low penalties. The upper two

panels, suggest little adjustment in the investments is made to accommodate for different vendor

risk aversion levels, in line with the benchmarks. However, a noticeable difference between the

mean and median results indicate some subjects make relatively high investments. Judging

from the figure, all four plots show that when the difference in risk aversion is zero, subjects

set their investments above the risk neutral benchmark, and set penalties under the risk neutral

benchmark. This reflects that vendors are more risk averse than the subjects by design. However,

it may also reflect that the sample has a risk averse slant, as reported in Section 3.5.4.

We used Wilcoxon Signed-Rank tests (Siegel 1957) to determine whether there is statistical

support for the observations from Figure 3.1. Table 3.1 reports the results for non-parametric

pairwise comparisons between decisions made by the same subjects facing vendors with different

risk aversion. We see that there while there is no consistent support support for Hypothesis 1(a),

there is strong support for Hypothesis 1(b). These results indicate subjects tend to set both

higher and lower investments when facing a more risk averse vendor instead of only investing

more as theory would predict.

Table 3.1 Within-subject comparison of investments and penalties

Investmentsa Penaltiesa

∆ 0 0.5 1 0 0.5 1

Hypothesis x < x′ x′ < x′′ x < x′′ p > p′ p′ > p′′ p > p′′

Mean ∗ − − ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Median − − − ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Notes. a Significance levels for Wilcoxon Signed-Rank tests.
b x, x′, x′′(p, p′, p′′) respectively indicate investments (penalties)

under ∆ ∈ {0, 0.5, 1}.
−n.s., ∗p < 0.1,∗∗p < 0.05,∗∗∗p < 0.01.
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Figure 3.1 Subject mean and median investments and penalties
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Notes. Mean and median investments and penalties for the plots

in this figure were taken across the thirty live rounds where ∆ was

equal to 0, 0.5 or 1 for all subjects regardless of the order of the

vendors.
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We can make similar pairwise comparisons between the conditionally optimal benchmarks and

the observed mean and median decisions. Table 3.2 reports the results for these comparisons and

provides strong evidence for over-investment by subjects across the within-subject conditions.

In case of penalty decisions, there is strong evidence for over-penalization by subjects when

difference in risk preferences are non-zero (i.e. ∆ = 0.5, 1). Interestingly, when the subject

and vendor are equally risk averse there is strong evidence for under -penalization. Based on

the results in Table 3.1 and Table 3.2 we can make two observations regarding decision biases.

Firstly, subjects tend to set and hold on to an inefficiently high investment level. Secondly,

subjects tend to set and hold on to a penalty that is too high when interacting with more risk

averse vendors and too low in case the vendor is equally risk averse.

Table 3.2 Within-subject comparison of investments and penalties

Investmentsa Penaltiesa

∆ 0 0.5 1 0 0.5 1

Hypothesis x > x∗ x > x∗ x > x∗ p < p∗ p > p∗ p > p∗

Mean ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Median ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Notes. a Significance levels for Wilcoxon Signed-Rank tests.
b x∗(p∗) indicates a conditionally optimal investment (penalty)

subject to γc and γc.

−n.s., ∗p < 0.1,∗∗p < 0.05,∗∗∗p < 0.01.

3.6.2 Hypothesis 2 Results: Vendor Risk Preference Information

For this part of the analysis, we consider whether information on the vendor’s risk aversion

helps subjects make more efficient decisions. Recall that the information treatment prompted

subjects with information with regards to the vendor’s risk aversion relative to the subject’s risk

aversion as well as the directional difference in risk aversion between one vendor and the next.

We analyze efficiency of decision making on the basis of two outcome metrics: expected profit

and expected uptime. As before, we exclude data from the warm-up rounds.

Table 3.3 summarizes the results for between-subjects tests with regards to expected profit and

expected uptime. We ran Two-Way ANOVA tests to determine whether the informed group

results are significantly different from the non-informed group as well as to test for the interaction

between ∆ and the information treatment. These tests were run with the game-round as the

observation level. Hence, any significant results indicate differences between groups across all

rounds. Additionally, we ran the Kruskal-Wallis test (in this case equivalent to a Mann-Whitney

U test). Although the Kruskal-Wallis test is restricted to a single factor, it compares medians

between groups and does not require the assumption of normality for the dependent variable.
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From the ANOVA results we observe that with expected profit as the dependent variable, there

is a significant difference between informed and non-informed subjects. However we find neither

a significant within-subject effect of difference in risk aversion, nor do we find a significant

interaction effect between the information treatment and difference in risk aversion. We find

contrasting results with expected uptime as the dependent variable. In this case we find a

significant effect of difference in risk aversion as well as a significant interaction effect between

the information treatment and difference in risk aversion. The results of Kruskal-Wallis tests

further support the ANOVA results for expected profit, but speak against the ANOVA results

for expected uptime. Taken together the results of the two tests suggest there is a difference

in performance caused by the information treatment, although it is manifested differently for

expected profit than for expected uptime.

Table 3.3 Between-subject comparisons of observed outcomes

Two-way ANOVA (F) Kruskal-Wallis (χ2)

Expected Profit Expected Uptime Expected Profit Expected Uptime

INFO (yes=1) 3.91∗∗ 0.04 87.49∗∗∗ 4.66∗∗

∆ 0.16 6.69∗∗∗

INFO×∆ 0.77 50.17∗∗∗

Notes. ∗p < 0.1,∗∗p < 0.05,∗∗∗p < 0.01

To determine what may be driving differences in performance, Figure 3.2 splits out the plots in

Figure 3.1 across the informed and non-informed subjects, both for mean and median invest-

ments and penalties. We can observe that the differences between mean and median decisions

persist across the two treatments, although the difference is stronger for the subjects who were

not informed. Said differently, high investments are not influenced as much by extreme deci-

sions among informed subjects. With regards to the penalties we can see informed subjects

tend to set lower penalties than the non-informed subjects when ∆ = 0, yet set higher penalties

when ∆ = 0.5 or ∆ = 1. This suggests the decision-bias observations made in Section 3.6.1

are stronger for subjects in the informed treatment. However, testing whether there are indeed

significant differences between the two treatment groups with respect to the observed decisions

we find only the penalties set in case of ∆ = 0 are significantly different. Table 3.4 presents these

results. On the basis of 30-round mean or median decisions we can thus not conclude decision

biases are stronger for the informed subjects.
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Figure 3.2 Subject mean and median investments and penalties
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Notes. Mean and median investments and penalties for the plots

in this figure were taken across the thirty live rounds where ∆ was

equal to 0, 0.5 or 1 for all subjects regardless of the order of the

vendors.
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Table 3.4 Between-subject comparison of investments and penalties

Investmentsa Penaltiesa

∆ 0 0.5 1 0 0.5 1

Hypothesis xI 6= xNI xI 6= xNI xI 6= xNI pI 6= pNI pI 6= pNI pI 6= pNI

Mean − − − ∗∗ − −
Median − − − ∗ − −

Notes. a Significance levels for Mann-Whitney U tests.
b xI , xNI(pi, pNI) respectively indicate investments (penalties) under the

informed (I) and not informed (NI) treatments.

−n.s., ∗p < 0.1,∗∗p < 0.05,∗∗∗p < 0.01.

Our analysis so far does not consider how decisions may change as subjects progress through

the experiment and learn from repeated interactions. Focusing on subject performance with

regards to expected profits, we test for the role of time in conjunction with information with a

regression. The full regression equation for our model is:

ln(ΠFB −ΠObs) = intercept+ β1 × INFO + β2 ×∆0.5 + β3 ×∆1 + β4 ×ROUND

+ β5 × [∆0.5 × INFO] + β6 × [∆1 × INFO]

+ β7 × [ROUND × INFO] + γTZ + ε, (3.3)

where the dependent variable is the different between the first best expected profit (ΠFB) and

the observed expected profit (ΠObs) and Z is a control vector. We take the logarithm of the de-

pendent variable to correct for the fact that it’s highly positively skewed. The variable INFO is

a binary variable with the non-informed treatment as the reference category. The variables ∆0.5

and ∆1 are levels of a factor variable for the difference in risk aversion, with ∆0 as the reference

category. The variable ROUND is a variable capturing progression through the experiment in

terms of number of rounds completed. Finally, the control vector includes categorical variables

for subject nationality and study major as well as the order of interaction with the vendors. For

all regressions we excluded data from the warm-up rounds.

Table 3.5 gives the regression estimates for three regressions, where from the first to the second

regression and from the second to the third the effects of learning and the controls as well as

interaction effects are sequentially introduced. Broadly, we find strong evidence against Hy-

pothesis 2a: information shows to be counterproductive across all three model specifications.

More precisely, from the regression coefficients for INFO we see that informed subjects’ de-

cisions lead to a significantly larger gap between the first best expected profit and observed

expected profits. In line with expectation, coefficients for ∆0.5 and ∆1 are positive and signifi-

cant, meaning subjects generally perform worse when differences in risk aversion are larger. The

interaction effects between the difference in risk aversion and the information treatment seem

give to support Hypothesis 2b. The signs of the interaction effects across the three regressions

are correct. However, given that information appears counterproductive in terms of the direct
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effect, differences in risk aversion offset the deleterious effect of information rather than add to

the hypothesized benefit of information. Considering the effect of time, we observe that subjects

don’t do significantly better in later rounds. There is a significant interaction with INFO, sug-

gesting that the counterproductive effect of information is also offset in later rounds. However,

the effect size is negligible compared to the effect of INFO.

Table 3.5 Regressions Coefficients for equation Equation 3.3

DV: ln(E[ΠFB −ΠObs]

INFO (yes=1) 1.69∗∗∗ 2.25∗∗ 1.94∗∗∗

(0.14) (0.19) (0.20)

∆0.5 1.80∗∗∗ 1.80∗∗∗ 1.80∗∗∗

(0.14) (0.14) (0.12)

∆1 2.06∗∗∗ 2.06∗∗∗ 2.06∗∗∗

(0.14) (0.14) (0.12)

∆0.5× INFO −1.56∗∗∗ −1.56∗∗∗ −1.56∗∗∗

(0.19) (0.19) (0.17)

∆1× INFO −1.31∗∗∗ −1.31∗∗∗ −1.31∗∗∗

(0.19) (0.19) (0.17)

ROUND 0.00 0.00

(0.00) (0.00)

ROUND × INFO −0.01∗∗∗ −0.01∗∗∗

(0.00) (0.00)

Controls No No Yes

R2 0.15 0.16 0.35

Log-likelihood -4374 -4362 -4083

No. of obs. (groups) 2160(24)

Notes. The group variable is individual subject.

SE’s are reported in parentheses.
∗p < 0.1,∗∗p < 0.05,∗∗∗p < 0.01.

3.7 Robustness Tests

To ensure the main findings in the previous section are not dependent on the subsample used,

we performed a series of robustness tests. We repeated the analysis on median decisions as

presented in Tables 3.1, 3.2 and the full regression model results as presented in 3.5 for two

additional random 24-subject subsamples (denoted RS1 and RS2) and the full sample of 34

subjects (denoted FS). The subsamples were produced by stratifying the full sample into the

experimental conditions and sampling 2 subjects without replacement in each overpopulated

experimental condition in the full sample. The results in Table 3.1 and Table 3.2 show the main

results are consistent across the two additional subsamples and the full sample. Note that there
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are minor differences in the significance for the within subject comparisons for the observed and

optimal decisions (lower half of Table 3.1). Also note that, although there are no considerable

changes in sign and significance of the main effects between the full regression results in Table

3.5 and Table 3.2, effect sizes are generally smaller for the results produced using the additional

subsamples as well as the full sample. Overall we can conclude that our main findings are

consistent across the samples.

Table 3.1 Within-subject comparison (median decisions) for additional stratified subsamples

Investmentsa Penaltiesa

∆ 0 0.5 1 0 0.5 1

Hypothesisb x < x′ x′ < x′′ x < x′′ p > p′ p′ > p′′ p > p′′

RS1 − − − ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
RS2 − − − ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
FS − − − ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Hypothesisc x > x∗ x > x∗ x > x∗ p < p∗ p > p∗ p > p∗

RS1 ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗∗ ∗∗
RS2 ∗ ∗ ∗ ∗∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
FS ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Notes. a Significance levels for Wilcoxon Signed-Rank tests.
b x, x′, x′′(p, p′, p′′) respectively indicate investments (penalties)

under ∆ ∈ {0, 0.5, 1}.
c x∗(p∗) indicates a conditionally optimal investment (penalty)

subject to γc and γc.

−n.s., ∗p < 0.1,∗∗p < 0.05,∗∗∗p < 0.01.

3.8 Discussion and Conclusion

Over the duration of an outsourcing relationship, a client and vendor may encounter problems

only to be overcome through effective collaboration, whether it be problems arising through

product design flaws or failing information technology systems. Contracts are the prime conduit

of any such relationship, but leave room for behavioral factors by either party to be in the way

of performance. We hypothesize differences in risk aversion between the client and vendor are

at the heart of misaligned incentives and, hence, misaligned decisions in anticipation of future

problems. We also hypothesize information on the vendor’s risk aversion may offer the client

some remedy to this misaligment. We test these hypotheses through a controlled experiment in

which subjects play the role of the client in a contracting game with a computerized vendor. Our

study makes a contribution to the experimental literature on contracting by implementing a novel

approach to measure and control for subject risk aversion and provides empirical justification

of the importance of considering risk aversion in contract decision making.
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Table 3.2 Regressions results for additional stratified subsamples

DV: ln(E[ΠFB −ΠObs]

Sample RS1 RS2 FS

INFO (yes=1) 1.02∗∗∗ 0.68∗∗∗ 0.69∗∗∗

(0.16) (0.19) (0.15)

∆0.5 1.57∗∗∗ 1.47∗∗∗ 1.31∗∗∗

(0.09) (0.12) (0.10)

∆1 1.66∗∗∗ 1.51∗∗∗ 1.39∗∗∗

(0.09) (0.12) (0.09)

∆0.5× INFO −1.50∗∗∗ −1.14∗∗∗ −0.98∗∗∗

(0.13) (0.17) (0.15)

∆1× INFO −0.89∗∗∗ −0.37∗∗ −0.21∗∗∗

(0.13) (0.17) (0.15)

ROUND -0.00 −0.00∗ 0.00

(0.00) (0.00) (0.00)

ROUND × INFO −0.01∗∗∗ −0.00 −0.01∗∗∗

(0.00) (0.00) (0.00)

Controls Yes Yes Yes

R2 0.61 0.37 0.29

Log-likelihood -3452 -4062 -5881

No. of obs. (groups) 2160(24) 3060(34)

Notes. The group variable is individual subject.

SE’s are reported in parentheses.
∗p < 0.1,∗∗p < 0.05,∗∗∗p < 0.01.

First, regarding subjects’ decisions under differences in risk aversion we only find support for

Hypothesis 1(b): subjects set lower penalty when facing a more risk averse vendor. Subjects

tend to set both higher and lower investments when facing a more risk averse vendor instead of

only investing more as theory would predict. Comparing decisions with the conditionally opti-

mal benchmarks we arrive at two observations that highlight possible heuristic decision biases.

Firstly, subjects tend to set and hold on to an inefficiently high investment level. Secondly,

subjects tend to set and hold on to a penalty that is too high when interacting with more risk

averse vendors and too low in case the vendor is equally risk averse. This provides further

evidence that the anchoring and insufficient adjustment bias as observed by Schweitzer and Ca-

chon (2000) and other papers in behavioral operations management extend beyond newsvendor

decision contexts.

Rather than explaining decisions through heuristics leading to insufficient adjustment, an alter-

native explanation could be offered, relating to heuristics leading to interior choice preference.

As a complement to the well-known central tendency bias, there is experimental evidence from

various contexts that subjects tend favor interior decisions over extreme decisions in their de-
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cision space, even if extreme decisions are theoretically optimal. For instance, in the case of

incumbent bidding against an entrant in a contract-renewal auction context, Wan et al. (2012)

find that subjects bid more aggressively than theory predicts because they either avoid under-

cutting the competition or avoid boycotting the auction by reverting to the pre-auction contract

price when the respective strategies are optimal. Particular to our context, this may have lead

subjects to avoid setting extreme penalties (i.e. a lower (higher) penalty for a more (less) risk

averse vendor), despite the fact that they are theoretically optimal.

Finally, we find strong evidence against Hypothesis 2a. Surprisingly, information on the ven-

dor’s risk aversion appears to have counterproductive effects on subject’s performance in the

experiment. Informed subjects displayed a wider the gap between first best expected profit

and observed expected profit. Although it appears the information treatment has a reinforcing

effect on the heuristic decision biases observed, there is not sufficient support for this statement.

Evidence does appear to support Hypothesis 2b. However, we find that under larger differences

in risk aversion, informed subjects actually only end up offsetting inefficient decisions resulting

from the information treatment.

Together with the lack of improvement over time between the two treatment, it appears subjects

internalize additional information in the form of cognitive feedback to set decision heuristics

which they do not adjust sufficiently to changing conditions. However, considered in a different

light, this might be a strong indication of limitations to the design of our experiment. In the first

place risk aversion is a difficult concept for subjects to reflect on. Even though our approach of

using a multiple price list arrives at an implied risk preference, it is likely subjects were either

not prepared to make sensible decisions in the pre-test or they were aware of the ‘rational’

solution and made their decisions accordingly if perceiving this as a desirable outcome. Next

the task of deciding on contract parameters in the main experiment is sufficiently complex for

it to be likely subjects simply used the decision support in the game window as to search for a

satisfactory local optimum. Moreover, under the fixed parameters, the differences in vendor risk

aversion from one computerized vendor to the next may not have lead to sufficiently noticeable

differences in expected outcomes for subjects to respond to. Finally, the way we decided to

operationalize the information treatment as information windows given during the game, rather

than additional training upfront, raises the question whether the meaning and potential value

of the information indeed came across to the subjects.

Combined, given the complexity of the pre-test, main experiment and information provision

stand in the way of the current findings ultimately being convincing. Future work on this

chapter will firstly require revision of the experiment to make the context and decisions much

easier to grasp, i.e. a relatable context for joint problem solving with only one degree of freedom.

Should different information treatments remain a part of future experiments, more care must

also be taken to ascertain differences in informed states actually materialize as a result of the

treatments. Secondly, the link between subject level risk preferences and subsequent contracting

decisions is perhaps too tenuous to factor into the analysis as it has. Instead, risk preferences may
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have been inferred directly from subjects’ repeated decisions, then linked to subject performance

throughout the experiment. Lastly, as a central objective of this chapter is to study collaboration

under differences in risk preferences, a potentially larger contribution to the literature would

come from removing the computerized vendor and designing a human-to-human experiment

instead.

Acknowledging our work has notable limitations, we caution we posit two key managerial impli-

cations. The first is that in adjusting to different contracting partners, managers responsible for

contract design and implication should be wary of anchoring on previous decisions, particularly

when conditions may have shifted. The second is that investing effort in understanding the

vendor’s risk aversion may make contracting decisions all the more difficult. Particular when

it comes to understanding how the vendor’s preferences relate to her own, a possible ‘cognitive

overload’ leads to over-reliance on existing heuristics where adjustments are needed to correct

for changing conditions. In conclusion, as outsourcing of services and technology become more

commonplace and are often paired with contingent contracts, care must be taken to let con-

tracting decisions in advance of possible disruptions facilitate response rather create inadvertent

hurdles when disruption does hit.
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3.A Proofs

Proof of Proposition 1 (Abridged). To complete this proof we first establish the first-best solution,

which solves the contracting game as if both investment decisions x, y are made centrally by a

single decision maker, without an intervening penalty contract. Formally, this problem can be

stated as:

(C) ΠFB = max
x,y≥0

R

(
1− λ

µ̄xαyβ

)
− ccx− cvy. (3.4)

The first-best levels of investment can be found by maximizing the payoff over x and y simul-

taneously. Solving the first order condition and doing some algebraic manipulation, we find the

the first-best investment levels:

xFB =

(
αcv
βcc

)β
σ
(
Rαλ

µ̄cc

) 1
σ

and yFB =

(
βcc
αcv

)α
σ
(
Rβλ

µ̄cv

) 1
σ

, (3.5)

where σ = α+ β+ 1. Now we can turn to solving the contracting game N . The expected profit

for the vendor in case of a linear penalty contract is:

E[Πv] = F − pλ

µ̄xαyβ
− cvy. (3.6)

We first solve the FOC for y, which gives the vendor’s best response function:

y(x) =

(
pβλ

µ̄cvxα

) 1
1+β

. (3.7)

Showing that the second order derivative for the vendor expected profit function is negative

indicates the solution for y in this stage is unique given p > 0 and x > 0:

∂2E[Πv]

∂y2
=
−(1 + β)βpλ

µ̄y2+βxα
< 0. (3.8)

At optimality the vendor’s IR constraint is always binding, the client sets the fixed fee FN =
pNλ

µ̄(yN )β(xN )α
+ cvy

N + k. Substituting FN and y(x) into the client’s expected profit function and

taking the partial derivative with respect to x produces:

∂E[Πc]

∂x
=

αλ(βp+R)

(1 + β)µ̄x1+a

(
cvµ̄x

α

βpλ

) β
1+β

− cc. (3.9)
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Note that for p = R, we can solve for x to find:

xN =

(
cvα

βcc

)β
σ
(
αλR

ccµ̄

) 1
σ

, (3.10)

retrieving the first best investment by the client, i.e. xN = xFB. Here again σ = 1 + α + β.

Given that the best response function Equation 3.7 can be shown to be the same as found when

solving C, the first best investment level is retrieved for yN as well, such that

yN =

(
βcc
αcv

)α
σ
(
Rβλ

µ̄cv

) 1
σ

. (3.11)

Given that the client can extract all rents by adjusting the fixed fee in the contract and knowing

that the first best investments yield the best possible system profit, it follows that setting

p = R is indeed optimal. For a proof on uniqueness of the solution we refer to the full proof of

Proposition 2 in Chapter 2. �
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3.B Theoretical Benchmarks

Table 3.B.1 Optimal Decisions and Conditional Client Expected Profit

γc γv x∗ y∗ p∗ E[Π∗c ]

-0.77 -0.77 3.51 3.51 100.00 81.58

-0.77 -0.27 3.93 2.49 45.02 80.79

-0.77 0.23 4.12 2.17 29.08 80.33

-0.60 -0.60 3.74 3.74 100.00 81.83

-0.60 -0.10 4.16 2.72 48.28 81.23

-0.60 0.40 4.35 2.37 31.82 80.83

-0.43 -0.43 3.96 3.96 100.00 81.98

-0.43 0.07 4.37 2.95 51.14 81.54

-0.43 0.57 4.58 2.57 34.35 81.19

-0.27 -0.27 4.16 4.16 100.00 82.06

-0.27 0.23 4.56 3.15 53.56 81.74

-0.27 0.73 4.77 2.75 36.57 81.44

-0.10 -0.10 4.36 4.36 100.00 82.11

-0.10 0.40 4.76 3.36 55.88 81.88

-0.10 0.90 4.97 2.94 38.78 81.63

0.00 0.00 4.47 4.47 100.00 82.11

0.00 0.50 4.86 3.47 57.14 81.93

0.00 1.00 5.08 3.05 40.00 81.71

0.07 0.07 4.55 4.55 100.00 82.11

0.07 0.57 4.94 3.56 57.98 81.96

0.07 1.07 5.16 3.12 40.83 81.75

0.23 0.23 4.72 4.72 100.00 82.08

0.23 0.73 5.11 3.74 59.79 82.00

0.23 1.23 5.33 3.29 42.64 81.83

0.40 0.40 4.90 4.90 100.00 82.04

0.40 0.90 5.28 3.92 61.54 82.01

0.40 1.40 5.50 3.46 44.44 81.87

0.73 0.73 5.22 5.22 100.00 81.89

0.73 1.23 5.59 4.27 64.54 81.95

0.73 1.73 5.82 3.79 47.64 81.87

0.90 0.90 5.39 5.39 100.00 81.80

0.90 1.40 5.74 4.44 65.91 81.90

0.90 1.90 5.97 3.95 49.15 81.84

Notes. The solutions in columns 3-5 were obtained by solving problem A
in Section 4.3 using γv and γc in columns 1-2. The optimal decisions in

were then substituted back into the client’s profit function under risk

neutrality found through Proposition 7 in order to compare outcomes

under differences in risk aversion. The FB solution is highlighted in bold.
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3.C Instructions

This is an experiment about decision-making in a business context. No prior knowledge or

experience is necessary to take part in this experiment. The instructions below tell you all you

should know. First it is important that from this moment onwards you focus on your own station:

please do not create a disruption by talking, laughing or making noises. The investigator can ask

you to leave the room without warning. If this happens you will only receive the participation

fee. If you complete the experiment, your total payoff will depend on your performance.

Game Scenario

In this experiment we simulate a setting in which a CLIENT (e.g. a large bank) has outsourced

the maintenance of an IT system to a VENDOR. The system is subject to random disruptions.

The IT system is assumed to be a mission critical system such that the CLIENT’s entire revenue

flow stops any time the system is in a state of disruption. Both the CLIENT and the VENDOR

must make a response capacity INVESTMENT to make sure the time-to-repair after any disrup-

tion is minimized. Moreover, the outsourcing relation between the CLIENT and the VENDOR

is governed by a contract with a PENALTY rate for downtime. Alongside her investment, the

CLIENT sets this rate for the VENDOR to pay in case of downtime. The CLIENT’s decisions

impact what the VENDOR decides to invest. This then impacts the payoffs as the invest-

ments by the CLIENT and VENDOR are complementary and jointly lower time-to-repair. The

CLIENT and VENDOR therefore each need to find the balance between the cost of investing in

response capacity and the potential cost of downtime in attempt to maximize their respective

profits.

Experimental Procedure

The experiment consists of two main parts. In PART I you will be asked to complete several

sequences of questions spread across eight sections. The section is indicated at the top left of the

window. You will need to complete all questions in each section to advance to the next section.

Click ‘Save and Continue’ when you have completed the section and you are happy with your

answers. There is a ‘Clear’ button in each section which resets your answers, which you can use

in case you want to restart the section. Completing all eight sections is required to advance to

PART II and obtain your payoff for today’s experiment.

In the first section of PART I you are asked to choose one of two gambles in ten hypothetical

situations. In the second section you are asked to choose between a gamble and a value you would

receive for sure in another ten hypothetical situations. Each gamble has an expected value equal

to the weighted average of the two outcomes. For instance, a gamble that says “50% of $5, 50%

of $10” has a 50% probability of resulting in a payoff of $5 and a 50% probability of resulting in a
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payoff of $10. The expected value of the gamble is 50%∗$5+50%∗$10 = 0.5∗$5+0.5∗$10 = $7.5.

You are not expected to calculate these expected values, but a quick mental calculation to get

an idea of the expected value of a gamble may help inform your choice. Keep in mind the gamble

never pays out the expected value: there is a chance of obtaining the high outcome, but also a

risk of obtaining the low outcome. Sections three until five each describe ten separate activities

or behaviors for which you are asked to indicate how likely it is that you would engage in the

activity or behavior. Sections six until eight present the same situation, but instead ask you to

rate the situations in terms of how risky you perceive them to be.

In PART II you will play the role of a CLIENT in an investment game in the abovementioned

service chain setting with one VENDOR. The VENDOR is automated and acts in his own

interest. As the CLIENT you must decide on the PENALTY and your INVESTMENT in

response capacity in each round. You will play the game for 30 periods across a number of

rounds with different conditions to which you will be randomly assigned. In each period you

will have the chance to try out different penalty and investment decisions using the relevant

scroll bars and see expected results following your decisions before you submit them. Do this

in the ‘Try Before You Decide’ panel in the game window. Do not click on the ‘submit’ button

or hit enter until you are sure. After submitting your decisions, you will be able to observe the

vendor’s response and realized results in the ‘Performance Log’ panel in the game window. At

the start of the game you will have five warm-up periods to get used to the user interface. Your

performance in the warm-up rounds is not recorded and will not count towards your payoff.

Your expected profit in each period is calculated for you using the following formula:

E[profit] = R

(
1− λ

µ̄xαyβ

)
+

pλ

µ̄xαyβ
− ccx− F, (3.12)

where in the first term R is the revenue per period when no disruptions occur, λ is the expected

frequency of disruptions per period, 1/(µ̄xαyβ) is the expected length for each disruption. Specif-

ically, µ, α and β are parameters that together with the CLIENT’s (your) INVESTMENT x

and the INVESTMENT by the VENDOR y produce a joint response capacity. Furthermore, p

is the penalty you set, cx is the cost per unit of investment and F is a fixed fee that is part of

contract with the VENDOR. For the game, we set R = 100, µ̄ = 5, λ = 2, α = β = 0.5, cx = 1

and F is determined automatically to meet some constraints of the game. Because α = β it

is assumed both the CLIENT and VENDOR have the same return on investment in terms of

reducing expected downtime. Realized profits will be different from the expected profit as in

each round a random number of disruptions and a random length for each disruption that occurs

is generated. For instance, say you choose to set your investment x at 4 and set the penalty p

at 40. Now let’s say the VENDOR decides to invest 1 and to meet the game constraints, F is

set at 10. Then your expected profit is:

E[profit] = 100 ∗
(

1− 2

5 ∗
√

4
√

1

)
+

40 ∗ 2

5 ∗
√

4
√

1
− 1 ∗ 1− 10 = 77. (3.13)

In expectation you face two disruptions each period (as λ = 2) and each disruption is expected

to last one-tenth of the period (as 1/(5 ∗
√

4
√

1) = 1/10), such that the expected cumulative
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downtime is two-tenths of the period. As the rate of disruptions and the length of each disruption

are random, however, the realized number of disruptions may be different (e.g. 1, or 3) and the

length of each disruption may be different from 1/10 as well (e.g. 1/20, or 1/4). As a result

the cumulative downtime may be more or less than the expected 2/10, resulting in a different

realized profit for the period. As mentioned before, the realized results are recorded in the

‘Performance Log’ panel.

Your Payoff

Your payoff consists of two parts. You will receive a SGD 5 participation fee and additional

payment conditional on your performance. Your performance-based payoff will be based on

your cumulative profits in PART II of the experiment. The total CLIENT’s earnings are added

up and converted to Singapore Dollars at a rate of SGD 1 per 200 points. You can make up

to SGD 20 including the participation fee. After you answer the questions appearing on your

screen, your result will appear. Please do not close your game window. You will need to

confirm your result with the investigators before writing it down on your payment paper with

your bank information and completing the IDC claim form. The payment will be transferred to

your bank account. Alternatively, you can request for a cheque to be issued. Please make sure

that you write your name exactly as it appears on your bank account. In case you leave before

completing the experiment, you will only receive the participation fee.
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3.D Screenshots

Subjects participated in the experiment using software developed in Visual Basic using Microsoft

Visual Studio Professional 2013. The figures on the following pages show screenshots of the HL

and HLa measures and a sample of questions from the DOSPERT measures in PART I of the

experiment; the user interface for PART II of the experiment; and finally an example of the

three information pop-ups seen by a subject in the information treatment and allocated to the

vendors in order (213) upon starting the game and completing rounds 30 and 60.

Figure 3.D.1 PART I: HL Measure
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Figure 3.D.2 PART I: HLa Measure
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Figure 3.D.3 PART I: Sample of the DOSPERT Measure questions
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Figure 3.D.4 PART II: Investment Game
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Figure 3.D.5 PART II: Sample message prompts for an informed subject facing vendors in

order (213)

(i) First message

(ii) Second message

(iii) Third message
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Chapter 4

Managing Escalations: Equipment

Failure and Response Capacity

Allocation

4.1 Introduction

Complex technologies increasingly support the day-to-day operations of firms and organizations

across many sectors: airlines depend on direct access to booking systems, the financial markets

require live and secure financial data streams and hospitals need their system of medical equip-

ment to be safe, ready and available. While technology helps to improve operating efficiency,

they also increase exposure to disruption risk when the maintenance is outsourced. This expo-

sure is further amplified when multiple clients contract with a single provider to implement and

service their technology. Motivated by past disruptions in the medical devices sector, the goal of

this study is to understand how a provider should manage disruption risk across a clients base.

A report by the McKinsey Center for Government (2013) notes that while US medical device

sales grew at a steady clip of 9% between 2001 and 2009, the number of patient adverse events

linked to medical devices grew at nearly twice that rate. Sheffi (2005) highlights a series of

such adverse events related to Baxter International, a medical equipment company facing blame

for 53 deaths in the United States and across Europe linked to their dialysis equipment in 2001

(Hammonds 2002). First indications of a problem came to light in Madrid mid-August when four

elderly patients died within hours of receiving routine dialysis. It was not until another string of

more unusual post-dialysis deaths occurred in Valencia a week later that red flags were raised.

Matters escalated to a full inquiry when another 21 patients died under similar circumstances in

Croatia. A worldwide product recall of the dialysis filters followed when two patient casualties

also occurred in the US. Yet as Baxter’s equipment was not the only common factor between

the reported incidents, determining whether the dialysis filters were indeed the root cause could

not readily be confirmed (Young 2001a, Young 2001b). A few weeks into the investigation it was

found that traces of a fluid called perfluorohydrocarbon that is used for testing leaks in the filters

during production with a subsidiary had been left behind on a particular series of filters. Initially,

the conclusion of the inquiry was that this fluid may have lead to pulmonary embolisms with

the patients (Young 2001c). Later, in early 2002, new evidence pointed to a possible poisonous



4.1 Introduction 91

by-product of production with the fluid leading to the deaths (Young 2002). Hard evidence for

the true cause of the casualties was never found; still the company had to absorb $189M in costs

as a result of the events and subsequent response (Hammonds 2002). Strikingly, the US Food

and Drug Administration (FDA) did not announce their investigation into the causes of the

disruption until November. This was after the company had already issued a worldwide product

recall following their own investigation (FDA 2002), suggesting initial response may often be

enacted by the provider – well before any regulatory and legal action.

In his discussion of the Baxter case, Sheffi underlines that a company like Baxter can neither

afford responding to all red flags, nor can they afford to miss a defect that leads to preventable

deaths. Baxter International has manufacturing and R&D facilities spread across the world and

provides its products and maintenance services to client hospitals in 100 countries (Baxter 2001),

meaning one small defect can have a major impact. Moreover, the complexity of casualties can

come with significant noise, such that it is hard to discern the reality of any red flags. In

situations like Baxter’s, allocating response capacity to where it is truly needed is critical. Yet

each hospital is primarily concerned with preventing further casualties and ensuring their faulty

equipment is repaired or replaced as soon as possible, rather than focusing on investigating and

reporting equipment failures. Recent reports by the FDA point toward frequent misreporting to

manufacturers by hospitals despite federal regulations (Terhune 2016). In one instance, failure

among hospitals to report casualties linked to contaminated medical scopes put 350 patients

across 41 medical centers worldwide at risk.

As a result of outsourcing mission critical equipment, service providers and clients each have

roles to play in response to disruption. While the provider possesses the technical expertise

to resolve issues, the clients operate the technology on a day-to-day basis and are likely to be

more informed on the nature of problems when they do arise (Chan et al. 2014). In light of

the case involving Baxter International, one of the hospitals (i.e. the clients) was first to note

the problems with the dialysis equipment and Baxter (i.e. the provider) had to decide on what

action to undertake to control the damage. However, as the nature of disruptions is rarely

understood fully at the onset, neither the clients nor the provider can be certain whether the

disruption is ‘local’ (only affecting one hospital) or ‘global’ (affecting multiple or even all clients).

What the provider and clients believe the scale of disruption is, will be primarily determined by

the red flags they have observed (Sheffi 2005). Moreover, information held between the provider

and clients is frequently fragmented as each firms’ reception and interpretation of disruption

intelligence are unobservable. This makes it difficult for the provider to respond effectively to a

disruption possibly affecting multiple clients.

Adequate response to disruptions depends on the provider’s ability to decide on and the de-

liver the necessary response measures after onset of disruptions. The ability to discern global

disruptions from local problems in turn depends on the efforts made by the clients to identify

whether response is necessary as well as incentives to communicate the potential extent of the

disruption truthfully. Clients may call for support or initiate response measures after noticing a
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malfunction in the equipment or reports of similar problems experienced elsewhere.1 Placing a

call for support either directly or via local authorities means the client escalates the problem to

the provider to initiate a response. Investments in disruption prevention and response improve-

ment alone thus do not guarantee that the resources are put to use in the most effective way.

Misallocation of limited capacity to respond to disruption prevents faster resolution, thereby

increasing the cost of disruption.

Generalizing from the case of Baxter International, three factors may result in suboptimal re-

sponse to disruptions. Firstly, response capacity may be misallocated as a result of a tension

between the need for the clients to be judicious in raising alarm with the provider, i.e. avoiding

false alarms (false positive cost), and the need for the clients and provider to be proactive in

response, i.e. avoiding potential negligence (false negative costs). Secondly, some equipment is

easily sold to many clients, whereas the after-sales service is difficult to manage at scale (Cohen

et al. 2006). This makes the available response capacity a scarce good and exacerbates the effect

of misallocation through competition over these resources. Thirdly, the contract that facilitates

the interactions between a provider and various clients may set the wrong incentives to initiate

response calls when not accounting for hidden action and information (moral hazard and adverse

selection).

In this chapter we examine the relation between the provider’s response capacity allocation

decision and the clients’ response behavior given private information on the type of disruption.

We focus on the provider’s trade-off between ‘broad’ deployment of measures to respond to a

potentially widespread problem, at the risk of wasting costly resources, and ‘focused’ deployment

of measures to respond to a potentially isolated problem, at the risk of costly response delays in

other locations. Specifically, we analyze how the provider should design a contract to manage

allocation of response capacity among clients by ensuring clients invest in the ability to identify

the potential ramifications of a disruption and report truthfully in calling for response.

The rest of the chapter is structured as follows. In Section 4.2 we give an overview of the

relevant literature. In Section 4.3 we discuss the model setup and assumptions. In Section 4.4

we examine the first-best result under centralized decision making before moving on to find the

results of the contracting game between the provider and clients. Finally, in Section 4.5 we

conclude and discuss the managerial implications of our findings.

4.2 Literature Review

Existing literature in operations management (OM) has extensively discussed supply disruption

risk management. Firms can control their exposure to disruptions resulting from outsourcing

1Alerts surrounding the Baxter equipment were raised through local Croatian authorities when the incidents

in Croatia were linked to those in Spain, triggering Baxter to send its representatives to the affected site (BBC

News 2001).
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activities via a combination of investments in inventory, multi-sourcing, back-up suppliers, re-

source flexibility, procurement through PSPs, and access to spot markets (see e.g. Van Mieghem

(1998), Tomlin (2006), Yang et al. (2009), Wang et al. (2010), Yang et al. (2012) and references

therein). Tang (2006) provides a more a extensive review of earlier literature on supply chain

risk management. In the context of after-sales product or system performance, various papers

have examined the use of performance-based contracts to improve supplier inventory decisions

(Kim et al. 2007, Bakshi et al. 2015) and decentralized investments in prevention (reliability)

and ‘response capacity’ 2 (Kim et al. 2010, Jain et al. 2013, Kim and Tomlin 2013). These

papers typically cast maintenance service contracting in a classical principal-agent framework

where the client acts as the principal. However, the need for collaboration alters the nature

of contracting (Roels et al. 2010), such that suppliers may take the role of principal. This is

exemplified by medical equipment manufacturers offering contracts to control incentives of the

equipment operators (e.g. hospitals) as well as their own (Chan et al. 2014). Although it is

recognized that allocation of resources to emergency tasks is a major operational challenge (An-

galakudati et al. 2014, Wex et al. 2014), little work in OM has addressed the possible detriment

of tactical misuse of response capacity as a result of preceding strategic (contracting) decisions.

We study a two-level service system where clients (providing services to patients) are first to

recognize a disruption and stand to benefit from triggering the provider’s response (maintenance

service). As such the interaction between the clients and the provider is similar to what is studied

in the gatekeeping literature. This literature studies settings characterized by a gatekeeper who

classifies incoming customers or patients and decides on providing the service herself or referring

to a specialist. The referral decision is made complicated by the fact that the gatekeeper runs

the risk of not providing the right service and the specialists’ capacity is limited and costly

(Argon and Ziya 2009). In the OM literature, Shumsky and Pinker (2003) are the first to

capture this setting as a principal-agent problem where the gatekeeper has private information

on the complexity of the service required as well as her ability to provide the right service. Their

focus is on designing incentives for the agent to make system optimal referral decisions. A later

paper by Lee et al. (2012) extend this by considering the possibility to outsource either the

expert or gatekeeper. In our study the gatekeeper (client) similarly has private information on

the service (disruption response) required and has a decision to make on escalating the problem

to the specialist (provider). What is different in our case is that multiple clients compete for

the response capacity of the provider, which may incentivize miscommunication, and both the

provider and clients play a role in resolving the disruption.

We further depart from the classic assumptions in the gatekeeping literature when it comes to

the clients’ incentives to under-investigate and misreport disruption status for their own benefit.

The literature on audit and hazard disclosure has studied these problems. Baiman et al. (2000)

were among the first to model the the effect of contractual incentives on product quality in the

presence of moral hazard. They consider both moral hazard on the part of the supplier and

2Also referred to as repair or recovery capacity in the literature.
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buyer, respectively to do with product quality and quality appraisal decisions. Recent papers

in this stream of work are generally concerned with regulators or buyers controlling exposure

to environmental and social hazards through firms’ or suppliers actions. Plambeck and Taylor

(2015) examine how buyers should incentivize suppliers to exert responsibility effort rather than

to exert effort in hiding information to pass audits. They find increasing audit frequency or

penalties conditional on revealed audit evasion may backfire. Regulators’ disclosure requirements

may equally backfire by removing firms’ incentives for voluntary disclosure as well as incentives

to investigate potential impacts of hazards in the first place. Kim (2015) and Wang et al. (2016)

both build a dynamic model to examine how a regulator’s decision on penalties and inspection

policy (random or periodic) and a producer’s disclosure strategy (voluntary disclosure or risking

detection) interact. Kim (2015) find that producers facing random inspection may find partial

disclosure beneficial, omitting violations to keep producing in certain circumstances. Wang

et al. (2016) instead find that the optimal inspection policy and resulting disclosure depend on

options to provide rewards for disclosure as well as the post-investigation signal precision. In

both papers, hazards occur randomly and without intent of the firm at risk. The exception

is the paper by Babich and Tang (2012), who compare the efficacy of deferred payments and

inspection in controlling supplier incentives for deliberate product adulteration. In our setting

disruptions do not result from deliberate actions by the clients. However, clients can deliberately

limit investigation effort and miscommunicate to the provider.

Two papers outside the abovementioned streams of work are close to this study because of their

model set up and assumptions. A paper by Levitt and Snyder (1997) consider a principal-agent

setting in which an agent has private information on the likelihood of success of a project. A key

finding of the paper is that a principal should commit not to intervene on the basis of received

information to efficiently incentivize the agent to exert high effort in project performance and

report the project’s chances truthfully before completion. In our setting, one of agents’ decision

to report a potential bad outcome early (i.e. the scale of the disruption) through a response call

may in instead be undesirable if the information is not accurate. We study how the principal’s

strategy should control the escalation behavior of the agents through an appropriate contract

design. Also relevant is the paper by Schlapp et al. (2015), who consider how incentives affect

how project managers in a firm evaluate and report their project status in competitions over

the firm’s resources. One of their main findings is that the precision in the evaluation process

determines whether incentives should be focused on bringing out status communication with the

firms’ aggregate performance in mind or self-serving evaluations to allow agents to concentrate

on their added value. Another finding is that information asymmetry may ultimately lead to

the firm underinvesting in information acquisition and spreading resources too thin. Rather

than identifying the right projects to allocate resources to, our model is concerned with targeted

allocation of resources to respond to equipment failure effectively.
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4.3 Model Assumptions

Consider two clients i ∈ {1, 2} who are both dependent on the same type of equipment for

continuity of their operations: if the equipment malfunctions, operations are disrupted and the

clients experience disruption costs that are proportional to the disruption length.3 Upon arrival

of a disruption, either both (a ‘global’ disruption) or just one of the clients is affected (a ‘local’

disruption). If affected, a client (she) has private and imperfect information on the nature of

the disruption. We assume the two clients are ex ante symmetric. Note, however, that because

of the stochastic nature of disruption, one clients is the first (and possibly only) to observe

indications of the disruption. Without loss of generality we will refer to this client as client 1

or the ‘first responder’. The system that the clients depend on is original equipment that has

been implemented by a single provider p (he), who is responsible for maintenance servicing of

the equipment for both the clients. The provider learns about the disruption nature through

communication with client 1 and allocates response capacity on the basis of this communication.

Over the course of the disruption, all players learn the true nature of the disruption.

In case equipment failure occurs, the clients resolve the problem through a combination of their

own input and the provider’s support. Each client has a local response capacity to respond to

a disruption independently and is able to further resolve the problem faster with help of the

provider’s allocated response capacity. Moreover, the provider has a limited response capacity

such that he cannot commit full response measures to both clients simultaneously. Therefore,

client 1 must decide whether to raise alarm and, if raising alarm, whether to raise alarm for a

local or global disruption. To inform this decision, client 1 must first exert investigation effort

to improve her understanding of the nature of the disruption. Should client 2 be disrupted as

well, her disruption costs add to the system disruption costs. It is therefore in the interest of

the provider to allocate available response capacity to her as well.

The provider internalizes downtime costs proportional to the cumulative disruption length across

both clients. The provider therefore faces a trade-off between rolling out a broad response, i.e.

allocating response capacity to all possibly affected clients, and executing a focused response

to client 1 first to learn about the nature of the disruption before rolling out further response

measures. If client 1 does not have an incentive to exert effort in investigating the nature of

disruption or might benefit from misrepresenting her information to the provider, the provider

is at risk of misallocating response capacity. Knowing this, the provider aims to minimize the

disruption costs net of contract payments by setting the right incentives for clients to investigate

disruptions and report truthfully.

We study this context analytically through a three-stage resource allocation game, which has

the following sequence of events (see Figure 4.1). In phase (i) the provider offers a take-it-or-

3We assume this to include all financial, operational and legal costs ensuing disruption. In reality, as exemplified

in the Baxter case, these costs may not be immediately evident. However, clearly the longer a disruption of that

nature is left unaddressed, the more costs will result over time.
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leave-it contract to the clients. In phase (ii) a disruption potentially common to both clients,

but of unknown nature arrives and client 1 decides on the investigation effort to exert to gain

information on the scale of disruption through an imperfect private signal. Given the signal about

the disruption client 1 has the choice to call the provider for support and, if making the call,

decides between reporting a local disruption or global disruption4 — upon which the provider

commits the required response capacity to both clients. Once the provider has committed a

share of response capacity to each client, the resources are committed for the duration of the

game. In case client 1 reports a local disruption, the provider only allocates support to client 1 in

this phase, otherwise both clients receive response capacity. In phase (iii) the true nature of the

disruption is revealed through involvement of the provider - upon which the provider allocates

the remaining committed response capacity to client 2 in case the disruption is of the global type

and client 1 decided to report a local disruption in the previous phase. If client 1 did not send

a message in phase (ii) the provider does not learn the true nature of the disruption.5 In the

following we first specify the information structure that is fundamental to the game. Next we

formalize the response capacity allocation process and determine the players’ respective payoff

functions.

Figure 4.1 Sequence of Events

Disruption arrives. Client 1 decides on 
investigation effort, receives imperfect 
signal and communicates nothing, local 
or global disruption to the provider.

Provider divides response capacity 
for both clients and decides on 
allocation scheme given the message 
from client 1. 

Both clients’ payoffs realized.

Provider realizes true nature of 
disruption only following allocation to 
client 1 and allocates remaining 
response capacity to client 2 if 
necessary. Provider’s payoffs realized.

Provider offers contract 
to the clients.

Time
Phase (i) Phase (ii) Phase (iii)

4.3.1 Information Structure and Message Space

We assume the disruption can be one of two types: a local disruption (Ψ = l) that affects only

one of the two clients or a global disruption (Ψ = g) that affects both clients. In phase (ii), client

1 receives a random private signal s ∈ {l, g} that gives an imperfect indication of the nature

of the disruption. Analogous to the paper by Schlapp et al. (2015) and references therein, the

4Equipment or additional services may in some cases make continuous performance feedback available to

the provider and clients (for example Philips Remote Services (Philips 2014)), although it is not yet widely

implemented because of perceived risks (Paluch and Wünderlich 2016). In this case, whether and how a client

escalates the problem in addition to the performance feedback is still a relevant decision. As the Baxter case

illustrates, disruptions may arise despite seemingly normal equipment performance.
5We assume monitoring by the provider at the clients’ premises is prohibitively costly, hence eliciting warnings

from the client will depend on the incentive scheme (Levitt and Snyder 1997, Wu and Babich 2012).
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informativeness of the signal received is characterized by signal precision q. Formally, q ∈ [1/2, 1)

is the probability that the signal reflects the true nature of the disruption. We assume signal

precision is conditionally independent given the true type of the disruption (Wang et al. 2016),

such that Pr(s = g|Ψ = g) = Pr(s = l|Ψ = l) = q.

To receive an informative signal with precision q ∈ (1/2, 1), client 1 must exert a high inves-

tigation effort (e = h) in phase (ii). Otherwise, by exerting low effort (e = l) she remains

uninformed, i.e. q = 1/2. Exerting high effort comes with a cost of k, whereas exerting low

effort has zero cost to the client. As such the investigation effort cost function can be cap-

tured with k1{e=h}. The signal precision q that is feasible with high effort captures the client’s

ability to learn through investigation: the closer q is to 1, the more accurate the information

gained through investigation effort is. Hence, the signal received could also be interpreted as

the (imperfect) conclusion of the client’s investigation. The achievable signal precision q after

high investigation effort is common knowledge to both clients and the provider, but the client’s

decision whether to exert high investigation effort is not observable to the provider. We assume

the provider does not receive a signal of his own and remains uninformed on the nature of the

disruption unless he receives a message from client 1.

Given the signal, client 1 decides whether to call for response and, next, whether to report the

signal truthfully to the provider by means of a message m ∈ (l, g), i.e. whether to report a local

disruption (m = l) if s = l or report a global disruption (m = g) if s = g, or report a message in

contradiction to the signal. In phase (iii) the true nature of the disruption is revealed as long as

client 1 decided to communicate (m 6= ∅). As client 1 only decides on communication following

a signal concerning an acknowledged disruption, we assume a ‘pure’ false alarm does not occur

in our model: client 1 cannot raise alarm for a non-existing disruption. Client 1’s alarm can,

however, be false to the extent that it under- or overstates the gravity of the disruption.

4.3.2 Response Capacity Allocation

To respond to the disruption, each client has her own baseline response capacity µ0 (Kim and

Tomlin 2013) and receives a share of the provider’s available response capacity µp on the basis

of the message communicated by client 1. This increases her effective response capacity µi. The

clients’ baselines response capacities and the provider’s available response capacity are common

knowledge to the provider and both clients. In case client 1 decides not to call for support, she

will not receive a share of the provider’s total response capacity. We assume each client can

receive at most µ̄ from the provider and, to avoid trivial cases, impose µ̄ < µp < 2µ̄. If client 1

reports a local disruption (m = l) in phase (ii), client 1 will receive µ̄ from the provider, such

that µ1(l) = µ0 + µ̄. In this case µp− µ̄ remains available and is committed to client 2, such that

µ2(l) = µ0 + µp − µ̄. Instead, if client 1 reports a global disruption in phase (ii), the provider

splits the available response capacity equally, meaning µ1(g) = µ2(g) = µ0 + µp/2. Note that,

given µ̄ < µp < 2µ̄, it must mean that µp − µ̄ < µp
2 < µ̄. The implicit assumption here is that
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the provider does not outright ignore a call for support, yet if client 1 does not call for response

the provider will not be able to allocate response capacity in time meaning µ1 = µ0. Because of

symmetry, this means in this situation also µ2 = µ0.

Additionally, we model a ‘patching’ benefit that results from sequenced allocation of response

capacity. More precisely, allocating µ̄ to client 1 in phase (ii) and allocating the remaining

response capacity µp− µ̄ to the other client in phase (iii) boosts client 2’s total response capacity

by α. The argument for this benefit is that focusing response capacity on one client early may

lead to solutions also applicable to the other client, similar to software patches.6 Where q

captures the learning ability of the client, α can be interpreted as capturing the learning ability

of the provider, or alternatively the complexity of the disruption faced. The higher α is, the

more applicable solutions found by dispatching response capacity to one client are to resolve

issues with other clients. Note that if the disruption truly is global, broad response capacity

is optimal from the provider’s point of view, whereas focused response capacity allocation is

optimal if the disruption turns out to be local. In case client 1 calls for focused allocation, but

the disruption is in fact global, patching counteracts part of the cost following client 1’s potential

miscommunication, but cannot offset the damage fully.

4.3.3 Contract and Payoffs

The two types of disruption differ by what rate dΨ
i disruption costs build up each client as long

as a disruption is not resolved. We assume the costs of disruption are proportional to the length

of the disruption and that the cost rates are common knowledge to the provider and clients. A

global disruption has a cost rate of dgi > 0 for each client, such that dg1 = dg2 = dg and a local

disruption with client 1 has a cost rate of dl1 > 0 and dl2 = 0, where dg > dl1 and dg < dl1 are

both possible scenarios.

In phase (i), the provider announces a pay-per-service contract with a ‘disclosure’ reward T (f, r)

to both clients, which sets a fee f ≥ 0 for a client to receive response capacity from the provider

and a disclosure reward r ≥ 0 in case client 1’s message coincides with the true nature of the

disruption ex post, i.e. m = Ψ. The provider’s contract parameter decisions are his levers to

control incentives for client 1’s escalation behavior. Empirical evidence suggests a pay-per-service

contract results in higher service reliability and more efficient service provision when compared

to full coverage plans (Chan et al. 2014). We therefore focus our analysis on the performance

of a pay-per-service contract in combination with the disclosure reward. We assume that the

provider cannot discriminate between clients and therefore offers the same f to each client.

Recall client 1 is the first to be aware of the disruption. Client 1 weighs off the disruption

6Patching has been studied in the context of network security and user patching behavior, where installing

patches prevents disruption by reducing network vulnerabilities (August and Tunca 2006). In our context, we

interpret patching through a restorative lens: once a problem has been resolved for one client, a provider may

apply the same or a similar solution to another client, speeding up resolution of the disruption.
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cost reduction against the expected disclosure reward conditional on her signal as well as its

precision. The balance will determine whether the client makes the call for response in the first

place and, subsequently, what to report. The decisions by client 1 affect the response capacity

allocation by the provider and, in turn, impact the disruption costs faced by client 2.

Let D1 and D2 respectively be the total costs experienced by client 1 and client 2 as a result

of the disruption. Similar to Kim and Tomlin (2013) (and references therein) we assume the

disruption length is exponentially distributed with rate parameter µi such that the expected

disruption length is given by 1/µi. The parameter µi is interpreted as the response capacity:

the more capacity there is to respond to a disruption, the shorter the expected disruption length.

Given the assumptions in Section 4.3.2 the expected cost to client 2 evaluated in phase (ii) is

therefore:

E[D2|m] =
dΨ

2

µ2(m) + α1m=l
, (4.1)

where the exponent Ψ is the verified nature of the disruption, 1m=l is an indicator variable

that equals 1 if m = l and 0 otherwise and α is the patching benefit generated in case response

capacity is allocated to the two clients in sequence. We require µ0 ≥ 1 such that µi(m) ≥ 1,

meaning expected disruption costs are non-increasing in response capacity.

In phase (ii), client 1 can only form an expectation of the cost of disruption, which depends on

the signal and the signal’s quality. In turn, this depends on the investigation effort exerted in

the preceding phase. The response capacity client 1 receives upon calling for support depends

on the message m she decides to convey to the provider. The expected cost to client 1 evaluated

in phase (ii) after exerting investigation effort and receiving the signal is:

E[D1|e∗, s, f, r] = min
m

EΨ

[
dΨ

1

µ1(m)
+ T (f, r,m) + k1e∗=h

∣∣∣∣e∗, s] , (4.2)

where e∗ is the optimal effort client 1 decided to exert. We define the expected value of T to be

conditional on the investigation effort exerted by client 1 as well as the signal that she received,

such that:

T (f, r,m) ≡

{
f − rPm=Ψ if m ∈ {l, g}
0 if m = ∅.

(4.3)

When deciding on the investigation effort level, client 1 must evaluate expected cost by also

taking an expectation over the signal outcome. For simplicity we assume that, ex ante, the

signal for a local or global disruption occurs with equal likelihood. Therefore, client 1 evaluates

her expected cost in phase (ii) before exerting investigation effort as:

E[D1|f, r] = min
e

Es
[
EΨ

[
dΨ

1

µ1(m(e|s))
+ T (f, r,m(e|s)) + k1e=h

]]
, (4.4)

where we make explicit that the message to be sent is a function of the investigation effort and

conditional on the signal received.

Initiating an allocation of response capacity costs the provider χ for each client the provider

deploys resources to, e.g. the cost of sending engineers to the client’s site. For tractability we
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assume this cost does not depend on the size of allocation and that costs are incurred when

response capacity is allocated in phase (ii). Let Dp be the provider’s disruption cost net of

payment and costs associated initiating response and recall that he is uninformed with regards

to the type of disruption. The provider’s cost function is:

E[Dp] = min
f,r

Es
[
EΨ

[
dΨ

1

µ1(m(e|s))
− T (f, r,m(e|s)) + χ1m∈{l,g}

]]
+ Es

[
EΨ

[
dΨ

2

µ2(m(e|s)) + α1m=l
+ χ(1m=g + 1m=l1Ψ=g)

]]
, (4.5)

where the first term consists of the net costs incurred by the provider through client 1 and the

second term consists of the net costs incurred through client 2. Note that, provided client 1

calls for a response, the provider incurs the cost of response allocation to client 1 regardless of

the signal. The provider incurs allocations costs to client 2 if either client 1 reports a global

disruption or if client 1 reports a local disruption and the disruption turns out to be a global

disruption. The provider thus optimizes system costs including costs incurred from allocation

response capacity. The notation for the model is summarized in order of introduction in Table

4.1.

The cost functions above capture a dual tension between the clients’ objectives and the provider’s

objective. On the one hand, the clients each mininimize costs only accounting for their own

disruption length, whereas the provider cares about the combined disruption length across both

client. On the other hand, the clients base their decisions on an informative signal or fully verified

nature of the disruption, whereas the provider decides on the contract parameters without direct

information. We next analyze how these tensions play into inefficient allocation of response

capacity.
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Table 4.1 Summary of notation

i Index of client

Ψ True type of the disruption

s Signal of the disruption type

q Signal precision

e Investigation effort

k Cost of high investigation effort

m Message sent by client 1

µ0 Baseline response capacity of client i

µp Provider’s available response capacity

µi Client’s effective response capacity after allocation

µ̄ Maximum allocation of response capacity to one client

α Patching benefit

dΨ
i Disruption cost rate to client i in case of disruption type Ψ

f Fixed fee

r Disclosure reward

χ Cost of response capacity allocation per client

4.4 Analysis

In this section we first solve the problem for the case in which the provider and clients act as

one firm and have no misaligned incentives. The solution to this problem serves as a benchmark

against which we can compare results in case the provider and clients act on their own and on

the basis of private information.

4.4.1 Centralized Response

Let the provider take the role of a centralized decision maker (‘the company’) who directly

allocates response capacity to two different company locations (rather than clients) after a

disruption hits one (and possibly two) of the locations. We will use subscript C as a label for

the company. Because the company allocates response capacity directly, the contract defined

in the previous section does not play a role, nor does communication, although the company

does incur the cost of initiating response. Each location has a local response capacity µ0 like

the clients in the decentralized case.

The company decides on the investigation effort and subsequently receives a single signal sC

with precision q through one of the two locations concerning the nature of the disruption. The

company receives this signal directly; neither location plays a role in manipulating the signal

through communication with the provider. Given the signal, the company has to commit the
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response capacity across the two locations and decide on the allocation scheme in phase (ii)

before verifying the true nature of the disruption in phase (iii). Allocating response capacity

directly, the company faces a choice between two alternatives in phase (ii): (a) allocating all

response capacity µp
7 and splitting evenly between locations early given the information from the

signal (‘broad’ allocation of response capacity) and; (b) allocating maximum response capacity µ̄

to the location which issued the signal first and postponing allocation of the remaining response

capacity to the next phase if necessary (‘focused’ allocation of response capacity). Rationalizing

the expected cost associated with each option, the company can select the optimal decision on

the basis of parameter settings. Solving backwards, the company can then decide on the optimal

investigation effort strategy, again given parameter settings.

Given that the cost of initiating response does not depend on the size of the response capacity

allocated, note that the company has no incentive to allocate less than µp in case of broad

allocation or allocate less than µ̄ to the first location in case of focused allocation. Note that in

case both locations are affected, an equal split of response capacity between the two locations

is dominant to any other division of resources,8 hence in case of broad allocation it is always

best to allocate µp/2 to each location. To evaluate the first-best response capacity allocation

decision by the company in the centralized case, we first need to formalize the expected cost of

each of the two options in phase (ii). Let E[DC ] be the company’s expected disruption cost and

let s (−s) be the type of disruption (not) indicated by the signal. With high investigation effort

exerted in phase (ii), the company receives a signal with precision 1/2 < q < 1. Conditional on

high investigation effort, broad allocation has an expected cost of:

E[DC |e = h, s] =

(
2(q
∑

i d
s
i + (1− q)

∑
i d
−s
i )

2µ0 + µp

)
+ k + 2χ. (4.6)

The expected cost of focused allocation depends on the signal, i.e.:

E[DC |e = h, s = g] =

(
qdg1 + (1− q)dl1

µ0 + µ̄

)
+

(
qdg2

µ0 + µp − µ̄+ α

)
+ k + (1 + q)χ, (4.7)

E[DC |e = h, s = l] =

(
qdl1 + (1− q)dg1

µ0 + µ̄

)
+

(
(1− q)qdg2

µ0 + µp − µ̄+ α

)
+ k + (2− q)χ. (4.8)

The expected disruption costs following low investigation effort are found similarly and left to

the Appendix. Lemma 2 characterizes the solution to the optimal response capacity allocation

strategy for phase (ii) conditional on the signal received and investigation effort exerted.

7We retain the subscript p in this section for consistence in notation.
8Consider a simple example with µk = 10 and disruption cost rate d = 1. Splitting the response capacity equal

between two locations yields a total disruption cost of 1
5

+ 1
5

= 2
5
. It is easy to show that any other division yields

a higher total cost, e.g. 1
6

+ 1
4

= 5
12
> 2

5
.
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Lemma 2 (first-best conditional response capacity allocation). Define:

ζ1 ≡
1

1− q

(
qdg + (1− q)dl1

µ0 + µ̄
+

qdg

µ0 + µp − µ̄+ α
− 2(2qdg + (1− q)dl1)

2µ0 + µp

)
,

ζ2 ≡
1

q

(
(1− q)dg + qdl1

µ0 + µ̄
+

(1− q)dg

µ0 + µp − µ̄+ α
− 2(2(1− q)dg + qdl1)

2µ0 + µp

)
,

ζ3 ≡
dg + dl1
µ0 + µ̄

+
dg

µ0 + µp − µ̄+ α
− 2(2dg + dl1)

2µ0 + µp
,

α̂ ≡ (µp − 2µ̄)2

2(µ0 + 2µ̄)− µp
.

The optimal response capacity allocation strategy conditional on the investigation effort and the

signal received is characterized as follows:

(i) when e = h and α < α̂ for χ ≤ ζ2 broad response capacity allocation is optimal and for

χ > ζ1 focused response capacity allocation is optimal, in both cases regardless of the signal.

For ζ2 < χ ≤ ζ1 broad response capacity allocation is optimal if s = g and focused allocation of

response capacity is optimal if s = l;

(ii) when e = h and α ≥ α̂ focused allocation is regardless of the signal;

(iii) when e = l there exists an α̃ such that when α < α̃ broad allocation is optimal if χ < ζ3

and focused allocation is optimal otherwise, regardless of the signal. If α ≥ α̃, focused allocation

is optimal regardless of the signal and allocation cost.

Lemma 2 shows that if the company exerts a high investigation effort there are three different

regions that characterize the optimal response capacity allocation. In region A, the cost of

allocating response capacity is low enough for the company to choose broad allocation and

split the response capacity across both locations regardless of the signal. In region B, the cost of

allocating response capacity is too high to warrant deploying response capacity to both locations

immediately in phase (ii). Therefore, in region B, it is optimal for the company to choose focused

allocation regardless of the signal. Region C is different from the other two regions as for the

intermediate costs of allocation within this region, the optimal allocation strategy depends on

the signal received. If the signal is s = g, broad allocation is optimal; if the signal is s = l, it

is optimal to focus allocation on the location where the signal originated and delay deploying

further resources to the other location.

Figure 4.1 illustrates these results for the case when dg > dl and α < α̂, for the parameter

settings indicated. Three observations can be made from the figure. A first observation is that

signal precision has no role in case client 1 exerts low investigation effort, hence we find the simple

threshold on χ between regions A and B in the left-hand panel. A second observation is that,

after exerting high investigation effort (right-hand panel), using the signal to guide response

capacity allocation (region C) is optimal for a wider range of allocation costs the higher the

signal precision after high investigation effort. Intuitively, should investigation effort lead to a

signal with perfect precision (q = 1), following a signal-dependent strategy is the only optimal

strategy. A third observation is that while broad allocation regardless of the signal (region A)
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is an optimal strategy under certain circumstances, this only holds for low cost of response

capacity allocation and low signal precision.

Figure 4.1 First-best conditional response capacity allocation

(i) e = l and α < α̂ (ii) e = h and α < α̂

Notes. Regions denote optimal response capacity allocation strategies.

Region A: unconditional broad allocation; region B: unconditional fo-

cused allocation; region C: broad allocation when s = g and focused al-

location when s = l. In this example: dl = 2, dg = 10, µk = 2, µ̄ = 1.85,

µ0 = 1.

The next step in analyzing the case of centralized response capacity allocation requires examining

how the optimal investigation effort depends on q, χ and α. The investigation effort decision

is made prior to receiving the signal. Therefore, to compare the expected returns of high

and low investigation effort and subsequently optimal response capacity allocation decisions,

the company must take expectations over the ex-ante equally likely signals. Proposition 8

characterizes the solution.
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Proposition 8 (first-best investigation effort and response capacity allocation).

Let M = {A,B,C} be the optimal conditional response capacity allocation regions as identified

in Lemma 2 and let α̂ be as defined in the same Lemma. Also, let E[A|h], E[B|h] and E[C|h]

respectively denote the expected disruption cost for each strategy given high investigation effort

and let E[A|l], E[B|l] denote the expected disruption costs given low investigation effort. Finally,

define:

ζ1′ ≡ ζ1 −
2k

1− q
,

ζ2′ ≡ ζ2 +
2k

q
,

ζ4 ≡
1

3

(
2dg + dl1
µ0

− dg

µ0 + µp − µ̄+ α
− dg + dl1
µ0 + µ̄

)
,

ζ5 ≡
1

4− q

(
2dg + dl1
µ0

− 2(1− q)dl1 + 4qdg

2µ0 + µp
− (1− q)dg

µ0 + µp − µ̄+ α
− (1− q)dg + qdl1

µ0 + µ̄
− 2k

)
,

qh ≡
1

2
+ k

(
(2µ0 + µp)(µ0 + µ̄)(µ0 + µp − µ̄+ α)

dg((µ0 − 2µ̄)2 + α(µp − 2(µ0 + 2µ̄)))

)
.

We find that: i) E[A|l] < E[A|h] and E[B|l] < E[B|h] for any k > 0, otherwise E[A|l] = E[A|h]

and E[B|l] = E[B|h]; ii) When α < α̂, q > qh, ζ2′ < χ ≤ ζ1′ and χ ≤ ζ5 it is optimal to exert

high investigation effort and follow a signal-dependent allocation strategy (i.e. broad allocation

when s = g and focused allocation when s = l). When α < α̂, q > qh, but χ ≤ ζ2′ (χ > ζ1′)
and χ ≤ ζ4, broad (focused) allocation regardless of the signal is optimal; iii) When q ≤ qh only

low investigation effort is optimal, such that subsequently broad allocation (focused allocation)

is optimal for χ ≤ ζ3 (χ > ζ3) by Lemma 2, provided χ ≤ ζ4; and iii) When χ ≤ ζ4, but α ≥ α̂

focused allocation is the only optimal response capacity allocation strategy, hence by (i), low

investigation effort is optimal; Otherwise no allocation effort and allocation strategy is feasible.

Proposition 8 shows three results. Firstly, when investigation effort is costly, it can never be

optimal to exert high investigation effort if it leads to a signal-independent response capacity

allocation strategy. This gives a region A, where low investigation effort is followed by broad

allocation of response capacity regardless of the signal and a region B where low investigation

effort is followed by focused response capacity allocation regardless of the signal. Secondly, when

the patching benefit is small (i.e. α < α̂), high investigation effort can be first-best provided the

cost of investigation effort and response capacity allocation are sufficiently low, but only beyond

a threshold signal precision qh. This gives a region C, where high investigation effort is followed

by broad allocation if s = g and focused allocation if s = l. Said differently, in C is optimal to

invest in a better signal and decide on allocating response capacity after receiving it. Thirdly,

when the patching benefit is sufficiently large, we show that high investigation effort cannot

be first-best regardless of the marginal cost of each disruption type and focused allocation is

the optimal response capacity allocation strategy. Figure 4.2 below illustrates the results of the

proposition for k = 0.1 and otherwise the same parameter settings as in Figure 4.1.
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Figure 4.2 First-best investigation effort and allocation

Notes. Regions denote optimal investigation effort and response ca-

pacity allocation strategies. Region A: low investigation effort and

unconditional broad allocation; region B: low investigation effort

and unconditional focused allocation; region C: high investigation

effort and broad allocation when s = g and focused allocation when

s = l. In this example: dl = 2, dg = 10, µk = 2, µ̄ = 1.85, µ0 = 1,

k = 0.1, α = 0.02.
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From a managerial perspective, Lemma 2 and Proposition 8 together make it clear that deciding

on whether or not to invest in an informative signal and subsequently deciding on the best

way to allocate limited response capacity across the affected locations is not trivial, even in a

centralized capacity without the possibility for misrepresentation of information. It turns out

that the patching benefit plays an important role in driving which strategy is optimal. Provided

patching benefit is hight (α ≥ α̂), it is best to delay deployment of resources to location 2 until

after responding to issues raised at location 1.

Naturally, it may be difficult to determine whether the problems faced may be characterized by

cross-applicability of solutions when they are eventually found. Alternatively, one can interpret α

and q as representing centralized and decentralized learning respectively. Whereas q captures the

potential for the nature of the disruption to be detected at each location decentrally; α captures

how centrally undertaken response can facilitate understanding the nature of the disruption.

Both forms of learning have to be considered in conjunction when considering whether investment

in signal quality is necessary and pivotal to response capacity allocation.

4.4.2 Decentralized Response

In a decentralized setting, the provider does not have access to a direct signal to decide on the re-

sponse capacity allocation. Instead, he has to design a contract with terms f (the pay-per-service

fee) and r (the disclosure reward) to set incentives such that the clients exert high investigation

effort and communicate the signal they receive truthfully. Without any such incentives, clearly

neither client has any interest in reporting a global disruption as they will always receive more

help when reporting a local disruption — without incurring any costs. As this strategy is opti-

mal regardless of the signal, it follows that exerting investigation effort is suboptimal from the

perspective of the client. Hence when f, r = 0 (the provider offered a ‘null contract’), client 1

always exerts low investigation effort and communicates m = l regardless of the signal received.

However, as demonstrated in the previous section, under the right conditions a signal dependent

strategy can be first-best and hence optimal from the perspective of the provider. The result

is a difference in expected system disruption costs between a setting with centralized decision

making and a setting with decentralized decision making without the right incentives for the

clients. The intention of the contract terms offered by the provider to both clients is to control

their incentives and minimize this cost difference.

We find the optimal contract terms using backward induction, starting from the perspective of

client 1, who, given a set of contract terms, an exerted effort level and received signal, decides

on what message m ∈ {l, q} to send to the provider. Recall that the client also has the option of

not sending a message, defined as m = ∅. Let E[D1(m)] be client 1’s expected disruption costs

as a function of the message m she sends. Following high investigation effort, sending message
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m = g after receiving s = g yields:

E[D1(g)|e = h, s = g] =

(
qdg1 + (1− q)dl1
µ0 + µp/2

)
+ f − qr + k. (4.9)

Sending message m = l after receiving s = g yields:

E[D1(l)|e = h, s = g] =

(
qdg1 + (1− q)dl1

µ0 + µ̄

)
+ f − (1− q)r + k. (4.10)

Not sending a message (i.e. m = ∅) after receiving s = g yields:

E[D1(∅)|e = h, s = g] =

(
qdg1 + (1− q)dl1

µ0

)
+ k. (4.11)

Using the same approach we can find the expected disruption costs associated with each message

message m following high investigation effort and receiving a signal s = l as well as following

low investigation effort and receiving either possible signal. These functions are left to the

Appendix. Comparing the expected cost functions gives the results in Lemma 3, s (−s) is the

type of disruption (not) indicated by the signal as before.
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Lemma 3 (conditionally optimal communication by client 1). i) Considering the case

e = l, define:

ϑl ≡
µ̄(dg1 + dl1)

µ0(µ0 + µ̄)
.

In this case the communication decision is independent from the signal received. Between sending

m = g or sending m = l, the latter is always optimal. Between sending m = l or not sending a

message, client 1 prefers not to send a message if 2f − r > ϑl.

ii) Considering the case e = h, define:

ϑh1(s) ≡ (2µ̄− µp)(qds1 + (1− q)d−s1 )

(µ0 + µ̄)(2µ0 + µp)
,

ϑh2(s) ≡ µ̄(qds1 + (1− q)d−s1 )

µ0(µ0 + µ̄)
,

ϑh3(s) ≡ µp(qd
s
1 + (1− q)d−s1 )

µ0(2µ0 + µp)
.

Now in case the client receives a signal s = g, we find the following. If (2q − 1)r > ϑ(g)h1 and

f−qr < ϑh3(g) is optimal for client 1 to communicate truthfully, i.e. m = g. If (2q−1)r < ϑh1(g)

and f − (1 − q)r < ϑh2(g) it is optimal for client 1 to miscommunicate, i.e. m = l. Otherwise

it is optimal for the client not to send a message, i.e. m = ∅. In case the client receives a

signal s = l instead, there is no incentive to miscommunicate. Not sending a message can still

be optimal, which is the case if f − qr > ϑh3(l).

Lemma 3 highlights two motives for miscommunication by client 1, by which we mean motives

for the client to send a message that contradicts the signal she received. The first motive

follows low investigation effort, after which it is always optimal to report a local disruption

even if the signal indicates otherwise. The second motive arises when client has exerted high

investigation effort and receives s = g, but the disclosure reward is not large enough to offset

the increase in expected disruption cost by relinquishing response capacity through reporting

a global disruption. Note, however, the incentive to miscommunicate is partially offset by the

signal quality: having invested in a good signal adds to the expected value of the disclosure

reward, making truthful communication more appealing. Regardless of the investigation effort

exerted, client 1 has no incentive to communicate m = g in case s = l, though she may prefer

not to alert the provider at all. Not sending a message is preferable when the fee to call for

response is sufficiently larger than the disclosure reward. If the expected disclosure reward is

larger than the fee, even when deliberately miscommunicating, i.e. (1 − q)r > f , it is always

preferable to send a message.

Let us characterize client 1’s strategy as a 3-tuple: (mg,ml, e), where mg is the message sent

in case the signal is g, ml is the message sent in case the signal is l, and e is the investigation

effort. Let S be the client’s strategy set under decentralized decision making. From Lemma 3

we know that |S| = 8, with:

S = {(∅, ∅, l), (l, l, l), (∅, ∅, h), (∅, l, h), (l, ∅, h), (l, l, h), (g, ∅, h), (g, l, h)}. (4.12)
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In S the strategies (∅, ∅, l) and (∅, ∅, h) constitute non-partipation, i.e. when client 1 rejects the

contract offered (and by symmetry client 2 as well). Said differently, the constraints subject

to which the other strategies are preferable to non-participation are client 1’s participation

constraints. The strategy (g, l, h) is the only strategy that equates to truth-telling by client

1. In the remaining five strategies client 1 either miscommunicates the signal received or does

not communicate with the provider given a particular signal. Note that there is no complete

miscommunication is the sense that the client communicates m = l when s = g and vice

versa. Rather, two of the communication strategies only feature partial miscommunication

where mg = l. Next observe that two of the communication strategies only feature ‘omission’:

for one of the two possible signals client 1 decides not to communicate. Such omission can only

follow high investigation effort by client 1. The fifth remaining communication strategy (l, ∅, h)

is special in that it features both miscommunication, as mg = l, and omission, as ml = ∅.

In the following we first solve the provider’s contracting problem in a simplified setting in which

omission is not possible and let S ′ = S \ {(∅, l, h), (l, ∅, h), (g, ∅, h)}. After that, we reintroduce

the possibility of omission and find the necessary contract adjustments to ensure both high

investigation effort and truth-telling by client 1.

4.4.2.1 Optimal contract design when omission is not possible

Without omission, the only relevant communication strategies to consider are (l, l, l), (l, l, h) and

(l, g, h), subject to meeting client 1’s participation constraint. Recall that the strategy (l, l, l)

can be induced with a null contract. Also note that, given the results in Lemma 3, no contract

terms result in the client’s strategy (g, g, h) or (g, g, l) such that the provider will never deploy

response capacity to both clients simultaneously regardless of the signal.

To incentivize client 1 to exert high investigation effort, a non-zero disclosure reward (r > 0)

will be required, without affecting client’s communication strategy. Without needing a formal

proof, it follows that that E[Dp(f
′, r′)|(l, l, l)] < E[Dp(f

′′, r′′)|(l, l, h)], where f ′ and r′ are the

optimal contract parameters that induce the (l, l, l) strategy and f ′′ and r′′ are the optimal

contract parameters that induce the (l, l, h) strategy. Hence, the provider only needs to evaluate

the expected disruption costs Equation 4.5 in Section 4.3.3 between inducing communication

strategies (l, l, l) and (g, l, h). Following a similar argument we can disregard contract parameters

that induce (∅, ∅, h) as opposed to (∅, ∅, l). All cost functions are evaluated in the Appendix. It

follows that the provider’s contracting problem in a context without omission (P ′) reduces to:

(P ′) min
f,r≥0

, E[Dp]

s.t. E[D1(g, l, h)|f, r] ≤ E[D1(l, l, l)|f, r], (ICE+T )

E[D1(g, l, h)|f, r] ≤ E[D1(∅, ∅, l)|f, r], (IR1)

E[Dp|(g, l, h)] ≤ E[Dp|(∅, ∅, l)]. (IRp)
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In this reduced problem statement, the condition (ICE+T ) simultaneously solves the moral haz-

ard problem to do with client 1’s investigation effort as well as the adverse selection problem to

do with client 1’s communication. The conditions (IR1) and (IRp) are the individual rationality

constraints for client 1 and the provider respectively. Proposition 9 characterizes the solution

to (P ′).

Proposition 9 (optimal contract design without omission). Define:

f ≡ 1

2

(
dl1 + dg

µ0
− 2(qdg + (1− q)dl1)

2µ0 + µp
+
qdl1 + (1− q)dg

µ0 + µ̄

)
+ qr − k,

r ≡ (2µ̄− µp)(qdg + (1− q)dl1)

(2q − 1)(2µ0 + µp)(µ0 + µ̄)
+

2k

2q − 1
,

ζ1′′ ≡
2

1− q

(
qdg + (1− q)dl1

µ0 + µ̄
+

qdg

2(µ0 + µp − µ̄+ α)
− 3qdg + 2(1− q)dl1

2µ0 + µp
− k
)
,

ζ4′ ≡
1

3

(
dg

µ0
+

dg

µ0 + µp − µ̄+ α
− 2(dg + dl1)µ̄

µ0(µ0 + µ̄)

)
,

ζ5′ ≡
2

4− q

(
3dg + 2dl1

µ0
− 4(1− q)dl1 + 6qdg

2µ0 + µp
− (1− q)dg

µ0 + µp − µ̄+ α
− 2(1− q)dg + 2qdl1

µ0 + µ̄
− k
)
.

We find that: i) It is optimal for the provider to set T (f, r) and induce both high investigation

effort and thruth-telling by client 1 so long as χ ≤ ζ1′′ and χ ≤ ζ5, ii) It is optimal for the

provider to set T (f
′
, 0) and induce client 1 to communicate while allowing for miscommunication

so long as χ > ζ1′′ and χ ≤ ζ4. Otherwise contracting is not feasible. Finally, there exists an

α† such that for α ≥ α† and χ ≤ ζ4 only offering T (f
′
, 0) can be optimal.

Proposition 9 shows that in a context where response capacity allocation is costly, yet high

investigation effort leads to a high precision signal, the provider issues a contract to ensure both

high investigation and truthful communication from the client. In case high investigation effort

does not lead to a sufficiently precise signal, it is not optimal for the provider to provide the

client with incentives to put in this effort. However, provided the cost of allocation is not too

high, it is still optimal to induce the client to communicate in case of disruption, albeit with

the risk of the client reporting a local disruption if she receives a signal for a global disruption.

Although client 1 may thus cause misallocation of response capacity, without communication

from the client the provider would not be alerted to the disruption in time to allocate any

response capacity. Moreover, ineffective allocation is at least partially offset by the potential for

patching. This results in conditions under which offering T (f
′
, 0) is optimal from the provider’s

perspective.

Figure 4.3 illustrates these results. In region C (dark gray), the provider offers T (f, r) and

ensures high investigation effort and truth-telling by client 1. In region B (light gray), the

provider offers T (f
′
, 0) and induces client 1 to report a local disruption regardless of the signal.

For the white region it is infeasible for the provider to offer either contract. In addition, the plot

is overlaid with the threshold curves from Figure 4.2. Given the same parameter conditions, we

observe three interesting regions where decentralized decision making diverges from centralized,
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first-best decision making. First, under decentralized decision making, a much higher signal

precision is required in order for high investigation effort to be worthwhile than under centralized

decision making. This means in the where the region of C from Figure 4.2 overlaps with region

B in Figure 4.3, the provider underreacts to signals potentially indicating a global disruption.

Second, the incentive for client 1 to report a local disruption prevents the provider from inducing

client 1 to report such that broad allocation despite the signal is possible. This means where

region A from Figure 4.2 overlaps with regions B and C in Figure 4.3 we again find the provider

in the decentralized setting is likely not to allocate response capacity globally when it is efficient

to do so. Both observations speak to the observed delay in deploying response capacity globally

(i.e. executing a worldwide recall) after initial firm awareness of a disruption (FDA 2013). Third,

we find disruption response to be feasible for higher χ under contracting than under centralized

decision making. The optimal fixed fee that the clients are willing to pay in return for response

capacity under either contract is large enough to offset a higher cost of allocation.

Figure 4.3 Investigation effort and allocation under contracting (no omission)

Notes. Regions denote investigation effort and response capacity

allocation strategies induced by contracts. Region B: low investiga-

tion effort and unconditional focused allocation, induced by contract

T (f
′
, 0); region C: high investigation effort and broad allocation

when s = g and focused allocation when s = l, induced by T (f, r).

In the white region contracting is infeasible. In this example: dl = 2,

dg = 10, µk = 2, µ̄ = 1.85, µ0 = 1, k = 0.1, α = 0.02.
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4.4.2.2 Optimal contract design when omission is possible

Now we turn to solving for the optimal contract terms in case omission is possible, meaning all

eight of client 1’s communication strategies in S are admissible. We need to determine whether

the option for client 1 to omit has a bearing on the optimal contract terms to induce both

high investigation effort and truthful communication. From the perspective of the provider, the

contracting problem is equivalent to (P):

(P) min
f,r≥0

, E[Dp]

s.t. E[D1(g, l, h)|f, r] ≤ E[D1(l, l, l)|f, r], (ICE)

E[D1(g, l, h)|f, r] ≤ E[D1(∅, l, h)|f, r], (ICT1)

E[D1(g, l, h)|f, r] ≤ E[D1(l, ∅, h)|f, r], (ICT2)

E[D1(g, l, h)|f, r] ≤ E[D1(g, ∅, h)|f, r], (ICT3)

E[D1(g, l, h)|f, r] ≤ E[D1(∅, ∅, l)|f, r], (IR1)

E[Dp|(g, l, h)] ≤ E[Dp|(∅, ∅, l)], (IRp)

where the first incentive compatibility constraint (ICE) ensure high investigation effort, the

next three incentive compatibility constraints (ICT1:3) ensure truth-telling and the individual

rationality constraint ensures participation by client 1. Like before the conditions (IR1) and

(IRp) are the individual rationality constraints for client 1 and the provider respectively.

Rather than solving (P) we can set the contract to T (f, r) as found in Proposition 9 and

determine whether under this contract there are conditions under which the constraints (ICT1:3)

in (P) are violated. Pursuing this approach, we can then determine how the original contract

terms should be adjusted to prevent client 1 from not communicating in case she receives a

particular signal. Proposition 10 characterizes the necessary adjustment to the contract terms

when omission by client 1 is possible.

Proposition 10 (optimal contract design with omission). Consider the contracts T (f, r),

T (f
′
, 0) and ζ1′′, ζ4′ and ζ5′ as described in Proposition 9 and let:

δ ≡ (2q − 1)µpµ̄+ qµ0µp − (1− q)µ0µ̄

(2q − 1)µpµ̄+ 2qµ0µ̄− (1− q)µ0µp
,

x ≡ 2kµ0(2µ0 + µp)(µ0 + µ̄)

(2q − 1)µpµ̄+ 2qµ0µ̄− (1− q)µ0µp
.

Under both contracts, client 1 has an incentive not to communicate when s = g and dl > (δ+x)dg

and when s = l and dl < (δ − x)dg. To prevent omission, the provider needs to adjust the fixed
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fee downward in either contract by:

∆f =



dl − (δ + x)dg

4

(
2q(µ0 + µp)− µp
µ0(2µ0 + µp)

− q

µ0 + µ̄

)
when dl > (δ + x)dg

(δ − x)dg − dl

4

(
2q(µ0 + µp)− µp
µ0(2µ0 + µp)

− q

µ0 + µ̄

)
when dl < (δ − x)dg

0 otherwise.

Following a downward adjustment of the fixed fee, the thresholds ζ4′ and ζ5′ shift down respec-

tively by ∆f/3 and 2∆f/(4− q).

Proposition 10 shows that the possibility of omission by client 1 necessitates an adjustment to

the expected contract payment between the provider and the client, conditional on the ratio of

the cost of local disruption to the cost of global disruption. Interestingly, this adjustment is

non-monotone in this ratio. From ∆f , we see that when dl < (δ − x)dg or dl > (δ + x)dg, the

provider should decrease the fixed fee, the larger the difference between dl and δdg. In between

the two thresholds, it is still optimal for the client to adhere to truthful communication under

the original contract and no adjustment is needed. Whereas under T (f, r), the fixed fee f is set

to offset the disclosure reward in expectation, the adjusted fixed fee when omission by client 1

is possible effectively reinstates the expected disclosure reward to the client. This means when

omission is possible, the client can extract information rent when dl is small or large enough

with respect to dg. Also note that δ < 1 as µp > µ̄ and 2µ̄ > µp by definition. This means there

exist instances in which it is worthwhile for the client to not communicate if s = g, even when

dl < dg, unless the contract is adjusted. Figure 4.4 illustrates these results. In shaded regions,

the provider should lower the fixed fee; between the two solid vertical lines no adjustment is

necessary.

4.5 Conclusions

Increasingly large client pools have come to depend on continuous availability and security of

equipment provided and maintained by a single specialist provider. Together these firms form

connected technology networks at risk of disruption affecting multiple parties simultaneously

while the provider’s ability to provide response measure may be limited. The scale of the

disruption stemming from technology failure is typically unknown at the onset of disruption.

Moreover, faulty equipment can in some cases cause life threatening circumstances to consumers

or patients downstream. Although a growing stream of work in operations management litera-

ture addresses problems surrounding investment in preventative and restorative measures, few

works speak to the problem of effective allocation of response capacity once a disruption has

hit, but its nature not yet properly understood.
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Figure 4.4 Conditions for contract adjustment to counteract omission by client 1

Notes. Contract adjustment is necessary in the shaded region.

In this example: dg = 10, µk = 2, µ̄ = 1.85, µ0 = 1, k = 0.1,

χ = 0.5, q = 0.85, α = 0.02.

Motivated by a widespread problem with Baxter International’s dialysis equipment affecting

hospitals across Europe and the US in 2001, this study examines how detection of latent dis-

ruption risks in a network of clients like hospitals using and relying on the same technology

for service performance can be improved through contract design. Medical equipment used in

hospitals is generally serviced by the manufacturer acting as a service provider through either a

full protection plan at a fixed price or through a pay-per-service plan. In the context of bilateral

relations particularly the latter is often the most suitable. However, when multiple clients may

be at risk of competing over the same resources in case of disruption resulting from a common

technology failure, standard contracting practices may no longer suffice. For one, clients may

not have the incentive to investigate the nature of a disruption after problems are first rec-

ognized. Compounding this problem, adverse incentives can exist for clients to underreport a

potentially widespread problem to claim the necessary response capacity. From the perspective

of the equipment provider it is crucial to receive and follow the right warning signs in deploy-

ing costly response capacity. This is achievable by using contract design to control the clients’

incentives to disclose disruptions voluntarily, in line with the findings in Plambeck and Taylor

(2015) and Wang et al. (2016).

By means of a contracting game between a single provider and two clients we examined the effect

of a disclosure reward to ensure both high investigation effort and truthful communication by

the client who first raises alarm in case of a disruption. We modelled how the cost of allocating

response capacity as well as the signal precision obtained after investigation factor into optimal

decisions, as well as how these decisions are moderated by possible patching benefits. Through

this patching benefit we model the potential for focused allocation of response capacity to lead

to more expedited resolutions of related disruptions at other locations or clients. The patching
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benefit and signal quality can be interpreted as respectively reflecting intelligence gathering

by the provider and the clients. We studied the problem in two parts. First we solved the

investigation effort and response capacity allocation problem from the perspective of a centralized

decision maker. Next we examined decentralized decision making where the provider offers a

contract to influence the clients’ decisions on investigation effort and communication, after which

the provider allocates response capacity to the two clients.

Under centralized decision making we show that for a sufficiently high patching benefit, exerting

costly investigation effort is never efficient. In turn, without a precise signal on the nature of

the disruption this means adhering to a signal-dependent response capacity allocation strategy

is never efficient. For lower patching benefits we show that there are also conditions under

which the centralized decision make optimally chooses to ignore signals on the disruption type

and adheres to either a focused or broad response capacity allocation strategy regardless of

the signal. This holds particularly when the potential signal precision after high investigation

effort is low and the cost of allocating response capacity is either sufficiently low (in which case

broad allocation regardless of the signal is optimal) or sufficiently high (in which case focused

allocation regardless of the signal is optimal). These results imply that even without adverse

selection and moral hazard, seemingly naive response capacity allocation that does not take

account of disruptions signal can be viable.

Our results for the decentralized setting highlight the benefit of including a disclosure reward

next to the service fee in the contract. We show that while clients may be incentivized to identify

and report network disruptions, competition for scarce emergency resources and the required

investment in understanding their own exposure may still lead clients to deliberately miscom-

municate with the provider. A negative byproduct of creating the right incentives for clients

to investigate issues seriously is that it opens up avenues for omission given a particular signal,

similar to the partial disclosure strategies observed in Kim (2015). Having information gives

agents power to be selective in communication, which may hurt system allocation of response

capacity. This implies that the provider should take caution in allocating response capacity

following alarms raised by clients. We solve for the optimal adjustment in contract design, so

that the provider can ensure truth-telling by the client and rely on accurate signals to deploy

response measures effectively when a disruption has happened.

Combined, our findings give a game theoretical justification for observed miscommunication

of adverse events by hospitals as well delayed response to widespread problems by medical

equipment manufacturers. More generally our findings highlight the problems associated with

achieving the effective response to disruption in settings where information on the nature of

disruptions is both fragmented and affected by interference from misaligned objectives. Although

incentives can be adjusted by means of the right contract design, the findings of this study

underline that even under theoretically optimal contracts, systematic underreaction to warning

signs is difficult to avoid.



Appendix

4.A Proofs

Proof of Lemma 2. We complete the proof for this lemma in three steps. In step 1 we specify

the expected disruption costs for the centralized firm for each combination of investigation

effort e ∈ {h, l}, signal s ∈ {l, g} and response capacity allocation strategy (option (a): broad

allocation or option (b): focused allocation). In step 2, we find the indifference functions between

strategies and solve for χ. In step 3, we use these indifference functions to find constraints that

define which allocation strategy is preferred under which parameter conditions.

Step 1: Conditional Expected Disruption Costs. There are eight different expected cost functions

to compare. Let G1 and G2 be the expected cost functions for option (a) and (b) respectively,

given e = h and s = g. Let G3 and G4 be the expected costs functions for (a) and (b), given

e = h and s = l; then G5 and G6 given e = l and s = g; and G7 and G8 given e = l and s = l.

We find:

E[G1] = q(2dg/(µ0 + µp/2)) + (1− q)(dl1/(µ0 + µp/2)) + k + 2χ, (4.13)

E[G2] = q(dg/(µ0 + µ̄)) + (1− q)(dl1/(µ0 + µ̄)) + q(dg/(µ0 + µp − µ̄+ α)) + k + (1 + q)χ,

(4.14)

E[G3] = q(dl1/(µ0 + µp/2)) + (1− q)(2dg/(µ0 + µp/2)) + k + 2χ, (4.15)

E[G4] = q(dl1/(µ0 + µ̄)) + (1− q)(2dg/(µ0 + µ̄)) + (1− q)(dg/(µ0 + µp − µ̄+ α)) + k + (2− q)χ,
(4.16)

E[G5] = 1/2(2dg/(µ0 + µp/2)) + 1/2(dl1/(µ0 + µp/2)) + 2χ, (4.17)

E[G6] = 1/2(dg/(µ0 + µ̄)) + 1/2(dl1/(µ0 + µ̄)) + 1/2(dg/(µ0 + µp − µ̄+ α)) + 3χ/2, (4.18)

E[G7] = 1/2(dl1/(µ0 + µp/2)) + 1/2(2dg/(µ0 + µp/2)) + 2χ, (4.19)

E[G8] = 1/2(dl1/(µ0 + µ̄)) + 1/2(dg/(µ0 + µ̄)) + 1/2(dg/(µ0 + µp − µ̄+ α)) + 3χ/2. (4.20)

Step 2: Indifference Functions. From step 1 it is easy to observe that E[G5] = E[G7] and

E[G6] = E[G8] as in both cases low investigation effort yields an uniformative signal such that

the expected cost conditional on s = g and s = l are exactly the same. Hence we can proceed to

find the indifference functions between E[G1] and E[G2], E[G3] and E[G4] and E[G5] and E[G6],

but not have to consider E[G7] and E[G8] separately. Setting E[G1] = E[G2], E[G3] = E[G4]
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and E[G5] = E[G6] and solving for χ in each case respectively gives:

ζ1 ≡
1

1− q

(
qdg + (1− q)dla

µ0 + µ̄
+

qdg

µ0 + µp − µ̄+ α
− 2(2qdg + (1− q)dla)

2µ0 + µp

)
, (4.21)

ζ2 ≡
1

q

(
(1− q)dg + qdla

µ0 + µ̄
+

(1− q)dg

µ0 + µp − µ̄+ α
− 2(2(1− q)dg + qdla)

2µ0 + µp

)
, (4.22)

ζ3 ≡
dg + dla
µ0 + µ̄

+
dg

µ0 + µp − µ̄+ α
− 2(2dg + dla)

2µ0 + µp
. (4.23)

Recall the tie-breaking assumption that in case the company is indifferent between options, it is

preferable to allocate response capacity as much and as early as possible. From the indifference

functions we therefore find that after exerting high investigation effort, if χ ≤ ζ1 (χ > ζ1),

broad (focused) allocation is optimal if s = g. If χ ≤ ζ2 (χ > ζ2) broad (focused) allocation is

optimal if s = l. If χ ≤ ζ1 and χ > ζ2 (χ > ζ1 and χ > ζ2), then broad (focused) allocation is

optimal regardless of the signal. After exerting low investigation effort, we find broad (focused)

allocation is optimal if χ ≤ ζ3 (χ > ζ3).

Step 3: Optimal Conditional Response Capacity Allocation. From step 2 we can see ζ3 does not

depend on q. To determine the signs of ζ1 and ζ2 in q, we find derivatives ∂ζ1/∂q and ∂ζ2/∂q.

Equating both derivatives to zero and solving for α gives a single solution:

α̂ ≡ (µp − 2µ̄)2

2(µ0 + 2µ̄)− µp
. (4.24)

Evaluating ζ1 and ζ2 at α̂ gives ζ1 = ζ2 = dl(1/(µ0 + µ̄)− 2/(2µ0 + µp)) < 0 as 2µ̄ > µp and by

extension, for α ≥ α̂, ζ1, ζ2 < 0. Next we derive:

∂ζ1

∂q∂α
= − dg

(q − 1)2(µ0 + µp − µ̄+ α)2
< 0, (4.25)

∂ζ2

∂q∂α
=

dg

q2(µ0 + µp − µ̄+ α)2
> 0. (4.26)

Noting that α̂ > 0, this means that for 0 ≤ α < α̂, ∂ζ1/∂q > 0 and ∂ζ2/∂q < 0. Also note that,

for q = 1/2 we have ζ1 = ζ2 = ζ3. With these results, we find that for q ≤ 1/2 and if α < α̂,

ζ1 > ζ2. By contrast, if α ≥ α̂, ζ1 < ζ2 < 0.

If the company has exerted high investigation effort (e=h), it follows that when 0 ≤ α < α̂ for

χ > ζ1 focused allocation is optimal, regardless of the signal, and for χ ≤ ζ2 broad allocation is

optimal, regardless of the signal. Denote the region in which broad allocation is always optimal

as region A and denote the region in which focused allocation is always optimal as region B. For

0 ≤ α < α̂ and ζ2 < χ < ζ1, it is broad allocation if the signal is s = g and focused allocation is

optimal if the signal is s = l. Denote the region in which a signal-dependent strategy is optimal

region C. When α ≥ α̂, it holds that χ ≥ 0 > ζ2 > ζ1, hence focused allocation is the only

optimal strategy after exerting high investigation effort. If instead the company has exerted low

investigation effort (e=l), it follows that when χ > ζ3, focused allocation of response capacity is

optimal. Solving ζ3 = 0 for α gives:

α̃ =
(2µ̄− µp)(dg(µp − 2µ̄) + dl(µ0 + µp − µ̄))

dl(µp − 2µ̄) + dg(µp − 2(µ0 + 2µ̄)
, (4.27)
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which means that for α ≥ α̃ focused response capacity allocation is the only optimal strategy

after exerting low investigation effort. �

Proof of Proposition 8. We complete this proof in four steps. In step 1 we characterize the ex-ante

expected cost functions given the optimal allocation strategies, which are necessary to determine

optimal investigation effort exertion. In step 2 we show that a signal-independent strategy is

never preceded by high investigation effort, i.e. when low investigation effort is dominant. In

step 3, parts a and b, we characterize the conditions under which high investigation is dominant.

In step 4 we evaluate the conditions that ensure feasibility of the investigation effort and response

capacity allocation strategies. In all parts of the proof, α̂ is the result from Lemma 2 step 3.

Step 1: Ex-ante Expected Disruption Costs Given Optimal Allocation Strategies. Through

Lemma 2 we identified three regions M = {A,B,C} characterized by distinct response ca-

pacity allocation strategies given high investigation effort. Recall that region A is characterized

by unconditional broad allocation (a); region B is characterized by unconditional focused allo-

cation (b); region C is characterized by allocation conditional on the signal. Let Γ(M |e, s) be

the optimal resource allocation strategy for a particular region, given the investigation effort

and signal, such that we have Γ(A|h, g) = Γ(A|h, l) = a, Γ(B|h, g) = Γ(B|h, l) = b, but in case

of region C:

Γ(C|h, s) = Γ(C|h, g) ∪ Γ(C|h, l) = {a, b}.

Also let E[A|h], E[B|h] and E[C|h] respectively denote the expected disruption costs for each

strategy across the two company locations given high investigation effort. Recall that by as-

sumption the two signal types are equally likely, i.e. P(s = g) = P(s = l) = 1/2. We can then

compute:

E[A|h] =

(
EΨ[DC |Γ(A|h, g)] + EΨ[DC |Γ(A|h, l)]

)
/2, (4.28)

E[B|h] =

(
EΨ[DC |Γ(B|h, g)] + EΨ[DC |Γ(B|h, l)]

)
/2, (4.29)

E[C|h] =

(
EΨ[DC |Γ(C|h, g)] + EΨ[DC |Γ(C|h, l)]

)
/2. (4.30)

Substituting the expected cost functions from the proof of Lemma 2 and simplifying yields:

E[A|h] =
2dg + dl

2µ0 + µp
+ 2χ+ k, (4.31)

E[B|h] =
1

2

(
dg + dl

µ0 + µ̄
+

dg

µ0 + µp − µ̄+ α
+ 3χ+ 2k

)
, (4.32)

E[C|h] =
1

2

(
(1− q)dg + qdl

µ0 + µ̄
+

(1− q)dg

µ0 + µp − µ̄+ α
+

2(2qdg + (1− q)dl)
2µ0 + µp

+ (4− q)χ+ 2k

)
.

(4.33)

Turning to the case of low investigation effort, we need only compute the expected disruption

cost for two regions. Again region A is characterized by unconditional broad allocation and

region B is characterized by unconditional focused allocation, i.e. Γ(A|l, g) = Γ(A|l, l) = a,
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Γ(B|l, g) = Γ(B|l, l) = b. Let E[A|l] and E[B|l] respectively denote the expected disruption cost

for each region given low investigation effort. We find:

E[A|l] ≡
(
EΨ[DC |Γ(A|l, g)] + EΨ[DC |Γ(A|l, l)]

)
/2 =

2dg + dl

2µ0 + µp
+ 2χ, (4.34)

E[B|l] ≡
(
EΨ[DC |Γ(B|l, g)] + EΨ[DC |Γ(B|l, l)]

)
/2 =

1

2

(
dg + dl

µ0 + µ̄
+

dg

µ0 + µp − µ̄+ α
+ 3χ

)
.

(4.35)

Step 2: Dominant Low Investigation Effort. First we compare regions A and B given high

investigation effort with the same regions given low investigation effort. Comparing equation

4.31 with equation 4.34 and comparing 4.32 and 4.35 directly shows that E[A|l] < E[A|h] and

E[B|l] < E[B|h] for any k > 0, otherwise E[A|l] = E[A|h] and E[B|l] = E[B|h]. This means

when investigation effort is costly, it can never be optimal to exert high investigation effort if it

leads to a signal-independent response capacity allocation strategy.

Step 3: Dominant High Investigation Effort. We compare region C given high investigation

effort with region A and B given low investigation effort. Note that by 2 step 3, region C only

exists for α < α̂. Solving E[C|h] = E[B|l] and E[C|h] = E[A|l], respectively gives the threshold

functions ζ1′ and ζ2′:

ζ1′ ≡ ζ1 −
2k

1− q
, (4.36)

ζ2′ ≡ ζ2 +
2k

q
, (4.37)

where we take ζ1 and ζ2 from the results in Lemma 2 step 2. Next, solving ζ1′ = ζ2′ in q, gives

the intersection which we denote by qh:

qh ≡
1

2
+ k

(
(2µ0 + µp)(µ0 + µ̄)(µ0 + µp − µ̄+ α)

dg((µ0 − 2µ̄)2 + α(µp − 2(µ0 + 2µ̄)))

)
. (4.38)

Taking the partial derivative of qh in k, we are left with the expression in the parentheses on

the RHS of 4.38. Note that the numerator of this expression is positive and 2(µ0 + 2µ̄) > µp by

assumption. Using α̂ from Lemma 2 step 3 and also noting that α̂ > 0 we find that:

lim
α→ α̂−

∂qh(α)

∂k
=∞, (4.39)

such that for α < α̂, it holds that ∂qh/∂k > 0. It turn, this means qh > 1/2 for k > 0 and there

exists a k̄ such that for k > k̄, qh > 1, outside of the feasible range for q. Next, consider that:

∂ζ1′
∂q

=
∂ζ1

∂q
− 2k

(1− q)2
≤ ∂ζ1

∂q
, (4.40)

∂ζ2′
∂q

=
∂ζ2

∂q
− 2k

q2
≤ ∂ζ1

∂q
. (4.41)

From Lemma 2 step 3 we know ∂ζ1/∂q > 0 and ∂ζ2/∂q < 0. Because ζ1′ < ζ2′ at q = 1/2 and

ζ1′ = ζ2′ at q = qh > 1/2 when k > 0, it holds that ∂ζ1′/∂q > ∂ζ2′/∂q. Following this, provided

k > 0, for qh < q we find ζ1′ > ζ2′ and for q < qh we find ζ1′ < ζ2′. Taken together we can



4.A Proofs 121

then conclude that for q > qh and ζ2′ < χ ≤ ζ1′ it is optimal to exert high investigation effort

and follow a signal-dependent allocation strategy (i.e. broad response capacity allocation when

s = g and focused response capacity allocation when s = l). For q ≤ qh only low investigation

effort is optimal and we retrieve ζ3 from Lemma 2 step 2 as the threshold between broad and

focused allocation at optimality.

Step 4: Feasibility of investigation effort and response capacity allocation strategies Having

established the optimal investigation effort and response capacity allocation strategies in the

preceding steps, note that we need only check for feasibility constraints in χ for region E[B|l]
and region E[C|h]. Next note that the expected disruption cost to the provider of not allocating

any response capacity is equal to:

E[DC ] = (dg1 + dl1)/(2µ0). (4.42)

Equating this expected cost with E[B|l] and E[C|h], then solving for χ, we respectively find the

threshold functions:

ζ4 ≡
1

3

(
2dg + dl1
µ0

− dg

µ0 + µp − µ̄+ α
− dg + dl1
µ0 + µ̄

)
, (4.43)

ζ5 ≡
1

4− q

(
2dg + dl1
µ0

− 2(1− q)dl1 + 4qdg

2µ0 + µp
− (1− q)dg

µ0 + µp − µ̄+ α
− (1− q)dg + qdl1

µ0 + µ̄
− 2k

)
.

(4.44)

Consider three cases: 1) q ≤ qh and χ > ζ4; 2) q > qh, χ > ζ1′ and χ > ζ4; and 3) q > qh, χ < ζ1′
and χ > ζ5. In all three cases we find no investigation effort and response capacity allocation

strategy is feasible. �

Proof of Lemma 3. We complete this proof in two steps, first considering the case of client 1

communicating after exerting low investigation effort (step 1) and then considering the case of

client communicating after exerting high investigation effort (step 2).

Step 1: Message Thresholds After Exerting Low Investigation Effort. In the case e = l, expected

costs are independent from the signal, so there are three expected cost functions to compare:

one for each type of message and one associated with the decision not to send a message. Let

H1, H2 and H3 respectively be the cost to client 1 when communicating m = g, communicating

m = l and not sending a message. We find:

E[H1] = (dg1 + dl1)/(2µ0 + µp) + f − r/2, (4.45)

E[H2] = (dg1 + dl1)/(µ0 + µ̄) + f − r/2, (4.46)

E[H3] = (dg1 + dl1)/(2µ0). (4.47)

Comparing E[H1] and E[H2], we find E[H2] < E[H1] as µ̄ > µp/2 by assumption. Therefore

we just have to consider the inequality E[H3] < E[H2]. Solving for f and r on one side of the

inequality gives 2f − r > ϑl, where ϑl ≡ µ̄(dg1 + dl1)/(µ0(µ0 + µ̄)).
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Step 2: Message Thresholds After Exerting High Investigation Effort. Because in the case e = h

the signal does matter there are six expected cost functions to compare. For the case when

e = h and s = g, let H4, H5 and H6 respectively be the cost to client 1 when communicating

m = g, communicating m = l and not sending a message. In the same respective order, let H7,

H8 and H9 be the expected cost for the case when e = h and s = l. We find:

E[H4] = 2(qdg1 + (1− q)dl1)/(2µ0 + µp) + f − qr + k, (4.48)

E[H5] = (qdg1 + (1− q)dl1)/(µ0 + µ̄) + f − (1− q)r + k, (4.49)

E[H6] = (qdg1 + (1− q)dl1)/(µ0) + k, (4.50)

E[H7] = 2(qdl1 + (1− q)dg1)/(2µ0 + µp) + f − (1− q)r + k, (4.51)

E[H8] = (qdl1 + (1− q)dg1)/(µ0 + µ̄) + f − qr + k, (4.52)

E[H9] = (qdl1 + (1− q)dg1)/(µ0) + k. (4.53)

Similar to the comparison between E[H3] and E[H2] in step 1 of this proof, we compare E[H4]

and E[H5] to find the inequality E[H4] < E[H5] simplifies to (2q − 1)r > ϑh1(g) , where

ϑh1(s) ≡ (2µ̄ − µp)(qds1 + (1 − q)d−s1 )/((µ0 + µ̄)(2µ0 + µp)). Next, E[H6] < E[H5] simplifies to

f − (1− q)r > ϑh2(g) where ϑh2(s) ≡ µ̄(qds1 + (1− q)d−s1 )/(µ0(µ0 + µ̄)). Finally E[H6] < E[H4]

simplifies to f−qr > ϑh3(g), where ϑh3(s) ≡ µp(qds1 +(1−q)ds1)/(µ0(2µ0 +µp)). Taken together,

simultaneously satisfying f−qr > ϑh3(g) and f−(1−q)r > ϑh2(g) makes not sending a message

the preferred choice for client 1. Taking the difference between the two inequalities for each side

of the inequality, i.e. f − (1− q)r− (f − qr) > ϑh2(g)−ϑh3(g), returns (2q− 1)r > ϑh1(g). This

means if between m = g and m = l, m = g is preferred and therefore (2q − 1)r > ϑh1(g), then

if f − (1− q)r < ϑh2(g) it must also hold that f − qr < ϑh3(g) such that sending m = g is also

preferred over not sending a message. Similarly if (2q−1)r < ϑh1(g) and f−qr < ϑh3(g), sending

m = l is the preferred option. Only three inequalities are therefore needed to characterize the

communication strategy in case s = g. Inequalities for the case s = l are analogously derived

and simplified. When s = l, if (1 − 2q)r < ϑ(l)h1 and f − qr < ϑ(l)h3 is optimal for client 1

to communicate truthfully, i.e. m = l. Given the assumption that q > 1/2 the first condition

always holds, which means it is never optimal to communicate m = g. In case f − qr > ϑ(l)h3

it is optimal for the client not to send a message. �

Proof of Proposition 9. We complete this proof in three steps. Step 1 involves finding the disclo-

sure reward necessary to incentivize high investigation effort by client 1. Step 2 involves finding

the service fee that guarantees participation by client 1. Step 3 involves evaluating conditions

on the cost of investigation effort and response capacity allocation that ensure feasibility of the

contract from the provider’s perspective.

Step 1: Incentive for high investigation effort. In phase (ii), client 1 decides on what level of

investigation effort to exert by evaluating:

E[D1|f, r] = min
e

Es
[
EΨ

[
dΨ

1

µ1(m(e|s))
+ T (f, r,m(e|s)) + k1e=h

]]
. (4.54)
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Given the results in Lemma 3 and restricting the client’s strategy set to exclude the option

of omission, client 1 will choose to communicate m = l regardless of the signal if there is no

incentive to exert high investigation effort. In case there is such an incentive, the incentive should

also be such that client 1 will choose to communicate truthfully m = s. That is, provided the

participation constraint for the client 1 can be met in each instance. Evaluating the expected

disruption cost to client 1 in each instance gives:

E[D1(e = h)] =
1

2

(
qdl1 + (1− q)dg

µ0 + µ̄
+ f − qr + k

)
+

1

2

(
qdg + (1− q)dl1
µ0 + µp/2

+ f − qr + k

)
=

1

2

(
qdl1 + (1− q)dg

µ0 + µ̄
+
qdg + (1− q)dl1
µ0 + µp/2

)
+ f − qr + k, (4.55)

E[D1(e = l)] =
1

2

(
1

2

(
dl1 + dg

µ0 + µ̄

)
+ f − r/2

)
+

1

2

(
1

2

(
dl1 + dg

µ0 + µ̄

)
+ f − r/2

)
=

1

2

(
dl1 + dg

µ0 + µ̄
+ f − r/2

)
. (4.56)

Then evaluating E[D1(e = h)] ≤ E[D1(e = l)], solving for r and simplifying the resulting

expression gives:

r ≥ r ≡ (2µ̄− µp)(qdg + (1− q)dl1)

(2q − 1)(2µ0 + µp)(µ0 + µ̄)
+

2k

2q − 1
. (4.57)

Step 2: Meeting the participation constraint. Regardless of whether client 1 has the incentive

to exert high investigation effort, if the service fee is too high, client 1 has no incentive to call

for response in the first place. This is technically the same as client 1 rejecting the provider’s

contract offer in phase (i). Client 1’s expected disruption cost in this situation is:

E[D1|m = ∅] =
1

2

(
dg + d1

µ0

)
. (4.58)

Evaluating E[D1(e = h)] ≤ E[D1|m = ∅] and solving for f gives:

f ≤ f ≡ dl1 + dg

2µ0
− 1

2

(
2(qdg + (1− q)dl1)

2µ0 + µp
+
qdl1 + (1− q)dg

µ0 + µ̄

)
+ qr − k, (4.59)

which makes the IR constraint binding for f = f . The provider thus incentivizes client 1 to

exert high investigation effort by offering a contract T (f, r). Although offering a contract T (0, 0)

would result in client 1 not exerting investigation effort, there exists a non-zero service fee for

which the client still accepts the contract for the benefit of the provider’s response capacity.

Following this, evaluating E[D1(e = l)] ≤ E[D1|m = ∅] gives:

f ≤ f ′ ≡ µ̄(dl1 + dg)

2µ0(µ0 + µ̄)
, (4.60)

such that the contract T (f
′
, 0) is optimal to the provider in case it is also optimal to induce low

investigation effort and accept miscommunication (i.e. m = l) in case s = g.

Step 3: Investigation and allocation cost thresholds. What remains to be shown is at which

thresholds for the cost of investigation k and cost of response capacity allocation χ it is no
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longer feasible or optimal for the provider to induce high investigation effort and truth-telling

by client 1. Following step 2 of this proof we can compare the provider’s expected disruption

cost having offered T (f, r) with the expected disruption cost having offered T (f
′
, 0). Evaluating

the expected disruption costs to the provider as in Equation 4.5 in Section 4.3.3 conditional on

(l, l, l) and (g, l, h) and substituting the relevant contract parameters, we have:

E[Dp|(l, l, l)]] =
1

2

(
dl1 + dg

µ0 + µ̄
+

dg

µ0 + µp − µ̄+ α
+ 3χ− 2f

′
)
, (4.61)

E[Dp|(g, l, h)] =
1

2

(
2((1− q)dl1 + 2qdg)

2µ0 + µp
+

(1− q)dg

µ0 + µp − µ̄+ α
+

(1− q)dg + qdl1
µ0 + µ̄

)
+

1

2

(
(4− q)χ+ 2(qr − f)

)
. (4.62)

The expected disruption cost to the provider in case client 1 rejects the contract is:

E[Dp|(∅, ∅, l)] =
1

2

(
dl1 + 2dg

µ0

)
. (4.63)

Evaluating E[Dp|(g, l, h)] = E[Dp|(l, l, l)], E[Dp|(l, l, l)] = E[Dp|(∅, ∅, l)], and E[Dp|(g, l, h)] =

E[Dp|(∅, ∅, l)] at the relevant contract terms found in step 1 and step 2 of this proof and solving

for χ respectively give:

ζ1′′ ≡
2

1− q

(
qdg + (1− q)dl1

µ0 + µ̄
+

qdg

2(µ0 + µp − µ̄+ α)
− 3qdg + 2(1− q)dl1

2µ0 + µp
− k
)
, (4.64)

ζ4′ ≡
1

3

(
dg

µ0
+

dg

µ0 + µp − µ̄+ α
− 2(dg + dl1)µ̄

µ0(µ0 + µ̄)

)
, (4.65)

ζ5′ ≡
2

4− q

(
3dg + 2dl1

µ0
− 4(1− q)dl1 + 6qdg

2µ0 + µp
− (1− q)dg

µ0 + µp − µ̄+ α
− 2(1− q)dg + 2qdl1

µ0 + µ̄
− k
)
.

(4.66)

By means of these threshold functions we find it is optimal for the provider to set T (f, r) and

induce both high investigation effort and truth-telling by client 1 so long as χ ≤ ζ5′ and χ ≤ ζ1′′.
It is optimal for the provider to set T (f

′
, 0) and induce client 1 to communicate while allowing

for miscommunication so long as χ > ζ1′′ and χ ≤ ζ4. Otherwise contracting is not feasible,

meaning the provider is better off not contracting for response and letting the system absorb

any disruption costs. Finally we solve ∂ζ1′′/∂q = 0 for α to find:

α† ≡ dg(2µ̄− µp)(µ0 + µ̄)− 2(µ0 + µp − µ̄)(dg(2µ̄− µp) + k(2µ0 + 2µp)(µ0 + µ̄))

2dg(2µ̄− µp) + 2(dg + k(µp + 2µ0)(µ0 + µ̄)
. (4.67)

And next substitute α† and q = 1/2 into ζ1′′ to find:

ζ1′′
∣∣
α=α†,q=1/2

= 2dg
(

1

µ+ µ̄
− 2

2µ0 + µp

)
− 2k < 0, (4.68)

where the inequality holds because 2µ̄ > µp and k ≥ 0 by assumption. Following the same

argumentation for the finding in step 3 in the proof for Lemma 2, we therefore find that for

α ≥ α† offering T (f, r) to induce a truth-telling by client 1 and follow a signal-dependent
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response capacity allocation strategy is not beneficial for any signal quality or allocation cost.

�

Proof of Proposition 10. We complete this proof in two steps. In step 1 we evaluate and compare

the expected cost functions for client 1 for each of the strategies in S that include omission (i.e.

(∅, l, h), (l, ∅, h) and (g, ∅, h)) given the optimal contract terms found in Proposition 9, to show

under which conditions each strategy is dominant to the other two. In step 2 we compare

the omission strategies to the truth-telling strategy given the same contract parameters and

determine the necessary adjustment of the contract terms to preserve high investigation effort

and truth-telling when omission is allowed.

Step 1: Expected disruption cost to client 1 under omission. Evaluating the expected cost to

client 1 in light of the three strategies including omission, we find:

E[D1(∅, l, h)] =
1

2

(
qdl1 + (1− q)dg

µ0 + µ̄
+
qdg + (1− q)dl

µ0
+ f − qr + 2k

)
, (4.69)

E[D1(l, ∅, h)] =
1

2

(
qdl1 + (1− q)dg

µ0
+
qdg + (1− q)dl

µ0 + µ̄
+ f − (1− q)r + 2k

)
, (4.70)

E[D1(g, ∅, h)] =
1

2

(
qdl1 + (1− q)dg

µ0
+
qdg + (1− q)dl

µ0 + µ̄
+ f − qr + 2k

)
. (4.71)

Next, substituting f = f and r = r and simplifying gives:

E[D1(∅, l, h)|f, r] =
1

4

(
2k +

(3− 2q)dl + (1 + 2q)dg

µ0
− 2((1− q)dl + qdg

2µ0 + µp
+

(1− q)dg + qdl

µ0 + µ̄

)
,

(4.72)

E[D1(l, ∅, h)|f, r] =
1

4

(
6k +

(3− 2q)dl + (1 + 2q)dg

µ0
+

2((1− q)dl + qdg

2µ0 + µp
− (1− q)dg + qdl

µ0 + µ̄

)
,

(4.73)

E[D1(g, ∅, h)|f, r] =
1

4

(
2k +

(3− 2q)dl + (1 + 2q)dg

µ0
+

2((1− q)dl + qdg

2µ0 + µp
− (1− q)dg + qdl

µ0 + µ̄

)
.

(4.74)

Which clearly shows that E[D1(g, ∅, h)|f, r] < E[D1(l, ∅, h)|f, r]. Despite omission in case of a

signal s = l common to both strategies, client 1 still prefers truthful communication in case of

a signal s = g, which is the intention of the contract terms. Hence we only need to compare

strategies (g, ∅, h) and (∅, l, h) with the truth-telling strategy (g, l, h).

Step 2: Contract adjustment under omission. From the proof of Proposition 9 step 2, we know

for f = f , client 1’s IR constraint is binding when inducing truth-telling is optimal and feasible.

Similarly, we know for f = f
′
, client 1’s IR constraint is binding when instead inducing client 1’s

communication strategy (l, l, l) is optimal and feasible. Evaluating the expected cost to client 1

following strategy (g, l, h) under T (f, r) therefore gives:

E[D1(g, l, h)|f, r] = E[D1(l, l, l)|f ′, 0] = E[D1(∅, ∅, l)] =
1

2

(
dg + d1

µ0

)
. (4.75)
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In the following, we present the arguments for this proof for E[D1(g, l, h)|f, r], although by

Equation 4.75 the same results hold for E[D1(l, l, l)|f ′, 0]. From Equation 4.72, Equation 4.74

and Equation 4.75 we can see all cost functions have positive and linear, but different slopes in

dl and dg. Evaluating the partial derivates in dl gives:

∂

∂dl
E[D1(∅, l, h)|f, r] =

1

4

(
(3− 2q)µp + (4− 2q)µ0

µ0(2µ0 + µp)
+

q

µ0 + µ̄

)
, (4.76)

∂

∂dl
E[D1(g, ∅, h)|f, r] =

1

4

(
(1 + 2q)µp + (4 + 2q)µ0

µ0(2µ0 + µp)
− q

µ0 + µ̄

)
, (4.77)

∂

∂dl
E[D1(g, l, h)|f, r] =

1

2µ0
, (4.78)

which can be shown similarly for derivatives in dg. Subtracting Equation 4.76 from Equation 4.77

we find:
1

2

(
(2q − 1)µp + 2qµ0

µ0(2µ0 + µp)
− q

µ0 + µp

)
> 0, (4.79)

which means the slope is higher for E[D1(g, ∅, h)]. Then, subtracting Equation 4.76 from Equa-

tion 4.78 and subtracting Equation 4.77 from Equation 4.78 respectively give:

1

4

(
(2q − 1)µp + 2qµ0

µ0(2µ0 + µp)
− q

µ0 + µp

)
> 0 and (4.80)

1

4

(
(1− 2q)µp − 2qµ0

µ0(2µ0 + µp)
+

q

µ0 + µp

)
< 0, (4.81)

which means the slope for E[D1(g, l, h)] is exactly halfway between the slope for E[D1(g, ∅, h)]

and E[D1(∅, l, h)]. Moreover, it means there exist two thresholds for the ratio of dl to dg below

and above which respectively, client 1 has the incentive to not communicate in case she receives a

signal s = l or a signal s = g. Next we characterize these thresholds. Solving E[D1(∅, l, h)|f, r] =

E[D1(g, ∅, h)|f, r] for dl gives a solution dl = δdg, where:

δ ≡ (2q − 1)µpµ̄+ qµ0µp − (1− q)µ0µ̄

(2q − 1)µpµ̄+ 2qµ0µ̄− (1− q)µ0µp
. (4.82)

For k = 0 and dl = δdg, we find E[D1(∅, l, h)|f, r] = E[D1(g, ∅, h)|f, r] = E[D1(g, l, h)|f, r], mean-

ing the thresholds coincide. For k > 0 and dl = δdg, (g, l, h) remains dominant and we find the

two unique thresholds by solving E[D1(∅, l, h)|f, r] = E[D1(g, l, h)|f, r] and E[D1(g, ∅, h)|f, r] =

E[D1(g, l, h)|f, r] for dl. We find the two thresholds respectively at dl = (δ − x)dg and dl =

(δ + x)dg, where we define:

x ≡ 2kµ0(2µ0 + µp)(µ0 + µ̄)

(2q − 1)µpµ̄+ 2qµ0µ̄− (1− q)µ0µp
. (4.83)

Following this, for dl < (δ − x)dg, client 1 expects a lower disruption cost under the contract

T (f, r) when not communicating if she receives a signal s = l. Similarly, for dl > (δ + x)dg,

client 1 prefers not to communicate if she receives a signal s = g. In either case, the provider

could adjust the fee downward to correct for the difference in expected disruption cost to client

1. From Equation 4.80 and Equation 4.81 it follows that the necessary adjustment of the fixed
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fee in the contract is equal to:

∆f =



dl − (δ + x)dg

4

(
2q(µ0 + µp)− µp
µ0(2µ0 + µp)

− q

µ0 + µ̄

)
when dl > (δ + x)dg

(δ − x)dg − dl

4

(
2q(µ0 + µp)− µp
µ0(2µ0 + µp)

− q

µ0 + µ̄

)
when dl < (δ − x)dg

0 otherwise.

(4.84)

By Equation 4.75, the fixed fee in both T (f, r) and T (f
′
, 0) should be adjusted by ∆f to prevent

omission, i.e. T ((f − ∆f), r) and T ((f − ∆f), 0), provided dl < (δ − x)dg or dl > (δ + x)dg.

Following a downward adjustment of the fixed fee, by the arguments in step 3 of Proposition 9

(equations Equation 4.61-Equation 4.66) the thresholds ζ4′ and ζ5′ must necessary shift down

respectively by ∆f/3 and 2∆f/(4− q). �
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Chapter 5

Conclusions

This dissertation studies firms’ strategic interactions in anticipation of random service disruption

following technology failure. In particular it is aimed at understanding how firms invest in

detection and response measures, making sure disruption response and recovery are managed as

efficiently as possible in with all stakeholders.

A central theme to this dissertation is the need for vendors and clients to collaborate in respond-

ing to and recovering from technology failure. When it comes to mission-critical technology (e.g.

IT or medical technology) the client operates the system on a daily basis, but the vendor under-

stands the architecture of the system. As such, each party plays a vital role responding to red

flags and tracking down the root cause of any problem. Appropriate contract design can help

align incentives for disruption risk mitigation. Each of the main chapters highlights different

findings to justify the importance of structuring the right incentives to minimize disruption costs

and seek to contribute to the literature on contract design for service operations and technology

management in operations management.

Chapter 2 in this dissertation shows how in an IT maintenance outsourcing relationship a client

should balance penalizing the vendor for downtime with investments in facilitating response

to improve system performance, particularly when either party may not be risk neutral. To

understand how a client should balance the need to support the vendor while setting the right

incentives for the vendor to invest, we develop a model that combines the key characteristics

of value co-creation (i.e. complementarity between the firms’ investments in response capacity)

with maintenance contract practices (i.e. penalty contracts that penalize the vendor for system

downtime). We study the difference in the client’s expected utility between a case in which

investment in response capacity is observable and a case in which it is not. These two cases

reflect two extremes in system architecture: simple systems require straightforward measures

to respond to problem, whereas responsibilities and readiness to respond are hard to determine

in complex systems. We refer to the difference in outcomes between the two cases as the

cost of complexity. Firstly, we show that the cost of complexity to the client is decreasing in

the risk aversion of vendor but increasing in her own risk aversion. Secondly, we find that a

larger difference in risk aversion between client and vendor leads to underinvestment in system

uptime in case the client’s investment is observable, yet the opposite happens when the client’s

investment is not observable. The managerial implications of these findings are that when the

client is highly risk-averse, she has a lot to gain by making her efforts more observable (e.g.,

by investing in monitoring mechanisms or processes and systems that make her efforts more
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transparent). On the contrary, when the client is working with a highly risk-averse vendor,

investing in increasing the observability of her efforts will not have a substantial impact on her

profits. Moreover, higher observed uptime may actually be a signal of inefficient investment in

high complexity settings. Thus, the relative risk preferences of the two firms play a critical role

in the extent to which asymmetric information affects the efficiency of collaborative response.

Contracts are the prime conduit of an outsourcing relationship between two or multiple compa-

nies, but leave room for behavioral factors to be in the way efficient contracting decisions. For

Chapter 3, we therefore designed an experiment to build on findings in the first chapter and

demonstrate that differences in risk preference indeed form a barrier to collaborative response

to disruptions, exacerbated by biases in decision making. We built a proprietary software en-

vironment in which subjects take the role of a client in a technology outsourcing relationship

with a single, computerized vendor. We simulated a contracting game in which subjects decided

on both the downtime penalty to the vendor and an investment in response capacity in order

to minimize disruption costs. We focused this study on two sets of hypotheses, to do with the

effect of differences in risk aversion on subject decisions as well how cognitive feedback on the

vendor’s risk profile may improve subject decision making. Comparing decisions with the con-

ditionally optimal benchmarks we arrive at two observations that highlight possible heuristic

decision biases. Firstly, subjects tend to set and hold on to an inefficiently high investment

level even though it is theoretically optimal to adjust decisions under changing differences in

risk preferences. Secondly, subjects tend to set and hold on to a penalty that is too high when

interacting with more risk averse vendors and too low in case the vendor is equally risk averse,

again suggesting subjects stick to inefficient decisions, a well-known finding in the behavioral

operations management literature. Surprisingly, cognitive feedback on the vendor’s risk aversion

appears to have counterproductive effects on subject’s performance in the experiment, suggest-

ing cognitive overload can have a reinforcing effect on the heuristic decision biases observed.

This study comes with two key managerial implications. The first is that in adjusting to dif-

ferent contracting partners, managers responsible for contract design and implication should be

wary of anchoring on previous decisions, particularly when conditions may have shifted. The

second is that investing effort in understanding the vendor’s risk aversion may make contracting

decisions all the more difficult. Particular when it comes to understanding how the vendor’s

preferences relate to her own, a possible ‘cognitive overload’ leads to over-reliance on existing

heuristics where adjustments are needed to correct for changing conditions.

Chapters 2 and 3 exclusively examined strategic interactions in bilateral relations. However,

in reality increasingly large client pools have come to depend on continuous availability and

security of equipment provided and maintained by a single specialist vendor. The bilateral

relations studied in the first chapter thus only represents a special case among generally larger

and more connected technology networks. The scale of the disruption in technology networks

is typically unknown at the onset of disruption. Moreover, faulty equipment can in some cases

cause life threatening circumstances to consumers or patients downstream. Motivated by a
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widespread problem with dialysis equipment from a single provider affecting hospitals across

Europe and the US in 2001, the second chapter studies how detection of latent disruption

risks in a network of firms reliant on the same technology can be improved. By means of a

simple contracting game between a single vendor and two clients we examined the effect of a

disclosure reward to ensure both high investigation effort and truthful communication by the

client who first raises alarm in case of a disruption. The results show that while clients may

be incentivized to identify and report network disruptions, competition for scarce emergency

resources and the required investment in understanding their own exposure may incentivize

clients to deliberately miscommunicate with the vendor. This implies that the provider should

take caution in allocating response capacity following alarms raised by clients. Even when

it is feasible to implement the optimal contract terms, differences between optimal allocation

strategies from a centralized perspective and optimal allocation strategies from a decentralized

perspective highlight that miscommunication and delay of response can turn out to be optimal,

echoing real world observations surrounding response to medical equipment failures.

All three chapters that form the core of this dissertation are still works in progress and limitations

in each of the papers deserve to be recognized. Particular concerns raised by external reviewers

for Chapters 2 and 3 were reflected in the chapters’ respective discussion sections. Recognizing

limitations to Chapter 2 with regards to the restriction to bilateral contracts and possibly

overlooking the role of information exchange at the onset of disruption was what led to the

development of Chapter 4. Nonetheless, it bears repeating that the complexity surrounding the

outsourcing of mission-critical technology and investments in mitigating future disruptions makes

for a difficult context to capture either in a one-shot contracting game with a stylized decision

space, let alone an experiment that attempts to reflect these conditions while controlling factors

of interest. Successful further development of all three works will rest on finding representative

cases that bring to light the tapestry of risk preferences, information gathering and exchange

and interdependencies in response to disruptions. Redefining both the models and experimental

design across the chapter to match this tapestry may allow for results and insights to follow

more naturally, and with direct reference to the motivating cases.

To conclude, effective response to disruptions requires having sufficient response capacity ready

in advance and efficient deployment when these resources are needed. This requires a vendor and

its clients to act collaboratively, both in anticipation and in the aftermath of disruption. Con-

tracts govern the relationships between each client and vendor, but designing and implementing

the right contract is a difficult task. Depending on the context, we demonstrate penalties on

downtime and disclosure rewards can be powerful tools for disruption risk mitigation, as long

as both resource collaboration and competition as well differences in objectives and preferences

can be taken into consideration.


